
The Independence Day of Witnessing the
Correctness of Systems:

From Topological Proofs and Beyond

BCS FACS (Formal Aspects of Computing Science)

Claudio MENGHI

Speaker

Date: 4th July 2023

Agenda

From Model Checking to a Temporal Proof for
Partial Models
International Conference on Software Engineering
and Formal Methods (SEFM)
Bernasconi, Anna; Menghi, Claudio; Spoletini,
Paola; Zuck, Lenore D; Ghezzi, Carlo

2017

Integrating Topological Proofs with Model
Checking to Instrument Iterative Design
Fundamental Approaches to Software Engineering
(FASE)
Menghi, Claudio; Rizzi, Alessandro Maria;
Bernasconi, Anna

2020

TOrPEDO: Witnessing Model Correctness with
Topological Proofs
Formal Aspects of Computing (FAOC)
Menghi, Claudio; Rizzi, Alessandro Maria;
Bernasconi, Anna; Spoletini, Paola

2021

Trace Diagnostics for Signal-based Temporal
Properties
IEEE Transactions on Software Engineering (TSE),
Boufaied, Chaima; Menghi, Claudio; Bianculli,
Domenico; Briand, Lionel C

2023

From Model Checking to a Temporal Proof for Partial Models

Menghi, Claudio

International Conference on Software Engineering and Formal Methods (SEFM)

2017

Bernasconi, Anna Zuck, Lenore DSpoletini, Paola Ghezzi, Carlo

From Model Checking to a Temporal Proof for Partial Models

Menghi, Claudio

International Conference on Software Engineering and Formal Methods (SEFM)

2017

Bernasconi, Anna Zuck, Lenore DSpoletini, Paola Ghezzi, Carlo

Introduction

Genesis

Model Checking and Theorem Proving are two techniques

proposed to help designers and developers in producing a

software that is correct

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck.
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.

Genesis

Model Checking
M: model of the system
!: property of interest

M ⊧ !
yes
no + counterexample

Theorem Proving
M: model of the system
!: property of interest
 M ⊧ !
yes + proof
no

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck.
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.

Preliminaries

Model Checking + Theorem Proving
M: model of the system

!: property of interest
M ⊧ !

yes + proof
no + counterexample

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck.
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.

Preliminaries

Model Checking + Theorem Proving
M: model of the system

!: property of interest
M ⊧ !

yes + proof
no + counterexample

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck.
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.

Assumption: the model M of the system is completely
specified, i.e., it is a definitive model

Partial Models

However, in practice, models can be only
partially specified or incomplete

Partial Models (Formal Methods)

• A modal process logic
Larsen, Kim G., and Bent Thomsen.
Logic in Computer Science, 1988

• Model checking partial state spaces with 3-valued temporal logics
G Bruns, P Godefroid
Computer Aided Verification,1999

• Multi-valued model checking via classical model checking.
Gurfinkel, Arie, and Marsha Chechk.
Lecture notes in computer science 2003

• Dealing with Incompleteness in Automata-Based Model Checking
C Menghi, P Spoletini, C Ghezzi
Formal Methods, 2016

Partial Models (Software Engineering)

• Managing design-time uncertainty
Michalis Famelis· Marsha Chechik.
Software & Systems Modeling, 2017.

• Partial models: Towards modeling and reasoning with uncertainty
M Famelis, R Salay, M Chechik
Software Engineering (ICSE), 2012

• Synthesis of partial behavior models from properties and scenarios
S Uchitel, G Brunet, M Chechik
IEEE Transactions on Software Engineering, 2009

Partial Models (Requirements Engineering)

• Supporting early decisionmaking in the presence of uncertainty.
Horkoff, J., Salay, R., Chechik, M., Di Sandro, A.:
Requirements Engineering Conference, 2014

• Integrating Goal Model Analysis with Iterative Design
C Menghi, P Spoletini, C Ghezzi
International Working Conference on Requirements Engineering:
Foundation for Software Quality, 2017

Running Example

Running Example

Running Example

- When the light is red, it will always be green

- Red lights up infinitely often

- Green lights up infinitely often

Problem Statement

Question
How to help designers in producing correct
software with model checking and theorem

providing results for partial models?

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck.
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.

From Model Checking to a Temporal Proof for Partial Models

Menghi, Claudio

International Conference on Software Engineering and Formal Methods (SEFM)

2017

Bernasconi, Anna Zuck, Lenore DSpoletini, Paola Ghezzi, Carlo

Contribution

Contribution (THRIVE)

- THRIVE: THRee valued Integrated Verification framEwork for partial models.

Contribution (THRIVE)

- When the light is red, it will
always be green

- THRIVE: THRee valued Integrated Verification framEwork for partial models.

Contribution (THRIVE)

- THRIVE: THRee valued Integrated Verification framEwork for partial models.

Contribution (THRIVE)

- Green lights up infinitely often

- THRIVE: THRee valued Integrated Verification framEwork for partial models.

Contribution (THRIVE)

- THRIVE: THRee valued Integrated Verification framEwork for partial

models.

Contribution (THRIVE)

- THRIVE: THRee valued Integrated Verification framEwork for partial

models.

- Red lights up infinitely often

From Model Checking to a Temporal Proof for Partial Models

Menghi, Claudio

International Conference on Software Engineering and Formal Methods (SEFM)

2017

Bernasconi, Anna Zuck, Lenore DSpoletini, Paola Ghezzi, Carlo

An Instance of THRIVE

An instance of THRIVE

• Model of the system:

Partial Kripke Structures (PKS)

• Property of interest:

Linear Time Temporal Logic (LTL)

An instance of THRIVE

• Two possible semantics of LTL over PKS can be considered

• Three-valued semantics: it is based on information ordering T>?>⟘

• Thorough semantics: it is based on the notion of refinement

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

Generalized model checking: reasoning about partial state spaces
Bruns, G., Godefroid, P.
CONCUR 2000

An instance of THRIVE: Model checking

Two possible semantics of LTL over PKS can be considered

Model checking Result

Three-Valued
faster (it exploits two runs of
classical model checkers)

Not "correct" when ? is returned

Thorough
slower (it requires more complex
verification procedures)

Correct

Generalized model checking: reasoning about partial state spaces

Bruns, G., Godefroid, P.

Model checking partial state spaces with 3-valued temporal logics.

Bruns, G., Godefroid, P.

CAV 1999

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

Generalized model checking: reasoning about partial state spaces
Bruns, G., Godefroid, P.
CONCUR 2000

An instance of THRIVE: Model checking

Two possible semantics of LTL over PKS can be considered

Model checking Result

Three-Valued
faster (it exploits two runs of
classical model checkers)

Not "correct" when ? is returned

Thorough
slower (it requires more complex
verification procedures)

Correct

Generalized model checking: reasoning about partial state spaces

Bruns, G., Godefroid, P.

Model checking partial state spaces with 3-valued temporal logics.

Bruns, G., Godefroid, P.

CAV 1999

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

Generalized model checking: reasoning about partial state spaces
Bruns, G., Godefroid, P.
CONCUR 2000

An instance of THRIVE: Model checking

Two possible semantics of LTL over PKS can be considered

Model checking Result

Three-Valued
faster (it exploits two runs of
classical model checkers)

Not "correct" when ? is returned

Thorough
slower (it requires more complex
verification procedures)

Correct

Generalized model checking: reasoning about partial state spaces

Bruns, G., Godefroid, P.

Model checking partial state spaces with 3-valued temporal logics.

Bruns, G., Godefroid, P.

CAV 1999

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

Generalized model checking: reasoning about partial state spaces
Bruns, G., Godefroid, P.
CONCUR 2000

An instance of THRIVE: Model checking

The three-valued model checking can be solved as follows

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

An instance of THRIVE: Model checking

The three-valued model checking can be solved as follows

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

I do my best to
violate the
property

An instance of THRIVE: Model checking

The three-valued model checking can be solved as follows

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

I do my best to
satisfy the
property

An instance of THRIVE: Model checking

The three-valued model checking can be solved as follows

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

If none of the
previous condition

holds

An instance of THRIVE: Theorem Proving

The deductive verification framework produces a proof which

explains why M ⊧ φ

• it identifies failed states
• it applies a set of deduction rules

(successors, induction, conjunction rule)

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck.
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.

An instance of THRIVE

An instance of THRIVE: Running example

- When the light is red, it will always be green

T
T

An instance of THRIVE: Running example

- Green lights up infinitely often

⟘
⟘

T
T

An instance of THRIVE: Running example

- Red lights up infinitely often

⟘
⟘

T
T

An instance of THRIVE: Model checking

Two possible semantics of LTL over PKS can be considered

Model checking Result

Three-Valued
faster (it exploits two runs of
classical model checkers)

Not correct when ? is returned

Thorough
slower (it requires more complex
verification procedures)

Correct

Generalized model checking: reasoning about partial state spaces

Bruns, G., Godefroid, P.

Model checking partial state spaces with 3-valued temporal logics.

Bruns, G., Godefroid, P.

CAV 1999

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

Generalized model checking: reasoning about partial state spaces
Bruns, G., Godefroid, P.
CONCUR 2000

An instance of THRIVE: Correctness

•What about the thorough semantics?

•In many practically interesting cases, the thorough
semantics is not more precise than the three-valued*

•If the LTL formula is Self-minimizing the result is
correct**

* How thorough is thorough enough?
 Gurfinkel, A., Chechik, M.
 CHARME 2005

**Model checking vs. generalized model checking:
 semantic minimizations for temporal logics
 Godefroid, P., Huth, M.
 Logic in Computer Science, 2005

An instance of THRIVE: Correctness

• most of the patterns proposed in literature are expressed

using self-minimising formulae *

• if satisfies some constraints (sufficient conditions) then it

is self-minimizing **

* Model checking vs. generalized model checking: semantic minimizations for temporal logics.
Godefroid, P., Huth, M.
Logic in Computer Science

** Efficient patterns for model checking partial state spaces in CTL ∩ LTL
Antonik, A., Huth, M
Notes Theor. Comput. Sci

From Model Checking to a Temporal Proof for Partial Models

Menghi, Claudio

International Conference on Software Engineering and Formal Methods (SEFM)

2017

Bernasconi, Anna Zuck, Lenore DSpoletini, Paola Ghezzi, Carlo

Preliminary Evaluation

Preliminary Evaluation

RQ: How effective is THRIVE w.r.t. incremental development?

Preliminary Evaluation

• we simulated the design of a critical software system*

• the system is used by physicians to check visual problems

* P. Arcaini, S. Bonfanti, A. Gargantini, A. Mashkoor, and E. Riccobene.
Formal validation and verification of a medical software critical component.
In Formal Methods and Models for Codesign, pages 80–89. IEEE, 2015.

Preliminary Evaluation

• We designed three properties that the system has to satisfy

following well-known property patterns**

• We created an abstraction of the final model

• We checked how THRIVE supports incremental development

** M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Property specification patterns for finite-state verification.
In Proceedings of the second workshop on Formal methods in software practice, pages 7–15. ACM, 1998.

Preliminary Evaluation

For property ψ1, THRIVE returns a definitive counterexample
showing the reason for the violation.

The property is wrong.

Preliminary Evaluation

For property ψ2, THRIVE returns the T value, since the
property is satisfied.

The proof enabled us understanding the reason for the
satisfaction.

Preliminary Evaluation

For property ψ3, THRIVE returns the value ? and
• a possible counterexample shows the violation for the

pessimistic approximation
• The possible proof shows why the property of interest is

satisfied on the optimistic approximation

From Model Checking to a Temporal Proof for Partial Models

Menghi, Claudio

International Conference on Software Engineering and Formal Methods (SEFM)

2017

Bernasconi, Anna Zuck, Lenore DSpoletini, Paola Ghezzi, Carlo

Lessons learned

Lessons learned

Creating new instances of THRIVE is not easy!

• Choose/define a semantics of formulae on partial models

is not easy

• it influences the model checker and the theorem improving

that can be used

Lessons learned

• The selection of the model checkers and the theorem
proving to be combined must be done carefully to
ensure the correctness of the obtained framework

• The selected model checker/theorem prover may be
changed to be successfully combined

From Model Checking to a Temporal Proof for Partial Models

Menghi, Claudio

International Conference on Software Engineering and Formal Methods (SEFM)

2017

Bernasconi, Anna Zuck, Lenore DSpoletini, Paola Ghezzi, Carlo

Conclusions

Conclusions and Future Work

• We propose THRIVE

• We show an instance of THRIVE that considers PKS and LTL

• We assess effectiveness on a simulated experiment

Conclusions and Future Work

Future Work: integrate THRIVE on top of existing
theorem provers and model checkers

Integrating Topological Proofs with Model Checking to
Instrument Iterative Design

Menghi, Claudio

Fundamental Approaches to Software Engineering (FASE)

2020

Rizzi, Alessandro Maria Bernasconi, Anna

Integrating Topological Proofs with Model Checking to
Instrument Iterative Design

Menghi, Claudio

Fundamental Approaches to Software Engineering (FASE)

2020

Rizzi, Alessandro Maria Bernasconi, Anna

Introduction

Motivation

From model checking to a temporal proof for partial models
A Bernasconi, C Menghi, P Spoletini, LD Zuck, C Ghezzi
International Conference on Software Engineering and Formal Methods (SEFM), 2017

Model Checking + Theorem Proving

M: partial model

ϕ: property

THRIVE: THRee valued Integrated Verification framEwork for partial models.

M ⊧ ϕ
No (⊥) + counterexample Yes (⊤) + definitive proof

Maybe (?) + possible counterexample and proof

Motivation

From model checking to a temporal proof for partial models
A Bernasconi, C Menghi, P Spoletini, LD Zuck, C Ghezzi
International Conference on Software Engineering and Formal Methods (SEFM), 2017

Model Checking + Theorem Proving

M: partial model

ϕ: property

THRIVE: THRee valued Integrated Verification framEwork for partial models.

M ⊧ ϕ
No (⊥) + counterexample Yes (⊤) + definitive proof

Maybe (?) + possible counterexample and proof

Deductive Proofs

Motivation

Deductive proofs

• are usually difficult to understand

• their size significantly grows with the size of the model analysed

Motivation

How could we provide more effective support and
guidance to engineers when properties of interest

are satisfied or possibly satisfied?

Integrating Topological Proofs with Model Checking to
Instrument Iterative Design

Menghi, Claudio

Fundamental Approaches to Software Engineering (FASE)

2020

Rizzi, Alessandro Maria Bernasconi, Anna

Running Example

Vacuum-cleaner robot

Vacuum-cleaner robot: Initial Design

Vacuum-cleaner robot: Initial Design

⊤: satisfied

?

?

?: possibly satisfied

⊥: violated⊥: violated

⊥⊤

Vacuum-cleaner robot: Revision

• During a revision, an engineer can:

• add/remove states

• add/remove transitions

• change the values of the propositions

Vacuum-cleaner robot: Revision

Integrating Topological Proofs with Model Checking to
Instrument Iterative Design

Menghi, Claudio

Fundamental Approaches to Software Engineering (FASE)

2020

Rizzi, Alessandro Maria Bernasconi, Anna

TOrPEDO: Overview

Topological Proofs

A topological proof is a slice of the model
that witnesses property satisfaction

Topological Proofs

A topological proof is a slice of the model
that witnesses property satisfaction

If the engineer does not modify elements of the
models in the topological proof,

then the revision will not violate the property

TOrPEDO

TOrPEDO

TOrPEDO

TOrPEDO

TOrPEDO

TOrPEDO

TOrPEDO

TOrPEDO

Integrating Topological Proofs with Model Checking to
Instrument Iterative Design

Menghi, Claudio

Fundamental Approaches to Software Engineering (FASE)

2020

Rizzi, Alessandro Maria Bernasconi, Anna

Topological Proofs

Topological Proofs

A topological proof is a slice of the model
that witnesses property satisfaction

Topological Proofs

Propositional Clause (TPP)

⟨CLEANING, reached, ⊤⟩

Topological Proofs

Propositional Clause (TPP)

⟨CLEANING, reached, ⊤⟩

Topological Proofs

Propositional Clause (TPP)

⟨CLEANING, reached, ⊤⟩

Topological Proofs

Propositional Clause (TPP)

⟨CLEANING, reached, ⊤⟩

Topological Proofs

Propositional Clause (TPP)

⟨CLEANING, reached, ⊤⟩

Topological Proofs

Transitions-from-state Clause (TPT)

⟨MOVING,{MOVING,CLEANING}⟩

Topological Proofs

Transitions-from-state Clause (TPT)

⟨MOVING,{MOVING,CLEANING}⟩

Topological Proofs

Transitions-from-state Clause (TPT)

⟨MOVING,{MOVING,CLEANING}⟩

Topological Proofs

Initial-states Clause (TPI)

⟨{OFF}⟩

Topological Proofs

Initial-states Clause (TPI)

⟨{OFF}⟩

Topological Proofs

Topological Proofs

• Revision rules. An engineer should not

• add or remove transitions whose source state is in a
transition included in the TPT-clauses;

• change the value of propositions that are in a TPP-clause;

• remove states that are in any TPT, TPP, or TPI clause;

• change the initial states if they are in a TPI-clause.

Topological Proofs

If the engineer follows the revision rules,
then the revision will not violate the property

Vacuum-cleaner robot: Revision

Integrating Topological Proofs with Model Checking to
Instrument Iterative Design

Menghi, Claudio

Fundamental Approaches to Software Engineering (FASE)

2020

Rizzi, Alessandro Maria Bernasconi, Anna

Automated Support

Automated Support

Topological proof computation

Model

Negation of
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL:
Clauses

LTL:
 Conflicting

 Clauses
Topological

Proof

Topological proof computation

Model

Negation of
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL:
Clauses

LTL:
 Conflicting

 Clauses
Topological

Proof

Topological Proof Computation

Model

Negation of
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL:
Clauses

LTL:
 Conflicting

 Clauses
Topological

Proof

* In our experiments we considered an extended version of PLTL-MUP, namely Hybrid, that improves the PLTL-MUP
performances by combining it with TRP++UC.
Finding minimal unsatisfiable subsets in linear temporal logic using BDDs,
Sergeant T, Gore ́ SR, Thomson J (2013)
https://cs. anu.edu.au/courses/csprojects/13S1/Reports/Timothy_Sergeant_Report.pdf .

Topological proof computation

Model

Negation of
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL:
Clauses

LTL:
 Conflicting

 Clauses
Topological

Proof

Re-check

Re-check

The re-check verifies that the engineer did not:

• add or remove transitions whose source state is in a
transition included in the TPT-clauses;

• change the value of propositions that are in a TPP-clause;

• remove states that are in any TPT, TPP, or TPI clause;

• change the initial states if they are in a TPI-clause.

Integrating Topological Proofs with Model Checking to
Instrument Iterative Design

Menghi, Claudio

Fundamental Approaches to Software Engineering (FASE)

2020

Rizzi, Alessandro Maria Bernasconi, Anna

Evaluation

Evaluation

• RQ1: How does the size of the proofs computed by the

analysis component compares with the size of the original

models?

RQ1: Size of The Topological Proofs

• We considered 60 model-requirement combinations

• 12 models (PKS)

• five properties per model

• We run TOrPEDO and computed the topological proofs

• We compared the size of the topological proof and the size

of the model

RQ1: Size of The Topological Proofs

Topological proofs are approximately 60% smaller
than the respective models

Evaluation

• RQ1: How does the size of the proofs computed by the

analysis component compares with the size of the original

models?

• RQ2: How does the re-check component support the

creation of model revisions?

RQ2: Support Provided by the Re-check Component

• We considered three models and five properties per model

• for each model we considered four revisions

• We run TOrPEDO and computed the topological proofs

• We computed the percentage of cases in which the re-check

component confirmed that the revision was compliant with

the topological proof

RQ2: Support Provided by the Re-check Component

In 78% of the cases, the re-check component confirmed that
the revision was compliant with the topological proof.

Evaluation

• RQ1: How does the size of the proofs computed by the

analysis component compares with the size of the original

models?

• RQ2: How does the re-check component support the

creation of model revisions?

• RQ3: What is the scalability of TOrPEDO?

RQ3: Scalability of TOrPEDO

• To have a ballpark estimation of the scalability of TOrPEDO we

• assessed its performance on the models used in RQ1 and RQ2

• manually designed an additional model with 10 states and 5
atomic propositions and 26 transitions

RQ3: Scalability of TOrPEDO

For the models of RQ1 and RQ2, TOrPEDO required on
average less than 10s to compute the topological proof.

For the additional example, the topological proof was
computed in 1m33s.

Integrating Topological Proofs with Model Checking to
Instrument Iterative Design

Menghi, Claudio

Fundamental Approaches to Software Engineering (FASE)

2020

Rizzi, Alessandro Maria Bernasconi, Anna

Conclusions

Conclusions and Future Work

• We proposed TOrPEDO, an integrated framework that

supports the iterative model design

• We defined the novel notion of Topological Proofs

• We evaluated TOrPEDO by assessing the support provided

by the analysis and re-check components and their

scalability

Conclusions and Future Work

Our results show that

• proofs are 60% smaller than the original models

• revision can be verified 78% of the cases by executing a
simple syntactic check

• the scalability of existing tools is not sufficient

Conclusions and Future Work

Future Work: We need to develop a more efficient
procedure to extract topological proofs

TOrPEDO: Witnessing Model Correctness with Topological Proofs
Formal Aspects of Computing (FAOC)

2021

Menghi, Claudio Rizzi, Alessandro Maria Bernasconi, Anna Spoletini, Paola

TOrPEDO: Witnessing Model Correctness with Topological Proofs
Formal Aspects of Computing (FAOC)

2021

Menghi, Claudio Rizzi, Alessandro Maria Bernasconi, Anna Spoletini, Paola

Introduction

Problem Definition

In our previous work, we implemented TOrPEDO using

• NuSMV as a model checker, and

• PLTL-MUP to compute a minimal subset of unsatisfiable

LTL formulae (from an unsatisfiable set of LTL formulae)

We will refer to this instance of TOrPEDO as TOrPEDO-MUP.

Topological Proof Computation

Model

Negation of
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL:
Clauses

LTL:
 Conflicting

 Clauses
Topological

Proof

Problem

Can we reduce the computational cost required

to compute topological proofs?

TOrPEDO: Witnessing Model Correctness with Topological Proofs
Formal Aspects of Computing (FAOC)

2021

Menghi, Claudio Rizzi, Alessandro Maria Bernasconi, Anna Spoletini, Paola

Contribution

Contribution: TOrPEDO-SMT

We propose TOrPEDO-SMT

• converts LTL formulae into an SMT problem*

* Linear encodings of bounded LTL model checking
Schuppan V, Latvala T, Junttila T, Heljanko K, Biere A (2006)
Log Methods Comput Sci, 2,
Episciences.org

Contribution: TOrPEDO-SMT

We propose TOrPEDO-SMT

• converts LTL formulae into an SMT problem*

• relies on Bit-Vectors**

** On how bit-vector logic can help verify LTL-based specifications.
Pourhashem KMM, Rossi MG, Baresi L (2020)
IEEE Trans Softw Eng, pp 1–1

** Efficient scalable verification of LTL specifications
Baresi L, Kallehbasti MMP, Rossi M (2015)
International conference on software engineering, pp 711–721. IEEE

Contribution: TOrPEDO-SMT

Contribution: TOrPEDO-SMT

Contribution: TOrPEDO-SMT

LTL2PL: converts LTL formulae into PL (Propositional Logic)

• Unrolls the LTL formula up to length k

Contribution: TOrPEDO-SMT

GetUC: computes the unsatisfiable core of a PL formula
• we employ the Z3 Theorem Prover

Contribution: TOrPEDO-SMT

PL2LTL: maps the conflicting propositional clauses to LTL

TOrPEDO: Witnessing Model Correctness with Topological Proofs
Formal Aspects of Computing (FAOC)

2021

Menghi, Claudio Rizzi, Alessandro Maria Bernasconi, Anna Spoletini, Paola

Evaluation

Evaluation

• RQ3: How efficient is TOrPEDO in analyzing models and

how does TOrPEDO-SMT compare to TOrPEDO-MUP?

Comparison of Efficiency (RQ3): Benchmark

• We generated a set of random models
• The models have an increasing number of states (i.e., 10, 20,

30, and 40)

• The models are generated from the grade crossing semaphore
example

• We considered two properties (satisfied and possibly satisfied)

Comparison of Efficiency (RQ3): Methodology

• We run TOrPEDO-MUP and TOrPEDO-SMT

• For TOrPEDO-SMT, we set 86 for the bound k*
• We set two hours as the timeout

* We selected this value since it ensures the correctness of the result, i.e., we set its value by considering to the size of the recurrence diameter
(the longest initialised loop-free path in the state graph) and the size of the Büchi automaton representing the negation of the property

Clarke E, Kroening D, Ouaknine J, Strichman O (2005)
Computational challenges in bounded model checking.
Int J Softw Tools Technol Transf 7(2):174–183

Comparison of Efficiency (RQ3): Results

Comparison of Efficiency (RQ3): Results

The answer to RQ3 is that, on the considered models,

• TOrPEDO-SMT can verify within the timeout models
which are double in size compared to TOrPEDO-MUP

Comparison of Efficiency (RQ3): Results

When both tools finished within the timeout, TOrPEDO-SMT is
significantly faster than TOrPEDO-MUP.
TOrPEDO-SMT required on average 1.4m, TOrPEDO-MUP
required 15m.

Evaluation

• RQ4: How useful is TOrPEDO-SMT in supporting the

designers in the model design on an example in the

genomic domain?

Usefulness (RQ4): Benchmark Model

• We considered a (small) model from the genomic domain,

related to Gene Regulatory Networks (GRNs).

• GRNs are collections of molecular regulators, interacting with

each other

Usefulness (RQ4): Benchmark Model

• The PKS represents the status of genes with propositions

• The proposition is true if the gene is activated.

• states describes the status of the genes

• The PKS consists of 64 states

• Transitions encode how the status of the genes can change

Usefulness (RQ4): Benchmark Model

• We considered two LTL properties from the literature discussed

with domain experts

• We simulated an incremental model design with TOrPEDO

Usefulness (RQ4): Results

Usefulness (RQ4): Results

• We evaluated three properties on five models

Usefulness (RQ4): Results

• We evaluated three properties on five models
• We run the analysis three times

Usefulness (RQ4): Results

• We evaluated three properties on five models
• We run the analysis three times and used the syntactic check

twice

Usefulness (RQ4): Results

• We evaluated three properties on five models
• We run the analysis three times and used the syntactic check

twice

• The topological proofs provide useful information

Usefulness (RQ4): Results

The answer to RQ4 is that the topological proofs and
counterexamples provided by TOrPEDO effectively supported the
development of a (P)KS representing a gene regulatory network.

TOrPEDO: Witnessing Model Correctness with Topological Proofs
Formal Aspects of Computing (FAOC)

2021

Menghi, Claudio Rizzi, Alessandro Maria Bernasconi, Anna Spoletini, Paola

Reflections

Correctness

The algorithm is correct if the LTL clauses are contradicting
• The correctness depends on the value of k
• If k is higher than the completeness threshold, the LTL

clauses are contradicting

* Linear completeness thresholds for bounded model checking.
Kroening D, Ouaknine J, Strichman O, Wahl T, Worrell J (2011)
Computer aided verification, Springer

* Linear encodings of bounded LTL model checking
Schuppan V, Latvala T, Junttila T, Heljanko K, Biere A (2006)
Log Methods Comput Sci, 2, Episciences.org

* Completeness and complexity of bounded model checking.
Clarke E, Kroening D, Ouaknine J, Strichman O (2004)
International conference on verification, model checking, and abstract interpretation, Springer

Practical Guidelines

• Designers can

• initially choose a value for k that is reasonably large
• increase or decrease the value of k depending on

• the efficiency of the analysis
• the importance of the soundness

Why Faster

• TORPEDO-MUP is FPSPACE complete, TORPEDO-SMT is NP-
complete

Why Faster

• The Z3 Theorem Prover offers a mature technology;
• an industry-strength tool,
• awarded by ETAPS (Test of Time Award) and ACM SIGPLAN

(Programming Languages Software Award)

Trace Diagnostics for Signal-based Temporal Properties

Boufaied, Chaima

IEEE Transactions on Software Engineering (TSE)

2023
Menghi, Claudio Bianculli, Domenico Briand, Lionel C

Trace Diagnostics

properties

System

Trace
Checking

Violated
System Requirements

Execution Trace

Problem

How do we explain why
a property is violated by a trace?

Contribution (TD-SB-TemPsy)

TD-SB-TemPsy: A trace-diagnostic approach for signal-based

temporal properties.

• analyzes a trace and a property violated by the trace;

• provides an explanation for the property violation.

Contribution (TD-SB-TemPsy)

TD-SB-TemPsy relies on

• violation causes and

• diagnoses.

Contribution (TD-SB-TemPsy)

Violation cause: characterizes one of the possible behaviors
of the system that may lead to the property violation.

Diagnoses: information associated with the property violation

Contribution (TD-SB-TemPsy)

Violation cause: characterizes one of the possible behaviors
of the system that may lead to the property violation.

Contribution (TD-SB-TemPsy)

Violation cause: characterizes one of the possible behaviors
of the system that may lead to the property violation.

A violation cause should satisfy the following relation:

• if the violation cause holds, then the corresponding

requirement should be violated

Topological Proofs and Violation Clauses: Parallelism

A topological proof is a slice of the model
that witnesses property satisfaction

A violation cause is a construct that if satisfied by a
(slice) of the trace witnesses property violation

Contribution (TD-SB-TemPsy)

The paper describes

• TD-SB-TemPsy, a trace-diagnostic approach for signal-
based temporal properties expressed in SB-TemPsy-DSL,

• a methodology for defining violation causes and diagnoses,
with formal guarantees of the soundness of the violation

causes

Contribution (TD-SB-TemPsy)

The paper describes

• a catalog of 34 violation causes, each associated with one

diagnosis,
• evaluates TD-SBTemPsy on two datasets, including one

industrial case study.

TD-SB-TemPsy Evaluation

Evaluated with an Industrial Case Study

• 361 traces given by our industrial partner
• 98 requirements specified in SB-TemPsy-DSL
• Total: 35378 trace - property combinations

TD-SB-TemPsy Evaluation

TD-SB-TemPsy yielded a diagnosis within a timeout of 1
minute for 83.66% of the combinations

Reflections and Lessons Learned and Speculations

From Model Checking to a Temporal Proof for
Partial Models
International Conference on Software Engineering
and Formal Methods (SEFM)
Bernasconi, Anna; Menghi, Claudio; Spoletini,
Paola; Zuck, Lenore D; Ghezzi, Carlo

2017

Integrating Topological Proofs with Model
Checking to Instrument Iterative Design
Fundamental Approaches to Software Engineering
(FASE)
Menghi, Claudio; Rizzi, Alessandro Maria;
Bernasconi, Anna

2020

TOrPEDO: Witnessing Model Correctness with
Topological Proofs
Formal Aspects of Computing (FAOC)
Menghi, Claudio; Rizzi, Alessandro Maria;
Bernasconi, Anna; Spoletini, Paola

2021

Trace Diagnostics for Signal-based Temporal
Properties
IEEE Transactions on Software Engineering (TSE),
Boufaied, Chaima; Menghi, Claudio; Bianculli,
Domenico; Briand, Lionel C

2023

Reflections and Lessons Learned and Speculations

Automated Verification of Cyber-Physical Systems: From Theory to Practice
Workshop on Software Reliability for Madrid Flight on Chip
https://flightonchip.es/workshop19/

Verification and Validation: from Theory to Practice and Back Again
November 6th, 2020
https://www.deib.polimi.it/eng/events/details/2111

Reflection 1: There is a synergy between theory and practice

Reflections and Lessons Learned and Speculations

Automated Verification of Cyber-Physical Systems: From Theory to Practice
Workshop on Software Reliability for Madrid Flight on Chip
https://flightonchip.es/workshop19/

Verification and Validation: from Theory to Practice and Back Again
November 6th, 2020
https://www.deib.polimi.it/eng/events/details/2111

Reflection 1: There is a synergy between theory and practice

No Implementation

Reflections and Lessons Learned and Speculations

Automated Verification of Cyber-Physical Systems: From Theory to Practice
Workshop on Software Reliability for Madrid Flight on Chip
https://flightonchip.es/workshop19/

Verification and Validation: from Theory to Practice and Back Again
November 6th, 2020
https://www.deib.polimi.it/eng/events/details/2111

Reflection 1: There is a synergy between theory and practice

Limitations on the
efficiency

Reflections and Lessons Learned and Speculations

Automated Verification of Cyber-Physical Systems: From Theory to Practice
Workshop on Software Reliability for Madrid Flight on Chip
https://flightonchip.es/workshop19/

Verification and Validation: from Theory to Practice and Back Again
November 6th, 2020
https://www.deib.polimi.it/eng/events/details/2111

Reflection 1: There is a synergy between theory and practice
Improvement of the
efficiency

Reflections and Lessons Learned and Speculations

Automated Verification of Cyber-Physical Systems: From Theory to Practice
Workshop on Software Reliability for Madrid Flight on Chip
https://flightonchip.es/workshop19/

Verification and Validation: from Theory to Practice and Back Again
November 6th, 2020
https://www.deib.polimi.it/eng/events/details/2111

Reflection 1: There is a synergy between theory and practice

Evaluation on the
industrial domain

Reflections and Lessons Learned and Speculations

Reflection 2: The results are teamwork

Bernasconi, Anna

Zuck, Lenore D
Spoletini, Paola Ghezzi, Carlo

Boufaied, ChaimaBianculli, Domenico

Briand, Lionel C

Rizzi, Alessandro Maria

Reflections and Lessons Learned and Speculations

Reflection 2: The results are teamwork

Bernasconi, Anna Rizzi, Alessandro Maria

They are first authors!

Reflections and Lessons Learned and Speculations

Reflection 3: Some of the reviewers significantly helped us in

improving the papers.

VMCAI 2019: REVIEW 3 (Reject)

For LTL formulae, the separated normal form […] One can
create an equisatisfiable normalized formula, but not an
equivalent one. Why this should still work and how the
reasons/understanding is explained using a non-equivalent
formula is not discussed at all.

It was indeed equivalent.
Thanks a lot!

Reflections and Lessons Learned and Speculations

Reflection 4: Did we reach ``The Independence Day of

Witnessing the Correctness of Systems’’?

Reflections and Lessons Learned and Speculations

Reflection 4: Did we reach ``The Independence Day of

Witnessing the Correctness of Systems’’?

Well, no, I think there is a lot of work that still to be done.

Reflections and Lessons Learned and Speculations

Variety of the

modeling formalisms

Reflections and Lessons Learned and Speculations

Variety of the

modeling formalisms

Variety of the Requirements

Specification Languages

Reflections and Lessons Learned and Speculations

Variety of the

modeling formalisms

Variety of the Requirements

Specification Languages

Trade-off

Expressiveness and

Performances

Reflections and Lessons Learned and Speculations

Variety of the

modeling formalisms

Variety of the Requirements

Specification Languages

Developing

Techniques that are

Complete

Trade-off

Expressiveness and

Performances

Reflections and Lessons Learned and Speculations

Variety of the

modeling formalisms

Variety of the Requirements

Specification Languages

Developing

Techniques that are

Complete

Usability

for the End Users
Trade-off

Expressiveness and

Performances

Reflections and Lessons Learned and Speculations

Reaching

````The Independence Day of Witnessing 

the Correctness of Systems’’’’ 

is a journey, everyone is invited!

Enjoy the trip!



The Independence Day of Witnessing the 
Correctness of Systems:

From Topological Proofs and Beyond

BCS FACS (Formal Aspects of Computing Science)

Claudio MENGHI

Speaker

Date: 4th July 2023


