
Issue 2022-2
July 2022

FACS
A
C
T
S

The Newsletter of the
Formal Aspects of Computing Science

(FACS) Specialist Group

ISSN 0950-1231

FACS FACTS Issue 2022-2 July 2022

About FACS FACTS

FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on Formal
Aspects of Computing Science (FACS). FACS FACTS is distributed in electronic form to
all FACS members.

Submissions to FACS FACTS are always welcome. Please visit the newsletter area of the
BCS FACS website for further details at:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-
computing-science-group/newsletters/

Back issues of FACS FACTS are available for download from:
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-
computing-science-group/newsletters/back-issues-of-facs-facts/

The FACS FACTS Team
Newsletter Editors

Tim Denvir timdenvir@bcs.org
Brian Monahan brianqmonahan@googlemail.com

Editorial Team:
Jonathan Bowen, John Cooke, Tim Denvir, Brian Monahan, Margaret West.

Contributors to this issue:
Jonathan Bowen, Tim Denvir, Brian Monahan, John Tucker

BCS-FACS websites
BCS: http://www.bcs-facs.org
LinkedIn: https://www.linkedin.com/groups/2427579/
Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255
Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS

If you have any questions about BCS-FACS, please send these to Jonathan Bowen
at jonathan.bowen@lsbu.ac.uk.

2

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
mailto:jonathan.bowen@lsbu.ac.uk
http://en.wikipedia.org/wiki/BCS-FACS
http://www.facebook.com/pages/BCS-FACS/120243984688255
https://www.linkedin.com/groups/2427579/
http://www.bcs-facs.org/
mailto:brianqmonahan@googlemail.com
mailto:timdenvir@bcs.org
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/

FACS FACTS Issue 2022-2 July 2022

Editorial
Dear readers,

Welcome to issue 2022-2 of the FACS FACTS newsletter. This is our mid-year issue for
2022.

In this issue we have two Features. An article by John Tucker giving a historical view of
operational semantics, particularly as applied to the semantics of PL/1. This formal
semantics was developed at the IBM Vienna Laboratories in the second half of the
1960s. John gives an honest, considered and eloquent account of the formalisation
work and of the concepts driving the design of PL/1, including their subsequent
criticism.

Brian Monahan’s “An Awkward Problem” comprehensively illustrates a seemingly
straightforward program design task: it shows how mathematics is pervasive and
necessary in designing algorithms, and how algorithms need to be understood as
mathematical abstractions of program behaviour. You could call it an object lesson for
a formal approach.

It is ten years since Ib Holm Sørensen passed away at the early age of 62, in the
centenary year of the birth of the computer science pioneer Alan Turing. Jonathan
Bowen writes an appreciation of his life and achievements.

Jonathan also commemorates thirty years since the formation of the Z User Group. The
Z User meetings produced numerous proceedings in the Springer Workshops in
Computing and LNCS series, the covers of which are shown.

Finally, a review by Tim Denvir of John Barnes’ (of Ada and RTL/2 fame) book, Nice
Numbers. Everyone who delves into formal aspects of computing comes to grips with
quite a lot of mathematics, much of which is outside the traditional curricula. Despite
being about numbers, which we all think we know about, this book contains a lot
which will be new and fascinating even to those well versed in mathematics.

As we said in the editorial of issue 2022-1 (see bcs.org/media/8289/facs-jan22.pdf), we very
much appreciate and look forward to contributions, especially comments, from you,
our readers.

We hope you enjoy FACS FACTS issue 2022-2.

Tim Denvir
Brian Monahan

3

http://bcs.org/media/8289/facs-jan22.pdf

FACS FACTS Issue 2022-2 July 2022

Table of Contents
Editorial..3

Articles:
PL/1 in New York, Winchester and Vienna..5
by John V. Tucker

An Awkward Problem..16
by Brian Monahan

Commemorations:
Ib Holm Sørensen: Ten Years After...41
by Jonathan Bowen

The Z User Group: Thirty Years After..50
by Jonathan Bowen

Reviews:
Review of Nice Numbers by John Barnes..57
Reviewed by Tim Denvir

4

FACS FACTS Issue 2022-2 July 2022

History of Computing Collection at Swansea University

The History of Computing Collection specialises in computing
before computers, formal methods, and local histories of
computing. An introduction to the Collection appeared in the
February 2021 issue of FACS FACTS (2021-1, pp.10-17). The
Collection is located on the Singleton Campus of Swansea
University; it can be visited by appointment. A small number of
items from the Collection are on display in the Computational
Foundry, Bay Campus, which is the home of the Computer Science
Department. All inquiries welcome.

From the History of Computing Collection, Swansea University:

PL/1 in New York, Winchester and Vienna
John V. Tucker

Swansea University

Operational semantics is truly basic in the theory of programming and programming
languages. The idea is simple enough: the semantics of a program is characterised by
modelling its behaviour, i.e., what it does. The things to be modelled are (i) states of a
machine and (ii) transitions from one state to another. How hard can that be? Surely,
anything can be modelled using idealisations and abstractions to postpone difficulties
and eliminate inessentials.

Dream on. Machines are already idealisations of a mass of complex functional
components, and programs are full of constructs that singly or in combination can
generate obscure and unforeseen actions. Thus, the answer is that it is awfully hard
and, indeed, since the 1960s all sorts of semantical approaches to the ‘meaning’ of
programs have been developed for all sorts of computational situations and needs.

But why bother? This audience has a number of answers to that – e.g., modelling helps

o understand design choices and decisions and predict their consequences;

o improve languages and tools that improve programs and programming.

There are those of us who simply enjoy semantic modelling as their means of
exploring the behaviour of data and computations. But, crucially for our history,
modelling helps

5

FACS FACTS Issue 2022-2 July 2022

o form a basis for precise specifications that are sufficiently abstract to make

languages and programs portable between machines.

There is a distinction to be made between modelling and formalising – (i) & (ii) versus
(iii) – already evident in Bertrand Russell’s views on the formalisation of mathematics.
But that topic is for another occasion.

In the folk history of programming languages, if PL/1 appears as a milestone then it is
in the formal development of language specifications. It marks a step forward in
programming semantics after the achievement of Algol for programming syntax.
Indeed, the significance of PL/1 is ‘reduced’ to that of operational semantics, which is
associated with the IBM Vienna Laboratory.

Of course, the language deserves much more historical attention. Anyway, the formal
methods community must keep its memory alive and cherish it, as we do Algol. The
centre piece for today’s choice from the Collection is the set of IBM Vienna reports on
PL/1 in Figure 1.

The Vienna Reports on PL/1

The formal definition of PL/1 by the Vienna Lab comes in three ‘published’ versions, in
December 1966, June 1968 and April 1969. The reports in Figure 1 are those of the
second version, all released on 28 June 1968. These reports, and most of the other
Vienna Lab Reports in our Collection, are a small part of a gift to the Collection by
Dines Bjørner, a scientist who needs no introduction to this audience. Dines worked in
IBM 1962-75 and at the Vienna Lab 1973-75.

The reports in Figure 1 are these:

P. Lucas, K. Alber, K. Bandat, H. Bekic, P. Oliva, K. Walk and G. Zeisel. Informal In-
troduction to the Abstract Syntax and Interpretation of PL/I. Technical Report
25.083. IBM Laboratory Vienna, 1968.

K. Alber and P. Oliva. Translation of PL/I into Abstract Syntax. Technical
Report 25.086. IBM Laboratory Vienna, 1968.

K. Alber, P. Oliva and G. Urscler. Concrete Syntax of PL/I. Technical Report
25.084. IBM Laboratory Vienna, 1968.

M. Fleck and E. Neuhold. Formal Definition of the PL/I Compile Time
Facilities. Technical Report TR 25.080. IBM Laboratory Vienna, 1968.

K. Walk, K. Alber, K. Bandat, H. Bekic, G. Chroust, V. Kudielka, P. Oliva, and G.
Zeisel. Abstract Syntax and Interpretation of PL/I. Technical Report TR 25.082.
IBM Laboratory Vienna, 1968.

6

FACS FACTS Issue 2022-2 July 2022

Together they define PL/1, correcting and updating the Lab’s first attempt two years
earlier. The following year a last updated version was published, with the same titles
and largely the same authors.

Let’s look at the birth of PL/1 and reflect on the achievement.

IBM in the late 1950s

PL/1 is a part of the legacy of IBM’s System 360 product line, announced on 7 April
1966. System 360 is an achievement in the history of practical computing, one with
great technical and financial risks and rewards for IBM. The decade before was rather
dramatic for IBM. It began with the transfer of power from Thomas J Watson Sr to his
son Thomas J Watson Jr, whose vision it was to make computers core to the business,
and who transformed the operating structures of the company. Technically, it saw two
transformations: (i) the transition from tabulating equipment to computers and (ii) the
transition from a disparate incompatible set of computers to the compatible System
360 series. In both cases, the transitions involved abandoning products that were
hugely profitable and primary sources of IBMs huge
revenues. Business history was being made, as
documented in Cortada (2019).

So, what was the problem that needed Watson Jr to
bet the company? It was his customers’ need for
compatible machines and portable software. The
transition away from electro-mechanical to electronic
large-scale data processing was well established in
the late 1950s, but this also meant that it was
growing a market for more powerful equipment. Up-
grading to more powerful computer systems was
natural, but was unnaturally hard. IBM’s entry level
1401 series was selling well, but buying a new more
powerful machine meant re-programming software
and re-training staff. When the need for more
processing arrived, companies faced unwelcome
costs, both if they stayed with IBM or migrated to
another firm. Buying more 1401s meant other
problems (such as maintaining consistent data bases
on machines that did not communicate). So the vision
was a completely new product line with compatibility
and communication between machines and, for good
measure, completely new physical and software

7
 Figure 1: ULD - II

FACS FACTS Issue 2022-2 July 2022

technologies. The days of the extremely profitable current product range were
numbered.1

The press release on the 7 April 1964, summarised admirably the new features and
advantages of System 360. There was a wink in the direction of its programming
languages in the form of System 360’s applicable versatility:

The traditional distinction between computers for commercial and scientific
use is eliminated in System/360. Users will be able to process both business
and scientific problems, or a combination of the two, with equal
effectiveness. (IBM Announcement 1964).

For some of those among the 100,000 businessmen in 165 American cites at which
System/360 was announced this must have meant something to do with the future of
Fortran and Cobol.

The conception of PL/1

PL/1 saw the light of day in the computer science community in January 1965 in an
article in the Communications of the ACM, Radin and Rogoway (1965). Then, it was
called NPL for New Programming Language, which resonated with IBM’s new product
line. NPL began in October 1963 when IBM and, specifically, SHARE created an
Advanced Language Development Committee with certain aims to define a new
language. SHARE was a user community for IBM products, run by volunteers. It was
founded in 1955 by users of IBM 701s in Los Angeles and had grown, become
organised, influential, and generally interested in IBM products, hard and soft.2 Its
origins and culture was close to Fortran. SHARE continues today.3

By the time of the publication, the Advanced Language Development Committee had
seven members from major corporations and five from IBM; all were experienced
technical people. The aims set by SHARE were to make a language that:

o satisfies the needs of a wide range of programmers;

o takes a simple approach to reduce programming errors;

o suits the development of the latest applications. Radin and Rogoway (1965).

1 The 1401s lived from 1959 to 1970.

2 The 701 is IBM’s first commercial scientific computer, launched in 1952.

3 See: https://www.share.org

8

https://www.share.org/

FACS FACTS Issue 2022-2 July 2022

The languages they had in mind were Fortran, COBOL and the tour de force that was
Algol, in which IBMers had been heavily involved. It was an IBMer and Fortran creator,
John Backus, who introduced the BNF method for formally defining the programming
language syntax of Algol.

Not unlike the division in machines mentioned earlier, software divided into three
categories: scientific and engineering, business and financial, and real-time processing
and systems. Developers had settled for different programming languages, especially
the Fortran and COBOL of the day. NPL was expected to be able to replace them.

Early on, as soon as computers arrived in organisations, both kinds of users emerged.
For example, in Glamorgan, when a Ferranti Pegasus was purchased for the operations
research group to design processes for the new steelworks at Port Talbot, it was not
long before administration found things for it to do. The same happened when
Swansea University bought its first machine, an IBM 1620 for scientific and engineering
simulation (Tucker 2020). Convergence and portability made perfect technical and
economic sense.

Along with convergence issues for machines came the need for convergence for
programming constructs – constructs that were found to be desirable in one current
language but were not present in another might be included. From the beginning, the
solution of NPL was to acquire constructs.

Development of PL/1
From October 1963, the development of PL/1 has many milestones and the complete
documentation for PL/1 is large. It is also dispersed. The technical development of the
language was passed to IBM’s Hursley Lab, near Winchester. This meant defining the
language precisely enough for the construction of a compiler – a highly demanding and
fundamental next step. Vienna’s early interest in debating the language was rewarded
by securing the task of making its formal definition – a great challenge and a plum
assignment for the Lab, though dependent on Hursley, of course. Clearly, the aim of
PL/1 and System 360 was to advance computing practice in a historically significant
way.

The Vienna Lab at the time of the announcement of System 360 was considered
‘special’. As a Development Lab and part of IBM Austria it was not part of IBM
Research, and seen as in need to attention: it was on offer to Ambros Speiser as part
an incentive package for him to remain head of IBM Zurich – a jewel in the crown of
IBM Research – rather than leave (which he did: Speiser 1998).

The major documents for the three phases are:

1 the System Reference Document (SRD) of November 1964, owned by New York;

9

FACS FACTS Issue 2022-2 July 2022

2 the semiformal definition of 1966, owned by Winchester; and

3 the three versions of the formal definition of the Universal Language
Description (ULD) of 1966-69, owned by Vienna.

For convenience, these are called ULD I, ULD II and (the three versions of) ULDIII.
These notations can be a little confusing (because of the appearance of the Vienna
Reports cf. Figure 1) and were cooked up by Vienna and Hursley.

The job was not over in 1969. The work on PL/1 give rise to the general Vienna
Definitional Method, and other languages, such as Fortran and Algol, were defined
formally, as in Figure 2. A few years later there is the later specification in Figure 3, a
key report for the general Vienna language definition method:

Hans Bekic, Dines Bjørner, Wolfgang Henhapl, Cliff B. Jones, and Peter Lucas.
A Formal Definition of a PL/I Subset. Technical Report 25.139, IBM
Laboratory, Vienna, 1974.

Subsequently, PL/1 was to receive a standardisation from the American National
Standards Institute (ANS Programming Language PL/I. X3.53-1976).

Here, I will keep away from the build-up of many new features and constructs for the
language, the emergence of the specifications at Hursley and Vienna, and the
intricacies of the versions. There are contemporary introductions such as Lucas and
Walk (1969) and Beech (1970); and there are later reflections, such as Radin (1978) and
Lucas (1981); Radin’s was expanded upon in the PL/1 Session in Wexelblat (1981). And
there is the scholarly work of Cliff Jones on the contributions of Hans Bekic (Jones
1984). My Swansea colleague Troy Astarte has tackled some of these technical matters
for PL/1, and far more of the history, in Chapter 5 of his Newcastle PhD (Astarte 2019),
which I recommend.

From the beginning, starting with the early views of SHARE, the language was seen as
complicated … too complicated for some. This view grew as the language was
discussed outside IBM in professional meetings, attracting critics such as Edsger
Dijkstra and Tony Hoare whose view of programming and programming languages
emphasised conceptual understanding and reasoning – and became an orthodoxy of
the academic community for a generation. Surely, for that vision, PL/1 was to be seen
as an example of how not to make a programming language:

One of my implicit morals will be that such programming languages, each in
their own way, are vehicles inadequate to guide our thoughts. If FORTRAN
has been called an infantile disorder, PL/1 must be classified as a fatal
disease.

(Dijkstra 1971, see also Dijkstra 1970).

10

FACS FACTS Issue 2022-2 July 2022

11

 Figure 2: Vienna Fortran

 Figure 3: PL/1 Subset Report

FACS FACTS Issue 2022-2 July 2022

However, although complex because of the liberality of its design, IBM was undeterred,
as the advertisement in Figure 4 for the language confidently demonstrates.

Reflections

Consistent with my earlier remarks about the reputation of the language, PL/1 does
not loom large in IBM’s own lists of amazing achievements. Company glossies
celebrating their contributions make no mention of it – such as the Think: History of
Progress 1890s-2001 (IBM 2008) and the 100 Icons (IBM 2011). However, the IBM
Journal of Research and Development did take note of PL/1 when reflecting on IBM and
high-level languages. (Sammet 1981).

Why does the language deserve so much more historical attention? One reason is that
there are so many new ideas finding their way to PL/1 throughout the 1960s. Perhaps,
this is not surprising if one looks at the vision and determination to pursue
convergence and portability, and the state of languages at the time – as can be
calibrated by the first three chapters of Sammet (1969). The number of programming
constructs and design features may be overwhelming, as many commentators and
users have observed. But technical ideas are there in abundance and are thought about
rigorously and formally. As Radin pointed out two years after its standardisation:

Since PL/I took as its scope of applicability virtually all of programming, the
dialogues about its various parts encompass a minor history of computer
science in the middle sixties.
(Radin 1978);

not so minor, in my opinion. Fortunately, the latest work of Cliff Jones and Troy Astarte
give us new insights and incentives to rediscover PL/1 and to study the history of
formal semantics of programming and programming languages. And, very fortunately,
many key Vienna Lab reports, and Hursley reports, can be downloaded from Cliff
Jones’s library at:

http://homepages.cs.ncl.ac.uk/cliff.jones/publications/VDL-TRs

The subject need not be confined to formal methods community. For those of us of a
philosophical nature, PL/1 is associated with some deep ideas and questions. Heinz
Zemanek’s motivations and methodological remarks in Zemanek (1966) remind us
explicitly of the Lab’s links to philosophical traditions and mathematical logic. PL/1
embodies a connection between philosophical speculations, mathematical models,
formal description methods, and computing technologies active in the world. Zemanek
uses the thoughts of Peirce, Russell and Wittgenstein with effect. Of course, it is
important to note that the cultural foundations of the Vienna Labs owed much to the

12

http://homepages.cs.ncl.ac.uk/cliff.jones/publications/VDL-TRs

FACS FACTS Issue 2022-2 July 2022

Vienna Circle. It was Vienna was where Max Neumann learned mathematical logic and
who later introduced Alan Turing to his life’s work. Thus, the Vienna Circle, their
precursors, fellow travellers and pupils, matter historically. Their ghosts must have

been evident in post-war Vienna.

In the formal methods community, we would do well to remind ourselves that so much
of what concerns us in the digital world philosophically benefits from retracing
intellectual paths that lead back to Russell and Wittgenstein.

13

 Figure 4: Susie Meyer

FACS FACTS Issue 2022-2 July 2022

Call for Donations

The History of Computing Collection has material on the birth and growth of
semantics, but we would welcome a lot more. Dines Bjørner’s important donation to
the Collection is one of several concerning formal methods. Specifically, on this
occasion, we do not a have anything like a full or even representative set of Vienna Lab
reports nor any of the important Hursley documents. The Collection would be pleased
to offer sanctuary to any materials out there in need of a safe home.

References

Troy Astarte, Formalising Meaning: A History of Programming Language
Semantics, PhD Thesis, Newcastle University, 2019.
http://homepages.cs.ncl.ac.uk/troy.astarte/res/pdf/TK_Astarte_Formalising_Me
aning_2019.pdf

David Beech, A structural view of PL/I. ACM Computing Surveys, 2 (1) (1970), 33-64.

James W Cortada, IBM. The Rise and Fall and Reinvention of a Global Icon, MIT Press,
2019.

E W Dijkstra, Concern for Correctness as a Guiding Principle for Program Composition,
EWD 288, July 1970. Department of Computer Science, University of Texas at Austen.
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD288.PDF

E W Dijkstra, A Short Introduction to the Art of Programming, EWD316, August
1971. Department of Computer Science, University of Texas at Austen.
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD316.PDF

IBM Announcement of System 360, IBM April 7, 1964.
https://www.ibm.com/ibm/history/exhibits/mainframe/mainframe_PR360.html

IBM 2008. Think: History of Progress 1890s-2001
https://www.ibm.com/ibm/history/interactive/ibm_history.pdf

IBM 2011. 100 Icons. https://www.ibm.com/ibm/history/ibm100/us/en/icons

Cliff Jones (editor), Programming Languages and their Definition: Hans Bekic (1936-
1982). Lecture Notes in Computer Science 177, Springer, 1984.

Peter Lucas, Formal semantics of programming languages: VDL, IBM Journal of
Research and Development 25 (5) (1981), 549-561.

14

https://www.ibm.com/ibm/history/ibm100/us/en/icons
https://www.ibm.com/ibm/history/interactive/ibm_history.pdf
https://www.ibm.com/ibm/history/exhibits/mainframe/mainframe_PR360.html
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD316.PDF
https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD288.PDF
http://homepages.cs.ncl.ac.uk/troy.astarte/res/pdf/TK_Astarte_Formalising_Meaning_2019.pdf
http://homepages.cs.ncl.ac.uk/troy.astarte/res/pdf/TK_Astarte_Formalising_Meaning_2019.pdf

FACS FACTS Issue 2022-2 July 2022

Peter Lucas, K. Walk, On the formal description of PL/I, Annual Review in Automatic
Programming, Part 3, vol. 6, Pergamon Press, Oxford, 1969, 105-182.

George Radin, The early history and characteristics of PL/1, ACM Sigplan Notices 13 (8)
(1978), 227-241.

George Radin and H Paul Rogoway, NPL: Highlights of a new programming language,
Communications of the ACM, 8 (1) 1965, 9-17.

Jean E Sammet, Programming Languages: History and Fundamentals. Prentice-Hall,
1969.

Jean E Sammet, History of IBM’s technical contributions to high-level programming
languages. IBM Journal of Research and Development 25 (5) (1981), 520-534.

Ambros P Speiser, IBM Research Laboratory Zurich: The early years. IEEE Annals of the
History of Computing, 20 (1) (1998), 15-28.

John V Tucker, The Computer Revolution and Us: Computer Science at Swansea
University from the 1960s.
https://collections.swansea.ac.uk/s/swansea-2020/page/computer-science

Richard L Wexelblat (ed.), History of Programming Languages, Academic Press,
1981. PL/1 Session, 551559

Heinz Zemanek, Semiotics and Programming Languages. Communications of
the ACM 9 (3) (1966), 139-143.
https://doi.org/10.1145/365230.365249

15

https://doi.org/10.1145/365230.365249
https://collections.swansea.ac.uk/s/swansea-2020/page/computer-science

FACS FACTS Issue 2022-2 July 2022

An Awkward Problem

16

FACS FACTS Issue 2022-2 July 2022

17

FACS FACTS Issue 2022-2 July 2022

18

FACS FACTS Issue 2022-2 July 2022

19

FACS FACTS Issue 2022-2 July 2022

20

FACS FACTS Issue 2022-2 July 2022

21

FACS FACTS Issue 2022-2 July 2022

22

FACS FACTS Issue 2022-2 July 2022

23

FACS FACTS Issue 2022-2 July 2022

24

FACS FACTS Issue 2022-2 July 2022

25

FACS FACTS Issue 2022-2 July 2022

26

FACS FACTS Issue 2022-2 July 2022

27

FACS FACTS Issue 2022-2 July 2022

28

FACS FACTS Issue 2022-2 July 2022

29

FACS FACTS Issue 2022-2 July 2022

30

FACS FACTS Issue 2022-2 July 2022

31

FACS FACTS Issue 2022-2 July 2022

32

FACS FACTS Issue 2022-2 July 2022

33

FACS FACTS Issue 2022-2 July 2022

34

FACS FACTS Issue 2022-2 July 2022

35

FACS FACTS Issue 2022-2 July 2022

36

FACS FACTS Issue 2022-2 July 2022

37

FACS FACTS Issue 2022-2 July 2022

38

FACS FACTS Issue 2022-2 July 2022

39

FACS FACTS Issue 2022-2 July 2022

40

FACS FACTS Issue 2022-2 July 2022

Ib Holm Sørensen: Ten Years After
Jonathan Bowen

July 2022

It is ten years since Ib Holm Sørensen, that
rare breed of both a formal methods
researcher and practitioner, passed away
at the early age of 62, in the centenary
year of the birth of the computer science
pioneer Alan Turing. This article considers
Ib Sørensen’s life and work, especially
regarding his contribution to the field of
formal methods. In 1981 he achieved his
DPhil at the Programming Research Group
in Oxford under Tony Hoare [1] and his
further contributions there helped lead to
a Queen's Award for Technological Achievement for the IBM CICS Project in 1992 [2,3].

Ib Sørensen (29 January 1949 – 17 January 2012) was a computer scientist who made
important contributions to the early development and application of formal methods,
especially the Z notation and B-Method, working in both academia and industry [4].
Born in Aabenraa, Denmark, Ib Sørensen started his academic career in the 1970s at
Aarhus University, where he worked on the Rikke-Mathilda microassemblers and
simulators running on the DECSystem-10 computer [5].

In 1979, Ib Sørensen joined the Programming Research Group, part of the Oxford
University Computing Laboratory (now the Oxford University Department of Computer
Science) in England, under the leadership of Prof. Tony Hoare. There he worked with
Jean-Raymond Abrial, Bernard Sufrin, and others, making contributions to the early
development of the formal specification language Z. He gained a DPhil degree from the
University of Oxford in 1981, with Tony Hoare as his advisor [1] (see also appendix for
some extracts). He taught early courses on the Z notation at Oxford [6] and established
the Z User Meeting series there in 1985, which continues as the ABZ international
conference combined with other state-based formal methods including ASM and the B-
Method to this day.

Ib Sørensen led the Transaction Processing Project at Oxford from its inception in 1982
(later the “CICS Project” [7]), collaborating with IBM (UK) Laboratories [8]. The project
formally specified parts of IBM's CICS transaction processing software using the Z
notation. This won a Queen's Award for Technological Achievement in 1992 [2,3]. As
part of the CICS Project, Ib Sørensen extended the Guarded Command Language of
Edsger W. Dijkstra using the Z schema notation as abstract commands [9]. These ideas
were later formalized by Carroll Morgan in his refinement calculus [10]. Ib Sørensen

41

http://www.cs.ox.ac.uk/people/ib.sorensen/

FACS FACTS Issue 2022-2 July 2022

was also a co-author of the seminal Specification Case Studies book on the use of Z,
first published in 1987 (second edition in 1993) [11].

From the late 1980s, Ib Sørensen was central in the development of the B-Method, a
leading formal method [12]. He left Oxford University to lead a team at BP Research
[13], developing the B-Tool to provide tool support for the B approach. He then
founded the company B-Core (UK) Limited to support the B-Toolkit [4,14], a set of
programming tools designed to support the use of the B-Tool, and to undertake B-
related projects. Ib Sørensen’s help and advice have been acknowledged in textbooks
on the B-Method [14,15].

Latterly, Ib Sørensen returned to the University of Oxford. From 1999, he worked on
the B-based Booster models of requirements. He died of a stroke early in 2012 while in
Fort-de-France, the capital of Martinique in the Caribbean, before he was able to retire
[4].

Ib Sørensen was a “doer” and as such his publications do not reflect his contribution to
the field of formal methods in an adequate way. Unusually, he resigned his academic
post at Oxford, normally a lifetime position for most at the university once they have
achieved it, to join industry, first at BP, and then at his own company B-Core. With his
foundational and practical contributions to both the Z notation and the B-Method, he
has been an important figure in the formal methods community. As a person, he was
kind and thoughtful, always understated in his interaction with colleagues. His
modesty has perhaps meant that his contribution to formal methods has been
underappreciated. This brief tribute aims to redress that in a small way.

Selected publications

Ib Sørensen co-authored the following [16,17,18].

At Aarhus University:

o Ib Holm Sørensen, Eric Kressel (1975). A proposal for a multi-programming

BCPL system on RIKKE-1 (in Danish). Matematisk Institut. Datalogisk Afdeling,
Aarhus University, Denmark.

o Eric Kressel, Ib Holm Sørensen (1975). The first BCPL system on RIKKE-1.

Matematisk Institut. Datalogisk Afdeling, Aarhus University, Denmark.

o Eric Kressel, Ib Holm Sørensen (1975). The Mathilda driver, a software tool for

hardware testing (in Danish). Matematisk Institut. Datalogisk Afdeling, Aarhus
University, Denmark.

o Ib Holm Sørensen, Eric Kressel (1977). RIKKE-MATHILDA microassemblers and

simulators on the DECsystem 10. DAIMI Report Series, MD-28. Matematisk
Institut. Datalogisk Afdeling, Aarhus University, Denmark.

o Ib Holm Sørensen (1978). System Modelling: a Methodology for Describing the

Structure of Complex Software, Firmware and Hardware Systems Consisting of

42

FACS FACTS Issue 2022-2 July 2022

Independent Process Components. DAIMI Report Series, PB-87. Matematisk
Institut. Datalogisk Afdeling, Aarhus University, Denmark.

o Jens Kristian Kjærgård, Ib Holm Sørensen (1980). BCPL on RIKKE (in Danish).

DAIMI Report Series, MD-36. Matematisk Institut. Datalogisk Afdeling, Aarhus
University, Denmark.

o Jens Kristian Kjærgård, Ib Holm Sørensen (1980). The RIKKE Editor (in Danish).

DAIMI Report Series, MD-37. Matematisk Institut. Datalogisk Afdeling, Aarhus
University, Denmark.

o Ib Holm Sørensen (September 1981). Specification and Design of Distributed

Systems. DAIMI Report Series, PB-141. Aarhus University, Denmark.
doi:10.7146/dpb.v10i141.7416

At Oxford University:

 Ib Holm Sørensen (September 1981). Topics in Programme Specification and
Design: Specification and Design of Distributed Systems. DPhil thesis. Wolfson
College, University of Oxford, UK.

 Bill Flinn, Ib Holm Sørensen (January 1986). “CAVIAR: A Case Study in
Specification”. In Tosiyasu L. Kunii (ed.), Application Development Systems.
Springer, pp. 126–164. doi:10.1007/978-4-431-68051-2_8

 C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders, I.
H. Sørensen, J. M. Spivey, B. A. Sufrin (August 1987). “Laws of programming”.
Communications of the ACM. 30 (8): 672–686. doi:10.1145/27651.27653

 Steve King, Ib Holm Sørensen, J. C. P. Woodcock (July 1988). Z: Grammar and
Concrete and Abstract Syntaxes (Version 2.0). Technical Monograph PRG-68.
Programming Research Group, Oxford University Computing Laboratory, UK.

 J.-R. Abrial, M. K. O. Lee, D. S. Neilson, P. N. Scharbach, I. H. Sørensen (1991).
“The B-method”. In S. Prehn, H. Toetenel (eds.), VDM '91 Formal Software
Development Methods. Springer, Lecture Notes in Computer Science, Vol. 552,
pp. 398–405. doi:10.1007/BFb0020001

 Bill Flynn, Roger Gimon, Steve King, Carroll Morgan, Ib Holm Sørensen, Bernard
Sufrin (1993). In Ian Hayes (ed.), Specification Case Studies. (2nd ed.). Prentice
Hall International Series in Computer Science. ISBN 978-0-13-832544-2. (1st ed.,
1987.)

 Dave S. Neilson, Ib Holm Sørensen (October 1994). “The B-Technologies: a
system for computer aided programming”. In 6th Nordic Workshop on
Programming Theory. BRICS.

 Jim Davies, Charles Crichton, Edward Crichton, David Neilson, Ib Holm Sørensen
(2005). “Formality, evolution, and model-driven software engineering”. Electronic

43

http://red.cs.nott.ac.uk/~rxq/files/SpecificationCaseStudies.pdf
https://doi.org/10.1007/BFb0020001
https://www.cs.ox.ac.uk/files/3389/PRG68.pdf
https://www.cs.ox.ac.uk/files/3389/PRG68.pdf
https://doi.org/10.1145/27651.27653
https://doi.org/10.1007/978-4-431-68051-2_8
https://tidsskrift.dk/daimipb/article/view/7416/6267
https://tidsskrift.dk/daimipb/article/view/7416/6267
https://doi.org/10.7146/dpb.v10i141.7416

FACS FACTS Issue 2022-2 July 2022

Notes in Theoretical Computer Science, 130: 39–55.
doi:10.1016/j.entcs.2005.03.004

References

1 Sørensen, Ib Holm (September 1981). Topics in Programme Specification and
Design: Specification and Design of Distributed Systems (DPhil thesis). Wolfson
College, University of Oxford, UK.

2 King, Steve (1993). “The Use of Z in the Restructure of IBM CICS”. In Hayes, Ian
(ed.), Specification Case Studies (2nd ed.), pp. 202–213. Prentice Hall
International Series in Computer Science.

3 “Prof. Jim Woodcock, FREng“. University of York, UK.

4 Roscoe, Bill (8 February 2012). “Ib Sorensen – In memoriam”. Department of
Computer Science, University of Oxford, UK.

5 Sørensen, Ib Holm; Kresse, Eric (December 1977). RIKKE-MATHILDA
microassemblers and simulators on the DECSystem-10. Technical report DAIMI
MD-28. Aarhus University, Denmark.

6 Woodcock, Jim; Davies, Jim (1996). “Acknowledgments”. Using Z: Specification,
Refinement, and Proof. Prentice Hall International Series in Computer Science.
ISBN 978-0139484728.

7 Fitzgerald, J. S. (October 2006). Perspectives on Formal Methods in the Last 25
years. Technical Report Series, CS-TR-983. Newcastle University, UK.

8 Hayes, Ian (1993). “Preface to the first edition”. Specification Case Studies (2nd
ed.). Prentice Hall International Series in Computer Science.

9 Hayes, Ian J.; King, Steve (2021). “Industry Influence on Research”. In Jones,
Cliff B.; Misra, Jayadev (eds.), Theories of Programming: The Life and Works of
Tony Hoare, section 11.9, pp. 266–267. Association for Computing Machinery.
ISBN 978-1450387286.

10 Morgan, Carroll (1994). Programming from Specifications (2nd ed.). Prentice
Hall International Series in Computer Science. ISBN 978-0131232747.

11 Hayes, Ian, ed. (1993). Specification Case Studies (2nd ed.). Prentice Hall
International Series in Computer Science. ISBN 978-0-13-832544-2.

12 Bhattacharya, Sourav; Winter, Victor L., eds. (2012). “History of B”. In High
Integrity Software, section 8, p. 40. Springer. ISBN 978-1461513919.

13 Crichton, Edward (29 March 2022). “BToolkit“. GitHub.

14 Wordsworth, John B. (1996). Software Engineering with B. Addison-Wesley. ISBN
978-0201403565. (Inside cover.)

44

https://github.com/edwardcrichton/BToolkit
http://red.cs.nott.ac.uk/~rxq/files/SpecificationCaseStudies.pdf
https://info.usherbrooke.ca/mfrappier/IFT734/ref/logique/morgan-pgm-from-spec.pdf
https://eprints.ncl.ac.uk/file_store/production/55248/6C55E710-EDB8-4B0C-8755-951E795F5E83.pdf
https://eprints.ncl.ac.uk/file_store/production/55248/6C55E710-EDB8-4B0C-8755-951E795F5E83.pdf
http://www.bitsavers.org/pdf/aarhusUniversity/md/MD-28_RIKKE-MATHILDA_Microassemblers_and_Simulators_on_the_DECSystem-10_Dec77.pdf
http://www.bitsavers.org/pdf/aarhusUniversity/md/MD-28_RIKKE-MATHILDA_Microassemblers_and_Simulators_on_the_DECSystem-10_Dec77.pdf
http://www.cs.ox.ac.uk/news/448-full.html
https://pure.york.ac.uk/portal/en/researchers/jim-woodcock(c9e521d6-3c93-4564-bf38-eec7ab1c4ea7)/profile.html
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330389
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330389
https://doi.org/10.1016/j.entcs.2005.03.004

FACS FACTS Issue 2022-2 July 2022

15 Schneider, Steve (2001). The B-Method: An Introduction. Palgrave, Cornerstones
of Computing. ISBN 978-0333792841. (Acknowledgements.)

16 “Ib Holm Sorensen”. Google Books.

17 “Ib Holm Sorensen”. Google Scholar.

18 “Ib Holm Sorensen”. WorldCat.

Further links

• Personal home page (http://www.cs.ox.ac.uk/people/ib.sorensen/). University
of Oxford, UK.

• Ib Holm Sørensen (https://dblp.org/pid/91/4074). DBLP Bibliography Server.

• Ib Sorensen (https://www.linkedin.com/in/ib-sorensen-a16289b/). LinkedIn.

• Ib Holm Sørensen's scientific contributions
(https://www.researchgate.net/scientific-contributions/Ib-Holm-Sorensen-
69788930). ResearchGate.

Appendix: Extracts from DPhil thesis

Below are some extracts from Ib Sørensen’s 1981 doctoral thesis [1], supervised by
Tony Hoare at the Programming Research Group in Oxford, and using an early version
of the Z notation. Jean-Raymond Abrial was based at the PRG at this time, developing
the Z notation. Bernard Sufrin was also using the Z notation and Cliff Jones was
studying for his doctorate under Tony Hoare as well at the PRG. Z is not explicitly
named in the thesis, but an early document on Z by Jean-Raymond Abrial is referenced,
as is a specification of a display editor using Z by Bernard Sufrin (actually Technical
Monograph PRG-21). It is interesting to see the pioneers of formal methods who are
referenced in the thesis, including the ACM A.M. Turing Award winners Edsger W.
Dijkstra (1972), Tony Hoare (1980), and Amir Pnueli (1996).

45

http://www.cs.ox.ac.uk/files/3288/PRG21.pdf
http://www.cs.ox.ac.uk/files/3288/PRG21.pdf
https://www.researchgate.net/scientific-contributions/Ib-Holm-Sorensen-69788930
https://www.researchgate.net/scientific-contributions/Ib-Holm-Sorensen-69788930
https://www.linkedin.com/in/ib-sorensen-a16289b/
https://dblp.org/pid/91/4074
http://www.cs.ox.ac.uk/people/ib.sorensen/
https://www.worldcat.org/search?q=%22Ib+Holm+Sorensen%22
https://scholar.google.com/scholar?as_sdt=1%2C5&q=Ib+Holm+Sorensen
https://www.google.com/search?tbm=bks&q=Ib+Holm+Sorensen

FACS FACTS Issue 2022-2 July 2022

Front page

Abstract:

46

FACS FACTS Issue 2022-2 July 2022

Acknowledgements:

First example of a Z schema in the thesis:

47

FACS FACTS Issue 2022-2 July 2022

List of references:

48

FACS FACTS Issue 2022-2 July 2022

49

FACS FACTS Issue 2022-2 July 2022

The Z User Group: Thirty Years After

Jonathan Bowen
July 2022

It is thirty years since the formation of the Z User
Group (ZUG) [1], established to support the Z
notation throughout the world [2].

The Z User Group was established in 1992 to
promote the use and development of the Z
notation, a formal specification language for the
description of and reasoning about computer-
based systems [3,4,5]. It was formally constituted
on 14 December 1992 during the ZUM'92 Z User
Meeting in London, England [6,7], at the instigation
of John Nicholls.

The original Z User(s) Meeting (ZUM) was instigated by Ib Holm Sørensen at the
Department of External Studies, Rewley House, University of Oxford, in 1985,
under the auspices of the Programming Research Group, part of the Oxford
University Computing Laboratory. However, there was no written report of the
proceedings for this first meeting. Further meetings were held in the same
location at Oxford in 1986 and 1987 with informally published proceedings
[8,9]. The proceedings became formally published as the “Z User Workshop” in
the Springer Workshops in Computing series for meetings in Oxford (1989 and
1990) [10,11], at the University of York (1991) [12], and at the Department of
Trade and Industry in London (1992) [6], where the Z User Group was formally
inaugurated.

After the establishment of the Z User Group, it continued to organise the Z User
Meeting at St John’s College, Cambridge, in 1994 [13]. The Z User Meeting
became the International Conference of Z Users in 1995, with the first
conference held outside the UK, at the University of Limerick, Republic of
Ireland, with the proceedings being published in the Springer Lecture Notes in
Computer Science (LNCS) series [14]. Further conferences were held at the
University of Reading, UK (1997) [15] and in Berlin, Germany (1998) [16]. The Z
User Group participated at the FM'99 World Congress on Formal Methods in
Toulouse, France, in 1999 [17].

In 2000, the Z conferences were merged to become the ZB Conference, jointly
with the B-Method, co-organized with the Association de Pilotage des

50

http://www.zuser.org/

FACS FACTS Issue 2022-2 July 2022

Conférences B (APCB, aka the International B Conference Steering Committee),
with the first conference in York, UK [18]. Subsequent ZB conferences were held
in Grenoble, France (2002), Turku, Finland (2003), and Guildford, UK (2005).
There were also additional Z User Meetings associated with the 2nd Systems
and Software Week, Columbia, Maryland, USA, in April 2006, and the 12th IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS), Auckland, New Zealand, in July 2007.

From 2008, the ZB Conference became the ABZ Conference, with Abstract State
Machines as well at London South Bank University in London, UK [19]. In 2010,
the ABZ Conference also included Alloy, a Z-like specification language with
associated tool support in Orford, QC, Canada [20]. Subsequently, other state-
based formal methods such as VDM (Vienna Development Method) from 2012
and TLA (Temporal Logic of Actions) from 2014 have been included as well.
These further ABZ conferences have been held in Pisa, Italy (2012), Toulouse,
France (2014), Linz, Austria (2016), Southampton, UK (2018), and Ulm Germany
(2020 and 2021, combined online due to the pandemic, where the conference
title was generalized to “Rigorous State-Based Methods” [21]). Information on
papers in the proceedings for ZUM, ZB, and ABZ is available via DBLP online
[22]. Covers of proceedings from 1987 to 2022 can be found in the appendix.

Successive chairs of the Z User Group have been as follows: John Nicholls
(1992–1994); Jonathan Bowen (1994–2011); and Steve Reeves (from 2011).
Successive secretaries have been the following: Mike Hinchey (1994–2011) and
Randolph Johnson (from 2011). In 2011, the group and the associated Z
notation were studied in the context of a Community of Practice [23]. Since
then, in practice, the Z User Group has not been operational for the last decade,
with ABZ conferences being supported by local institutions. ABZ 2023 is
planned to be held in Nancy, France [2424].

References

1. Sayeed, Ahmed (2021). Abbreviations. Sankalp Publication. p. 371. ISBN
978-9390636693.

2. Yearbook of International Organizations. Vol. 1. Union of International
Associations. 2017.

3. Bowen, J.P. (September 1993). “Z User Group activities”. JFIT News. 46: 5.
4. Bowen, J.P. (1994). “Z User Meeting Activities”. High Integrity Systems. 1

(1): 93–94.
5. Tucker, Allen B., ed. (2004). Computer Science Handbook. CRC Press.

Chapter 106. ISBN 978-0203494455.

51

FACS FACTS Issue 2022-2 July 2022

6. Bowen, J.P.; Nicholls, J.E., eds. (1993). Z User Workshop, London 1992,
Proceedings of the Seventh Annual Z User Meeting, 14–15 December
1992. Springer, Workshops in Computing, ISBN 978-3540198185.

7. “Z User Group (ZUG)”. Global Civil Society Database. Union of International
Associations (UIA).

8. Bowen, J.P., ed. (1987). Proceedings of Z Users Meeting. University of
Oxford, UK, 8 December 1987. doi:10.13140/RG.2.2.20103.34724

9. Bowen, J.P., ed. (1988). Proceedings of the Third Annual Z Users Meeting.
University of Oxford, UK, 16 December 1988.

10. Nicholls, J.E., ed. (1990). Z User Workshop, Oxford 1989, Proceedings of
the Fourth Annual Z User Meeting, Oxford, UK, December 15, 1989.
Springer, Workshops in Computing. ISBN 978-3540196273.

11. Nicholls, J.E., ed. (1991). Z User Workshop, Oxford 1990, Proceedings of
the Fifth Annual Z User Meeting, 17–18 December 1990. Springer,
Workshops in Computing. ISBN 978-3540196723.

12. Nicholls, J.E., ed. (1992). Z User Workshop, York 1991, Proceedings of the
Sixth Annual Z User Meeting, 16–17 December 1991. Springer, Workshops
in Computing. ISBN 978-3540197805.

13. Bowen, J.P.; Hall, J.A., eds. (1994). Z User Workshop, Cambridge 1994,
Proceedings of the Eighth Annual Z User Meeting, 29–30 June 1994.
Springer, Workshops in Computing. ISBN 978-3540198840.

14. Bowen, J.P.; Hinchey, M.G, eds. (1995). ZUM ’95: The Z Formal
Specification Notation, 9th International Conference of Z Users, Limerick,
Ireland, September 7–9, 1995. Springer, Lecture Notes in Computer
Science, Volume 967. ISBN 978-3540602712.

15. Bowen, J.P.; Hinchey, M.G.; Till, D., eds. (1997). ZUM ’97: The Z Formal
Specification Notation, 10th International Conference of Z Users, Reading,
UK, April 3–4, 1997. Springer, Lecture Notes in Computer Science, Volume
1212. ISBN 978-3540627173.

16. Bowen, J.P.; Fett, A.; Hinchey, M.G., eds. (1998). ZUM ’98: The Z Formal
Specification Notation, 11th International Conference of Z Users, Berlin,
Germany, September 24–26, 1998. Springer, Lecture Notes in Computer
Science, Volume 1493. ISBN 978-3540650706.

17. “Z User Group Meeting (ZUG)”. FM'99 World Congress. Toulouse, France.
20–24 September 1999.

18. Bowen, J.P.; Dunne, S.; Galloway, A.; King. S., eds. (2000). ZB 2000:
Formal Specification and Development in Z and B, First International
Conference of B and Z Users, York, UK, August 29 – September 2, 2000.

52

https://web.archive.org/web/20070211125820/http:/vl.fmnet.info/fm99/usergroups/zug.html
https://www.researchgate.net/publication/2526997_Proceedings_of_the_Third_Annual_Z_User_Meeting
https://doi.org/10.13140/RG.2.2.20103.34724
https://uia.org/s/or/en/1100048605

FACS FACTS Issue 2022-2 July 2022

Springer, Lecture Notes in Computer Science, Volume 1878. ISBN 978-
3540679448.

19. Börger, E.; Butler, M.J.; Bowen, J.P.; Boca, P., eds. (2008). Abstract State
Machines, B and Z, First International Conference, ABZ 2008, London, UK,
September 16–18, 2008. Springer, Lecture Notes in Computer Science,
Volume 5238. ISBN 978-3540876021.

20. Frappier, M.; Glässer, U.; Khurshid, S.; Laleau, R.; Reeves, S., eds. (2010).
Abstract State Machines, Alloy, B and Z: Second International Conference,
ABZ 2010, Orford, QC, Canada, February 22–25, 2010. Springer, Lecture
Notes in Computer Science, Volume 5977. ISBN 978-3642118104.

21. Bowen, J.P. (2021). “ABZ 2021 Conference Report”. FACS FACTS, 2021-2:
65–70, July.

22. “International Conference on Abstract State Machines, Alloy, B, TLA, VDM,
and Z (ABZ)”. DBLP, Schloss Dagstuhl, Germany.

23. Bowen, J.P.; Reeves, S. (2011). “From a Community of Practice to a Body
of Knowledge: A Case Study of the Formal Methods Community”. In Butler,
M.; Schulte, W. (eds.), FM 2011: Formal Methods. Springer, Lecture Notes
in Computer Science, Volume 6664, pp. 308–322. doi:10.1007/978-3-
642-21437-0_24

24. “ABZ 2023, 9th International Conference on Rigorous State Based
Methods, May 30th to June 2nd 2023 – Loria, Nancy – France”. Loria, France.
https://abz2023.loria.fr

53

https://abz2023.loria.fr/
https://doi.org/10.1007/978-3-642-21437-0_24
https://doi.org/10.1007/978-3-642-21437-0_24
https://dblp.org/db/conf/zum/index.html
https://dblp.org/db/conf/zum/index.html
https://www.bcs.org/media/7577/facs-jul21.pdf

FACS FACTS Issue 2022-2 July 2022

Appendix: Proceedings covers (1987 to 2021)

54

FACS FACTS Issue 2022-2 July 2022

55

FACS FACTS Issue 2022-2 July 2022

56

FACS FACTS Issue 2022-2 July 2022

Review of Nice Numbers by John Barnes
Springer International (Birkhäuser) 2016

Reviewed by: Tim Denvir
July 2022

First of all, note that this is the John Barnes who
has done much work on Ada and other
programming languages, not the US American
science fiction writer of the same name!

Nice Numbers is based on notes for a series of
lectures which the author gave to adult
education classes in Oxford and Reading. It is
therefore not a text that might be used for an
academic qualification, but more aimed at a
mathematical hobbyist. Everything is defined
and explained. Nonetheless I think a reader
would need at least the equivalent of O-level (or
GCSE) and will have to be in tune with
mathematical thinking a fair way beyond that,
perhaps to A-level standard, to follow John
Barnes’s exposition, even though no knowledge
is assumed. But I absolutely don’t want to put
anyone off: this is an intensely pleasurable
read, energised by the author’s infectious
exuberance and wit.

Especially given the above, it is a pity that the book is priced so high - £49.99 RRP,
£39.99 downloadable pdf version. The least expensive hardcopy I could find was
£31.79 from WOB (World of Books). The RRP from the publisher curiously is the same
for hard and softback. I feel sure they would sell dramatically more copies, increasing
the profit for themselves (and royalties for the author!) if they reduced the price to £26
or so. The publisher would only supply me with an electronic copy for review,
departing from normal practice. Since then I have obtained a hardback copy by another
route, and I can say that the physical quality of the book is excellent: printed on high
quality glossy paper and with very clear fine-edged print. I haven’t seen a softback
copy, but who would want to buy one when the hard and softbacks are the same price?

You may wonder why a book like this might be considered of interest to the FACS
community. In the chapters where the author discusses bases, the base of 2 has
special properties and of course is highly relevant to digital computing. However, my
main excuse is that everyone who delves into formal aspects of computing comes to

57

FACS FACTS Issue 2022-2 July 2022

grips with quite a lot of mathematics, much of which is outside the traditional
curricula, and so usually has to be gathered from scratch. Despite being about
numbers, which we all think we know about, this book contains a lot which will be new
and fascinating even to those well versed in mathematics. The book does not just
explore today’s understanding of numbers, but makes comparison with ancient
Egyptian and Babylonian methods of calculation and numeric notation: an erudite
account of knowledge evolution through history. The author also goes into the
etymology of quite a lot of familiar mathematical terms, which highlights the thinking
behind their origins, something I especially enjoyed.

Chapter 1 Measures
John Barnes starts off his courses by asking people what are their favourite numbers.
This chapter lists the various answers with the reasons examined. 7 was the most
popular. He then goes on to talk about primes, shows a way of finding new primes,
Euclidean primes, then various unsolved conjectures about primes, such as whether
primes 2 apart go on for ever. Then there is a section on factors, and deficient,
abundant, superabundant, perfect numbers. Some interesting facts, such as the first
few factorials are superabundant, but 8! is not (a superabundant number is more
abundant than all its predecessors).

Weights and Measures
This section takes me back. As a nine year-old in a rural village school we all had to
learn the archaic imperial measures: 4 poles in a chain, which was also 100 links, 10
chains in a furlong, a furlong being one eighth of a mile, in other words 220 yards
which meant that a chain was 22 yards, the length of a cricket pitch. I remember
seeing an actual physical chain consisting of 100 links, used to mark out where the
opposing stumps were placed. And then there were bushels, pecks, quarts, only a
bushel was a different size depending on whether it was a bushel of wheat or
something else. But John Barnes’ knowledge of archaic weights and measures puts
mine to shame. He relates the many different scales to potential bases; it is a tragedy
that we have ten fingers and toes, he says, because 10 is not a good base, having few
factors. 12 would be better, and explains why it features in many scales (inches to a
foot, and a dozen, a gross etc.). He points out that the troy ounce is more than the
avoirdupois ounce, but the troy pound is less than the avoirdupois pound! I had not
twigged before that a square chain is one tenth of an acre.

His excursion into currencies, both British and continental is fascinating.

The well known rules of thumb for quickly finding if a number is divisible by certain
factors, 3, 9, 11 and 4 in base 10 are not mentioned here as I was expecting, but in a
later chapter. Similar corresponding rules work for other bases.

58

FACS FACTS Issue 2022-2 July 2022

Chapter 2 Amicable Numbers
More about perfect numbers, Mersenne numbers. John peppers his text with a
characteristic wit, which makes the reading more pleasurable: e.g. “What is the point in
finding large primes? Until recently it was just for fun like climbing Mt Everest.”
Whereas a perfect number is the sum of its factors, Amicable Numbers are pairs of
numbers each of which is the sum of the factors of the other. Sociable numbers are
chains of numbers with this property. Modular arithmetic is important and useful for
proving properties of these kinds of numbers. He defines Fermat numbers and
Fibonacci numbers.

Chapter 3 Probability
The author goes into careful detail about the distinction between probability and
statistics. He explains gambling games, poker, craps and “double or quits”, and reveals
intricate details about the design of dice beyond that numbers on opposite sides
should add up to 7. Slightly involved in places but very good.

Chapter 4 Fractions
He goes into intriguing (and possibly too great) detail about Egyptian multiplication
and division. Certainly it has historical value. We are reminded of the tedious manual
methods of finding square roots and cube roots. There is a lot about ancient Egyptian
methods. Decimal fractions and Continued fractions, resurrected from the early 19 th

century. I felt glad I wasn’t a schoolboy in ancient Egyptian times!

Chapter 5 Time
John Barnes gives an astronomical description of days, months, years. Despite my
having been an enthusiastic student of astronomy from the age of 6, there were some
details about the variations in length of the sidereal day that I did not know about.
There is much history of the Julian and Gregorian calendars, quarter days etc., most
illuminating! The involved calculations about the different amounts of energy from the
sun on the earth’s surface show remarkable and surprising results.

Chapter 6 Notation
He compares Roman, Arabic, Egyptian and Babylonian numeral systems, and
categorises them. He discusses place systems and bases, particularly considering
fractions in different bases. He shows recurring cycles of digits in different bases and
derives rules about them. He finally returns to Fermat’s Little Theorem.

Chapter 7 Bells
The author relates bell ringing to permutations. Again, as in all the previous chapters,
he provides historical details: for example, Fabian Stedman (1640-1713) wrote two

59

FACS FACTS Issue 2022-2 July 2022

famous books on bell ringing, Tintinnalogia, and Campanalogia. This chapter goes
into intricate detail and would require dedication to read thoroughly and grasp its
entirety. It ends with a couple of paragraphs indicating that the permutations of bell
sequences form an algebraic group, and gives references to more in-depth analyses,
including Appendix E: Groups.

Chapter 8 Primes
This starts out with Greatest Common Divisors (GCD) also known as Highest Common
Factors (HCF) and relates them to Fibonacci Numbers and gives fast methods for
finding factors of large numbers (Eratosthenes and Fermat). Then he embarks on
complex numbers, expansions of ex and sin x and cos x. Complex primes are defined.
The chapter ends with a short section on polynomials including prime polynomials.

Chapter 9 Music
This presents the basic physics of vibrating strings and columns of air in pipes,
musical intervals, chromatic and diatonic semitones and how they arise. Different kinds
of scales, how they all deviate from the ideal, which is impossible to achieve. Scales
where C# is different from D , major and minor scales, frequencies, and all theirЬ
histories. All are mathematically analysed. Anyone with an interest in music who has a
mathematical bent will find this chapter interesting.

Chapter 10 Finale
This final chapter is a miscellany of topics: the use of primes in encryption, the RSA
algorithm, which includes linear congruences and Diophantine equations; animal gaits,
bipedal and quadrupedal; the games of Towers of Hanoi and, related, Chinese Rings.

Appendices
Finally, there are nine appendices covering various topics including Ackermann’s
function, Stochastics, Groups, and Rubik’s cube (!).

60

FACS FACTS Issue 2022-2 July 2022

Forthcoming events

Events Venue (unless otherwise specified):

BCS, The Chartered Institute for IT
Ground Floor, 25 Copthall Avenue, London, EC2R 7BP

The nearest tube station is Moorgate, but Bank and Liverpool Street are within walking
distance as well. The new Elizabeth Line is now very convenient for the BCS London
office, by alighting at the Liverpool Street stop and leaving via the Moorgate exit.

Details of all forthcoming events can be found online here:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-
computing-science-group/

Please revisit this site for updates as and when further events are confirmed.

61

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/

FACS FACTS Issue 2022-2 July 2022

FACS Committee

62

FACS FACTS Issue 2022-2 July 2022

FACS is always interested to hear from its members and keen to recruit additional
helpers. Presently we have vacancies for officers to help with fund raising, to liaise with
other specialist groups such as the Requirements Engineering group and the European
Association for Theoretical Computer Science (EATCS), and to maintain the FACS
website. If you are able to help, please contact the FACS Chair, Professor Jonathan
Bowen at the contact points below:

BCS-FACS
c/o Professor Jonathan Bowen (Chair)
London South Bank University
Email: jonathan.bowen@lsbu.ac.uk
Web: www.bcs-facs.org

You can also contact the other Committee members via this email address.

Mailing Lists
As well as the official BCS-FACS Specialist Group mailing list run by the BCS for FACS
members, there are also two wider mailing lists on the Formal Aspects of Computer
Science run by JISCmail.

The main list <facs@jiscmail.ac.uk> can be used for relevant messages by any
subscribers. An archive of messages is accessible under:

http://www.jiscmail.ac.uk/lists/facs.html

including facilities for subscribing and unsubscribing.

The additional <facs-event@jiscmail.ac.uk> list is specifically for announcement of
relevant events.

Similarly, an archive of announcements is accessible under:

http://www.jiscmail.ac.uk/lists/facs-events.html

including facilities for subscribing and unsubscribing.

BCS-FACS announcements are normally sent to these lists as appropriate, as well as the
official BCS-FACS mailing list, to which BCS members can subscribe by officially joining
FACS after logging onto the BCS website.

63

http://www.jiscmail.ac.uk/lists/facs-events.html
mailto:facs-event@jiscmail.ac.uk
mailto:facs-event@jiscmail.ac.uk
mailto:facs-event@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs.html
mailto:facs@jiscmail.ac.uk
mailto:facs@jiscmail.ac.uk
mailto:facs@jiscmail.ac.uk
http://www.bcs-facs.org/
mailto:jonathan.bowen@lsbu.ac.uk

	Editorial
	Table of Contents
	Articles:
	Commemorations:
	Reviews:
	PL/1 in New York, Winchester and Vienna
	An Awkward Problem
	Ib Holm Sørensen: Ten Years After
	The Z User Group: Thirty Years After
	Review of Nice Numbers by John Barnes

