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Editorial

Dear readers,

Welcome to issue 2022-2 of the FACS FACTS newsletter. This is our mid-year issue for
2022.

In this issue we have two Features. An article by John Tucker giving a historical view of
operational semantics, particularly as applied to the semantics of PL/1. This formal
semantics was developed at the IBM Vienna Laboratories in the second half of the
1960s. John gives an honest, considered and eloquent account of the formalisation
work and of the concepts driving the design of PL/1, including their subsequent
criticism.

Brian Monahan’s “An Awkward Problem” comprehensively illustrates a seemingly
straightforward program design task: it shows how mathematics is pervasive and
necessary in designing algorithms, and how algorithms need to be understood as
mathematical abstractions of program behaviour. You could call it an object lesson for
a formal approach.

It is ten years since Ib Holm Sgrensen passed away at the early age of 62, in the
centenary year of the birth of the computer science pioneer Alan Turing. Jonathan
Bowen writes an appreciation of his life and achievements.

Jonathan also commemorates thirty years since the formation of the Z User Group. The
Z User meetings produced numerous proceedings in the Springer Workshops in
Computing and LNCS series, the covers of which are shown.

Finally, a review by Tim Denvir of John Barnes’ (of Ada and RTL/2 fame) book, Nice
Numbers. Everyone who delves into formal aspects of computing comes to grips with
quite a lot of mathematics, much of which is outside the traditional curricula. Despite
being about numbers, which we all think we know about, this book contains a lot
which will be new and fascinating even to those well versed in mathematics.

As we said in the editorial of issue 2022-1 (see bcs.org/media/8289/facs-jan22.pdf), we very
much appreciate and look forward to contributions, especially comments, from you,
our readers.

We hope you enjoy FACS FACTS issue 2022-2.

Tim Denvir
Brian Monahan


http://bcs.org/media/8289/facs-jan22.pdf

FACS FACTS Issue 2022-2 July 2022

Table of Contents

o o = L 3
Articles:
PL/1 in New York, Winchester and Vienna............cocooiiiiiiiiiiiiiiiiieeennns 5

by John V. Tucker

AN AWKWAId Problem. ...t aeans 16
by Brian Monahan

Commemorations:

Ib HOlm Sarensen: Ten Years Afer.....cooo oo ee e eaneaneannn 41
by Jonathan Bowen

The Z User Group: Thirty Years After........cccoeeviiviieiiiiiiiiiiiiiieeeeeeen, 50
by Jonathan Bowen

Reviews:
Review of Nice Numbers by John Barnes...............ccocovvieviiiiiiiiienennnnn. 57

Reviewed by Tim Denvir



FACS FACTS Issue 2022-2 July 2022

History of Computing Collection at Swansea University

The History of Computing Collection specialises in computing
before computers, formal methods, and local histories of
computing. An introduction to the Collection appeared in the
February 2021 issue of FACS FACTS (2021-1, pp.10-17). The
Collection is located on the Singleton Campus of Swansea
University; it can be visited by appointment. A small nhumber of
items from the Collection are on display in the Computational
Foundry, Bay Campus, which is the home of the Computer Science
Department. All inquiries welcome.

From the History of Computing Collection, Swansea University:

PL/1 in New York, Winchester and Vienna

John V. Tucker
Swansea University

Operational semantics is truly basic in the theory of programming and programming
languages. The idea is simple enough: the semantics of a program is characterised by
modelling its behaviour, i.e., what it does. The things to be modelled are (i) states of a
machine and (ii) transitions from one state to another. How hard can that be? Surely,
anything can be modelled using idealisations and abstractions to postpone difficulties
and eliminate inessentials.

Dream on. Machines are already idealisations of a mass of complex functional
components, and programs are full of constructs that singly or in combination can
generate obscure and unforeseen actions. Thus, the answer is that it is awfully hard
and, indeed, since the 1960s all sorts of semantical approaches to the ‘meaning’ of
programs have been developed for all sorts of computational situations and needs.

But why bother? This audience has a number of answers to that - e.g., modelling helps
o understand design choices and decisions and predict their consequences;
o improve languages and tools that improve programs and programming.

There are those of us who simply enjoy semantic modelling as their means of

exploring the behaviour of data and computations. But, crucially for our history,
modelling helps

5
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o form a basis for precise specifications that are sufficiently abstract to make
languages and programs portable between machines.

There is a distinction to be made between modelling and formalising - (i) & (ii) versus
(iii) - already evident in Bertrand Russell’s views on the formalisation of mathematics.
But that topic is for another occasion.

In the folk history of programming languages, if PL/1 appears as a milestone then it is
in the formal development of language specifications. It marks a step forward in
programming semantics after the achievement of Algol for programming syntax.
Indeed, the significance of PL/1 is ‘reduced’ to that of operational semantics, which is
associated with the IBM Vienna Laboratory.

Of course, the language deserves much more historical attention. Anyway, the formal
methods community must keep its memory alive and cherish it, as we do Algol. The
centre piece for today’s choice from the Collection is the set of IBM Vienna reports on
PL/1 in Figure 1.

The Vienna Reports on PL/1

The formal definition of PL/1 by the Vienna Lab comes in three ‘published’ versions, in
December 1966, June 1968 and April 1969. The reports in Figure 1 are those of the
second version, all released on 28 June 1968. These reports, and most of the other
Vienna Lab Reports in our Collection, are a small part of a gift to the Collection by
Dines Bjagrner, a scientist who needs no introduction to this audience. Dines worked in
IBM 1962-75 and at the Vienna Lab 1973-75.

The reports in Figure 1 are these:

P. Lucas, K. Alber, K. Bandat, H. Bekic, P. Oliva, K. Walk and G. Zeisel. Informal In-
troduction to the Abstract Syntax and Interpretation of PL/I. Technical Report
25.083. IBM Laboratory Vienna, 1968.

K. Alber and P. Oliva. Translation of PL/I into Abstract Syntax. Technical
Report 25.086. IBM Laboratory Vienna, 1968.

K. Alber, P. Oliva and G. Urscler. Concrete Syntax of PL/I. Technical Report
25.084. IBM Laboratory Vienna, 1968.

M. Fleck and E. Neuhold. Formal Definition of the PL/I Compile Time
Facilities. Technical Report TR 25.080. IBM Laboratory Vienna, 1968.

K. Walk, K. Alber, K. Bandat, H. Bekic, G. Chroust, V. Kudielka, P. Oliva, and G.
Zeisel. Abstract Syntax and Interpretation of PL/I. Technical Report TR 25.082.
IBM Laboratory Vienna, 1968.
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Together they define PL/1, correcting and updating the Lab’s first attempt two years
earlier. The following year a last updated version was published, with the same titles
and largely the same authors.

Let’s look at the birth of PL/1 and reflect on the achievement.

IBM in the late 1950s

PL/1 is a part of the legacy of IBM’s System 360 product line, announced on 7 April
1966. System 360 is an achievement in the history of practical computing, one with
great technical and financial risks and rewards for IBM. The decade before was rather
dramatic for IBM. It began with the transfer of power from Thomas ] Watson Sr to his
son Thomas J Watson Jr, whose vision it was to make computers core to the business,
and who transformed the operating structures of the company. Technically, it saw two
transformations: (i) the transition from tabulating equipment to computers and (ii) the
transition from a disparate incompatible set of computers to the compatible System
360 series. In both cases, the transitions involved abandoning products that were
hugely profitable and primary sources of IBMs huge
revenues. Business history was being made, as

documented in Cortada (2019). PL/I

ABSTRACT SYNTAX AND
INTERPRETATION OF PL/I

DINES  pIZENER

So, what was the problem that needed Watson Jr to
bet the company? It was his customers’ need for
compatible machines and portable software. The
transition away from electro-mechanical to electronic
large-scale data processing was well established in
the late 1950s, but this also meant that it was
growing a market for more powerful equipment. Up-
grading to more powerful computer systems was
natural, but was unnaturally hard. IBM’s entry level
1401 series was selling well, but buying a new more

INFORMAL INTRODUCTION TO
THE ABSTRACT SYNTAX AND
INTERPRETATION OF PL/I

TRANSLATION OF PL/I
INTO ABSTRACT SYNTAX

- DNES BIenee

| TECHNICAL REPORT

| I8 TR 25.080 ¢
sl L | 28June9ss |

FORMAL DEFINITION OF THE

powerful machine meant re-programming software
and re-training staff. When the need for more
processing arrived, companies faced unwelcome
costs, both if they stayed with IBM or migrated to
another firm. Buying more 1401s meant other
problems (such as maintaining consistent data bases
on machines that did not communicate). So the vision
was a completely new product line with compatibility
and communication between machines and, for good
measure, completely new physical and software

! PL/I COMPILE TIME FACILITIES

CINES 'B:(@eua@

" TECHNICAL REPORT

TR 25.084
| 28June 1968

CONCRETE SYNTAX OF PL/I

K. ALBER
P. OLIVA
G. URSCHLER

LABORATORY VIENNA

Figure 1: ULD - I
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technologies. The days of the extremely profitable current product range were
numbered.’

The press release on the 7 April 1964, summarised admirably the new features and
advantages of System 360. There was a wink in the direction of its programming
languages in the form of System 360’s applicable versatility:

The traditional distinction between computers for commercial and scientific
use is eliminated in System/360. Users will be able to process both business
and scientific problems, or a combination of the two, with equal
effectiveness. (IBM Announcement 1964).

For some of those among the 100,000 businessmen in 165 American cites at which
System/360 was announced this must have meant something to do with the future of
Fortran and Cobol.

The conception of PL/1

PL/1 saw the light of day in the computer science community in January 1965 in an
article in the Communications of the ACM, Radin and Rogoway (1965). Then, it was
called NPL for New Programming Language, which resonated with IBM’s new product
line. NPL began in October 1963 when IBM and, specifically, SHARE created an
Advanced Language Development Committee with certain aims to define a new
language. SHARE was a user community for IBM products, run by volunteers. It was
founded in 1955 by users of IBM 701s in Los Angeles and had grown, become
organised, influential, and generally interested in IBM products, hard and soft.? Its
origins and culture was close to Fortran. SHARE continues today.?

By the time of the publication, the Advanced Language Development Committee had
seven members from major corporations and five from IBM; all were experienced
technical people. The aims set by SHARE were to make a language that:

o satisfies the needs of a wide range of programmers;

o takes a simple approach to reduce programming errors;

o suits the development of the latest applications. Radin and Rogoway (1965).

' The 1401s lived from 1959 to 1970.
>The 701 is IBM’s first commercial scientific computer, launched in 1952.

*See: https://www.share.org

8
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The languages they had in mind were Fortran, COBOL and the tour de force that was
Algol, in which IBMers had been heavily involved. It was an IBMer and Fortran creator,
John Backus, who introduced the BNF method for formally defining the programming
language syntax of Algol.

Not unlike the division in machines mentioned earlier, software divided into three
categories: scientific and engineering, business and financial, and real-time processing
and systems. Developers had settled for different programming languages, especially
the Fortran and COBOL of the day. NPL was expected to be able to replace them.

Early on, as soon as computers arrived in organisations, both kinds of users emerged.
For example, in Glamorgan, when a Ferranti Pegasus was purchased for the operations
research group to design processes for the new steelworks at Port Talbot, it was not
long before administration found things for it to do. The same happened when
Swansea University bought its first machine, an IBM 1620 for scientific and engineering
simulation (Tucker 2020). Convergence and portability made perfect technical and
economic sense.

Along with convergence issues for machines came the need for convergence for
programming constructs - constructs that were found to be desirable in one current
language but were not present in another might be included. From the beginning, the
solution of NPL was to acquire constructs.

Development of PL/1

From October 1963, the development of PL/1 has many milestones and the complete
documentation for PL/1 is large. It is also dispersed. The technical development of the
language was passed to IBM’s Hursley Lab, near Winchester. This meant defining the
language precisely enough for the construction of a compiler - a highly demanding and
fundamental next step. Vienna’s early interest in debating the language was rewarded
by securing the task of making its formal definition - a great challenge and a plum
assignment for the Lab, though dependent on Hursley, of course. Clearly, the aim of
PL/1 and System 360 was to advance computing practice in a historically significant
way.

The Vienna Lab at the time of the announcement of System 360 was considered
‘special’. As a Development Lab and part of IBM Austria it was not part of IBM
Research, and seen as in need to attention: it was on offer to Ambros Speiser as part
an incentive package for him to remain head of IBM Zurich - a jewel in the crown of
IBM Research - rather than leave (which he did: Speiser 1998).

The major documents for the three phases are:

1 the System Reference Document (SRD) of November 1964, owned by New York;
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2 the semiformal definition of 1966, owned by Winchester; and

3 the three versions of the formal definition of the Universal Language
Description (ULD) of 1966-69, owned by Vienna.

For convenience, these are called ULD I, ULD Il and (the three versions of) ULDIII.
These notations can be a little confusing (because of the appearance of the Vienna
Reports cf. Figure 1) and were cooked up by Vienna and Hursley.

The job was not over in 1969. The work on PL/1 give rise to the general Vienna
Definitional Method, and other languages, such as Fortran and Algol, were defined
formally, as in Figure 2. A few years later there is the later specification in Figure 3, a
key report for the general Vienna language definition method:

Hans Bekic, Dines Bjarner, Wolfgang Henhapl, Cliff B. Jones, and Peter Lucas.
A Formal Definition of a PL/I Subset. Technical Report 25.139, IBM
Laboratory, Vienna, 1974.

Subsequently, PL/1 was to receive a standardisation from the American National
Standards Institute (ANS Programming Language PL/I. X3.53-1976).

Here, | will keep away from the build-up of many new features and constructs for the
language, the emergence of the specifications at Hursley and Vienna, and the
intricacies of the versions. There are contemporary introductions such as Lucas and
Walk (1969) and Beech (1970); and there are later reflections, such as Radin (1978) and
Lucas (1981); Radin’s was expanded upon in the PL/1 Session in Wexelblat (1981). And
there is the scholarly work of Cliff Jones on the contributions of Hans Bekic (Jones
1984). My Swansea colleague Troy Astarte has tackled some of these technical matters
for PL/1, and far more of the history, in Chapter 5 of his Newcastle PhD (Astarte 2019),
which | recommend.

From the beginning, starting with the early views of SHARE, the language was seen as
complicated ... too complicated for some. This view grew as the language was
discussed outside IBM in professional meetings, attracting critics such as Edsger
Dijkstra and Tony Hoare whose view of programming and programming languages
emphasised conceptual understanding and reasoning - and became an orthodoxy of
the academic community for a generation. Surely, for that vision, PL/1 was to be seen
as an example of how not to make a programming language:

One of my implicit morals will be that such programming languages, each in
their own way, are vehicles inadequate to guide our thoughts. If FORTRAN
has been called an infantile disorder, PL/1 must be classified as a fatal
disease.

(Dijkstra 1971, see also Dijkstra 1970).

10
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However, although complex because of the liberality of its design, IBM was undeterred,
as the advertisement in Figure 4 for the language confidently demonstrates.

Reflections

Consistent with my earlier remarks about the reputation of the language, PL/1 does
not loom large in IBM’s own lists of amazing achievements. Company glossies
celebrating their contributions make no mention of it - such as the Think: History of
Progress 1890s-2001 (IBM 2008) and the 100 Icons (IBM 2011). However, the IBM
Journal of Research and Development did take note of PL/1 when reflecting on IBM and
high-level languages. (Sammet 1981).

Why does the language deserve so much more historical attention? One reason is that
there are so many new ideas finding their way to PL/1 throughout the 1960s. Perhaps,
this is not surprising if one looks at the vision and determination to pursue
convergence and portability, and the state of languages at the time - as can be
calibrated by the first three chapters of Sammet (1969). The number of programming
constructs and design features may be overwhelming, as many commentators and
users have observed. But technical ideas are there in abundance and are thought about
rigorously and formally. As Radin pointed out two years after its standardisation:

Since PL/I took as its scope of applicability virtually all of programming, the
dialogues about its various parts encompass a minor history of computer
science in the middle sixties.

(Radin 1978);

not so minor, in my opinion. Fortunately, the latest work of Cliff Jones and Troy Astarte
give us new insights and incentives to rediscover PL/1 and to study the history of
formal semantics of programming and programming languages. And, very fortunately,
many key Vienna Lab reports, and Hursley reports, can be downloaded from Cliff
Jones’s library at:

The subject need not be confined to formal methods community. For those of us of a
philosophical nature, PL/1 is associated with some deep ideas and questions. Heinz
Zemanek’s motivations and methodological remarks in Zemanek (1966) remind us
explicitly of the Lab’s links to philosophical traditions and mathematical logic. PL/1
embodies a connection between philosophical speculations, mathematical models,
formal description methods, and computing technologies active in the world. Zemanek
uses the thoughts of Peirce, Russell and Wittgenstein with effect. Of course, it is
important to note that the cultural foundations of the Vienna Labs owed much to the

12
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Vienna Circle. It was Vienna was where Max Neumann learned mathematical logic and
who later introduced Alan Turing to his life’s work. Thus, the Vienna Circle, their
precursors, fellow travellers and pupils, matter historically. Their ghosts must have

Susie Meyer
meets PL/I

The story of how a sin-
gle language answers
the question, “Can a
young girl with no pre-
vious programming
experience find happi-
ness handling both
commercial and scien-
tific applications, with-
out resorting to an
assembler language?”
Let The cost of

tions.

With PL/I, program-
mers don't have to learn
evel lan-

other hi
guagres. The
trate more on the joh, less
on the language

So think about PL/I.

AT CONCEN -

Not just in terms of
training, but in terms of
the total imp

have on your operation.

Figure 4: Susie Meyer

been evident in post-war Vienna.

In the formal methods community, we would do well to remind ourselves that so much
of what concerns us in the digital world philosophically benefits from retracing
intellectual paths that lead back to Russell and Wittgenstein.

13
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Call for Donations

The History of Computing Collection has material on the birth and growth of
semantics, but we would welcome a lot more. Dines Bjarner’s important donation to
the Collection is one of several concerning formal methods. Specifically, on this
occasion, we do not a have anything like a full or even representative set of Vienna Lab
reports nor any of the important Hursley documents. The Collection would be pleased
to offer sanctuary to any materials out there in need of a safe home.
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An Awkward Problem

Brian Monahan

July 2022

This all began with the following simple-sounding problem: Given a vector vS of non-empty
sets of data elements (assume numbers), vs = { vSy,vSa, **-,vSy ), choose a (unique) ele-
ment v; from each of the sets vs;, resulting in a solution vector v = {(wvy,vs, **+, v, ). Be-
cause of uniqueness, the solution vector v forms an injective (one-one) mapping from the
indices of v into the overall set of elements, | _Jvs.

Here is a more concrete example: consider the forming of a committee from a collection
of clubs (or sub-groups), C, where each club ¢ € C nominates one of their number to the
committee, but in such a way that each committee member represents only one club that they
belong to. Members may belong to more than one club.

To ground intuitions further, consider the following simple example — suppose the vector of
sets v is:

[
{1, 2, 3, 4},
{2, 5}
{1, 3, 4},
{2, 3, 4},
{1, 4, 5}

]

Here are a couple of “solution vectors® for vshaving no repeated elements:

and

For the above vector of sets vs, there are 216 possible vectors that are compatible with it,
where compatible here means that each ’slot’ of the vector contains some value from the
corresponding set in vS. However, there are only 11 compatible solution vectors having no
repeated elements — roughly 5

So far, so easy. In practice, the application called for solution vectors to be “random” (i.e.
arbitrary) — and that, hopefully, solution vectors shouldn’t take too long to find. The input
vector’s of sets would be presented arbitrarily and could be quite large — potentially having
100’s of elements. Fair enough — what could possibly go wrong? Plenty, it turned out!

1 First attempt

A fairly naive approach to this problem was taken initially, considering how trivial this all
seemed to be. For example, immediate similarities could be seen with the similar task of

16



FACS FACTS Issue 2022-2 July 2022

def basicAttempt (vS3) :

n = len(vs)

vec = vector (n, none)
allElems = allFElements(vs)
available = set(allElems)

for i in {1 --+ n}:

elems = available M vS[i]
val = randomSelect (elems)
vec[i] = wval

available = available - {val}

return vec

Assume that the allElements function computes the set I consisting of all
elements occurring in the vector of sets, vS — and that the randomSelect
function selects a value (pseudo-randomly) from a given non-empty set.
Note that, for simplicity, indexing here is 1-based, rather than O-based (see
Appendix A for discussion).

The issue with this approach becomes clear when one considers the possib-
ility of the subset e1lems computed above being empty. In that case, there is
no value val that could be selected by the randomSelect function, forcing
this function, and then the entire basicAttempt function, to fail. Therefore,
the basicAttempt function is not total.

Figure 1: Naive code — basicAttempt

randomly choosing a permutation of a given size. This all seemed remarkably elegant and
straightforward. All that was needed was to iteratively fill the slots of the selection vector
using random selection of elements and keeping track of the remaining elements available.

It went something like this in Fig 1, expressed using a Python-like pseudo-code!.

Perhaps surprisingly, this does often work for smaller examples but as vS gets longer and
contains more objects overall, it will evenrtually fail to find any solution. Even desperately
calling this firstAttempt code within a bounded try - fail - retry loop will fail to
converge on a solution, no matter how many times the loop runs (see Fig 2 below).

What is happening here is that the probability of randomly choosing a candidate slot element
gets closer and closer to 0, as the vector of sets, vs, gets longer and more and more complex.
This naive approach barely works in general. To be sure, there are some exceptional special
cases for which this naive approach certainly can work (such as randomly selecting a permuta-
tion or choosing from a partition where the sets are all disjoint) — but eventually, it just grinds
to a halt for larger, more complex vectors vS, scarcely qualifying as a general method. Clearly,
another approach needs to be taken!

2 Understanding SDRs and Transversals

Rather than barging in with a naive simple-minded algorithm (as done above), let’s instead
gain some mathematical insight into this question. To many, using mathematics might seem a

1See Appendix A for a fuller discussion of the pseudo-code used.
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del repeatedAttempt (vS, limit) :
for 1 € {1 +++ limit}:
try
return basicAttempt (vS)
except
pass

raise

Figure 2: Naive code — repeatedAttempt

strange and perhaps pedestrian approach, but in the face of unbounded complexity, it is in fact
the only possible course of action.

Readers will by now have probably realised that the problem here is akin to selecting a trans-
versal for a given collection of subsets. A transversal is simply a selection of values, one from
each subset, with no duplicates.

In many mathematical applications where transversals as such crop up (e.g. as with cosets
in group theory), very often the subsets in question are already known to be disjoint — that
is, forming a partition with no elements in common. In that case, the uniqueness condition is
entirely trivial and redundant — there is always exactly one subset that each possible transversal
element could belong to.

However, a more interesting situation arises where the uniqueness condition is non-trivial
i.e. the subsets involved may overlap. In that case, instead of a transversal, one is often
said to be selecting a System of Distinct Representatives or an SDR. From now on, we shall
be considering this more general case of SDRs, rather than transversals, simply to make the
uniqueness constraint clear.

By way of a recap, lets precisely define what an SDR is:

Definition: System of Distinct Representatives — SDRs

Let vs be a vector of element sets, where the vector vs has length n. Put D =
[vs, the set of data elements for vs, and then let vec & D™.

vec is an SDR for vs <
Compatibility: Vi e{l---n} -vecli] €vs[i]
Urniqueness: Vi,j €{1-+-n} .veclil=veclj]l =i=]j

Some initial observations - an SDR is a vector of elements having exactly the same length n
as its vector of sets, v, and therefore the data set D of all elements needs at least n elements
for any SDR to exist.

Returning to the question of finding SDRs, it became painfully clear that the ‘randomisation’
approach proves not to be a fruitful avenue to explore (i.e. running out of time in more ways
than one!), and at the time forced a completely different approach to be taken overall. Still, this
left open a number of interesting questions for later consideration such as: Do SDRs always
exist? If they don’t, can they ever be found reasonably cheaply when they do exist?

2.1 Do SDRs always exist?

The simple answer to that is a definite no, not always. Non-existence of SDRs generally arise
when there are insufficiently many unique values available to fill the slots of the SDR (i.e. a
form of starvation and exhaustion). Consider the following example of 7 sets:
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{21 6! 7}1
{2! 5! 7}.-
{4, 6, 7},
{1, 3, 5},
{2, 4, 7},
{4, 5, &},
{2, 4, 6}

Its fairly easy to see why this example doesn’t have any SDRs. Firstly, note there are seven
sets and only seven elements. Therefore every one of those elements must appear in any SDR.
Howeuver, the two elements 1 and 3 only occur in the same set, and so any compatible vector of
elements could only contain at most one of 1 or 3 — and never both. To fill the final slot, each
of 2, 4, or 6 will have already been used at an earlier stage — and so all attempts are eventually
exhausted.

3 The basic theory

There are a couple of key mathematical results to know prior to developing algorithms for
SDRs. These results are all stated here without detailed proof - further details can be found
in the Combinatorics literature e.g. [11, 2, 9, 13, 1, 7] . The first of these results is Hall’s
Condition for the existence of SDRs.

Theorem: Hall’s Condition (Philip Hall, 1935)

Let v3 be a vector of (non-empty) sets.

v5 has at least one SDR <«
For every sub-vector T of vector vs, [(JT)| = |T|.

This says that SDRs exist for vs whenever, for every sub-vector T of vs, there are sufficiently
many elements available to fill each of the slots needed for an SDR for T. This implies that
v3 has an SDR whenever every sub-vector also has an SDR. This is clearly a necessary con-
dition for avoiding starvation/exhaustion. What is perhaps more surprising is that this is also
a sufficient condition!

A good way to show this sufficiency is via Ryser’s Theorem|[11] which provides a numerical
lower bound for the number of SDRs for any vector of sets vS satisfying Hall’s Condition.

Theorem: Ryser’s Theorem - Minimum number of SDRs (Herbert Ryser, 1963)

Let vs be a vector of (non-empty) sets of length n that happens to satisfy Hall’s
Condition above.

Let £ > O be the least cardinality of the sets from the vector of sets, vS. Then
there are two cases:

e If k < n, then vs has at least k! SDRs.
e Otherwise, for & > n, the number of SDRs is at least:
k!

In either case, the number of SDRs is positive, proving the sufficiency of Hall’s Condition. A
proof of Ryser’s theorem proceeds in each case by a fairly straight-forward induction on the
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length of the vector of sets, vs, satisfying the Hall Condition. Naturally, if vs does satisfy
Hall’s Condition, then so too does any sub-vector, R, by definition.

Related to this is the observation that, for any vector of non-repeating elements, then every sub-
vector it has is also non-repeating. Conversely, extending a non-repeating vector by adding a
fresh, unique value results in a non-repeating vector. This property, called here the sub-vector
extension property, will be used later when building up solution vectors algorithmicly.

Armed with these mathematical results, lets now go back to developing algorithms for finding
SDRs.

4 The enumeration approach

The next algorithm moves away entirely from the probabilistic approach and instead looks at
the problem from an pure;y enumeration point of view. The advantage of this approach over
the previous one is its completeness of search. Although time consuming, it can be known, by
enumeration, exactly how many SDRs there are for a given (smallish) system. If there is an
SDR to be found, this process will find it, given enough time and resources.

Naturally enough, the enumeration approach is severely limited and can only be used in prac-
tice for small examples. However, enumeratiion is still of some use for testing purposes to
provide benchmark results. The enumeration code is briefly outlined in Fig 3 below.

class EnumSDR () :
def __init__ (self, inputVector):
# Initialise EnumSDR using input vector.

self . input = tuple (inputVector) # Input vector of sets
self . size = len(inputVector) # Size of input vector
self .position = wvector (self.size, 1) # Tracks test vector

def enumerateSDR (self) :
results = list()
vec = vector (self.size, mnone)

for idx € {1 --- self.size}
vec[i] = self.input [idx][1]

# Generate vectors and test for permutation ...
while self.moreToDo () :
if isPermutation(vec):
results.addLast (vec)
vec = self.advance ()
return results

def moreToDo (self) :
# Determines when search space is exhausted

def advance (self) :
# Calculate next test vector (in lexicographic order)

Figure 3: Enumeration code — enumerateSDR
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The enumeration itself proceeds by generating each compatible test vector lexicographically.
The enumeration completes by detecting when “rollover™ occurs i.e. when the enumeration
starts over again. Note that, for a given vector of sets, vs= {51, S, = -+, S, ), then the size
of the search space is equal to the total number of compatible test vectors, which is equal to:

S| x

Sa| X +ee x |S,]

5 Rethinking the search for SDRs

As we can see, SDRs may not be as common as one might have first thought. To succeed at
finding such potentially rare objects, it will be necessary to rethink how the search is conducted
so as to avoid being overwhelmed by a deluge of unproductive alternatives.

To be clear, all of the algorithms considered in this paper are effectively a form of search
algorithm — that is, each algorithm explicitly visits each solution SDR, even if all the algorithm
does is to count the number of solutions that were found. Naturally, some of those objects
might be retained in some form.

5.1 Finding the first SDR vs. finding all of them?

Obviously, finding all the SDRs for a given vector of sets vS is going to potentially take far
more resources to accomplish than merely looking only for one. It seems, at first sight, quite
silly to consider doing anything more than is absolutely necessary.

However, the motive for asking this question at all is to reluctantly acknowledge that by at-
temptng to find just one SDR, then this may yet involve taking almost as much effort as looking
for all of them! This may happen because, for any given input vector of sets, this may only

very few SDRs, or even none at all, despite have a potentially huge solution space?.

Moreover, it is almost certainly the case that even for algorithms finding just one SDR, they
will necessarily involve searching in one form or another — and that this searching could then
be adapted algorithmically to finding all of them, since it might have to explore almost the
entire solution space to find the first SDR. Conversely, an algorithm for finding all SDRs can
be trivially adapted to just finding the first such SDR. As a result, there is little difference in
practice between algorithms that find all SDRs and those that would just find the first one —
both need to perform the same kind of tasks.

Furthermore, it may be that a “plausibly random” choice of SDR is required rather than merely
offering up the first SDR that an algorithm happens to find. A better approach might be to find
the first 50 or so SDRs and then make a ‘randomised’ selection from this small sample. Of
course, any such sampling approach is necessarily biased — but at least there is then a trade-off
between the amount of bias in the selection and the amount of effort needed to finding a subset
of SDRs to select from.

From now on in this paper, the algorithms given report in some way all the SDRs that are
found. It is clearly trivial to adapt such an algorithm to return the first such SDR found (or
indeed the 23rd SDR or even the final SDR found) if that is what is needed. In practice, rather
than capture all the SDRs, an algorithm may typically capture a few, while also counting the
total number found.

2The term “solution space” here means the entire set of compatible vectors in which the solution SDRs may be
found.
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5.2 A mathematical insight — isomorphic input vectors

A particular problem-reduction tactic is to consider ways to somehow preprocess the given in-
put making it more amenable to processing, without compromising the integrity of processing
and solutions found. In this section, some ways to map and rearrange input vectors are men-
tioned that are guaranteed to preserve number of SDRs and provide one-one correspondences
with solutions. This can be useful in practice to ensure that input vectors are arranged as
conveniently as possible for processing, while still able to recover the original solutions.

Let AIISDRs(v3) be the set of all SDRs for the vector of sets vs, defined as:
AlISDRs(vs) = { vec € D™ | wvecisan SDR for vs }
Both of the following actions result in some transformed vector of sets, vS’.

Rearranging the input vector, vs: Let o be a permutation of the indices of vs. If we have
that:

VS = <Lg17321 0 -1Sﬂ.>
and then:

vs' = (Sa'(l): So’(2)~ Tt Scr(n) >
- (Sfla S,'la ft SI?L}
That is, S’; = o(i). fori € {1--+n}.
Noting that since a vector is really just a mapping from indices to values, then we have,
algebraically, that:

vs! = (O‘ [0} VS)

Renaming the data elements in vsS: Let € be a one-one mapping from D to F, where D and
F are suitable sets of data elements so that | Jvs € D. We can follow in a similar
manner what was done above to define vs’:

vs' = (mapSer(0)(S1), mapSet(0)(Sz), +--, mapSer(0)(S,))
(Sf11 S’z: ---75’?‘!)

That is, S"; = mapSet(0)(S;), fori € {1-:--n}. The function mapSer is simply
defined by the equation:

mapSet(0)(S)={6(v) € E | v € S}

where S C D. Clearly, we have that mapSer(60)(S) € E

Noting as before that a vector is really just a mapping from indices to values, then we
have, algebraically, that:

vs' = (vs o (mapSet(9)))

In either case, it is straightforward to see that each SDR for the original vector of sets vsnaturally
has a one-one correspondence to SDRs for the transformed vector of sets, vs’. Because this
correspondence is one-one between finite sets, it is clear that the number of SDRs is exactly
the same for either vector of sets.

Noting that when vS and v3’ are vectors of sets of the same length, we say that vs and s’
are isomorphic whenever there is a pair (o, #) such that vs’ = (o 0 vs o (mapSet(#))) where
(o, 8) are one-one mappings of indices and data respectively.

Putting all of the above together, this shows the following theorem:
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Theorem: SDR invariance property for isomorphic vectors of sets
If vs and vs’ are isomorphic vectors of sets, then:
Al1SDRs(vs) = Al1SDRs(vs’)
with the natural corollary that:
|A11SDRs (vs)| = |A11SDRs (vs') |
That is, both sets have the same cardinality.
From a practical standpoint, results such as these allow developers to deploy what might be
termed a "Map/Unmap’ problem reduction tactic: map the input in some convenient man-
ner, find all the solutions for the transformed input, and finally "unmap’ those solutions back
to yield solutions for the original input. Occasionally, this final ‘mapping backwards’ step

isn’t required — such as when only the number of solutions is needed, for example. This
"Map/Unmap’ approach is illustrated informally by Fig 4.

Problem space

Solution space

(MAPo SOLVE o UNMAP)

MAP UNMAP

.

Q SOLVE

A B

Figure 4: The (MAP o SOLVE o UNMAP) problem reduction strategy

6 A depth-first approach

Having looked quite hard at the problem now, it will probably not come as too great a surprise
to see that, broadly, the solution uses some form of depth-first search to find SDRs>.

To understand and gain insight into this approach, it is particularly instructive to first visualize
and explore what the tree of possible solutions looks like and to see how they are arranged. To
do this, consider the following basic example:

vo= 0
{1, 2, 3, 4},
{21 3, 4}1
{lr 3, 4}

1

3For the remainder of this article, it is assumed without loss of generality that the number of candidate elements
equals the length of the input vector of sets — which in turn equals the number of slots in each of the solution vectors.
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Figure 5: Solution space

Note that the indices of vector v are {1, 2, 3}, with the set of all data elements used being
{1, 2,3,4}.

In the corresponding solution tree given by Fig 5, the indices of the vector v correspond to
the levels of the tree. At each level, the various possible values that could be chosen at that
level are shown at nodes in the tree. Thus, at level 1 (corresponding to index 1), there are
four nodes correponding to the four possible values, {1, 2, 3, 4}. The solution tree has a fixed
depth corresponding to the number of indices - in this case, 3.

Accordingly, each path through the solutions tree corresponds exactly to a particular solutions
vector —implying that the number of endpoints is equal to the total number of solutions vectors
(i.e. 36 vectors). Particular SDRs are then just those solution vectors having no repeated values
— and these SDRs are denoted on the above diagram by bold paths, with 14 SDRs in total. The
bold red path in the diagram indicates the specific SDR [3, 2, 4].

From this it becomes clear what the depih-first approach needs to achieve - it amounts to
a dynamic traversal of the solution space, picking off the SDRs as it does so. Naturally,
any efficient approach must necessarily aveoid constructing the solution space explicitly, even
though it is the very thing being explored!.

The broad idea is for the traversal to implicitly walk the tree by continually extending the
current partial solution until it reaches the endpoint - if it does that successfully, then an SDR
has been found. Starting from the first index, attempt to assign compatible values into the
current partial solution vector, and proceed index-wise until either an SDR is found or no
further progress is possible. If at any stage no further progress can be made then that part
of the search is abandoned. The search continues by attempting any untried values until all
possibilities have been exhausted.

The results of this traversal are handled on-the-fly by adding the SDRs to the end of a list,
and are not referred to otherwise within the algorithm. This means that there are a variety of
possible implementations — appending to the end of a list, outputting the SDRs on a stream for
capture by an external file, or even simply counting the SDRs.
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class FindSDRsq () :
del __init__ (self, inputVector):
# Initialise FindSDRs using input vector.

self. inputSets = tuple(inputVector) # Input vector of sets
self . size len(inputVector) # Size of input vector

self. candidates = allElements (inputVector)
self. curIndex =1

self. currentSDR = list ()

self. results list ()

def maing (self) :
self. drfSearchq ()

return self.results

def dfSearchg (self) :
try:
nextValues = list (self.inputSets [self.curlIndex])
self. exploreValues, (nextValues)

except NOTFOUND:
pass

def exploreValues, (self, nextValues) :
if len(nextValues) ==
return

(curValue, remainValues) = self.chooseNextValue, (nextValues)

if curvalue is none:
raise NOTFOUND

try:

self . updateSDR, (curValue)

if self.curIndex > self.size:

self. results.addTo (self. current SDR)
else

self. dfSearchq ()

except NOTFOUND:
pass

# Finally, resume search for more SDRs ...
self.exploreValues, (remainvValues)

Figure 6: First-cut depth-first algorithm (flawed)
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class FindSDRsq () :

def updateSDR, (self, value) :
# Update the current SDR with given value and advance the index.
self. currentSDR. addTo (value)

self.curIndex += 1
self. candidates.remove (value)

def chooseNextValueg (self, nextValues):
# Choose next compatible value from the list of nextValues
remainValues = list(nextValues)
for val in nextValues:
remainvValues.remove (val)

if val in self.candidates:
return (val, remainValues)

raise

Figure 7: The methods self.updareSDR,, and self.chooseNextValue,,

6.1 First-cut depth-first algorithm

The broad outline of our first-cut depth-first algorithm is given in Fig 6 and Fig 7. *.The
two methods updateSDR, and chooseNextValue, update the current SDR and choose the next
value from the values available respectively.

6.1.1 A significant subtlety

Overall the algorithm given in Fig 6 broadly follows the pattern outlined above — so far so
good. However, an important subtlety has been negelcted which demands to be mentioned.
As such, it turns out that this algorithm is flawed.

The algorithm has been outlined using our Python-like pseudo-code in an object-oriented man-
ner. This means that the “state” required has been explicitly described, together with the
methods that use that state to produce solutions. The bottom line here is that this gives the
impression that the algorithm appears ready for implmentation. Unfortunately, that is not en-
tirely true — if a developer were to take this algorithm literally as it stands, the implementation
would surely fail.

The main issue is that the state (here called self) persists across all the recursions in a manner
that fails to account for the alternatives needed to explore the solution space fully. The bulk of
the work in the algorithm is done by the method exploreValues, which is used to recursively
explore the assignment of a value for the current index > , self. curIndex, by appending to
the current partial solution vector, self. current SDR.

This method takes the values available for the current index and then crucially makes use of
the currently remaining candidates to select the next value. This implies a significant depend-
ence upon the current state, and since the current state is simply accumulated (by side-effect)
throughout, it is not possible for that state to directly cater for alternative bindings and there-
fore further solutions. As it stands, the current algorithm does not use the state correctly — that
is, the current algorithm is certainly flawed.

4As there are several algorithm variants discussed, significant entities are labelled with a subscript for clarity

SIronically, the current index need not be represented explicity - since the next value is always appended to the
current partial solution vector, and the length of this solution vector can act as a proxy for the current index! However,
by including it explicitly, it gives an observable indicator that progress is being made.
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6.1.2 Resolution

This issue may be tackled in at least a couple of ways. For example, by using a more functional
pseudo-code in the first place reduces the likelihood of issues like this arising which involve
an incorrect use of state. This is mostly due to functional descriptions ensuring no hidden side-
effects, meaning that state information necessarily has to be managed explicitly and exactly —
each use of the state becomes more trackable and accountable.

Unfortunately, this leads to a tension between familiarity and conciseness on the one hand, and
evident compositional correctness on the other — with familiarity and conciseness tending to
win out in practice. However, no matter what kind of pseudo-code is used, care always needs
to be taken when dealing with state in the presence of recursion. With a functional pseudo-
code, the appropriate care to take is easier to spot and then apply, because all the associated
management needs to be considered explicitly.

In this case, note that the very last line of the exploreValues, method is a recursive call to the
exploreValues, method. The requirement for this call is to resume the search for solutions
for the current index at entry to that method, using any remaining values. As it stands, the
algorithm incorrectly makes that recursive call using the current state, self, which will have
significantly advanced since entry to the method.

Fortunately, the fix is very straightforward: make a clone of the state at entry to method
exploreValues, using method clonelnstance, and then use that cloned state to initiate the final
recursive call to exploreValues,. Update the method exploreValues, as indicated here:

def explorevValues, (self, nextvValues):
if len(nextvValues) ==
return

| resumeState = self.clonelInstance()
except :

pass
# Finally, resume search for more SDRs ...

| resumeState.exploreValues, (remainValues)

7 Further enhancement

Now that there is a working algorithm © at least, we can now begin to explore making this per-
form more efficiently (i.e. less wastefully) by finding optimisations which reduce the amount
of work required to do the job. Attempting to optimize before having a working algorithm
is foolish as that risks making it harder overall to complete the required task fully or even
at all. Curiously enough, optimisations usually involve doing some extra preparation or per-
haps using a more sophisticated representation in some manner — until the algorithm works
adequately, it is best to keep it all as simple possible.

After performing a range of tests, it becomes notable that the algorithm can sometimes take a
long time to complete, even when only a few SDRs are to be found. In the most extreme case,
the algorithm can take a long time to process examples having no SDRs whatsoever! This
points to the current algorithm doing all sorts of unnecessary, unproductive work that fails to
yield further solutions.

It is assumed that algorithms in the chosen pseudo-code are sufficiently close to an executable form that they can
be realistically rested and practically examined. This is certainly the case for our Python-based pseudo-code and is
also true for other modern languages as well.
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Thinking this through, clearly the issue has to do with dependent choice which lies at the core
of this entire problem — early choices of values progressively constrain later choices of value.
To examine this further, consider the following example:

vo= 1
{1, 2, 3, 4, 5, &}
{1, 2, 4}
{1, 2}
{1, 2}

{1, 2, 4, s}
{1, 2, 4, 5, &}
]

This has 1440 compatible vectors, but only two SDRs, [3.4, 1, 2,6, 5] and [3, 4, 2, 1, 6, 5]
respectively.

To illustrate the effect of dependent choice, consider the following availability matrix, with
the set of values ranging from top to bottom, and the current partial solution vector along the
bottom. The check-marks (v") indicate a possible entry value for the solution vector. At the
start, the bottom row indicates a blank solution vector. All columns initially contain at least
one check-mark:

v v
v v

NN

R NEENEN
SENENEENEN

S U W
SN NE N NN

Ll |

The narrowing effect of dependent choice is illustrated in terms of the following example.

Suppose the algorithm chooses value 2 for the first position of the solution vector - this yields:

v v v v v

v

S U W=

v
v

SNENEN

e |

Making this choice means that the column entries for the first position can be removed, and
also eliminate the remaining entries for the value 2 - since that has now been chosen.

Looking at the second column, there are only 2 values remaining — that is, 1 and 4. Suppose
the algorithm now chooses 4. Then, eliminating column and row entries, this produces:

1 viov v v
2
3
4
5 v
6 v v

[ 2 4 |

Now looking at the third column, there is only one possible choice for that - the value 1.
Making that forced update, the resulting matrix is:
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<

12 4 1 |

Now there is a problem - there are no values available to fill in for the fourth column - failure!

There are several conclusions to take away from this:

1. Making a choice of values constrains what is available later — choice has consequences.
Once a column contains no values then no further progress can be made, forcing failure
at that point.

2. Once a column has exactly one possible value in it, the value for that slot is determined
and it is therefore forced. This forced assignment should be made as soon as reasonably
possible (i.e. once it becomes knowrn).

3. Any update to the solution vector may lead to a cascade of further forced updates — all
of which should be applied. Each forced update involves distinct columns. However, it
is also possible that more than one forced update could involve the same value, but in
different columns. In that case, one or another of the columns will become exhausted
while applying the updates — which then forces failure.

4. Depending upon the input, forced updates may occur anywhere within the solution vec-
tor. Supporting this desirable flexibility means the solution vector has to be implemented
differently (e.g. as a dictionary).

These observations and considerations lead to some additional functionality to represent and
process this matrix, together with a change in representation for the solution vector to permit
updates generally. Broadly, here are the main enhancements:

Introducing a dictionary to represent the solution vector: The member, self. current SDR,
representing the current partial solution vector, becomes a dictionary mapping to allow
greater flexibility when making updates at any (currently unassigned) index:

self. currentSDR[index] = wvalue

This flexibility permits the algorithm to make forced updates as needed.

Additionally, a member, self . vacancies, is introduced containing the set of remaining
indices to be assigned in the dictionary self. currentSDR. This set helps ensure that
updates to the current partial solution only occur where no updates have already been
made. This set starts off containing the indices {1 - - - self.size} and reduces during the
course of finding solutions.

At this point, it is worth highlighting the following important invariant:

len(self.vacancies) < len(self.candidates)

Clearly, for success, this generally remains true throughout the algorithm’s operation. A
simple induction reveals that, assuming that this is true at entry, and noting that values
and indices are used pair-wise in assignments together, this remains true throughout
operation. In fact, this argument also shows that:

len(self.candidates) — len(self.vacancies) = Const > 0



FACS FACTS Issue 2022-2

30

where Const is some constant value.

Supporting the availability matrix: Because of the way this matrix would need to be up-

dated and maintained continually throughout the algorithm’s operation, there is a keen-
ness to discharge these obligations as efficiently as possible. This is achieved by in
fact avoiding a conventional representation of such a matrix (e.g. as a nested map of
maps). Instead, observe that the matrix is used to anticipate exhaustion by keeping track
and counting where the remaining values are. Accordingly, such functionality can be
economically achieved using the following three structures:

self. indexValuePairs

This is a fixed, immutable set encoding the problem instance so that
(index, wvalue) pairs can be looked up. As such, it provides an oracle to an-
swer queries concerning given values occurring at given indices — and does not need
to be updated. This set is defined by:

self. indexvValuePairs =
immutable { (index, value) for index € {1 --- self.size}

July 2022

for value € self.inputSets[index] }

self. indexCountMap

This is an updateable mapping that keeps count of the values available at each index.
This mapping is defined by:

self. indexCountMap =

{ index: len(self.inputSets[index]) for index €& {1 .-- self.size} }

Finally, in the particular case where the number of candidates is equal to the number
of vacancies, each candidate value necessarily occurs within every solution SDR. Since
the assignment of a value to a particular index may become forced due to there only
being one possible value remaining for that index, in a similar way, the assignment of
a particular value at the last remaining index may also become forced. In either case,
forced updates become necessary to proceed to a solution. To cater for forced updates
for scarce candidates, introduce the following mapping:

self. valueCountMap

This is an updateable mapping that keeps count of the remaining occurrences for
each value. This mapping is defined by:

self . valueCountMap =
{ value: len(self.valueCccs(value))
for value € allElements(self.inputSets) }

where the method valueOces calculates a set of all the remaining occurrences of a
particular value in the input vector and the function allElements calculates the set of
all value elements occurring in the input vector.

Any forced updates required at any stage can be found using the entities, self. indexValuePairs,

self. indexCountMap and self.valueCountMap to keep track of the arrangement of
values. This calculation is performed by the method self. scanForForcedUpdates.
This involves looking for indices having only one remaining value and, when the num-
ber of candidates equals the number of vacancies, looking for values having one remain-
ing index. Any forced updates that are found are applied and continues scanning until
no forced updates are found. No detailed description for this method is provided here
as its mostly straightforward.

With these enhancements in place, the revised algorithn is given in Fig 8.
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class FindSDRsy () :
def __init__ (self, inputVector):
# Initialise FindSDRs using input vector.

self. inputSets = tuple(inputVector) # Input vector of sets
self.size = len(inputVector) # Size of input vector
self. candidates = allElements (inputVector)

self.vacancies = set({l -+« self.size})

self. indexValuePairs = «++  (see earlier discussion)

.

self. indexCountMap
self. valueCountMap

- (see earlier discussion)
»  (see earlier discussion)

self . currentSDR = dict ()

self. results = list ()

def mainy (self) :
self. diSearchy ()
return self. results

del dfSearchy (self) :
try:
nextIndex = self.chooseNextIndexy ()
nextValues = list (self. inputSets [self.nextIndex])

self.exploreValuesy (nextIndex, nextValues)

except NOTFOUND:
pass

def exploreValuesy (self, curIndex, curValues):

if Ien(curvValues) == 0:
return
resumeState = self.clonelInstancel()
(curvValue, remainValues) = self.chooseNextValuey (curValues)
try:

self . updatesSDRy, (curIndex, curValue)
self. scanForForcedUpdates () # Scan and apply any forced updates

if :

self. results.addTo (self. current SDR)
else:

self . dfSearchy ()

except NOTFOUND:
pass

# Finally, resume search for more SDRs ...
resumeState.exploreValues, (curIndex, remainValues)

Figure 8: Revised depth-first algorithm
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class FindSDRsp () :

def updateSDRy (self, index, wvalue):
# Update the current SDR at the given index and value.
self.currentSDR[index] = wvalue

self . vacancies. remove (index)
self. candidates. remove (value)

# Update indexCountMap and valueCountMap mappings

def chooseNext Indexy (self) :
try:
return min (self.vacancies)
except :
raise

def chooseNextValue (self, nextvValues) :
# As tor hooseNextValue,

Figure 9: The methods self.updateSDRy,, self.chooseNextIndex;, and self.chooseNextValuey,

7.1 A short, informal argument for correctness

An informal correctness argument for the algorithm in Fig 8 goes as follows. This is essentially
an inductive argument based upon the depth and therefore the size of the solution space. This
process is guaranteed to terminate since the depth of recursion is limited by the number of
vacancies available.

The algorithm primarily conducts a depth-first traversal search over the tree of possible solu-
tion vectors, as illustrated for example by Fig 5. This search is mainly the focus of the
exploreValues, method. The search proceeds index-wise, and successively chooses the next
value, if possible, from the corresponding range of values for the current index.

The current partial solution is extended when a value is found that is compatible with the
index and the currently available candidates, ensuring that the extension also satisfies the
uniqueness constraint for SDRs (c.f. the sub-vector extension property mentioned earlier). If
this choice of index and value then completes the current partial solution vector, then an SDR
has been found and can be reported. Otherwise, there is further work to do and a recursive
call of dfSearch; is made to capture all remaining solution SDRs that consistently extend
the current partial solution vector so far. To ensure completeness of search, the final step of
exploreValues; explores any remaining values for the current index by using a further recursive
call to exploreValues,,, taking care to resume from the state at entry to the method.

From this, it can be seen that the method dfSearch; proceeds by gathering solutions from deep
within the search space. going ’vertically’ from the current partial solution towards the tips,
whereas the method exploreValues;, proceeds ’sideways’ by exploring alternative solutions
"horizontally across’. In this way, the solution space is covered, as schematically diagrammed
in Fig 10.

This algorithm incorporates the use of forced updates. Critically, such updates are those that
are forced with respect to the current partial solution vector — and as such, would have eventu-
ally been made in every extension from the current partial solution vector that produces SDRs.
Using forced updates adds constraints to eliminate extensions that are not consistent with the
current partial solution vector and accelerates finding those extensions that are consistent with
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Figure 10: Recursive traversal of solution space

the current partial solution vector. As such, the use of forced updates does not affect com-
pleteness of search since using forced updates only preserves solutions and never removes
them.

7.2 Does the algorithm work in practice? And how well does it do it?

The algorithm given in Fig 8 has been informally tested against a battery of 30+ examples and
compared against the results of performing an exhaustive (and exhausting!) pure enumeration
of SDRs. Because some of these examples would yield a large quantity of solutions, the
number of SDRs captured per run was limited to 40. The examples range from the utterly
trivial to sizable examples involving up to 13 elements and having solution spaces with a size
in excess of 100 vectors. In all cases, both the enumeration and the revised algorithm produce
the same overall counts of SDRs found, providing some empirical validation.

However, there is a radical difference between the times taken by enumeration and the times
taken by the recursive depth-first search algorithms given here. Of course, this i1s entirely to
be expected — the enumeration approach visits every completed vector in solution space and
the run-time is therefore proportional to the size of the solution space. The depth-first search
algorithms efficiently prune the search as soon as exhaustion occurs at any level, since the
current partial solution vector cannot then be consistently extended into an SDR. This pruning
has a radical effect on run-time — it prevents much fruitless searching which attempts to extend
inconsistent solution vectors.

Furthermore, by adding the use of forced updates, this measure can curtail unproductive
searches for solutions even quicker, sometimes radically so. The trade-off being made is
between the amount of work to locate and apply forced updates at each node visited, and the
work needed to visit every node obliviously, regardless of potential success.

Generally, the trade-off empirically appears to be very much in favour of detecting and apply-
ing forced updates, particular for larger examples.
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7.3 Adding priority

Earlier, the idea that mapping and rearranging the input vectors of sets might prove advant-
ageous was suggested (see discussion near Fig 4). For the pure enumeration approach, map-
ping and rearrangement the input makes very little difference to runtime. Technically, all that
changes is the particular order in which vectors are enumerated, and therefore visited.

However, as one might expect, for the case of the recursive depth-first algorithms, the mapping
and rearranging of the input vectors’ often does make a considerable and radical difference to
the run-time, as is easily confirmed empirically for larger examples.

What is going on here? The key point is that the overall approach involves either extending
the current partial solution when feasible or otherwise rapidly abandoning failed and there-
fore unproductive alternatives. Now, the reason that arranging the input vector can matter is
that there may be elements having smaller numbers of occurrences than others. Those ele-
ments having fewer number of occurrences are, in some sense, more likely to cause starvation
and exhaustion. These scarce and rarely occurring elements therefore tend to need critical
placement within the current partial solution that can then be extended to SDRs.

This means that by considering such scarce elements sooner, forced updates can more effect-
ively either accelerate the finding of SDRs because critical elements are put in place sooner —
or alternatively, help hasten the abandonment of unproductive searching due to exhaustion of
alternatives.

The overall conclusion is that, for the recursive depth-first algorithms, performance can be
radically enhanced for many input vectors by initially sorting and rearranging the input vectors
so that any scarce elements are considered as soon as possible during algorithm operation.
This step, called prioritisation, is an efficient precursor to the main processing and in effect
canonicalises the input so that isomorphic input vectors are brought to the same form.

Given that this step is effectively a form of precomputation, this does not materially affect the
structure and content of the algorithms already presented. This step can therefore be assumed
to have been applied prior to algorithm operation.

7.4 Some empirical outcomes?

Broadly, the effect of these enhancements is radical, particularly for larger test examples that
have relatively few (or even no) SDRs to be found.

To put the relative efforts expended by each algorithm into perspective, the pure enumera-
tion approach took around 28 hours 7 minutes to tackle the 30+ examples mentioned earlier,
whereas the extended recursive depth-first algorithm (with forced updates and prioritisation
in force) took around 2 minutes 40 seconds total run-time when applied to the same test ex-
amples. Bearing in mind that this overall runtime is for searching for ¢/l SDRs (not just finding

the first one) then this does seem quite impressive®.

None of these algorithms made extensive demands upon memory - and all were implemented
in Python and run on the same computer.

Given that the test set is not open to scrutiny, statements like the above are not subject to
critical review. To address these criticisms, the following website will contain open source
code for the algorithms, test harness, documentation, and examples:

https://github.com/BrianMonahan/SDR

7From now on, assume that a vector of lists representation is used, instead of vectors of sets, so that an ordering
upon elements may be used.

#Even s0, one should be extremely cautious of empirical results of this kind — only a small number of unsystematic
examples have been tried out. In the absence of any argument for efficiency, its reasonable to expect that "bad’
examples will be found having poor efficiency for their size.
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8 Related work

It turns out that there is a considerable history to the general problem of finding SDRs — but
where this topic arises within Graph Theory[14] under the guise of finding marchings within
bipartite graphs.

To recap, a bipartite graph is an undirected graph (network) whose set of vertices is split into
two non-empty disjoint sets so that each edge of the graph has an endpoint in each set (i.e. no
loops). In this context, a matching is then a subset of edges that shares no endpoints i.e. all the
edges are disjoint from one another. A maximal matching is then a matching where no further
edges could be validly added to extend the matching. Note that there could be many different
maximal matchings for a given bipartite graph.

Now, SDRs generally correspond to maximal matchings within a certain bipartite graph where
the set of indices corresponds to one set of nodes and the set of data elements corresponds to
the other set of nodes. The graph itself is then formed by linking those nodes representing
indices to the nodes representing values for each corresponding index (as specified by the
input vector). Additionally, the matchings representing SDRs are naturally expected to cover
each of the nodes corresponding to the indices.

The problem of finding maximal matchings has been long studied within Graph Theory. One
of the early algorithms for finding a maximal matching is due to the work of Edmonds[4], as
discussed in Chapter 5 of [6]. The ideas of alternating and augmenting paths are introduced
that zig-zag between the two sets of nodes and do not self intersect. Matchings can then be
extracted from these paths, by taking alternate edges along any given path as the edges of
the matching, yielding two matchings, one longer than the other. The remaining challenge
lies in systematically exploring the augmenting paths needed for maximal matchings, leading
to algorithms with complexity O(FEV), where F' is the number of edges and V is the total
number of vertices.

A significant step forward was the development in 1973 of the Hopcroft-Karp algorithm for
maximal matchings in bipartite graphs[8], and is one of the most efficient algorithms known
for finding maximal matchings. This makes use of the augmenting paths ideas mentioned
above, and uses breadth-first search to extend the set of augmenting paths to a maximal
matching — the total run-time of this algorithm to find a maximal matching is O(E+/V), a
considerable improvement.

The online lecture notes from Clifford Stein on this topic provides a useful introduction and
summary of this area[12]. A very recent in-depth exploration of algorithmic work in this area
can be found in Chapter 25 of the 4th edition of the classic textbook[3].

Finally, the problem of finding maximal matchings can also be treated as a network-flow
problem and solved using techniques such as the Ford-Fulkerson algorithm[5].

9 Some Observations

This paper has explored some algorithms for finding SDRs — this has involved a couple of
refinements that has been generally led throughout by mathematically expressed considera-
tions. The algorithms developed dealt with finding all SDRs, rather than just one, as explained
in Section 5.1. An informal argument was given in Section 7.1 for the correctness of the
algorithm. Some informal empirical evidence was stated for both correctness and overall effi-
ciency in Section 7.4.

All that being said, the overall account suggests there remains something of further interest
and study, despite the related work reported in Section 8. The work here is at least suggestive
of questions such as:
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e Giving a more formal argument for correctness.

e Giving a worst-case/average-case complexity analysis.

Given that the time taken to find all SDRs is dependent upon the number of SDRs there are
to be found (since each SDR would need to be visited), is there much to be said about the
time taken finding the first SDR relative to the time taken finding all of them? Clearly, the
former is shorter than the latter. Specifically, what is the relationship between these times —
how linear is that relationship for example? In part, the subtlety here concerns how well does
the algorithm do in avoiding non-solutions — can that be quantified in some meaningful way?

Even if the focus on finding al/l SDRs seems hopelessly academic and deeply wasteful — why
on earth would anyone need to do that? — it nonetheless provides a challenge of the trade
off between finding some solution against finding them all (or at least, counting how many
there are). The related work outlined in Section 8 focuses on complete algorithms for max-
imal matchings — how well do these algorithms generalise to the broader question of find-
ing/counting all maximal matchings?

9.1 Requirements, Algorithms and Programs

Ideally, the conventional mantra in Formal Methods seems to go something like this: Firstly,
formulate your requirement in some mathematically respectable manner, within a formal nota-
tion. Secondly, perform a number of elegant refinements to reach a polished, executable pro-
gram. Of course, the analogy being appealed to here is with proving a mathematical theorem
by using a set of inference rules in a formal logic. However, instead of inference rules as such,
program proofs make use of refinement and reification steps at a range of granularities, from
big to small. The activities of design derivation and verification is all part and parcel of the
same unified process.

What is advocated here instead takes a more humble, hopefully realistic and perhaps less
aggressive approach than the parody stated above. For example, it is rather hard to formally
prove a particular mathematical theorem first off just given a set of inference rules, even before
it has been informally understood and stated. Formally credible proofs of mathematical results
are of course worth while and necessary — but they tend to arrive towards the end of the process,
and only very rarely at the beginning — certainly true for non-trivial results. The erection of a
mathematical edifice to characterise an entire theory (one having mathematical depth, such as
Combinatorics, for example) is like building a large house — it needs architectural insight and
overall planning by many people for this to work well and to place all the primary results in
their proper position and relationship to one another (Feng Shui for mathematics, perhaps?).
The same holds also when developing and providing software applications and libraries, as
well as for other areas of engineering — all need a sense of the components working effectively
in combination with each other - which requires some archetectural sensibility.

Instead, the common discovery and design patterns already practiced widely in mathematics
and engineering could be adopted. These start off with finding an approximation of some kind
(often intuitive) and then continue by refining and honing, sometimes with complete restarts
when the trail goes cold and somewhere else looks more promising, until finally workable
solutions in the form of algorithms are reached which may lead to useful programs. It’s messy,
but it can work.

Here I began with a question, a requirement. In practice, it is never as clear cut as that - but
lets accept that there is a requirement. I then leapt to a particularly naive algorithm which,
although it could work, it couldn’t at scale, I went back to basics with a pure enumeration
algorithm that I knew could go some of the way towards a solution, but much more would be
needed. There was then a good deal of mathematical reflection, reading and research, until I
realised that good old fashioned depth-first search might do the trick. The big step forwards
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was to realise that forced updates could radically cull non-productive alternatives. followed
by an observation that systematically rearranging the input could have significant benefits.

What is an algorithm? An algorithm is itself rather like an abstract program, structurally
characterising some behaviour to achieve a desired goal, for some given input. In the classic
textbook[3], an algorithm is “any well-defined computational procedure that takes some value
or set of values as input and produces some value or set of values as output.”. Algorithms can
be expressed in different ways within different pseudo-codes and yet be classed as representing
the same ‘computational procedure’ (c.f. Turing machines, Lambda calculus).

For me, algorithms are mathematical entities, just like numbers and functions are, if albeit
rather complicated entities. Algorithms have properties and can be reasoned about with logic.
Algorithms can be compared and contrasted. Algorithms can achieve certain goals — or fail
to achieve them; determining which alternative is the case may often be highly non-trivial to
know. Finally, algorithms can be implemented by concrete programs — or not. Understanding
all of this in practice forms a part of Formal Methods and more widely, Computer Science.
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A Remarks on the Python-like pseudo-code

Given that there is quite a lot of pseudo-code given in this paper, ostensibly for a formal
Computer Science audience, 1 feel somewhat duty-bound to discuss at least some of the ins
and outs of the pseudo-code notation used. Although the details are really only indicative at
best, they are hopefully sufficiently useful to understand the algorithms.

The idea of using a pseudo-code is to remove enough detail to allow the content to be com-
pactly described, and yet convey sufficient information for a skilled developer to construct
their own program following the described algorithm. There is clearly a tension in using
pseudo-code to describe an algorithm - is it drowning in too much unnecessary detail or is
there not enough information to be useful and helpful?

By its very nature, pseudo-code is therefore sketchy and incomplete, an inevitable comprom-
ise. Giving a formal semantics to something as sketchy as a pseudo-code seems a faintly
ridiculous and pointless activity. Instead, a brief outline is given of the pseudo-code so that
readers can better grasp what the content is. Particular attention is given to some areas where
subtleties are known to lurk, so that these can be highlighted and given some explanation for
readers.

This pseudo-code is very broadly similar in syntax and intended meaning to Python[10], hav-
ing keywords, forms and structures that should be familiar to many developers; Python was
chosen here because of its broad and sustained popularity among developers, as well as its
relative simplicity and economy of expression. As with Python, indentation is used here to
indicate nested block structure, in place of the semi-colons and braces ({, }) used in C-like
notations.

A.1 Datatypes: Lists, Sets and Dictionaries

The notation here is generally routine, but with the following general exceptions to how Python
handles them.

Indexing: As remarked earlier, lists and so on are indexed from 1 upwards i.e. 1st[1] stands
for the first element of list 1st. This simplifies indexing a little for describing an algorithm —
for example, indexing runs from 1 to n rather than from 0 to (n-1). From a programming point
of view, this means that indexing in this document would translation from a 1-based indexing
to a O-based indexing for practical programming purposes.

Lists, Tuples and Vectors: These are each very similar to their Python namesakes. Lists are
mutable sequences — they can both modified and added to; tuples are similar to lists, except
they are immutable and cannot be modified or added to. Vectors are the same as tuples except
they are defined to have a certain fixed size (i.e. cannot be added to) but each “slot™ or “field”
can be modified/updated. All of these structures are indexed from 1.

Sets: These are not quite the same as sets in Python. Here, sets are considered to be ordered
lists (least to greatest), without repetition — that is, adding the same element twice does noth-
ing. In particular, this means sets can be indexed just like lists can (i.e. something that Python
does not allow). Moreover, the first element is always the least element of the set, with the last
element of the set always being the greatest, and so on.

Dictionaries (or Maps): These are generally are the same as dictionary mappings in Python.
They are regarded as having efficient lookup etc. and are mutable/updateable. Here is a literal
dictionary of five elements:

{1: 2, 2: 53, 5: 26, 7: 50, 8:457 }
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Immutability: Structured values like lists, sets and dictionaries can be marked as immutable®
to indicate that their value cannot be modified — that is, once defined, its value remains fixed
and constant. For example, the list:

listOfSquares = immutable [ 1, 4, 9, 25, 36, 49, 64 ]

would be equivalent to a tuple as it has been marked as immutable, preventing subsequent
modification.

A.2 Some other notation

The notation len(obj) is overloaded to generally stand for the size of an object obj — that is,
for the cardinality of a set, for the length of a list, tuple or vector, as appropriate, or for the
number of entries in a dictionary.

class MyClassName () :

def __init__ (self, <arg>, =«-+ , <arg>):
# Constructor function for class
self .memberl = <expression>
# Method definitions Class definitions, with constructor
def myMethodl (self, <arg>, --+ , <arg>): function and methods. The special
, T " parameter self provides an explicit
def myMethod?2 (sel <arg> <arg>) : .
e (selly 9 ! o) class instance reference.
def myFunction(<arg>, +++ , <arg>):

<statement> ) .
Function/method definition

<statement>

if <condition>:
<then-code-block>

elif <condition>: .
<elif-code-block> If-style conditional statement.

else:
<else-code-block>

try:
<code-block>

except MYEXCEPTION: . .
<code-blocks Try-Except exception handling
except : statement.

<code-block>

myLst =
[(x—T7)2+5 forx € {3---37}if2%3 = 2]

mySet = List, Set and Dictionary/Map
{(x—=7)2+5 forx e {3---37}if2%3 =2} Comprehensions
myMap =

{z:(x—7)2%+5 forx € {3---37}if2%3 =2}

Figure 11: Some pseudo-code explained

8Python supports immutability for certain datatypes (e.g. frozenset, tuple) but not uniformly.
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Ib Holm Serensen: Ten Years After

Jonathan Bowen

July 2022
It is ten years since Ib Holm Sgrensen, that [ 7
rare breed of both a formal methods

researcher and practitioner, passed away
at the early age of 62, in the centenary
year of the birth of the computer science
pioneer Alan Turing. This article considers |
Ib Serensen’s life and work, especially
regarding his contribution to the field of
formal methods. In 1981 he achieved his
DPhil at the Programming Research Group '
in Oxford under Tony Hoare [1] and his \

further contributions there helped lead to \ |
a Queen's Award for Technological Achievement for the IBM CICS Project in 1992 [2,3].

Ib Serensen (29 January 1949 - 17 January 2012) was a computer scientist who made
important contributions to the early development and application of formal methods,
especially the Z notation and B-Method, working in both academia and industry [4].
Born in Aabenraa, Denmark, Ib Serensen started his academic career in the 1970s at
Aarhus University, where he worked on the Rikke-Mathilda microassemblers and
simulators running on the DECSystem-10 computer [5].

In 1979, Ib Serensen joined the Programming Research Group, part of the Oxford
University Computing Laboratory (now the Oxford University Department of Computer
Science) in England, under the leadership of Prof. Tony Hoare. There he worked with
Jean-Raymond Abrial, Bernard Sufrin, and others, making contributions to the early
development of the formal specification language Z. He gained a DPhil degree from the
University of Oxford in 1981, with Tony Hoare as his advisor [1] (see also appendix for
some extracts). He taught early courses on the Z notation at Oxford [6] and established
the Z User Meeting series there in 1985, which continues as the ABZ international
conference combined with other state-based formal methods including ASM and the B-
Method to this day.

Ib Sarensen led the Transaction Processing Project at Oxford from its inception in 1982
(later the “CICS Project” [7]), collaborating with IBM (UK) Laboratories [8]. The project
formally specified parts of IBM's CICS transaction processing software using the Z
notation. This won a Queen's Award for Technological Achievement in 1992 [2,3]. As
part of the CICS Project, Ib Sgrensen extended the Guarded Command Language of
Edsger W. Dijkstra using the Z schema notation as abstract commands [9]. These ideas
were later formalized by Carroll Morgan in his refinement calculus [10]. Ib Sgrensen
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was also a co-author of the seminal Specification Case Studies book on the use of Z,
first published in 1987 (second edition in 1993) [11].

From the late 1980s, Ib Sgrensen was central in the development of the B-Method, a
leading formal method [12]. He left Oxford University to lead a team at BP Research
[13], developing the B-Tool to provide tool support for the B approach. He then
founded the company B-Core (UK) Limited to support the B-Toolkit [4,14], a set of
programming tools designed to support the use of the B-Tool, and to undertake B-
related projects. Ib Serensen’s help and advice have been acknowledged in textbooks
on the B-Method [14,15].

Latterly, Ib Serensen returned to the University of Oxford. From 1999, he worked on
the B-based Booster models of requirements. He died of a stroke early in 2012 while in
Fort-de-France, the capital of Martinique in the Caribbean, before he was able to retire
[4].

Ib Sarensen was a “doer” and as such his publications do not reflect his contribution to
the field of formal methods in an adequate way. Unusually, he resigned his academic
post at Oxford, normally a lifetime position for most at the university once they have
achieved it, to join industry, first at BP, and then at his own company B-Core. With his
foundational and practical contributions to both the Z notation and the B-Method, he
has been an important figure in the formal methods community. As a person, he was
kind and thoughtful, always understated in his interaction with colleagues. His
modesty has perhaps meant that his contribution to formal methods has been
underappreciated. This brief tribute aims to redress that in a small way.

Selected publications
Ib Serensen co-authored the following [16,17,18].
At Aarhus University:

o |Ib Holm Serensen, Eric Kressel (1975). A proposal for a multi-programming
BCPL system on RIKKE-1 (in Danish). Matematisk Institut. Datalogisk Afdeling,
Aarhus University, Denmark.

o Eric Kressel, Ib Holm Sgrensen (1975). The first BCPL system on RIKKE-].
Matematisk Institut. Datalogisk Afdeling, Aarhus University, Denmark.

o Eric Kressel, Ib Holm Sarensen (1975). The Mathilda driver, a software tool for
hardware testing (in Danish). Matematisk Institut. Datalogisk Afdeling, Aarhus
University, Denmark.

o |Ib Holm Sarensen, Eric Kressel (1977). RIKKE-MATHILDA microassemblers and
simulators on the DECsystem 10. DAIMI Report Series, MD-28. Matematisk
Institut. Datalogisk Afdeling, Aarhus University, Denmark.

o |Ib Holm Sgrensen (1978). System Modelling: a Methodology for Describing the
Structure of Complex Software, Firmware and Hardware Systems Consisting of
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Independent Process Components. DAIMI Report Series, PB-87. Matematisk
Institut. Datalogisk Afdeling, Aarhus University, Denmark.

o Jens Kristian Kjaergard, Ib Holm Sgrensen (1980). BCPL on RIKKE (in Danish).

DAIMI Report Series, MD-36. Matematisk Institut. Datalogisk Afdeling, Aarhus
University, Denmark.

o Jens Kristian Kjargard, Ib Holm Sgrensen (1980). The RIKKE Editor (in Danish).

DAIMI Report Series, MD-37. Matematisk Institut. Datalogisk Afdeling, Aarhus
University, Denmark.

Ib Holm Serensen (September 1981). Specification and Design of Distributed
Systems. DAIMI Report Series, PB-141. Aarhus University, Denmark.
doi:10.7146/dpb.v10i141.7416

At Oxford University:
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Steve King, Ib Holm Sgrensen, J. C. P. Woodcock (uly 1988). Z: Grammar and
Concrete and Abstract Syntaxes (Version 2.0). Technical Monograph PRG-68.
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Further links

* Personal home page (http://www.cs.ox.ac.uk/people/ib.sorensen/). University
of Oxford, UK.

* Ib Holm Serensen (https://dblp.org/pid/91/4074). DBLP Bibliography Server.
* |Ib Sorensen (https://www.linkedin.com/in/ib-sorensen-al16289b/). LinkedIn.

 |b Holm Sgrensen's scientific contributions
(https://www.researchgate.net/scientific-contributions/Ib-Holm-Sorensen-
69788930). ResearchGate.

Appendix: Extracts from DPhil thesis

Below are some extracts from Ib Serensen’s 1981 doctoral thesis [1], supervised by
Tony Hoare at the Programming Research Group in Oxford, and using an early version
of the Z notation. Jean-Raymond Abrial was based at the PRG at this time, developing
the Z notation. Bernard Sufrin was also using the Z notation and Cliff Jones was
studying for his doctorate under Tony Hoare as well at the PRG. Z is not explicitly
named in the thesis, but an early document on Z by Jean-Raymond Abrial is referenced,
as is a specification of a display editor using Z by Bernard Sufrin (actually Technical
Monograph PRG-21). It is interesting to see the pioneers of formal methods who are
referenced in the thesis, including the ACM A.M. Turing Award winners Edsger W.
Dijkstra (1972), Tony Hoare (1980), and Amir Pnueli (1996).
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TOPICS IN PROGRAMME SPECIFICATION AND DESIGN:

SPECIFICATION AND DESIGN
OF -
DISTRIBUTED SYSTEMS

i.H. SORENSEN
WOLFSON COLLEGE

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
iN THE UNIVERSITY OF OXFORD, SEPTEMBER 1981.

Abstract:

ABSTRACT.

This thesis presents a method for specifying. analysing and refining the deslgns
of distributed systems. Distributed systems are systems which consist of several
aulonomaus process Components.

The characteristics of the specification method employed in this thesis can be
summarised as follows — 1) The structure of a system’s specification indicates
the structure of the system’s reallsation, 2) A design is specliled entirely in terms
of the permissible activity across the interfaces between process components (.e.
the communications)! such a speciication gives the rules for the behaviour ¢f each
process component and posipones decisions about Its internal structure, 3)
permissible actlvily fs described in terms of predicates on the history of past
communications.

This specification method will be shown to allow important guestions about the
behaviour of a distributed system ¢ be posed early In the deslgn process: in
particuiar desighs will be analysed with respect to termination and absence of
deadiocks.

The specification method can be employed o describe systems In different degrees
ot detail, and it is demonsirated that a speciiication can evolve to a stage close
to realisation using a stepwise refinement method which ensures that the tmportant
properiies are maintained.
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ib Holm Sorensen

First example of a Z schema in the thesis:

2.2.1. Example of the Usage of Schemas.

Let the Natural Numbers be denoted by
N

We can give the name TWONUM to the schema
n:N ; m:xN | nz»m

either by writing
TWONUM & [ n:N; m:N | n > m ]

or by using a vertical presentation.

TWONUM
n N;
m: N
nzm
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The Z User Group: Thirty Years After

Jonathan Bowen
July 2022

It is thirty years since the formation of the Z User
Group (ZUG) [1], established to support the Z
notation throughout the world [2].

The Z User Group was established in 1992 to
promote the use and development of the Z
notation, a formal specification language for the
description of and reasoning about computer-
based systems [3,4,5]. It was formally constituted
on 14 December 1992 during the ZUM'92 Z User
Meeting in London, England [6,7], at the instigation
of John Nicholls.

The original Z User(s) Meeting (ZUM) was instigated by Ib Holm Sgrensen at the
Department of External Studies, Rewley House, University of Oxford, in 1985,
under the auspices of the Programming Research Group, part of the Oxford
University Computing Laboratory. However, there was no written report of the
proceedings for this first meeting. Further meetings were held in the same
location at Oxford in 1986 and 1987 with informally published proceedings
[8,9]. The proceedings became formally published as the “Z User Workshop” in
the Springer Workshops in Computing series for meetings in Oxford (1989 and
1990) [10,11], at the University of York (1991) [12], and at the Department of
Trade and Industry in London (1992) [6], where the Z User Group was formally
inaugurated.

After the establishment of the Z User Group, it continued to organise the Z User
Meeting at St John’s College, Cambridge, in 1994 [13]. The Z User Meeting
became the International Conference of Z Users in 1995, with the first
conference held outside the UK, at the University of Limerick, Republic of
Ireland, with the proceedings being published in the Springer Lecture Notes in
Computer Science (LNCS) series [14]. Further conferences were held at the
University of Reading, UK (1997) [15] and in Berlin, Germany (1998) [16]. The Z
User Group participated at the FM'99 World Congress on Formal Methods in
Toulouse, France, in 1999 [17].

In 2000, the Z conferences were merged to become the ZB Conference, jointly
with the B-Method, co-organized with the Association de Pilotage des
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Conférences B (APCB, aka the International B Conference Steering Committee),
with the first conference in York, UK [18]. Subsequent ZB conferences were held
in Grenoble, France (2002), Turku, Finland (2003), and Guildford, UK (2005).
There were also additional Z User Meetings associated with the 2nd Systems
and Software Week, Columbia, Maryland, USA, in April 2006, and the 12th IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS), Auckland, New Zealand, in July 2007.

From 2008, the ZB Conference became the ABZ Conference, with Abstract State
Machines as well at London South Bank University in London, UK [19]. In 2010,
the ABZ Conference also included Alloy, a Z-like specification language with
associated tool support in Orford, QC, Canada [20]. Subsequently, other state-
based formal methods such as VDM (Vienna Development Method) from 2012
and TLA (Temporal Logic of Actions) from 2014 have been included as well.
These further ABZ conferences have been held in Pisa, Italy (2012), Toulouse,
France (2014), Linz, Austria (2016), Southampton, UK (2018), and Ulm Germany
(2020 and 2021, combined online due to the pandemic, where the conference
title was generalized to “Rigorous State-Based Methods” [21]). Information on
papers in the proceedings for ZUM, ZB, and ABZ is available via DBLP online
[22]. Covers of proceedings from 1987 to 2022 can be found in the appendix.

Successive chairs of the Z User Group have been as follows: John Nicholls
(1992-1994); Jonathan Bowen (1994-2011); and Steve Reeves (from 2011).
Successive secretaries have been the following: Mike Hinchey (1994-2011) and
Randolph Johnson (from 2011). In 2011, the group and the associated Z
notation were studied in the context of a Community of Practice [23]. Since
then, in practice, the Z User Group has not been operational for the last decade,
with ABZ conferences being supported by local institutions. ABZ 2023 is
planned to be held in Nancy, France [2424].
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Review of Nice Numbers by John Barnes
Springer International (Birkhduser) 2016

Reviewed by: Tim Denvir
July 2022

First of all, note that this is the John Barnes who
has done much work on Ada and other
programming languages, not the US American
science fiction writer of the same name!

Nice Numbers is based on notes for a series of
lectures which the author gave to adult

education classes in Oxford and Reading. It is .
therefore not a text that might be used for an N Ice

academic qualification, but more aimed at a

mathematical hobbyist. Everything is defined

and explained. Nonetheless | think a reader Numbers
would need at least the equivalent of O-level (or

GCSE) and will have to be in tune with

mathematical thinking a fair way beyond that,

perhaps to A-level standard, to follow John

Barnes’s exposition, even though no knowledge

is assumed. But | absolutely don’t want to put

anyone off: this is an intensely pleasurable ® Birkhauser
read, energised by the author’s infectious

exuberance and wit.

Especially given the above, it is a pity that the book is priced so high - £49.99 RRP,
£39.99 downloadable pdf version. The least expensive hardcopy | could find was
£31.79 from WOB (World of Books). The RRP from the publisher curiously is the same
for hard and softback. | feel sure they would sell dramatically more copies, increasing
the profit for themselves (and royalties for the author!) if they reduced the price to £26
or so. The publisher would only supply me with an electronic copy for review,
departing from normal practice. Since then | have obtained a hardback copy by another
route, and | can say that the physical quality of the book is excellent: printed on high
quality glossy paper and with very clear fine-edged print. | haven’t seen a softback
copy, but who would want to buy one when the hard and softbacks are the same price?

You may wonder why a book like this might be considered of interest to the FACS
community. In the chapters where the author discusses bases, the base of 2 has
special properties and of course is highly relevant to digital computing. However, my
main excuse is that everyone who delves into formal aspects of computing comes to
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grips with quite a lot of mathematics, much of which is outside the traditional
curricula, and so usually has to be gathered from scratch. Despite being about
numbers, which we all think we know about, this book contains a lot which will be new
and fascinating even to those well versed in mathematics. The book does not just
explore today’s understanding of numbers, but makes comparison with ancient
Egyptian and Babylonian methods of calculation and numeric notation: an erudite
account of knowledge evolution through history. The author also goes into the
etymology of quite a lot of familiar mathematical terms, which highlights the thinking
behind their origins, something | especially enjoyed.

Chapter 1 Measures

John Barnes starts off his courses by asking people what are their favourite numbers.
This chapter lists the various answers with the reasons examined. 7 was the most
popular. He then goes on to talk about primes, shows a way of finding new primes,
Euclidean primes, then various unsolved conjectures about primes, such as whether
primes 2 apart go on for ever. Then there is a section on factors, and deficient,
abundant, superabundant, perfect numbers. Some interesting facts, such as the first
few factorials are superabundant, but 8! is not (a superabundant number is more
abundant than all its predecessors).

Weights and Measures

This section takes me back. As a nine year-old in a rural village school we all had to
learn the archaic imperial measures: 4 poles in a chain, which was also 100 links, 10
chains in a furlong, a furlong being one eighth of a mile, in other words 220 yards
which meant that a chain was 22 yards, the length of a cricket pitch. | remember
seeing an actual physical chain consisting of 100 links, used to mark out where the
opposing stumps were placed. And then there were bushels, pecks, quarts, only a
bushel was a different size depending on whether it was a bushel of wheat or
something else. But John Barnes’ knowledge of archaic weights and measures puts
mine to shame. He relates the many different scales to potential bases; it is a tragedy
that we have ten fingers and toes, he says, because 10 is not a good base, having few
factors. 12 would be better, and explains why it features in many scales (inches to a
foot, and a dozen, a gross etc.). He points out that the troy ounce is more than the
avoirdupois ounce, but the troy pound is less than the avoirdupois pound! | had not
twigged before that a square chain is one tenth of an acre.

His excursion into currencies, both British and continental is fascinating.

The well known rules of thumb for quickly finding if a number is divisible by certain
factors, 3,9, 11 and 4 in base 10 are not mentioned here as | was expecting, but in a
later chapter. Similar corresponding rules work for other bases.
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Chapter 2 Amicable Numbers

More about perfect numbers, Mersenne numbers. John peppers his text with a
characteristic wit, which makes the reading more pleasurable: e.g. “What is the point in
finding large primes? Until recently it was just for fun like climbing Mt Everest.”
Whereas a perfect number is the sum of its factors, Amicable Numbers are pairs of
numbers each of which is the sum of the factors of the other. Sociable numbers are
chains of numbers with this property. Modular arithmetic is important and useful for
proving properties of these kinds of numbers. He defines Fermat numbers and
Fibonacci numbers.

Chapter 3 Probability

The author goes into careful detail about the distinction between probability and
statistics. He explains gambling games, poker, craps and “double or quits”, and reveals
intricate details about the design of dice beyond that numbers on opposite sides
should add up to 7. Slightly involved in places but very good.

Chapter 4 Fractions

He goes into intriguing (and possibly too great) detail about Egyptian multiplication
and division. Certainly it has historical value. We are reminded of the tedious manual
methods of finding square roots and cube roots. There is a lot about ancient Egyptian
methods. Decimal fractions and Continued fractions, resurrected from the early 19*
century. | felt glad | wasn’t a schoolboy in ancient Egyptian times!

Chapter 5 Time

John Barnes gives an astronomical description of days, months, years. Despite my
having been an enthusiastic student of astronomy from the age of 6, there were some
details about the variations in length of the sidereal day that | did not know about.
There is much history of the Julian and Gregorian calendars, quarter days etc., most
illuminating! The involved calculations about the different amounts of energy from the
sun on the earth’s surface show remarkable and surprising results.

Chapter 6 Notation

He compares Roman, Arabic, Egyptian and Babylonian numeral systems, and
categorises them. He discusses place systems and bases, particularly considering
fractions in different bases. He shows recurring cycles of digits in different bases and
derives rules about them. He finally returns to Fermat’s Little Theorem.

Chapter 7 Bells

The author relates bell ringing to permutations. Again, as in all the previous chapters,
he provides historical details: for example, Fabian Stedman (1640-1713) wrote two
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famous books on bell ringing, Tintinnalogia, and Campanalogia. This chapter goes
into intricate detail and would require dedication to read thoroughly and grasp its
entirety. It ends with a couple of paragraphs indicating that the permutations of bell
sequences form an algebraic group, and gives references to more in-depth analyses,
including Appendix E: Groups.

Chapter 8 Primes

This starts out with Greatest Common Divisors (GCD) also known as Highest Common
Factors (HCF) and relates them to Fibonacci Numbers and gives fast methods for
finding factors of large numbers (Eratosthenes and Fermat). Then he embarks on
complex numbers, expansions of e* and sin x and cos x. Complex primes are defined.
The chapter ends with a short section on polynomials including prime polynomials.

Chapter 9 Music

This presents the basic physics of vibrating strings and columns of air in pipes,
musical intervals, chromatic and diatonic semitones and how they arise. Different kinds
of scales, how they all deviate from the ideal, which is impossible to achieve. Scales
where C# is different from Db, major and minor scales, frequencies, and all their
histories. All are mathematically analysed. Anyone with an interest in music who has a
mathematical bent will find this chapter interesting.

Chapter 10 Finale

This final chapter is a miscellany of topics: the use of primes in encryption, the RSA
algorithm, which includes linear congruences and Diophantine equations; animal gaits,
bipedal and quadrupedal; the games of Towers of Hanoi and, related, Chinese Rings.

Appendices

Finally, there are nine appendices covering various topics including Ackermann’s
function, Stochastics, Groups, and Rubik’s cube (!).
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Forthcoming events

Events Venue (unless otherwise specified):

BCS, The Chartered Institute for IT
Ground Floor, 25 Copthall Avenue, London, EC2R 7BP

The nearest tube station is Moorgate, but Bank and Liverpool Street are within walking
distance as well. The new Elizabeth Line is now very convenient for the BCS London
office, by alighting at the Liverpool Street stop and leaving via the Moorgate exit.

Details of all forthcoming events can be found online here:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-
computing-science-group/

Please revisit this site for updates as and when further events are confirmed.
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FACS is always interested to hear from its members and keen to recruit additional
helpers. Presently we have vacancies for officers to help with fund raising, to liaise with
other specialist groups such as the Requirements Engineering group and the European
Association for Theoretical Computer Science (EATCS), and to maintain the FACS
website. If you are able to help, please contact the FACS Chair, Professor Jonathan
Bowen at the contact points below:

BCS-FACS

c/o Professor Jonathan Bowen (Chair)

London South Bank University

Email: jonathan.bowen@Isbu.ac.uk

Web: www.bcs-facs.org
You can also contact the other Committee members via this email address.
Mailing Lists

As well as the official BCS-FACS Specialist Group mailing list run by the BCS for FACS
members, there are also two wider mailing lists on the Formal Aspects of Computer
Science run by JISCmail.

The main list <facs@jiscmail.ac.uk> can be used for relevant messages by any
subscribers. An archive of messages is accessible under:

http://www.jiscmail.ac.uk/lists/facs.html
including facilities for subscribing and unsubscribing.

The additional <facs-event@jiscmail.ac.uk> list is specifically for announcement of
relevant events.

Similarly, an archive of announcements is accessible under:
http://www.jiscmail.ac.uk/lists /facs-events.html
including facilities for subscribing and unsubscribing.

BCS-FACS announcements are normally sent to these lists as appropriate, as well as the
official BCS-FACS mailing list, to which BCS members can subscribe by officially joining
FACS after logging onto the BCS website.
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