The Past, Present and Future of Software Architecture

Eoin Woods
UBS Investment Bank

eoin@artechra.com
www.eoinwoods.info
About me

- I’m a working software architect
- Always worked as a software engineer
 - 8 years of products, 7 of applications
- Recently moved to end-user company
 - Lead a central architecture group
- Co-author of software architecture book
 - With Nick Rozanski, Addison-Wesley, 2005
- Participant in IFIP 2.10 WG
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
What Is Software Architecture

- The software architecture of a program or computing system is the structure or structures of the system, which comprise software elements, the externally visible qualities of those elements, and the relationships among them.

 - Bass, Clements, Kazman (SEI)
What is Software Architecture

- The set of **design decisions** which, if **made incorrectly**, will cause your project to be **cancelled**
 - Eoin Woods (*heads the SEI definitions list*)

The SEI definitions list:
www.sei.cmu.edu.architecture/definitions.html
Just Design, Surely?

- All architecture is design, not all design is architecture [Paul Clements]
- Not all design decisions are equal
 - Some have “architectural significance”
- Architectural design is outward looking
 - Focus on stakeholders, not technology
- Architecture more fluid than design
 - Context, scope, success criteria all unclear
The Essence

Software architecture is concerned with:

- Stakeholders
- System-Level Structures
- System qualities

Software architecture involves:

- Understanding domains, problems and solutions
- Making design decisions & tradeoffs
- Delivering working systems
The crucial bridge between requirements and design
This interplay is core to the architectural process.
The Role of the Architect

- Central technical communicator
- Key decision maker
- Responsible for delivery
Architect as Communicator

Diagram:
- Architect
 - Project Manager
 - Developer
 - Acquirer
 - Supplier
 - User
 - Analyst
 - Tester
Why Architecture is Important

- Stakeholder focus
- Ensuring that the right system is built
- System-wide (or cross-system) consistency
Types of IT Architect

- **Software architect**
 - Focus of this talk
 - Responsible for a system’s structures
- **Enterprise architect**
 - Responsible for cross-system structures
- **Infrastructure architect**
 - Responsible for technology-specific structures
- **Operations architect**
 - Responsible for operational structures
Types of IT Architect

Enterprise Architects

- Software Architect
- Infrastructure Architect

Operations Architects

- Software Architect
- Infrastructure Architect
- Infrastructure Architect
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
Where Did it Come From?

- Ideas from David Parnas (1985)
 - also Zachman Framework (1987)
- Perry and Wolf paper (1992)
- Began largely as an academic interest
- Enthusiastically transferred into industry
 - little interchange between the two since!
- Mirrors the rise in importance and status of the technical IT professional
Some Milestones (i)

- **1995:**
 - IEEE Software special issue on Software Architecture
 - Philippe Kruchten’s “4+1” viewpoint set published
- **1996:**
 - Shaw and Garlan’s book “Software Architecture: Perspectives on an Emerging Discipline”
- **1998:**
Some Milestones (ii)

2000:
- Views and Viewpoints standardised via IEEE-1471
- SEI’s “ATAM” analysis method published
- RUP becomes “architecture centric”
- J2EE 1.0 specification released

2001:
- WICSA conference series starts

2002:
- .NET 1.0 released
Some Milestones (iii)

- **2003:**
 - Bass, Clements and Kazman, 2nd Edition
 - Martin Fowler admits software architecture exists!

- **2005:**
 - IASA is founded and starts growing
 - New “Perspectives” concept identified
 - Nick Rozanski and Eoin Woods
 - Part of a new practitioner-oriented book
 - WICSA 5 runs in Pittsburgh
 - 10th anniversary of the IEEE Software issue
 - Significant practitioner focus and attendance
As an Aside – My Parallels

<table>
<thead>
<tr>
<th>Year</th>
<th>Me</th>
<th>The Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>- Trainee s/w engineer</td>
<td>- Little s/w architecture discussion</td>
</tr>
<tr>
<td>1993</td>
<td>- Trainee s/w architect</td>
<td>- Perry and Wolf paper (92)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IEEE Software issue & “4+1”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Shaw and Garlan book (96)</td>
</tr>
<tr>
<td>2000-02</td>
<td>- Systems architect role</td>
<td>- Book explosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- IEEE 1471</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- J2EE and .NET</td>
</tr>
<tr>
<td>2005</td>
<td>- My book</td>
<td>- WICSA 5 runs</td>
</tr>
<tr>
<td></td>
<td>- Current role</td>
<td>- IASA founded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Fowler’s P of EAA (94)</td>
</tr>
</tbody>
</table>
The Present

- The language of SWA is widely used
 - Even if rarely defined or understood
- Reasonably large set of (basic) books
- Organisations & certification emerging
 - IASA, Microsoft
- Organisations are seeing value
 - Supply: IBM, Microsoft, Evolution-Detica,…
 - Demand: Hartford Financial, UBS, BP, …
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
Architecture Fundamentals

- Stakeholders
 - Who cares what we build?
 - Why do they care?

- System structures
 - What do we build?

- System qualities
 - Why do we build it *that* way?
System-Level Structures

- The traditional deliverable of the software architect
- Note that there are many structures
 - Functional, Deployment, Information, …
- Represented as a set of views
 - Separate concerns
 - Communicate effectively
 - Organise deliverables and activities
Stakeholders

- Those who care if the system gets built
 - Can be a positive or negative interest
 - Includes people, groups and entities

- The reason we build systems
 - Systems are built for stakeholders
 - Design decisions must reflect their needs
 - A wide community often increases the chances of success
Stakeholders

- **Acquirers** pay for the system
- **Assessors** check for compliance
- **Communicators** create documents and training
- **Developers** create it
- **Maintainers** evolve/fix it
- **Suppliers** provide pieces
- **Support Staff** help people to use the system
- **System Admins**, keep it running
- **Testers** verify that it works
- **Users** use the system directly
Stakeholders

- Attributes of a good stakeholder include:
 - **Informed**, to allow them to make good decisions
 - **Committed**, to the process and willing to make themselves available in a constructive manner
 - **Authorised**, to make decisions
 - **Representative**, of their stakeholder group so that they present its views validly
System Qualities

- Non-functional characteristics ("-illities")
 - Performance, Security, Availability, …
- Often crucial to stakeholders
 - Slow functions don’t get used
 - Unavailable systems stop the business
 - Security problems cause headlines
- Yet often an after-thought
System Qualities

- Achieving system qualities is a key task
 - Understanding real stakeholder needs
 - Understanding what is possible
 - Making the key trade-offs to allow delivery
 - Avoiding expensive “retro-fit”
Architect’s Responsibilities

- Understand requirements
 - Identify architectural impact
- Lead development
 - Help, don’t hinder
- Analyse architectures
- Make design decisions and tradeoffs
- Communicate
- Ensure delivery!
Typical Architect’s Activities

- Create models (UML, ADL, B+L, …)
- Build skeleton systems
- Write PoCs and prototypes
- Write documents
- Give presentations
- Undertake “rescue missions”
Attributes of a Good Architect

- Technology knowledge
- Design ability
- Communication skills
- Pragmatism
- Political sensitivity
- Tact

... and a good sense of humour doesn’t hurt!
Architectural Significance

- A concern, problem, or system element is architecturally significant if it has a wide impact on the structure of the system, or on its important quality properties such as performance, scalability, security, reliability or evolvability
 - Philippe Kruchten

- Externally visible
- Has a real affect on stakeholder utility
- Difficult to change later
- Affects many parts of the system
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
Simple Example

- A statistics management system
 - Data bulk-loaded into the database
 - Derived measures calculated automatically
 - Statisticians view and report on the data
 - Deductions recorded and reviewed manually
Simple Architecture

- Described through 5 views
 - Functional
 - Information
 - Concurrency
 - Development
 - Deployment

(Operational view omitted)
Functional View

GUI Client ➔ Statistics Accessor
 ClientActions {type=SOAP}

Statistics Accessor ➔ Statistics Store
 StatsQuery

Statistics Accessor ➔ Statistics Calculator

Statistics Accessor ➔ Bulk Loader
 <<external>>
Concurrency View
Architectural Impact

- The architecture we’ve described is credible
- What would happen if the system needed to protect the system’s information?
 - Justice community system for criminal intelligence
Considering Security

- Sensitive Resources
 - The data in the database

- Security Threats
 - Operators stealing backups
 - Administrators querying data, seeing names
 - Bribing investigating officers
 - Internal attack on the database via network
Considering Security

- Security Countermeasures
 - Backups: encrypt data in the database
 - How about performance?
 - Does this make availability (DR) harder?
 - Seeing names: use codes instead of names, protect codes at higher security level
 - More development complexity
 - Possible performance impact
Considering Security

- Security Countermeasures
 - Network Attacks: firewalls, IDS
 - More cost
 - More deployment / administration complexity
 - Operational impact if IDS trips
 - Bribery: add audit trail for data access
 - Possible performance impact
 - More complexity
 - Protecting / using the audit trail
Considering Security

- Information View Impact

- Isolate names

- Identifier Code
Considering Security

- Development View Impact

Add audit when accessing data
Considering Security

- **Deployment View Impact**

 - Added network model making network security clear
Considering Security

- Other Impact
 - Need IDS added to Development view
 - Need to capture impact on Operational view
 - Need to consider impact on availability
 - Need to re-work performance models to allow for database encryption, audit, …

- Note the need to change many views
- This is “architecturally significant”
Topics

- Introducing Software Architecture
- The Past and Present
- Exploring the Fundamentals
- An Example of Architecture in Practice
- The Future
The Future (i)

- Career track recognition
 - Architect vs. developer, tester or PM
 - Possibly certification (e.g. IASA)
- Better description languages & tools
 - Executable and queryable architectures
 - Architecture in the running system
- Architect-specific tool support
 - Lattix and Sotograph are early examples
The Future (ii)

- Fundamental agreed definitions
 - Necessary or even desirable?

- Teaching
 - MSc in software architecture perhaps?

- Further styles codified as technologies
 - Grid, tuple-space, P2P, …
Summary (i)

- Software architecture is still young
 - Really a product of 1995 – 2005
- Mainstream since about 2002
- Good core of knowledge emerging
 - Approaches and techniques
- Some agreement on fundamentals
 - Stakeholders, structures, qualities
 - Understanding, designing, trading-off, delivering
Summary (ii)

- Finally research & practice meeting
 - WICSA 5, IASA, Microsoft, …
- The future is architecture in the systems
 - Too much is lost today
To Learn More

Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspectives

Nick Rozanski & Eoin Woods
Addison Wesley, 2005

http://www.viewpoints-and-perspectives.info
Eoin Woods
eoin@artechra.com
www.eoinwoods.info

Comments and Questions?