
Issue 2018-1

August 2018

The Newsletter of the

Formal Aspects of Computing Science

(FACS) Specialist Group

ISSN 0950-1231

FACS

A

C

T

S

FACS FACTS Issue 2018-1 August 2018

2

About FACS FACTS

FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on

Formal Aspects of Computing Science (FACS). FACS FACTS is distributed in

electronic form to all FACS members.

Submissions to FACS FACTS are always welcome. Please visit the newsletter

area of the BCS FACS website for further details at:

http://www.bcs.org/category/12461

Back issues of FACS FACTS are available for download from:

http://www.bcs.org/content/conWebDoc/33135

The FACS FACTS Team

Newsletter Editors

Tim Denvir timdenvir@bcs.org

Brian Monahan brianqmonahan@googlemail.com

Editorial Team

Jonathan Bowen, John Cooke, Tim Denvir, Brian Monahan, Margaret West.

Contributors to this issue

Jonathan Bowen, John Cooke, Tim Denvir, Sofia Meacham.

Brian Monahan, Bill Stoddart, Botond Virginas, Margaret West

BCS-FACS websites
BCS: http://www.bcs-facs.org

LinkedIn: http://www.linkedin.com/groups?gid=2427579

Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255

Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS

If you have any questions about BCS-FACS, please send these to Paul Boca

paul.boca@googlemail.com

http://www.bcs.org/category/12461
http://www.bcs.org/content/conWebDoc/33135
mailto:timdenvir@bcs.org
file:///C:/Users/brian/Desktop/BCS-FACS/FACS-FACTS-2017/2017-1/brianqmonahan@googlemail.com
http://www.bcs-facs.org/
http://www.linkedin.com/groups?gid=2427579
http://www.facebook.com/pages/BCS-FACS/120243984688255
http://en.wikipedia.org/wiki/BCS-FACS
mailto:paul.boca@googlemail.com

FACS FACTS Issue 2018-1 August 2018

3

Editorial

Dear readers, welcome to our first issue of FACS FACTS for 2018.

This year, 2018, marks the 40
th

 anniversary of FACS. At least one editor recalls

an article by Dan Simpson, member of the editorial team at the time, FACS at

10 in 1988. That 10
th

 anniversary seemed momentous then, and now it feels

incredible that another 30 years have passed. The 20
th

 anniversary was marked

with a major event at the Royal Society involving four Fellows of the Royal

Society as speakers: Mike Gordon, Tony Hoare, Robin Milner, and Gordon

Plotkin. Sad to say that two of these eminent computer scientists are no longer

with us. Robin Milner passed away in 2010 and Mike Gordon, only recently and

at far too young an age of 69 on 22 August 2017, almost exactly a year ago.
1

Both worked at the University of Edinburgh (where Mike Gordon undertook his

PhD degree with Rod Burstall) and the University of Cambridge.

We are not marking this 40
th

 anniversary occasion quite so grandly as the 20
th

,

but on 12 October 2018 we plan to celebrate the 20
th

 anniversary of the

publication of the book Unifying Theories of Programming by Prof. Tony Hoare

and Prof. He Jifeng. Both the original authors will be present, together with Prof.

Jim Woodcock who has undertaken much UTP research in the intervening

period. Tony Hoare will provide some introductory remarks, He Jifeng, travelling

from East China Normal University in Shanghai, will give the main talk on

Unifying Theories of Refinement, and Jim Woodcock of the University of York

will sum up at the end. We also plan to celebrate the 40
th

 anniversary of FACS

during this event as well, with teatime networking before and a buffet reception

after the main talk. We have booked extra space for this event and hope that as

many FACS members as are able will attend. With celebrations for the 10
th

, 20
th

,

and 40
th

 anniversaries, we also look forward to the 80
th

 anniversary!

Earlier in the year, we received a paper from Bill Stoddart on The Halting

Paradox, which is the first item in the present newsletter. This paper stimulated

much discussion amongst the committee. We are not a peer-reviewed journal,

but we nonetheless wish to retain some degree of academic status, and we

debated amongst ourselves how to treat submissions of technical papers. We

decided to present Bill Stoddart’s paper as a starter for discussion, and it

appears below, as submitted. For example, how does it relate to Scott Domain

theory, fixpoints, three-valued logic? And to Turing’s approach, which relies on

recursive enumerability? We invite and strongly welcome well-reasoned

responses from readers – perhaps to appear in the next FACS FACTS newsletter!

The second item is Autonomics and their Verification from BT’s industrial

perspective by Sofia Meacham, Bournemouth University, and Botond Virginas,

1
 For an excellence account of Mike Gordon’s life and work, see: Lawrence C. Paulson (11 June 2018) Michael John

Caldwell Gordon (FRS 1994), 28 February 1948 – 22 August 2017, arXiv:1806.04002.

https://en.wikipedia.org/wiki/Unifying_Theories_of_Programming
https://arxiv.org/abs/1806.04002

FACS FACTS Issue 2018-1 August 2018

4

BT Adastral Park. The authors offer this as a position paper and would also like

to invite discussion.

After this, we have reports on several FACS events since the last issue, preceded

by photographs of the speakers, taken by Jonathan Bowen: the joint FACS-LMS

Seminar Symbolic Computation Techniques in SMT Solving, Prof. Erika Abraham,

University of Aachen, report by Tim Denvir; Compiling without Continuations,

Prof. Simon Peyton Jones FRS, Microsoft Research, report by Margaret West and

Brian Monahan; The Fumble Programmer, Roderick Chapman, University of

York, report by Sofia Meacham; Model-Based Testing of Cyber-Physical Systems,

Mohammad Mousavi, University of Leicester, report by John Cooke; and a

photographic account from Jonathan Bowen of the FME Fellowship Award at the

FM 2018 International Symposium on Formal Methods in Oxford this year,

which BCS-FACS sponsored. Finally, we include a book review of Modeling

Companion for Software Practitioners, by Egon Börger and Alexander Raschke,

published by Springer, 2018, reviewed by Jonathan Bowen.

We have several forthcoming events during the rest of the year. On this, we

have already mentioned the UTP 20
th

 anniversary seminar by He Jifeng on 12

October 2017. We also have a speaker from the National Physical Laboratory

(NPL), Stephane Chretien, on 17 October 2018, co-organised by Sofia Meacham

and Keith Lines. We welcome two new FACS committee members, Keith Lines of

NLP and Mohammed Mousavi of University of Leicester. A highlight of the year

for FACS is the joint FACS-LMS seminar, now organized by Rob Hierons, this

year to be given by Prof. Bill Roscoe of the University of Oxford on 1 November

2018. Our most significant annual event is the Peter Landin Semantics seminar,

organized as ever by Paul Boca, this year delivered by Prof. Don Sannella of the

University of Edinburgh on 10 December 2018. This will be preceded by the

FACS AGM and members of FACS are especially encouraged to attend both.

Most FACS seminars take place in the offices of the BCS in the Davidson

Building, Southampton Street, close to Covent Garden underground station. The

FACS-LMS joint seminar is held at the headquarters of the London Mathematical

Society (LMS) at De Morgan House, 57–58 Russell Square, London. The nearest

underground station is Russell Square.

A special thank you to the co-editor of the FACS FACTS newsletter, Brian

Monahan, for his excellent work on ensuring that it is so well presented overall.

We hope you enjoy this issue and welcome contributions for future issues.

Tim Denvir, FACS FACTS co-editor

Jonathan Bowen, FACS Chair

FACS FACTS Issue 2018-1 August 2018

5

FACS FACTS Issue 2018-1 August 2018

6

FACS FACTS Issue 2018-1 August 2018

7

FACS FACTS Issue 2018-1 August 2018

8

FACS FACTS Issue 2018-1 August 2018

9

FACS FACTS Issue 2018-1 August 2018

10

FACS FACTS Issue 2018-1 August 2018

11

FACS FACTS Issue 2018-1 August 2018

12

FACS FACTS Issue 2018-1 August 2018

13

FACS FACTS Issue 2018-1 August 2018

14

FACS FACTS Issue 2018-1 August 2018

15

FACS FACTS Issue 2018-1 August 2018

16

Autonomics and their verification from BT's industrial

perspective

Sofia Meacham, Botond Virginas

1

 Faculty of Science and Technology, Bournemouth University,

Fern Barrow, Poole, Dorset, BH12 5BB, UK

smeacham@bournemouth.ac.uk,

2

 BT Adastral Park, UK

botond.virginas@bt.com

Abstract. In this position paper, autonomic applications and their

requirements as regards to verification and validation will be presented and

detailed from BT’s industrial perspective. First of all, an overview and the

history of AI algorithms and autonomics will be explained and the path from

algorithms to systems will be introduced. Then, “business” autonomics will

be specified and the realization that we need to move from static algorithms

to dynamic ones is particularly emphasized. Software engineering

approaches such as Systems Modeling and Verification & Validation can

benefit this process and ensure the “correct” transition of autonomic

algorithms to their applicability to business contexts, and therefore

contribute to their adoption and commercialization.

Keywords: autonomics, verification & validation, systems engineering

1 Introduction

This position paper will present the problems and challenges that arise from

BT’s industrial perspective as regards to their design, development and

adoption of autonomic systems.

BT’s autonomic team has been working on developing new AI algorithms and

creating patents for their methods for a long time now. The complexity and the

know-how for these systems has always been distributed through the

knowledge and expertise of their engineers and most of the times

documentation of the whole process and the systems involved is minimal to

non-existent. The increased complexity of the emerging Big data systems has

created more problems due to the lack of appropriate design and

mailto:smeacham@bournemouth.ac.uk

FACS FACTS Issue 2018-1 August 2018

17

documentation. AI related properties such as stability, robustness,

explainability have emerged due to the dynamic nature of autonomic systems.

For all these reasons, it has been identified that software engineering methods

would benefit the above process. Especially, new software engineering methods

need to be developed to tackle the autonomic systems as regards to their

design, development and adoption.

The remainder of the paper will cover in section 2 a chronological approach to

the autonomic systems. In section 3, BT’s industrial perspective is presented.

Specifically, in section 3.1 the transition from static algorithms to dynamic

systems with controls is described and in section 3.2 the autonomics system

design is provided. Section 4 presents the V&V challenges for these systems:

Properties Verification, and section 5 offers conclusions and suggestions for

future work and research directions.

2 Autonomic systems: a chronological approach

Since the 1960’s the topic of system adaptivity has been extensively studied

and the basic principles of self-adaptivity have been put into practice in several

application areas. It is no science fiction any more that the systems of the

future will be self-adaptive, self-learning, self-healing, self-organizing and any

self-related properties that we can define to accommodate for the increasing

demand for intelligent systems and the consequences of their adoption.

Macias-Escriva et al provide a comprehensive survey of self-adaptivity past and

present together with associated tools and methods. They conclude that

although more and more advanced AI techniques are being employed, the

emphasis is on more and more sophisticated machine learning techniques in an

open loop structure setting rather than a closed loop system. The

incorporation of closed-loop mechanisms into such software systems is

imperative, so that they can adapt themselves to changing conditions [2].

A major breakthrough in this field came with IBM’s autonomic computing

initiative [3]. According to IBM’s autonomic blueprint self-managing capabilities

in a system accomplish their functions by taking an appropriate action based on

one or more situations that they sense in the environment. The function of any

autonomic capability is a control loop that collects details from the system and

acts accordingly. An autonomic manager implements a control loop that

accesses and controls a single or multiple managed resource that exists in the

run-time environment of an IT system. IBM’s white paper organizes these

control loops into four categories: self-configuring, self-healing, self-optimizing

and self-protecting. One of the key features of autonomic control is that

FACS FACTS Issue 2018-1 August 2018

18

adaptable policy—rather than hard-coded procedure—determines the types of

decisions and actions that autonomic capabilities perform.

Many papers have been published since the IBM manifesto (Mcann and

Huebscher [4] present a thorough review of the field) dealing with various

aspects of the development, analysis and validation methods for autonomic

systems. One of the conclusions from these studies is that there isn’t yet

enough focus on the feedback loops and their associated properties in order to

control self-adaptation in an autonomic system. Understanding and reasoning

about the feedback loop is key for building self-adaptive systems from an ad-

hoc trial-and-error endeavor towards a more systematic, disciplined approach.

3 BT’s industrial perspective

3.1 From static algorithms to dynamic systems with controls

From BT’s autonomics team long lasting experience, several observations

regarding the requirement for a transition from static algorithms to dynamic

systems were made. Static software systems have the inherent problem that

after a period of time they may no longer be fit for purpose. Underlying data

may have changed, or the environment may have changed, or the priorities may

have changed. Complexity might grow around the software and it can be very

costly to review and be costly to change. Therefore, static algorithms can be

very difficult to sustain and maintain over a period of time.

For this purpose and internally at BT, a simulator has been built around this

problem. The simulator is converting an existing BT process comprising of a

machine learning algorithm used to make a business decision leading to binary

actions and capturing the output in the form of failures and costs into a self-

learning autonomic system which adapts over time taking into account business

policies, constraints and feedback including behavioural feedback. A

comprehensive investigation with the simulator is being carried out to establish

the relevant metrics (stability, adaptability, agility, learning rates etc.) and the

control levers (cycle times, thresholds, exploration policies etc.) leading to a

design of what an “autonomics black-box” might look like.

3.2 Autonomics system design

In the following figure, a block diagram of the “autonomics black-box” is

depicted.

FACS FACTS Issue 2018-1 August 2018

19

Figure 1: BT’s “Autonomics black-box” design

In this figure, the control loops, the static and dynamic metrics, business

policies and acceptance criteria, and how all these form a closed-loop around

the system are depicted. This is unique and a novel way of dealing with the

problem. First of all, in contrast with most of the machine learning systems, it is

an active learning system where the predictions lead to decisions. These

decisions do not lead to human driven actions but the action is automatic with

the role of the humans in the loop being more of a monitoring/observing role.

Furthermore, in comparison with open loop adaptive systems where the “AI-

assisted analysis” leads to mapping the detected states to actions, it is offering

a closed loop approach where static and dynamic requirements are

continuously measured and the errors are corrected like in control systems.

However, these corrections are connected to higher level business goals in

double loop learning systems, managing in this way the business risks as well.

We also propose a set of metrics to measure the quality of adaptation as well.

More detailed designs that include structural and behavioural descriptions are

currently under development in order to model the system specification from

several viewpoints.

FACS FACTS Issue 2018-1 August 2018

20

4 V&V challenges for these systems: Properties Verification

Once such a “autonomic system blueprint” has been identified, applying this

design to other applications is the next challenge, i.e. an implementation in

software of an autonomic overlay on a business process, including the relevant

interfaces and controls.

Software engineering verification and validation methods are absolutely

paramount. in order to ensure the “correct” transition of autonomic algorithms

to their applicability to business contexts and therefore contribute to their

adoption and commercialization.

Beyond the traditional verification properties of safety, correctness, deadlock

conditions, liveness that are used for system verification, adaptivity related

properties are emerging from these autonomic applications.

In [5] the adaptivity properties were defined as follows:

 Stability, if the autonomic process will eventually converge to a stable and

expected result.

 Accuracy, how close the resulting system is to the expected.

 Short settling time, how fast the system adapts and reaches the desired

state.

 Small overshoot, not requiring unacceptable amount of computational

resources for the adaptation.

 Robustness, operate within limits even in unforeseen conditions.

 Termination, the system operation is deadlock free for example.

 Consistency, same as ACID properties in transaction systems [6]

 Scalability, the system must be able to scale for increased demands of data

and processing time.

 Security, the target system, data and components shared must be ensured

for confidentiality, integrity and availability.

In the same paper, these properties were mapped to quality attributes of

performance, dependability, safety and security.

The above are all equally important to be addressed. However, for the purposes

of our industrial context and the adoption of the autonomics design blueprint

to other business applications, emphasis on stability and robustness has been

prioritised.

FACS FACTS Issue 2018-1 August 2018

21

Last and not least, a new emerging property has been identified, the

explainability property and its importance is considered paramount for all AI

systems. The need for explainability of AI algorithms has been identified in the

literature for some time now. However, it recently became even more important

due to new data protection act rules (GDPR 2018) [7] and due to the

requirements for wider applicability of AI to several application areas. BT’s

autonomics team has recognized this through several sources and identified

that the explainability of AI algorithms is vital to ensure their adoption and

commercialization. AI algorithms need to provide information for their

decisions and operation at appropriate points in order to be able to be trusted

and accountable. For example, in an autonomous cars crash, a court of law

must be able to “trace” the AI decisions in order to identify causes and

accountability. To the best of our knowledge, the explainability property is a

new area and there isn’t any research addressing this property.

5 Conclusions and Future work

Concluding, we can say that there is strong industrial need for advanced

software and system engineering approaches and particularly for assuring

properties and formal methods in the area of autonomic systems design and

adoption. These highly dynamic and complex systems will require new methods

to address their requirements.

Specifically, existing formal methods have not adequately addressed the above

AI-related properties due to the complexity and unpredictability of the

problem [8]. Techniques such as model-checking, probabilistic model-checking

have been applied with the known problems of these methods such as state

explosion and computational requirements. More needs to be developed in the

forthcoming years to assure AI properties and ensure AI adoption.

Our future research plans include the description at system-level of BT’s

industrial autonomic blueprint system. Initial verification through simulation

and testing will take place at the system level. Then, adoption of verification

methods for adaptivity properties and development of new methods when

required are the following steps.

6 References

1. Dua, D. and Karra Taniskidou, E. UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science. (2017).

FACS FACTS Issue 2018-1 August 2018

22

2. F.D. Macías-Escrivá et al. / Self-adaptive systems: A survey of current approaches,

research challenges and applications Expert Systems with Applications 40 (2013)

7267–7279

3. IBM Corporation: An architectural blueprint for autonomic computing. White

Paper, 4th edn., IBM Corporation,

4. McCann J, Huebscher M, A survey of Autonomic Computing: degrees, models and

applications, ACM COMPUT SURV, Vol: 40, ISSN: 0360-0300 (2007)

5. Norha M. Villegas, Hausi A. Müller, Gabriel Tamura, Laurence Duchien, and Rubby

Casallas. 2011. A framework for evaluating quality-driven self-adaptive software

systems. In Proceedings of the 6th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS '11). ACM, New York,

NY, USA, 80-89. DOI=http://dx.doi.org/10.1145/1988008.1988020

6. M. L´eger, T. Ledoux, and T. Coupaye. Reliable dynamic reconfigurations in

reflective component model. In Proceedings 13th International Symposium on

Component Based Software Engineering, (CBSE’10), volume 6092 of LNCS, pages

74–92. Springer, 2010.

7. R. Pereira. Will GDPR hinder or harness the power of AI? (May 2018) Available

online: https://www.itproportal.com/features/will-gdpr-hinder-or-harness-the-

power-of-ai/

8. Calinescu, R., Kikuchi, S., & Kwiatkowska, M. (2012). Formal Methods for the

Development and Verification of Autonomic IT Systems. In P. Cong-Vinh (Ed.),

Formal and Practical Aspects of Autonomic Computing and Networking:

Specification, Development, and Verification (pp. 1-37). Hershey, PA: IGI Global.

doi:10.4018/978-1-60960-845-3.ch001.

http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1145/1380584.1380585
https://www.itproportal.com/features/will-gdpr-hinder-or-harness-the-power-of-ai/
https://www.itproportal.com/features/will-gdpr-hinder-or-harness-the-power-of-ai/

FACS FACTS Issue 2018-1 August 2018

23

Photographs of speakers at FACS events

by Jonathan P. Bowen

Erika Abraham, University of Aachen, Germany, speaking on Symbolic

Computation Techniques in SMT Solving at the London Mathematical Society on

Thursday 2 November 2017.

FACS FACTS Issue 2018-1 August 2018

24

Simon Peyton-Jones, Microsoft Cambridge, delivering the Annual Peter Landin

Semantics Seminar on Compiling without Continuations at the BCS London

office on Tuesday 6 December 2017.

FACS FACTS Issue 2018-1 August 2018

25

Rob Hierons, Brunel University (right), introducing Mohammad Mousavi,

University of Leicester (left), at the BCS London office on Thursday 22 March

2018.

Mohammad Mousavi speaking on Model-Based Testing Cyber-Physical Systems:

Theory and Practice.

FACS FACTS Issue 2018-1 August 2018

26

Rod Chapman, Protean Code Ltd, speaking on The Fumble Programmer at the

BCS London office on Wednesday 25 April 2018. The audience includes (left to

right) Richard Bornat, David Lightfoot, and Brian Wichmann.

FACS FACTS Issue 2018-1 August 2018

27

Botond Virginas, British Telecom, and Sofia Meacham, Bournemouth University,

speaking on Autonomics and their verification from BT's Industrial Perspective

at the BCS London office on Monday 21 May 2018.

FACS FACTS Issue 2018-1 August 2018

28

Report on FACS-LMS Seminar

Symbolic Computation Techniques in SMT Solving

Prof. Erika Abraham, University of Aachen

2 November 2017

Held at The London Mathematical Society, De Morgan House, London, WC1B 4HS

BCS-FACS and LMS, the London Mathematical Society, have a tradition of

holding a joint seminar towards the end of each year on a subject of mutual

interest. The 2017 seminar was on the subject of symbolic computation and the

satisfiability of propositional formulae. Professor Abraham’s abstract follows:

Abstract: The satisfiability problem is the problem of deciding

whether a logical formula is satisfiable. For first order arithmetic

theories, in the early 20th century some novel solutions in the

form of decision procedures were developed in the area of

Mathematical Logic. With the advent of powerful computer

architectures, a new research line of Symbolic Computation

started to develop practically feasible implementations of such

decision procedures.

Independently, for checking the satisfiability of propositional logic formulas,

around 1960 a new technology called SAT solving started its career. Despite the

fact that the problem is NP complete, SAT solvers showed to be very efficient

when employed by formal methods for verification. Motivated by this success,

the power of SAT solving for Boolean problems had been extended to cover

also different theories. Nowadays, fast SAT-modulo-theories (SMT) solvers are

available also for arithmetic problems. These sophisticated tools are

continuously gaining importance, as they are at the heart of many techniques

for the analysis of programs and probabilistic, timed, hybrid and cyber-physical

systems, for test-case generation, for solving large combinatorial problems and

FACS FACTS Issue 2018-1 August 2018

29

complex scheduling tasks, for product design optimisation, planning and

controller synthesis, just to mention a few well-known areas.

Due to their different roots, Symbolic Computation and SMT solving tackle the

satisfiability problem differently, offering potential for combining their

strengths. This talk will provide a general introduction to SMT solving and

decision procedures for non-linear arithmetic, and show on the example of the

Cylindrical Algebraic Decomposition method how algebraic decision

procedures, rooted in Symbolic Computation, can be adopted in the SMT

solving context to synthesise beautiful novel techniques for solving arithmetic

problems.

Tim Denvir (using material by Erika Abraham)

FACS FACTS Issue 2018-1 August 2018

30

Annual Peter Landin Semantics Seminar

Compiling without continuations
Professor Simon Peyton Jones, FRS (Microsoft Research)

Peter Landin (1930 - 2009) was a pioneer whose ideas underpin modern computing. In the

1950s and 1960s, Landin showed that programs could be defined in terms of mathematical

functions, translated into functional expressions in the lambda calculus, and their meaning

calculated with an abstract mathematical machine. Compiler writers and designers of modern-

day programming languages alike owe much to Landin's pioneering work.

Each year, a leading figure in computer science will pay tribute to Landin's contribution to

computing through a public seminar. This year, the seminar took place after the BCS FACS

AGM on 12th December 2017 at the BCS Southampton Street, London HQ.

Abstract: GHC compiles Haskell via Core, a tiny intermediate

language based closely on the lambda calculus. Almost all GHC’s

optimisations happen in Core, but until recently there was an

important kind of optimisation that Core really did not handle well.

In this talk Simon will show you what the problem was, and how

Core’s new “join points” solve it simply and beautifully, by effectively

allowing Core to express control flow as well as data flow; there are

strong links to so-called “continuation passing style” (CPS) here.

Understanding join points can help you as a programmer too,

because you can write code confident that it will optimise well.

Simon will show you a rather compelling example of this: “skip-less

streams” now fuse well, for the first time, which allows us to drop

the previous (ingenious but awkward) workarounds.

Simon Peyton Jones spoke on the wonders of optimisation within the Glasgow

Haskell Compiler, a sophisticated high-performance compiler for the Haskell

functional language. The compiler broadly operates by performing a series of

high-level transformations within the Core intermediate language to achieve

high performance executable code. Simon noted that Landin also recognised

the importance of control flow as well as data flow in his work, a point which is

particularly relevant to this seminar.

The problem Simon outlines in his talk concerns the avoidance of the

generation of a certain class of low-level code patterns as a part of the

compilation process. Such a class, if not somehow handled and dealt with,

would necessarily lead to potentially disastrous code replication. This

replication would have a significant knock-on effect for control-flow

optimisation, making that even more challenging to perform.

FACS FACTS Issue 2018-1 August 2018

31

The elegant solution described by Simon is to soundly extend the Core

intermediate language with a new language construct called a join point that

permits the right kind of sharing to be introduced. The join point performs

semantically just like a conventional “let” or “letrec”, which automatically defines

a localised intermediate function to abstract out the common code that would

otherwise be replicated in further manipulations for optimisation.

Because of the locality and the way it would be used, an important observation

is that join points are essentially “functions” that can always be implemented by

the compiler as pure jumps (i.e. to control-flow labels), which thus avoids the

expense and overheads of introducing explicit thunks/closures. For example,

this implies that (mutually) recursive join points necessarily correspond to “tail”

recursive calls.

With this new construct in use, it turns out that the modular design of the GHC

meant that the various phases could be easily updated to accommodate and

make use of join points – with the consequence that certain optimisations

happen naturally as a part of code generation (i.e. simpler code).

Finally, it was really quite appropriate that this talk was given in honour of Peter

Landin, one of the pioneers of mathematical operational semantics and the

application of lambda calculus. As noted earlier, join points form a lower-level

control flow abstraction that, because of the way they are used, they can

equally be represented in terms of conventional jumps to control-flow labels.

This strongly echoes the way that Landin was one of the first to introduce a

control flow abstraction, the J operator, to represent control flow transfers –

which, in turn, was an early precursor to the use of continuations in semantics

and compiling technology (see discussion in [1]). And so it all comes full

circle!

Simon provided us with a most enthralling deep-dive into the world of

optimisation for functional languages. The talk concluded with some

interesting questions and a drinks reception – which made for a convivial end to

the evening.

Paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/join-points-pldi17.pdf

Slides: https://www.bcs.org/upload/pdf/compiling-without-continuations.pdf

Brian Monahan and Margaret West

References:

[1] Hayo Thielecke, An Introduction to Landin’s “A Generalization of Jumps and

Labels”, Higher-Order and Symbolic Computation, 11, 117–123 (1998), Kluwer

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/join-points-pldi17.pdf
https://www.bcs.org/upload/pdf/compiling-without-continuations.pdf

FACS FACTS Issue 2018-1 August 2018

32

The Fumble Programmer

Roderick Chapman, University of York

Abstract This talk has a main aim to present the idea of the

Fumble = Formal + Humble Programmer and how to combine

Formal with the PSP in professional software development

industries. It was presented by Rod Chapman, an independent

consultant software engineer with years of personal experience in

the area and international talks, and visiting professor of University

of York.

Turing’s lecture back in 1947 states that the programming should be done in

such a way that frequently investigating identities (invariants for us) should be

satisfied at all times if possible. Turing also stated that the machine interprets

whatever it is told so communication to the machine has to be unambiguous.

Twenty-five years later, Dijkstra wrote “The Humble Programmer”. In this book,

he emphasizes the importance of avoiding bugs from the start and not fixing

them afterwards. And he claims that the improvement in Quality that results is

free as it prevents problems early on. The realisation that we should prevent

problems from occurring and not build the software and then prove its

correctness was formulated.

In order to write software that is verified by construction, the programmer

should first of all realise how hard it is to achieve this and how bad the human

mind is in tackling this complexity. Using verification tools at an earlier stage

and having to be corrected at every step, makes you humble! And by being

humble, you stand a chance to verify earlier and avoid the costly process of

fixing afterwards.

This realisation is also an integral part of the Personal Software Process (PSP)

where quality and cost are interrelated and where the defect-repair costs are

highest in testing and during customer use than earlier in the design cycle.

Once the programmer is convinced to become humble, the next natural step is

to become formal. Why?

Thinking and Tooling exposes ambiguity, incompleteness, contradiction and

semantic inconsistency.

Formal notations exhibit semantic consistency. They mean the same across all

compilers, target machines, verification tools, the person that wrote it, the

person that maintains it, etc.

FACS FACTS Issue 2018-1 August 2018

33

Formal methods enable longevity and soundness.

A lively discussion on the soundness of verification tools took place with the

speaker stating that the tool vendors with unsound tools are stating that

soundness doesn’t matter. The conclusion was that verification tools should be

sound after all, in order to be trusted. A “social” proof for soundness was

suggested by the speaker. This idea was based on feedback created and made

public by industrial case studies formulating social evidence of success stories.

We concluded that we need the composite of a Formal + Humble = Fumble

Programmer, and we discussed the current state of the art in formal notations

with unambiguous semantics that provide hope towards that direction, such as

SCADE, SPARK Ada, Eiffel, CakeML, Cryptol.

The talk concluded with a quote from Peter Amey, SPARK Team : Formality in

verification makes you Humble...“It’s like Jazz – hard at first, but worth it

in the long run...”

Sofia Meacham

FACS FACTS Issue 2018-1 August 2018

34

A Report on the FACS Seminar

Model-Based Testing of Cyber-Physical Systems

Mohammad Mousavi (University of Leicester)

22nd March 2018

Abstract: Professor Mousavi talked about joint work spanning

several years and which is ongoing. The team involved is spread

across various Universities including Leicester, Pernambuco

(Brazil), Halmstad (Sweden) and Eindhoven (The Netherlands).

By way of an introduction to the seminar Professor Mousavi dissected the title

and explained the key words.

Model-Based: Build a model which abstracts from reality, simplifying the actual

situation to a model which adequately reflects the major actions of the system

and/or its environment. The simplification is easier to verify but it must be

tested for conformance; checking that the model behaves in a way that is

adequately close to ‘reality’.

Testing: Generating test cases from requirements (as specified in a model),

executing them on the system under test, comparing the outcomes with what is

expected (by the model) and reaching a verdict about the quality of the system

under test.

Cyber-Physical System: Incorporates control with communication and

computation (the team involved in this project concentrate on control and

computation). The main examples concern automotive systems. Most vehicles

being produced today rely on vast numbers of microprocessor-controlled

subsystems and millions of lines of software. The cost of the software is

increasing both in absolute terms and relative to the overall cost/value of the

entire vehicle. In the future we may well see most innovation taking place in

the software, which will be updated via the cloud!

The behaviour of most physical world situations is governed by differential

equations. Computer-based models that are used to mimic/control these are

based on finite state machines and labeled transition models. To be of use

these two, real and discrete, representations must be ‘close’.

(Control Theory uses other mathematics which could perhaps be similarly

approximated by computational models.)

Each model needs to be checked for conformance against its implementation.

Technically, (tau, epsilon)-conformance is used to check the tolerance (epsilon)

FACS FACTS Issue 2018-1 August 2018

35

in a numerical property of interest during a time interval (tau). We need to

reject non-conforming systems so as to guarantee soundness. This is achieved

by adjusting the sampling rate and/or the error margin in a suitable

conformance analysis algorithm. Such a model-based testing scheme is

outlined.

Moving from theory to implementation we need to determine/locate changes in

the dynamic system so that we can calculate sensible error margins and adjust

the sampling rate accordingly. This will probably require several iterations and

from this we get an initial process flow diagram and we were shown such a

generic process sketch.

 We then move on to Case Studies, of which three were mentioned:

1) Engine Fuel Controller

2) Pneumatic Suspension System

3) Platooning - Running vehicles in close up convoys.

The first two were discussed fleetingly and illustrated by means of flow

diagrams showing the main control functions and the factors that necessitate

their change. The main illustrative example is Platooning and this was

introduced by a video. The main idea here being that when a truck is running

close behind another truck it suffers considerably less air drag and hence its

fuel consumption is much lower. (As was pointed out by an American member

of the audience, US truckers have been doing this for years - travelling at high

speed, only a matter of inches apart. Perhaps these days communications can

be a little more responsive than CB radios etc. This reminded me of ‘Smokey

and the Bandit’.)

So, we reach the goal of the seminar. We were presented with a collection of

models, in diagrammatic form using Matlab, of system designs for the lead and

follower vehicles in a platoon. Each pair used a different (more detailed) mode

of communication starting with ‘ideal’ (instant or direct) connection. These

were talked through in outline. Following from two of these models, the ideal

one and one of the ‘connected’ ones, were looked at in some detail. Specific

models of the various components/actors were given and graphs of the

resulting position + velocity + acceleration relationships were presented. It

really does look very promising.

But all is not yet done. The group is actively researching test case generation

and have a process for adjusting parameters (in the right order) to guarantee

soundness and have a prototype tool to support these phases.

FACS FACTS Issue 2018-1 August 2018

36

This work now needs to be generalised so that the current models can be

applied in other Cyber-Physical Systems (and use appropriate test data etc.)

and demonstrated in more substantial case studies. And they welcome new

partners in this endeavour.

Professor Mousavi was gracious enough to take questions throughout his

presentation and there were some extra questions at the end of the talk. After

the seminar there was an opportunity to ‘network’ (as they say). Professor

Mousavi has recently become one of the editors-in-chief of the prestigious

Elsevier journal ‘Science of Computer Programming’. He has also agreed to join

the FACS committee, to take charge of the ‘testing’ subgroup and to organise

related seminars.

All in all, a most successful evening even though attendance was lower than

expected.

John Cooke

FACS FACTS Issue 2018-1 August 2018

37

FME Fellowship Award

FM 2018 International Symposium on Formal Methods

Sunday 15 July 2018

Held at the Mathematical Institute, University of Oxford

Ana Cavalcanti, The University of York, chair of Formal Methods Europe (FME)

and a member of the BCS-FACS committee, introducing the FME Fellowship

Award ceremony, sponsored by BCS-FACS.

FACS FACTS Issue 2018-1 August 2018

38

Manfred Broy, University of Munich, Germany, receiving the FME Fellowship

Award with FME representatives at the FM 2018 Symposium.

Manfred Broy delivering his lecture on the Formal Foundations of Software and

Systems Engineering, after receiving the FME Fellowship Award at the FM 2018

Symposium.

FACS FACTS Issue 2018-1 August 2018

39

Manfred Broy introduces the formal foundations of software and systems

engineering.

Manfred Broy presents the derivation of the term “formal methods”.

FACS FACTS Issue 2018-1 August 2018

40

Manfred Broy presents his principles of formal foundations.

Manfred Broy presents his conclusion on the current situation.

FACS FACTS Issue 2018-1 August 2018

41

Eric (Rick) Hehner, University of Toronto, Canada (foreground), with Manfred

Broy’s FME Fellowship Award certificate and Manfred Broy (background), after

receiving the FME Fellowship Award at the FM 2018 Symposium.

Jonathan Bowen

FACS FACTS Issue 2018-1 August 2018

42

Book review

Börger, Egon and Raschke, Alexander, Modeling

Companion for Software Practitioners. Springer,

2018. XXI+349 pages.

ISBN 978-3-662-56639-8. eISBN 978-3-662-56641-

1.

DOI: 10.1007/978-3-662-56641-1

There are many formal methods potentially available for a software practitioner;

so many that it can be difficult to evaluate which is best or appropriate for a

specific software engineering project. In computer science academia, small

examples are typically presented in papers promoting different formal

methods. In practical application, scaling is a huge issue. If a technique does

not scale, it will be of no interest in practice. Model checking is one approach

that has gained popularity because of its relatively good tool support and the

automation that it provides. This technique works well to a limited level,

although this has increased in scale dramatically with Moore’s Law helping to

improve speed of execution, together with better algorithms and developments

in software support. However, above a certain size, model checking is no longer

feasible.

For larger software development projects, formal specification becomes more

appropriate. This can aid in other ways such as allowing refinement to an

executable program or for determining suitable software testing in a systemic

manner. Model-based specification has proved particularly helpful and practical.

Software engineers are used to considering a model for the system under

development, even if done informally with natural language or diagrams. Using

a formal approach, the state of the system can be modelled at an abstract level

and operations on this state can be specified. VDM (Vienna Development

Method) was an early example of this approach. The Z notation, although a

general formal specification language, is nearly always used in a state-based

manner, using a standard style for this. Later the similar B-Method was

http://doi.org/10.1007/978-3-662-56641-1

FACS FACTS Issue 2018-1 August 2018

43

proposed, designed for better tool-based support providing refinement all the

way to executable program code.

ASM (Abstract State Machines) has also been proposed as a state-based

approach to aid formal specification and refinement. The Workshop on Evolving

Algebras (held in 1994 and 1996) became the ASM Workshop from 1997 to

2005. The original Z User Meeting (first held in 1988) became the ZB

Conference (covering Z and B, first held in 2000). The ASM Workshop then

merged with the ZB Conference to become the ABZ Conference (first held in

2008, covering ASM, B (and Event-B), Z, and later including other state-based

formal specification approaches as well, such as Alloy, TLA, and VDM). This

conference continues to this day, most recently in 2018.

A previous book entitled Abstract State Machines: A Method for High-Level

System Design and Analysis by Egon Börger and Robert Stärk appeared in 2003

(also published by Springer) and introduced the ASM approach as both a

textbook and handbook. The ASM notation is a form of pseudo-code based on

finite state machines using abstract data structures. A “ground model” (so

called because it should be grounded in reality) acts as a reference model for a

design and stepwise refinement is possible towards a concrete implementation.

This current book under review resulted from two visits of the first author to

the University of Ulm in Germany, the institution of the second author. It is

aimed more explicitly for use in self-study by software practitioners, although it

can also be used by students, and emphases the modelling aspects of ASM.

Both authors are academics and in practice it may be that the latter use is more

popular, but the first aim is laudable.

The book is divided into two parts on Modeling and Implementation. The first

part with six chapters introduces modelling and refinement using ASM,

including a variety of examples, covering concurrent systems, context

awareness, business processes, and distributed systems. The second part

includes three chapters on the syntax/semantics of ASMs, the CoreASM

interpreter for executable ASM models using a restricted ASM language, and the

graphical Control State Diagrams (CSD) approach with a graphical editor and

conversion to ASM. An appendix includes some ASM models used in the rest of

the book.

At the end of the book are a good set of references and a three-page index. The

latter could be more comprehensive to improve use of the book as a reference

work. The chapters are interspersed with a total of 65 exercises. Associated

FACS FACTS Issue 2018-1 August 2018

44

online resources can be found under http://modelingbook.informatik.uni-

ulm.de giving teaching material such as slides associated with chapters,

answers to some of the exercises, and further examples (in PDF files and even

ZIP file LaTeX sources). These additional resources (freely available under a

Creative Commons license and still being developed further at the time of

writing this review) make the book even more attractive for teaching on an

advanced software engineering course at university final year undergraduate or

masters level.

All successful formal methods have a community of practice built up around

them and ASM, like B and Z, has such a community associated with it. Choosing

between different formal methods can easily depend on which community a

user becomes most affiliated. Learning to use a formal method well, especially

writing a good formal specification, can take six months, although the ability to

read a formal specification takes less. Once this time has been invested,

another formal method must be significantly better in some way to make time

spent learning it worthwhile. In industry, providing even a week for a training

course to learn a new technique is considered a significant investment. This

book does at least provide a new resource for practitioners that wish to invest

the time learning ASM, whether alone, as part of an industrial course, or on an

advanced university course. Producing such books is an important part of

building a community around a technique.

The examples provided in this book are by necessity of limited size for didactic

reasons. The question remains as to how well the approach scales and scaling

is not explicitly mentioned in the book. The availability of tool support for ASM

is of course to be welcomed and hopefully this will continue to improve. It

would be pleasing if a future book in this potential trilogy could be co-authored

with a genuine software practitioner, including the practical issues of scaling up

for use in a selection of real industrial systems. Perhaps this co-author will be

one that reads the current book under review and gains inspiration from it. The

first two ASM books have been published 15 years apart (in 2003 and 2018). It

is to be hoped that a third even more practical book on applying ASM in the

large will be published in less than 15 years hence.

Prof. Jonathan P. Bowen, London South Bank University

http://modelingbook.informatik.uni-ulm.de/
http://modelingbook.informatik.uni-ulm.de/

FACS FACTS Issue 2018-1 August 2018

45

Forthcoming events

Events Venue (unless otherwise specified):

BCS, The Chartered Institute for IT

The Davidson Building, 5 Southampton Street, London, WC2E 7HA

12 October Unifying Theories of Refinement, He Jifeng, Shanghai.

17 October Coresets at the heart of Big Data, Stephane Chretien, NPL.

1 November Verifying CSP and its offspring, Bill Roscoe, Oxford.

Joint event with the London Mathematical Society

Venue: London Mathematical Society. De Morgan House,

57–58 Russell Square, London, WC1B 4HS

10 December FACS AGM followed by:

Landin Seminar, given this year by Don Sannella, Edinburgh.

Details of all forthcoming events can be found online here.

http://www.bcs.org/content/ConWebDoc/59563
https://www.bcs.org/content/ConWebDoc/59771
https://www.bcs.org/content/ConWebDoc/59780
https://www.bcs.org/category/12468

FACS FACTS Issue 2018-1 August 2018

46

FACS Committee

Jonathan Bowen

FACS Chair; BCS Liaison

John Cooke

FACS Treasurer and

Publications

Paul Boca

FACS Secretary

Roger Carsley

Minutes Secretary

Tim Denvir

Co-Editor, FACS FACTS

Brian Monahan

Co-Editor, FACS FACTS

Ana Cavalcanti

FME Liaison

Rob Hierons

LMS Liaison

Mike Hinchey
Lero Liaison

Keith Lines

Government and

Standards Liason

Sofia Meacham

Seminar Organiser

Margaret West

Inclusion Officer and

BCS Women Liaison

Eerke Boiten

Chair, Cyber Security

Subgroup

John Derrick

Chair, Refinement

Subgroup

Mohammed Mousavi

Chair, Testing

Subgroup

http://www.lero.ie/

FACS FACTS Issue 2018-1 August 2018

47

FACS is always interested to hear from its members and keen to recruit

additional helpers. Presently we have vacancies for officers to help with fund

raising, to liaise with other specialist groups such as the Requirements

Engineering group and the European Association for Theoretical Computer

Science (EATCS), and to maintain the FACS website. If you are able to help,

please contact the FACS Chair, Professor Jonathan Bowen at the contact points

below:

BCS-FACS

c/o Professor Jonathan Bowen (Chair)

London South Bank University

Email: jonathan.bowen@lsbu.ac.uk

Web: www.bcs-facs.org

You can also contact the other Committee members via this email address.

As well as the official BCS-FACS Specialist Group mailing list run by the BCS for

FACS members, there are also two wider mailing lists on the Formal Aspects of

Computer Science run by JISCmail. The main list <facs@jiscmail.ac.uk> can be

used for relevant messages by any subscribers. An archive of messages is

accessible under http://www.jiscmail.ac.uk/lists/facs.html, including facilities for

subscribing and unsubscribing. The additional <facs-event@jiscmail.ac.uk> list

is specifically for announcements of relevant events. Similarly, an archive of

announcements is accessible under http://www.jiscmail.ac.uk/lists/facs-events.html with

subscribe/unsubscribe options. BCS-FACS announcements are normally sent to

these lists as appropriate, as well as the official BCS-FACS mailing list, to which

BCS members can subscribe by officially joining FACS after logging onto

the BCS website.

mailto:jonathan.bowen@lsbu.ac.uk
http://www.bcs-facs.org/
mailto:facs@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs.html
mailto:facs-event@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs-events.html
https://www.bcs.org/

