
BCS Higher Education Qualification

Certificate in IT

April 2025

EXAMINERS’ REPORT

Software Development

Questions Report:

A1

 Part a) Candidates produced a range of answers which generally attracted
marks despite some apparent misunderstanding of what was required.
Therefore, there was some flexibility in marking accepting different ways of file
creation, either in code or using an IDE. However, it was important to state the
key parameters that are always required to create a file. These include the
location (file path) on the storage media (such as SSD, hard disk); the type of
file with matching extension; the mode of access (r/w).
Similarly storing data on an existing file is usually accomplished by ensuring the
data is compatible with the type of data supported whether binary of text to
ensure data integrity and security.
Retrieving data from a file is again dictated by file operations that identify the
location of the file to open for reading followed by recognising the format and
organisation that was used when the file was stored.

Part b) Most candidates were familiar with the different types of files and the key
differences between them. However, marks were lost because many candidates
either omitted a scenario or the explanation was unclear.

Part c) Most candidates were familiar with text files, but some candidates did
not appreciate that semi-formatted files are essentially a specialised form of a
text file in that it has specific delimiters (i.e. commas) to make the file better
structured. This allows rapid processing and ease of transforming/reading by
high level data intensive applications such as databases (tables) or
spreadsheets.

Part d) This part required some coding knowledge relating the part a) iii).
A very poor set of answers overall that generally lacked actual code examples
and lacked the stepwise approach that was needed. The few successful
attempts mostly used Python as the source code and described the
functions/libraries provided by Python.

A2

 Part a) This part was generally well answered with some lack of understanding
of dry running and the manual approach generally used.
It was also evident that many candidates could recall mainly by rote the key
topics of black box and white box testing, but even so some candidates
managed to get these mixed up.

 Part b) i) and ii) Most candidates understood what was meant by a test case
though some answers did not clearly state the objectives of a test case.

It was also apparent that many candidates lost marks because they missed off
many of the parameters; these being title or summary; specifying the objectives;
the context; the preconditions; the test data; the steps; the expected (to
compare with the actual) result and so on.

Subpart iii) as a consequence of failing to adequately answer subpart ii) those
candidates were unable to provide a suitable answer. Overall, this part revealed
a lack of practical knowledge of actually carrying out unit tests on code which is
a key part of the “bread and butter” of software development.

Part c) This question had two subparts requiring knowledge of QA techniques.
Candidates were given a number of key principles or challenges of QA which
were associated with a range of techniques that candidates were expected to
identify.

A3

 Part a) Most candidates were familiar with data structures such as lists, arrays,
queues and stacks and most candidates could identify these as linear data
structures. However, it was important to stress that although that linear data
structures are organised sequentially but also the way they operate in code is
different depending on the requirements of the program/application. So, it was
important to explain how they are accessed; stored and manipulated.
Non-linear data structures were not generally familiar to candidates with
examples given that were linear data structures rather than hierarchical data
structures such as trees graphs and networks.

Part b) This part followed on from part a) directed at specific examples in
particular arrays; lists; tuples. Most candidates had quite good knowledge of the
different strengths and weaknesses of the first two data structures. Tuples were
unfamiliar to many candidates. Tuples support mixed data types; size and
values cannot be changed making them widely used as keys and dictionaries.

Part c) Stacks and Queues were very familiar data structures, largely
memorised from textbooks. Needless to say, this part mostly scored the highest
marks in this question. A mark was often lost in not explaining the practical use
of these data structures in actual programming tasks.

A4

 A very unpopular question but there was a broad range of marks from the small
number of candidates. Most candidates however scored poorly in part b) in
particular. Given the small number of candidates it is hard to comment on
specific details other than this was a more challenging question that required
more applied knowledge particularly related to object-oriented programming
attracting those candidates who were fluent in say either Java C# C++ or

Python to draw examples upon.

B5

 This question was the least popular choice amongst candidates.

Part a) most candidates gave good and accurate representations of the hash
table although some answers extended the number of entries (not penalised)
that correctly answered the question.

Part b) this part required a program snippet that provided a function to return a
hash key for an integer. Many candidates embedded the function within a wider

scoped program that calculates hash and places in the hash table,
subsequently losing a mark.

Part c) Some candidates made basic errors in incrementing values in the loop.
Those candidates who had embedded the function to return a hash key for the
given integer tended to lose track of the loop and lost some marks.

B6

 Part a) concerning the relationship between debugging and testing was poorly
answered by a good number of candidates. Many answers failed to note that
debugging determines the cause and applies the fix. The order would correctly
note that the fix is then tested. Mentioning that debugging is in early stages of
development would have gained higher marks.

Part b) This part was generally well answered. Better marks would have been
obtained by mentioning some standard series of steps such as find the location
with the problem and then identifying the reason for the problem.

B7

 This question asked for four basic principles of good user interface design.
Many candidates simply gave the same principle and examples under different
headings. Around half of candidates gave good descriptions for at least two, no

answers gained maximum marks.

B8

 This question asked for an explanation of four software testing techniques.
Answers were generally poor. Many confused stress-testing and load testing,
with many answers simply repeating the same explanation for both. Functional
testing was generally well answered although many incorrectly suggested it was
white box testing; few answers acknowledged the role of functional testing in
accepting testing and the point at which checking the client requirements have
been met.

B9

 This question asked for four benefits of using functions in programs.

Part a) The large majority of candidates failed to achieve a pass mark. Many
answers gained a mark for correctly naming a benefit such as avoiding
repetition, abstraction, allowing code reuse amongst others. However, many
answers failed to offer any further explanation and failed to gain an extra mark
for each benefit.

Part b) This required candidates to give an explanation of the meaning of byte
code. A majority of answers wrongly defined byte code as binary code or
machine code. A minority of candidates correctly mentioned byte code as a
platform independent language or byte code being an intermediate code.

B10

 Part a) This question required a flow chart to be drawn on measurements
computed from supplied data. Approximately half of all candidates obtained a
pass mark. Many answers showed an incorrect use of flowchart symbols. Very
few answers were logically correct and although many candidates correctly
identified and noted the test results in the correct symbol and provided correct
difference calculations (placed in the correct symbol) the majority failed to show
all three tests and calculations.

Part b) required a discussion on pros and cons of storing values in csv files.
Almost all of attempts were able to show at least one benefit , such as
presented as readable text or easily exported as a flat file or table. Almost all of
the candidates failed to give at least one con of CSV files, losing half of the
marks available for this discussion. Acknowledging downsides such as lack of
support for large datasets, any text file can be stored as .CSV and can have
inconsistent row lengths or formatting and can exceed permissible file size for
third party tools such as Excel would have gained extra marks.

B11

 This question was a very popular choice amongst candidates with an overall
pass rate over 81%.

Part a) asked for reasons to explain why documentation is important in noting
changes to software over lifetime of version updates/changes.
Most candidates gave a good account of reasons and provided good valid
points obtaining maximum or near maximum marks. A minority of candidates
who did poorly in this part tended to give one or two terse answers and, in some
cases, failed to read the question correctly and ignored the context of
documenting changes to an existing program and discussed documenting in the
early stages of initial program development.

Part b) This part required candidates to contrast differences between internal
and external software documentation. Many answers indicated a degree of
uncertainty between both types of documentation. A good number of answers
tended to repeat the same comparison for both types. Answers on external
documentation showed a greater appreciation of what would be expected.
However internal documentation proved very difficult for most. Answers here
tended to focus on simple and vague statements on ‘for the user’, such as
operating instructions and failed to recognise the context of this question. Very
few answers to this part achieved half of the marks available.

B12

 This question which required drawing a flowchart had worst overall performance
in the paper. The pass rate is a little over 18%.

Many candidates incorrectly used flowchart symbols, and many candidates
failed to cover all five of the required Test/Result points. A common issue is the
failure to correctly interpret the problem in terms of required testing of various
conditions represented by flowchart positions in the process. The average mark
for this question was approximately 2.55 with the highest mark of 8 being
achieved by a small minority. Very few answers correctly represented correct
stage of calling functions. It wasn’t clear to many candidates when the supplied
string functions should be positioned in the flowchart. Performance in this
question suggests candidates need more exposure and practice in the
development and understanding of algorithms.

