
The Next 700

Domain Specific Languages

Nicolas Wu

Imperial College London

Peter Landin Seminar, BCS 2022

functional

> imperative

Alonzo Church

Alan Turing

Before Computers

London, 1666

Gottfried Leibniz1646 - 1716
Leibniz, 1666

"When trying to get from England to Holland, I was detained for some time

in the Thames by adverse winds. During that time, knowing not what to do,

and having nobody in the ship except sailors, I meditated on things, and

especially thought about my old design of a rational language [...]"

"For if we had such as I imagine, we could reason about metaphysics

and morality just like we do about geometry and analysis [...]"

letter from Leibniz

to Jean Galois, 1677

"For if praise is given to the men who have determined the
number of regular solids [...] how much better will it be to
bring under mathematical laws human reasoning, which is the
most excellent and useful thing we have." (Davis, 2018)

Leibniz , The Art of Combinations(1666)
This extended doctoral thesis was about:
• a proof of the existence of God from some hypotheses and axioms about motion
• an alphabet of human thought, the "alphabetum cogitationum humanarium"
• the idea that concepts are combinations of a core set of concepts

"Wir müssen wissen. Wir werden wissen!"

 We must know. We shall know!

Hilbert, 1930,

Congress of German Scientists and Physicians David Hilbert

1862 - 1943

"Ignoramus et ignorabimus"

 We do not know and we shall not know

du Bois-Reynold, 1872,

Congress of German Scientists and Physicians

Emil du Bois-Reymond
1818 - 1896

Wilhelm Ackermann1896 - 1962

Hilbert and Ackerman (1928)

Formalised the Entscheidungsproblem,

the "decision problem" :

Given an input statement in first order predicate calculus, is there an algorithm that answers either "yes" or "no" if the statement is provable?

1928

but if the Entscheidungsproblem holds true, then

perhaps an algorithm can prove statements?
Alonzo Church

Alan Turing
Church (1936) and Turing (1936)
Independently answered the Entscheidungsproblem:
No! Such an algorithm is not possible

1936

1936

Kurt Gödel1906 - 1978

Gödel (1931)

showed that any reasonable system of logic
has true statements that cannot be proven

within that system

1931

Alonzo Church

1932

The Lambda Calculus

λ-calculus is about bindings

and substitutions
Instead of

 f (x) = 5x + 3

We can isolate f:

 f =λ x . 5x + 3

A proof that converting
a term A into B is

undecidable

1936

The definition of "effectively
calculable"

Church numerals:

1 = λ s z . s z

2 = λ s z . s (s z)

3 = λ s z . s (s (s z))

...

m + n = λ s z . m s (n s z)

 + = λ m n s z . m s (n s z)

1936

Alan Turing

001101010010010001110101010100101010010010111001010010100110010100101Turing Machines

but he also showed that no mac
hine can

determine if an arbitrary machine halts
Turing showed construction of a

formula that takes in a Turing machine
as input and is provable only if the

machine halts

John von Neumann
1903 - 1957

1945

Electronic Discrete Variable
Automatic Computer, 1949

Electronic Delay Storage
Automatic Calculator, 1948

Early Programming Languages

FORTRAN, 1954

Much of my work has come from being

lazy. I didn’t like writing programs,

and so, when I was working on the IBM

701, writing programs for computing

missile trajectories, I started work

on a programming system to make it

easier to write programs.

[…] Most people think FORTRAN’s main

contribution was to enable the programmer to write

programs in algebraic formulas instead of machine

language. But it isn’t. What FORTRAN did primarily

was to mechanize the organization of loops.

John Backus in “Think, IBM,
July/August 1979”

John Backus
1924 - 2007

LISP, 1958

John McCarthy

Features of Lisp

• Based on lambda cal
culus

• Conditionals

• Recursive functions

• List processing (ca
r, cdr, cons)

• Higher-order funct
ions

Algol

• Iteration and recursion*

• Distinct assignment (:=) and equality (=)
• Code blocks and lexical scope

• Nested procedure, and procedure passing
• BNF

• Call-by-value and call-by-name

Algol 1958

... and Green, Katz,
Perlis, Rutishauser,

Samelson, van
Wijngaarden,

Vauquois, Wegstein,
and Woodger

“… a language so far ahead of its time, that it

was not only an improvement on its

predecessors, but also on nearly all its

successors” – Tony Hoare, 1974, in Hints on

Programming Language Design

John Backus1924 - 2007
John McCarthy

1927 - 2011Peter Naur1928 - 2016

Algol and Lambdas, 1965

Peter Landin1930 - 2009

1965SECD Machine

First abstract machine for

evaluating lambda expressions1964

Applicative expressions (AE) =  Syntactic sugar for lambda expressions

Imperative AE (IAE) =

 AE + assignment operation (IAE)

ISWIM, 1966

Peter Landin1930 - 2009
ISWIM

• Mathematical notation for functions, using let

and where clauses

• Indentation to separate clauses (offside rule)

• A distinction between physical and logical

languages

• Interpretation through layers of abstraction

linked by syntax, grammar, and denotation

• Garbage collection

• Equivalences between terms

• No explicit sequencing

• Algebraic datatypes

aka Church without Lambda

(If you See What I Mean)

1966

where notation

•More convenient that lambda terms

• Indentation sensitive

•Multiple and recursive definiti
ons

• Used for types

Church without Lambda

Regarding indentation, in many ways I am in

sympathy with this, but [..] you would regret

it because of the kind of rearrangement of

manuscripts done in printing Peter Naur1928 - 2016

Language Abstraction

Physical ISWIM

Logical ISWIM
tokenize

Applicative Expression
interpret

Abstract ISWIM

parse

f (b + 2c)

 where f(x) = x(x+a)

 f(b + 2c) 
 where f(x) = x(x+a)

1964

1/10th of the paper is devoted

to the idea of abstraction layers

for defining a language!

Today this is regarded as the
standard means of giving

language semantics

Value
evaluate

Equivalences

Enabling equational reasonin
g

featured heavily in this paper (1): subexpressions

(2): definitions

(3): built-in expressions

(4): primitives

Denotation

• The importance of denotational
semantics was clearly highlighted

1971
Dana Scott Christopher Strachey1916 - 1975

functional

> imperative

Alonzo Church

Alan Turing

Peter Landin

denotative!

The Next 700

Programming LanguagesDomain Specific

Datastructures and Recursion Schemes
Lists can be evaluated by folding their

structure: cons and nil a
re replaced with a

semantics of what to do

This technique generalises to many
tree-like datatypes

There are many variations
 on this theme, depending

on mutual recursion, recursion w
ith parameters,

recursion with historic
context, and many more

foldr (+) 0 ()

 =

[2, 7, 1, 8]

 2 : 7 : 1 : 8 : []

 2 + 7 + 1 + 8 + = 180

catamorphism

ZOO OF
MORPHISMS

cata Id ⊣ Id

mutu Δ ⊣ (×)

zygo UY ⊣ PY

para Δ ⊣ (×)

fold + param – × P ⊣ (–)P

gen. fold (– ⚪ P) ⊣ RanP

rsfc UN ⊣ CofreeN

histo UN ⊣ CofreeN

ana Id ⊣ Id

apo (+) ⊣ Δ

gen. unfold LanP ⊣ (– ⚪ P)

λ-coiteration FreeM ⊣ UM

futu FreeM ⊣ UM

paramorphism

zygomorphism

futumorphism

dynamorphism

mutumorphism

histomorphism

apomorphism

anamorphism
catamorphism

24

Datastructures and Recursion Schemes

2013
20222015

Lists can be evaluated by folding their

structure: cons and nil a
re replaced with a

semantics of what to do

This technique generalises to many
tree-like datatypes

There are many variations
 on this theme, depending

on mutual recursion, recursion w
ith parameters,

recursion with historic
context, and many more

foldr (+) 0 ()

 =

[2, 7, 1, 8]

 2 : 7 : 1 : 8 : []

 2 + 7 + 1 + 8 + = 180

catamorphism

2014

Domain-Specific Languages
syntax tree + recursion scheme

=

language + denotational semantics

[[x + y]] = [[x]] ⊕ [[y]]

data Expr where

 Add :: Expr -> Expr -> Expr

 Var :: String -> Expr

data ExprF k where

 OpF :: k -> k -> k

 VarF :: String -> k

eval :: (ExprF a -> a) -> Expr -> a

eval alg (Op m n) = alg (OpF (eval alg m) (eval alg n))

eval alg (Var x) = alg (VarF x)

alg :: ExprF a -> a

alg (OpF a b) = a + b

alg (VarF x) = var x

eval alg (Add (Var x) (Var y)) = eval alg (Var x) + eval alg (Var y)

Algebraic Effect Handlers

Syntax Semantics

Syntax represented by the free

monad for a functor that

provides a signature

Semantics often in terms of a fold over 
the free monad

Gordon Plotkin Matija Pretnar

2009

Algebraic Effect Handlers

•Syntactic Programs are embedded
syntax trees that can be inspected

or

or 3

2 5

Algebraic Effect Handlers

•Syntactic Programs are embedded
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler
that replaces operations with their meaning

or

or 3

2 5

++

++ [3]

[2] [5]

-->
handle or

Algebraic Effect Handlers

•Syntactic Programs are embedded
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler
that replaces operations with their meaning•Algebraic: Operations must respect

substitution and sequencing

or

or 3

2 5

++

++ [3]

[2] [5]

-->
handle or

do x <- or p q

 k x

do or (do x <- p; k x)

 (do x <- q; k x)

==

Algebraic Effect Handlers

•Syntactic Programs are embedded
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler
that replaces operations with their meaning•Algebraic: Operations must respect

substitution and sequencing

•Extensible: Syntax trees can be extended
with new syntactic nodes

or

or 3

fail 5

++

++ [3]

[] [5]

-->
handle or

do x <- or p q

 k x

do or (do x <- p; k x)

 (do x <- q; k x)

do fail

 k ()

do fail
==

==
 fail

Algebraic Effect Handlers

•Syntactic Programs are embedded
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler
that replaces operations with their meaning•Algebraic: Operations must respect

substitution and sequencing

•Extensible: Syntax trees can be extended
with new syntactic nodes

•Modular: Handlers can be composed to
give combinations of semantics

or

or 3

fail 5

++

++ [3]

fail [5]

-->
handle or

do x <- or p q

 k x

do or (do x <- p; k x)

 (do x <- q; k x)

do fail

 k ()

do fail
==

== ++

++ [3]-->
handle fail

[] [5]

Algebraic Effect Handlers

•Syntactic Programs are embedded
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler
that replaces operations with their meaning•Algebraic: Operations must respect

substitution and sequencing

•Flexible: Multiple semantics can be given

to a particular program

•Extensible: Syntax trees can be extended
with new syntactic nodes

•Modular: Handlers can be composed to
give combinations of semantics

or

or 3

fail 5

<+>

<+> Just 3

fail Just 5

-->
handle or

do x <- or p q

 k x

do or (do x <- p; k x)

 (do x <- q; k x)

do fail

 k ()

do fail
==

== <+>

<+> Just 3-->
handle fail

Nothing Just 5

Algebraic Effect Handlers

•Syntactic Programs are embedded
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler
that replaces operations with their meaning•Algebraic: Operations must respect

substitution and sequencing

•Flexible: Multiple semantics can be given

to a particular program

•Extensible: Syntax trees can be extended
with new syntactic nodes

•Modular: Handlers can be composed to
give combinations of semantics

or

or 3

fail 5

<+>

<+> Just 3

fail Just 5

-->
handle or

do x <- or p q

 k x

do or (do x <- p; k x)

 (do x <- q; k x)

do fail

 k ()

do fail
==

==

•Equational: The relationship between
operations can be expressed by laws

<+>

<+> Just 3-->
handle fail

do x <- or p q do x <- or q p==
Nothing Just 5

Algebraic Effect Handlers

•Syntactic Programs are embedded
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler
that replaces operations with their meaning•Algebraic: Operations must respect

substitution and sequencing

•Flexible: Multiple semantics can be given

to a particular program

•Extensible: Syntax trees can be extended
with new syntactic nodes

•Modular: Handlers can be composed to
give combinations of semantics

or

or 3

fail 5

<+>

<+> Just 3

fail Just 5

-->
handle or

do x <- or p q

 k x

do or (do x <- p; k x)

 (do x <- q; k x)

do fail

 k ()

do fail
==

==

•Equational: The relationship between
operations can be expressed by laws

<+>

<+> Just 3-->
handle fail

do x <- or p q do x <- or q p==

•Pervasive: Algebraic effects cover a very
large class of useful effects

get put throw fork read writeprint
Nothing Just 5

Algebraic Effect Handlers

•Syntactic Programs are embedded
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler
that replaces operations with their meaning•Algebraic: Operations must respect

substitution and sequencing

•Flexible: Multiple semantics can be given

to a particular program

•Extensible: Syntax trees can be extended
with new syntactic nodes

•Modular: Handlers can be composed to
give combinations of semantics

or

or 3

fail 5

<+>

<+> Just 3

fail Just 5

-->
handle or

do x <- or p q

 k x

do or (do x <- p; k x)

 (do x <- q; k x)

do fail

 k ()

do fail
==

==

•Equational: The relationship between
operations can be expressed by laws

<+>

<+> Just 3-->
handle fail

do x <- or p q do x <- or q p==

•Pervasive: Algebraic effects cover a very
large class of useful effects

get put throw fork read writeprint

•Efficient: Intermediate trees can be
avoided, to immediately return results

Nothing Just 5

Handlers and Heuristics

2014

or

or 3

fail 5

In a tree of nondeterministic computations,

there are many different evaluation strategies

For instance, breadth-first, depth-

first, depth-bounded, single result etc.

This paper shows how these different
strategies are handlers of nondeterminism

[5, 3]

[3, 5]

[3]

Just 5

This was used to model Prolog

semantics as a DSL within Haskell

dfs

bfs

dbs 1

once

each semantics is

given by a handler

Scoped Effects
list (return x) = [x]

list (fail) = []

list (or p q) = list p ++ list q

once (return x) = Just x

once (fail) = Nothing

once (or p q) = case once p of

 Nothing -> once q

 Just x -> once p

Many handlers have

related behaviour

search (fail) = fail
search (return x) = return x
search (search p) = search p

These are not

algebraic operations

Can the idea of algebraic

operations be extended?

2014 2018
2022

2015

2018

2015

Theory Meets Practice

Wow! That works, but is
it efficient?

Hmm, sounds like you
need scoped effects ...

Yes! It all fuses!

Amazing! 250x faster than our
previous attempts! We've rolled
this out to production!

Algebraic effects are nice, but
we can't express lots of
constructs like if statements
and try/catch as syntax.

2022

functional

> imperative

Alonzo Church

Alan Turing

Peter Landin

denotative!
Effect handlers?

References
• M. Davis, Engines of Logic, 2000

• M. Davis, The Universal Computer: The Road from Leibniz to Turing,

Third Edition, 2018

• A. Hodges, Alan Turing: The Enigma, 2014

• D. Turner, Some History of Functional Programming Languages, 2012

• G. Leibniz, De Arte Combinatoria, 1666

• D. Hilbert, W. Ackermann, Grundzüge der theoretischen Logik, 1928

• J. Backus et al., The FORTRAN Automatic Coding System for the IBM

704, 1956

• F. Cajori, A History of Mathematical Notations, 1928

• K. Gödel, Über formal unentscheidbare Sätze der Principia

Mathematica und verwandter Systeme I, 1931

• A. Church, A Set of Postulates for the Foundation of Logic, 1932

• A. Church, A Note on the Entscheidungsproblem, 1936

• A. Turing, On Computable Numbers, with an Application to the

Entscheidungsproblem, 1937

• J. von Neumann, First Draft of a Report on the EDVAC, 1945

• J. McCarthy et al., LISP I Programmer's Manual, 1960

• J. Backus et al., Revised Report on the Algorithmic Language Algol

60, 1963

• P. Landin, The mechanical evaluation of expressions, 1964

• P. Landin, A correspondence between ALGOL 60 and Church's

Lambda-notation: Part I, 1965

• D. Scott, C. Strachey, Towards a Mathematical Semantics for

Computer Languages, 1971

• P. Landin, The Next 700 Programming Languages, 1966

• R. Hinze, N. Wu, J. Gibbons, Unifying Structured Recursion

Schemes, 2013

• R. Hinze, N. Wu, J. Gibbons, Conjugate Hylomorphisms, 2015

• Z. Yang, N. Wu, Fantastic Morphisms and Where to Find Them, 2022

• G. Plotkin, M. Pretnar, Hanlders of Algebraic Effects, 2009

• T. Schrijvers, N. Wu, B. Desouter, B. Demoen, Heuristics Entwined

with Handlers Combined, 2014

• N. Wu, T. Schrijvers, R. Hinze, Effect Handlers in Scope, 2015

• M. Pirog, T. Schrijvers, N. Wu, M. Jaskelioff, Syntax and Semantics

for Operations with Scopes, 2018

• N. Wu, T. Schrijvers, Fusion for Free, 2015

• P. Thomson, R. Rix, N. Wu, T. Schrijvers, Fusing Industry and

Academia at GitHub, 2022

with thanks to Jeremy Gibbons and Jamie Willis

for feedback on previous iterations of this talk

https://www.jstor.org/stable/1968337
https://en.wikipedia.org/wiki/First_Draft_of_a_Report_on_the_EDVAC
http://www.softwarepreservation.org/projects/LISP/book/LISP%20I%20Programmers%20Manual.pdf
https://www.cs.cmu.edu/~crary/819-f09/Landin64.pdf

