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Before Computers



London, 1666



Gottfried Leibniz1646 - 1716
Leibniz, 1666

"When trying to get from England to Holland, I was detained for some time 

in the Thames by adverse winds. During that time, knowing not what to do, 

and having nobody in the ship except sailors, I meditated on things, and 

especially thought about my old design of a rational language [...]"

"For if we had such as I imagine, we could reason about metaphysics 

and morality just like we do about geometry and analysis [...]"

letter from Leibniz

to Jean Galois, 1677

"For if praise is given to the men who have determined the 
number of regular solids [...] how much better will it be to 
bring under mathematical laws human reasoning, which is the 
most excellent and useful thing we have."  (Davis, 2018)

Leibniz , The Art of Combinations(1666)
This extended doctoral thesis was about:
• a proof of the existence of God from some hypotheses and axioms about motion
• an alphabet of human thought, the "alphabetum cogitationum humanarium"
•  the idea that concepts are combinations of a core set of concepts



"Wir müssen wissen. Wir werden wissen!"

 We must know. We shall know!


Hilbert, 1930,

Congress of German Scientists and Physicians David Hilbert

1862 - 1943

"Ignoramus et ignorabimus"


 We do not know and we shall not know


du Bois-Reynold, 1872, 


Congress of German Scientists and Physicians

Emil du Bois-Reymond
1818 - 1896

Wilhelm Ackermann1896 - 1962

Hilbert and Ackerman (1928)

Formalised the Entscheidungsproblem,


the "decision problem" : 

Given an input statement in first order predicate calculus, is there an algorithm that answers either "yes" or "no" if the statement is provable?

1928



but if the Entscheidungsproblem holds true, then 

perhaps an algorithm can prove statements?
Alonzo Church

Alan Turing
Church (1936) and Turing (1936)
Independently answered the Entscheidungsproblem:
No! Such an algorithm is not possible

1936

1936

Kurt Gödel1906 - 1978

Gödel (1931)

showed that any reasonable system of logic 
has true statements that cannot be proven 

within that system

1931



Alonzo Church

1932

The Lambda Calculus

λ-calculus is about bindings 

and substitutions
Instead of 


  f (x) = 5x + 3


We can isolate f:


  f =λ x . 5x + 3

A proof that converting 
a term A into B  is 

undecidable

1936

The definition of "effectively 
calculable"

Church numerals:


1 = λ s z . s z


2 = λ s z . s (s z)


3 = λ s z . s ( s (s z))


...


m + n = λ s z . m s (n s z)


     _+_ = λ m n s z . m s (n s z)

1936



Alan Turing

001101010010010001110101010100101010010010111001010010100110010100101Turing Machines

but he also showed that no mac
hine can 

determine if an arbitrary machine halts
Turing showed construction of a 

formula that takes in a Turing machine 
as input and is provable only if the 

machine halts



John von Neumann
1903 - 1957

1945

Electronic Discrete Variable 
Automatic Computer, 1949

Electronic Delay Storage 
Automatic Calculator, 1948



Early Programming Languages



FORTRAN, 1954

Much of my work has come from being 

lazy. I didn’t like writing programs, 

and so, when I was working on the IBM 

701, writing programs for computing 

missile trajectories, I started work 

on a programming system to make it 

easier to write programs.

[ … ] Most people think FORTRAN’s main 

contribution was to enable the programmer to write 

programs in algebraic formulas instead of machine 

language. But it isn’t. What FORTRAN did primarily 

was to mechanize the organization of loops.

John Backus in “Think, IBM, 
July/August 1979”

John Backus
1924 - 2007



LISP, 1958

John McCarthy

Features of Lisp


• Based on lambda cal
culus


• Conditionals


• Recursive functions



• List processing (ca
r, cdr, cons)


• Higher-order funct
ions




Algol


• Iteration and recursion*

• Distinct assignment (:=) and equality (=)
• Code blocks and lexical scope

• Nested procedure, and procedure passing
• BNF

• Call-by-value and call-by-name

Algol 1958

... and Green, Katz, 
Perlis, Rutishauser, 

Samelson, van 
Wijngaarden, 

Vauquois, Wegstein, 
and Woodger

“… a language so far ahead of its time, that it 

was not only an improvement on its 

predecessors, but also on nearly all its 

successors” – Tony Hoare, 1974, in Hints on 

Programming Language Design

John Backus1924 - 2007
John McCarthy

1927 - 2011Peter Naur1928 - 2016



Algol and Lambdas, 1965

Peter Landin1930 - 2009

1965SECD Machine

First abstract machine for 

evaluating lambda expressions1964

Applicative expressions (AE) =  Syntactic sugar for lambda expressions

Imperative AE (IAE) = 


  AE + assignment operation (IAE)



ISWIM, 1966

Peter Landin1930 - 2009
ISWIM


• Mathematical notation for functions, using let 

and where clauses


• Indentation to separate clauses (offside rule)


• A distinction between physical and logical 

languages


• Interpretation through layers of abstraction 

linked by syntax, grammar, and denotation


• Garbage collection


• Equivalences between terms


• No explicit sequencing


• Algebraic datatypes

aka Church without Lambda

(If you See What I Mean)

1966



where notation


•More convenient that lambda terms


• Indentation sensitive


•Multiple and recursive definiti
ons


• Used for types

Church without Lambda

Regarding indentation, in many ways I am in 

sympathy with this, but [..] you would regret 

it because of the kind of rearrangement of 

manuscripts done in printing Peter Naur1928 - 2016



Language Abstraction

Physical ISWIM

Logical ISWIM
tokenize

Applicative Expression
interpret

Abstract ISWIM

parse

f (b + 2c)

  where f(x) = x(x+a)

 f(b + 2c) 
   where f(x) = x(x+a)

1964

1/10th of the paper is devoted 

to the idea of abstraction layers 

for defining a language!

Today this is regarded as the 
standard means of giving 

language semantics

Value
evaluate



Equivalences

Enabling equational reasonin
g 

featured heavily in this paper (1): subexpressions

(2): definitions

(3): built-in expressions

(4): primitives



Denotation

• The importance of denotational 
semantics was clearly highlighted

1971
Dana Scott Christopher  Strachey1916 - 1975



functional

> imperative

Alonzo Church

Alan Turing

Peter Landin

denotative!



The Next 700

Programming LanguagesDomain Specific



Datastructures and Recursion Schemes
Lists can be evaluated by folding their 

structure: cons and nil a
re replaced with a 

semantics of what to do

This technique generalises to many 
tree-like datatypes

There are many variations
 on this theme, depending 

on mutual recursion, recursion w
ith parameters, 

recursion with historic 
context, and many more

foldr (+) 0 (                  )


          =

[2,  7,  1,  8]


 2 : 7 : 1 : 8 : []


 2 + 7 + 1 + 8 +    = 180

catamorphism



ZOO OF 
MORPHISMS

cata Id ⊣ Id

mutu   Δ ⊣ (×)

zygo   UY ⊣ PY

para   Δ ⊣ (×)

fold + param – × P ⊣ (–)P

gen. fold  (– ⚪ P) ⊣ RanP

rsfc       UN ⊣ CofreeN

histo       UN ⊣ CofreeN

ana Id ⊣ Id

apo (+) ⊣ Δ

gen. unfold  LanP ⊣ (– ⚪ P)

λ-coiteration FreeM ⊣ UM

futu FreeM ⊣ UM

paramorphism

zygomorphism

futumorphism

dynamorphism

mutumorphism

histomorphism

apomorphism

anamorphism
catamorphism

24



Datastructures and Recursion Schemes

2013
20222015

Lists can be evaluated by folding their 

structure: cons and nil a
re replaced with a 

semantics of what to do

This technique generalises to many 
tree-like datatypes

There are many variations
 on this theme, depending 

on mutual recursion, recursion w
ith parameters, 

recursion with historic 
context, and many more

foldr (+) 0 (                  )


          =

[2,  7,  1,  8]


 2 : 7 : 1 : 8 : []


 2 + 7 + 1 + 8 +    = 180

catamorphism



2014

Domain-Specific Languages
syntax tree + recursion scheme


=

language + denotational semantics

[[x + y]] = [[x]] ⊕ [[y]]

data Expr where

  Add :: Expr -> Expr -> Expr

  Var :: String -> Expr

data ExprF k where

  OpF  :: k -> k -> k

  VarF :: String -> k

eval :: (ExprF a -> a) -> Expr -> a

eval alg (Op m n) = alg (OpF (eval alg m) (eval alg n))

eval alg (Var x)  = alg (VarF x)

alg :: ExprF a -> a

alg (OpF a b) = a + b

alg (VarF x)  = var x

eval alg  (Add (Var x) (Var y)) = eval alg (Var x) + eval alg (Var y)



Algebraic Effect Handlers

Syntax Semantics

Syntax represented by the free
 

monad for a functor that 

provides a signature

Semantics often in terms of a fold over 
the free monad

Gordon Plotkin Matija Pretnar

2009



Algebraic Effect Handlers

•Syntactic Programs are embedded 
syntax trees that can be inspected

or

or 3

2 5



Algebraic Effect Handlers

•Syntactic Programs are embedded 
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler 
that replaces operations with their meaning

or

or 3

2 5

++

++ [3]

[2] [5]

-->
handle or



Algebraic Effect Handlers

•Syntactic Programs are embedded 
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler 
that replaces operations with their meaning•Algebraic: Operations must respect 

substitution and sequencing

or

or 3

2 5

++

++ [3]

[2] [5]

-->
handle or

do x <- or p q

   k x

do or (do x <- p; k x) 

      (do x <- q; k x)

==



Algebraic Effect Handlers

•Syntactic Programs are embedded 
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler 
that replaces operations with their meaning•Algebraic: Operations must respect 

substitution and sequencing

•Extensible: Syntax trees can be extended 
with new syntactic nodes

or

or 3

fail 5

++

++ [3]

[] [5]

-->
handle or

do x <- or p q

   k x

do or (do x <- p; k x) 

      (do x <- q; k x)

do fail

   k ()

do fail
==

==
       fail



Algebraic Effect Handlers

•Syntactic Programs are embedded 
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler 
that replaces operations with their meaning•Algebraic: Operations must respect 

substitution and sequencing

•Extensible: Syntax trees can be extended 
with new syntactic nodes

•Modular: Handlers can be composed to 
give combinations of semantics

or

or 3

fail 5

++

++ [3]

fail [5]

-->
handle or

do x <- or p q

   k x

do or (do x <- p; k x) 

      (do x <- q; k x)

do fail

   k ()

do fail
==

== ++

++ [3]-->
handle fail

[] [5]



Algebraic Effect Handlers

•Syntactic Programs are embedded 
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler 
that replaces operations with their meaning•Algebraic: Operations must respect 

substitution and sequencing

•Flexible: Multiple semantics can be given 

to a particular program

•Extensible: Syntax trees can be extended 
with new syntactic nodes

•Modular: Handlers can be composed to 
give combinations of semantics

or

or 3

fail 5

<+>

<+> Just 3

fail Just 5

-->
handle or

do x <- or p q

   k x

do or (do x <- p; k x) 

      (do x <- q; k x)

do fail

   k ()

do fail
==

== <+>

<+> Just 3-->
handle fail

Nothing Just 5



Algebraic Effect Handlers

•Syntactic Programs are embedded 
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler 
that replaces operations with their meaning•Algebraic: Operations must respect 

substitution and sequencing

•Flexible: Multiple semantics can be given 

to a particular program

•Extensible: Syntax trees can be extended 
with new syntactic nodes

•Modular: Handlers can be composed to 
give combinations of semantics

or

or 3

fail 5

<+>

<+> Just 3

fail Just 5

-->
handle or

do x <- or p q

   k x

do or (do x <- p; k x) 

      (do x <- q; k x)

do fail

   k ()

do fail
==

==

•Equational: The relationship between 
operations can be expressed by laws

<+>

<+> Just 3-->
handle fail

do x <- or p q do x <- or q p==
Nothing Just 5



Algebraic Effect Handlers

•Syntactic Programs are embedded 
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler 
that replaces operations with their meaning•Algebraic: Operations must respect 
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•Flexible: Multiple semantics can be given 

to a particular program

•Extensible: Syntax trees can be extended 
with new syntactic nodes

•Modular: Handlers can be composed to 
give combinations of semantics

or
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fail 5

<+>
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handle or
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   k ()

do fail
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<+> Just 3-->
handle fail

do x <- or p q do x <- or q p==

•Pervasive: Algebraic effects cover a very 
large class of useful effects

get put throw fork read writeprint
Nothing Just 5



Algebraic Effect Handlers

•Syntactic Programs are embedded 
syntax trees that can be inspected

•Denotatative: The semantics is given by a handler 
that replaces operations with their meaning•Algebraic: Operations must respect 

substitution and sequencing

•Flexible: Multiple semantics can be given 

to a particular program

•Extensible: Syntax trees can be extended 
with new syntactic nodes

•Modular: Handlers can be composed to 
give combinations of semantics

or

or 3

fail 5

<+>

<+> Just 3

fail Just 5

-->
handle or

do x <- or p q

   k x

do or (do x <- p; k x) 

      (do x <- q; k x)

do fail

   k ()

do fail
==

==

•Equational: The relationship between 
operations can be expressed by laws

<+>

<+> Just 3-->
handle fail

do x <- or p q do x <- or q p==

•Pervasive: Algebraic effects cover a very 
large class of useful effects

get put throw fork read writeprint

•Efficient: Intermediate trees can be 
avoided, to immediately return results

Nothing Just 5



Handlers and Heuristics

2014

or

or 3

fail 5

In a tree of nondeterministic computations, 

there are many different evaluation strategies

For instance, breadth-first, depth-

first, depth-bounded, single result etc.

This paper shows how these different 
strategies are handlers of nondeterminism

[5, 3]

[3, 5]

[3]

Just 5

This was used to model Prolog 

semantics as a DSL within Haskell

dfs

bfs

dbs 1

once

each semantics is 

given by a handler



Scoped Effects
list (return x) = [x]

list (fail)     = []

list (or p q)   = list p ++ list q


once (return x) = Just x

once (fail)     = Nothing

once (or p q)   = case once p of

                    Nothing -> once q

                    Just x  -> once p

Many handlers have 

related behaviour

search (fail)     = fail
search (return x) = return x
search (search p) = search p

These are not 

algebraic operations

Can the idea of algebraic 

operations be extended?

2014 2018
2022



2015

2018

2015

Theory Meets Practice

Wow! That works, but is 
it efficient?

Hmm, sounds like you 
need scoped effects ...

Yes! It all fuses!

Amazing! 250x faster than our 
previous attempts! We've rolled 
this out to production!

Algebraic effects are nice, but 
we can't express lots of 
constructs like if statements 
and try/catch as syntax.

2022
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