LMS/BCS-FACS evening seminar

Programming language foundations for statistics

Sam Staton, Oxford

partly based on joint work with Ackerman, Dash, Freer, Jacobs, Kaddar, Moss, Paquet, Perrone, Roy, Sabok, Stein, Wolman, Yang, and others.

Programming language foundations for statistics

- 1. Quick look at probabilistic programming for statistics example; discussion; Monte Carlo
- 2. Function spaces ...
- 3. ... and understanding them.

4. Symmetries

A very simple model deducing chance of win from poll.

Question:

A quick poll gives 51:49 votes. What is the chance of winning?

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street Open Government Licence v3.0

A very simple model deducing chance of win from poll.

Question:

A quick poll gives 51:49 votes. What is the chance of winning?

Clue: it's not 51%!

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street Open Government Licence v3.0

A very simple model deducing chance of win from poll.

```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))
```


Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street Open Government Licence v3.0

A very simple model deducing chance of win from poll.

```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))
```

Crude rejection sampling Monte Carlo:
 Run 1000000s of times, each time

- getting (poll result, win?)
- Reject the runs that mis-predict poll
- What proportion of the remainder are winners?

A very simple model deducing chance of win from poll.

Question:

A quick poll gives 51:49 votes. What is the chance of winning?

Answer: 0.579.

Crude rejection sampling Monte Carlo:

- Run 1000000s of times, each time getting (poll result, win?)
- Reject the runs that mis-predict poll
- What proportion of the remainder are winners?

A very simple model deducing chance of win from poll.

Question:

A quick poll gives 51:49 votes. What is the chance of winning? **Answer:** 0.579.

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street Open Government Licence v3.0

(See Andrew Gelman and coauthors for a proper discussion of using PPL for election modelling.)

Probabilistic programming in practice

Applications to social science, biology, physical sciences, machine learning

PYRO

Abstraction in traditional programming

High level e.g. higher-order functions abstract types

Low level e.g. machine code, Boolean circuits

Abstraction in traditional programming

High level e.g. higher-order functions abstract types

Low level e.g. machine code, Boolean circuits

Abstraction in probabilistic programming

High level e.g. infinite dimensional systems higher-order functions abstract types

Low level e.g. bets, frequencies, decisions Monte Carlo simulation

	ML / stats apps	Foundational
High level		
Low level		

Programming language foundations for statistics

- 1. Quick look at probabilistic programming for statistics example; discussion; Monte Carlo
- 2. Function spaces ...
- 3. ... and understanding them.

4. Symmetries

A very simple model deducing chance of win from poll.

Question:

A quick poll gives 51:49 votes. What is the chance of winning? **Answer:** 0.579.

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street Open Government Licence v3.0

(See Andrew Gelman and coauthors for a proper discussion of using PPL for election modelling.)

A very simple model deducing chance of win from poll.

Question:

A quick poll gives 51:49 votes. What is the chance of winning?

Answer: 0.579.

Crude rejection sampling Monte Carlo:

- Run 1000000s of times, each time getting (poll result, win?)
- Reject the runs that mis-predict poll
- What proportion of the remainder are winners?

Towards weighted sampling

A very simple model deducing chance of win from poll.

```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))
```

Crude rejection sampling Monte Carlo:

- Run 1000000s of times, each time getting (poll result, win?)
- Reject the runs that mis-predict poll
- What proportion of the remainder are winners?

Towards weighted sampling

A very simple model deducing chance of win from poll.

```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))
```

Weighted sampling

```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
forM poll (\actualVote->
    score (bernoulliPdf voteShare actualVote))
return (voteShare > 0.5)
```

$likelihood(v) = v^{51}(1-v)^{49}$

Weighted sampling

```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
forM poll (\actualVote->
    score (bernoulliPdf voteShare actualVote))
return (voteShare > 0.5)
```

Weighted Monte Carlo:

- Run 1000000s of times, each time getting (win?)
- Each time pick a voteShare, and weight by the likelihood.
- Find weighted proportion of winners.

Weighted sampling

```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
forM poll (\actualVote->
    score (bernoulliPdf voteShare actualVote))
return (voteShare > 0.5)
```


Programming language foundations for statistics

- 1. Quick look at probabilistic programming for statistics
- **2. Function spaces ...** *Examples ; higher-order functions*
- 3. ... and understanding them.

4. Symmetries

Abstraction in probabilistic programming

High level e.g. infinite dimensional systems higher-order functions abstract types

Low level e.g. bets, frequencies, decisions Monte Carlo simulation

	ML / stats apps	Foundational
High level		
Low level		

```
randlinear :: Prob (RealNum , RealNum)
randlinear =
   do a <- normal 0 3
      b <- normal 0 3
      return (a,b)</pre>
```


lazyppl.bitbucket.io

type RealNum = Double

```
randlinear :: Prob (RealNum , RealNum)
randlinear =
    do a <- normal 0 3
        b <- normal 0 3
        return (a,b)</pre>
```

We will use this for a regression problem:

which function probably generated these points?

Х

100 samples

Bayesian regression

randlinear :: Prob (RealNum -> RealNum)

lazyppl.bitbucket.io

100 samples

```
randlinear :: Prob (RealNum -> RealNum)
randlinear =
   do a <- normal 0 3
        b <- normal 0 3
        let f x = a*x + b
        return f</pre>
```

There's a type constructor Prob (a monad), and...

 Prob RealNum contains probability distributions (e.g. normal 0 3, uniform 0 1)

Prob Bool contains probability distributions like bernoulli 0.5

```
randlinear :: Prob (RealNum -> RealNum)
randlinear =
   do a <- normal 0 3
        b <- normal 0 3
        let f x = a*x + b
        return f</pre>
```

There's a type constructor Prob (a monad), and...


```
randlinear :: Prob (RealNum -> RealNum)
randlinear =
   do a <- normal 0 3
        b <- normal 0 3
        let f x = a*x + b
        return f</pre>
```

There's a type constructor Prob (a monad), and...

- normal :: RealNum -> RealNum -> Prob RealNum is a parameterized distribution
- bernoulli :: RealNum -> Prob Bool is a parameterized distribution too

```
randlinear :: Prob (RealNum -> RealNum)
randlinear =
   do a <- normal 0 3
        b <- normal 0 3
        let f x = a*x + b
        return f</pre>
```

There's a type constructor Prob (a monad), and...

 Prob RealNum contains probability distributions (e.g. normal 0 3, uniform 0 1)

 RealNum -> Prob RealNum contains parameterized distributions (e.g. normal 0)

```
randlinear :: Prob (RealNum -> RealNum)
randlinear =
   do a <- normal 0 3
        b <- normal 0 3
        let f x = a*x + b
        return f</pre>
```

There's a type constructor Prob (a monad), and...

- RealNum -> Prob RealNum contains parameterized distributions (e.g. normal 0)
- Prob (RealNum -> RealNum) contains random functions (e.g. randlinear)

There's a type constructor Prob (a monad), and...

- RealNum -> Prob RealNum contains parameterized distributions (e.g. normal 0)
- Prob (RealNum -> RealNum) contains random functions (e.g. randlinear)

There's a type constructor Prob (a monad), and...

- RealNum -> Prob RealNum contains parameterized distributions (e.g. normal 0)
- Prob (RealNum -> RealNum) contains random functions (e.g. randlinear)
Types as spaces of distributions

```
randlinear :: Prob (RealNum -> RealNum)
randlinear =
   do a <- normal 0 3
        b <- normal 0 3
        let f x = a*x + b
        return f</pre>
```

There's a type constructor Prob (a monad), and...

 Prob RealNum contains probability distributions (e.g. normal 0 3, uniform 0 1)

- RealNum -> Prob RealNum contains parameterized distributions (e.g. normal 0)
- Prob (RealNum -> RealNum) contains random functions (e.g. randlinear)

Types as spaces of distributions

```
randlinear :: Prob (RealNum -> RealNum)
randlinear =
   do a <- normal 0 3
        b <- normal 0 3
        let f x = a*x + b
        return f</pre>
```

There's a type constructor Prob (a monad), and...

 Prob RealNum contains probability distributions (e.g. normal 0 3, uniform 0 1)

- RealNum -> Prob RealNum contains parameterized distributions (e.g. normal 0)
- Prob (RealNum -> RealNum) contains random functions (e.g. randlinear)
- Prob (Prob Bool) contains random distributions, etc..

Types as spaces of distributions

Aumann (1961) showed that measure-theoretic probability does not support function spaces properly!

There's a type constructor Prob (a monady, and ...

- Prob RealNum contains probability distributions (e.g. normal 0 3, uniform 0 1)
- RealNum -> Prob RealNum contains parameterized distributions (e.g. normal 0)
- Prob (RealNum -> RealNum) contains random functions (e.g. randlinear)
- Prob (Prob Bool) contains random distributions, etc..

Random functions & program synthesis

data Expr = Var | Constt RealNum | Add Expr Expr | Mult Expr Expr
| IfLess RealNum Expr Expr

eval :: Expr -> (RealNum -> RealNum)
eval Var x = x
eval (Constt r) _ = r
eval (Add e1 e2) x = (eval e1 x) + (eval e2 x)
eval (Mult e1 e2) x = (eval e1 x) * (eval e2 x)
eval (IfLess r e1 e2) x = if x < r then eval e1 x else eval e2 x</pre>

Random functions & program synthesis

data Expr = Var | Constt RealNum | Add Expr Expr | Mult Expr Expr
| IfLess RealNum Expr Expr

```
eval :: Expr -> (RealNum -> RealNum)
eval Var x = x
eval (Constt r) _ = r
eval (Add e1 e2) x = (eval e1 x) + (eval e2 x)
eval (Mult e1 e2) x = (eval e1 x) * (eval e2 x)
eval (IfLess r e1 e2) x = if x < r then eval e1 x else eval e2 x</pre>
```

```
randexpr :: Prob Expr
randprog :: Prob (RealNum -> RealNum)
randprog = do e <- randexpr
return (eval e)</pre>
```

Random functions & program synthesis

```
data Expr = ...
```

```
eval :: Expr -> (RealNum -> RealNum)
```

```
randexpr :: Prob Expr
```

```
randprog :: Prob (RealNum -> RealNum)
randprog = do e <- randexpr
return (eval e)</pre>
```


Gaussian processes as random functions

lazyppl.bitbucket.io

Gaussian processesas random functions

lazyppl.bitbucket.io

Programming language foundations for statistics

- 1. Quick look at probabilistic programming for statistics
- 2. Function spaces ... Examples ; higher-order functions
- 3. ... and understanding them.

4. Symmetries

Defn. A *point process* on **a** is an inhabitant of **Prob [a]**

Idea: Fit a piecewise constant function where the change-points come from a point process.

(or Prob (Bag a)).

Dash, Staton. ACT 2020.

Piecewise linear regression

Defn. A *point process* on **a** is an inhabitant of **Prob** [**a**]

Idea: Fit a piecewise linear function where the change-points come from a point process.

(or Prob (Bag a)).

Dash, Staton. ACT 2020

Piecewise linear regression

Defn. A *point process* on **a** is an inhabitant of **Prob** [**a**]

Idea: Fit a piecewise linear function where the change-points come from a point process.

(or Prob (Bag a)).

Dash, Staton. ACT 2020

Defn. A point process on a is an inhabitant of Prob [a] (or Prob (Bag a)).

Defn. A point process on a is an inhabitant of **Prob** [a] (or Prob (Bag a)).

Defn. A point process on a is an inhabitant of **Prob** [a] (or Prob (Bag a)).

```
e.g. poissonPP :: RealNum -> RealNum -> Prob [RealNum]
randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 3
     b <- normal 0 3
     let f x = a^*x + b
     return f
splice :: Prob [RealNum] ->
           Prob (RealNum -> RealNum) ->
           Prob (RealNum -> RealNum)
                      0
                         mh (regress 0.1 (splice (poissonPP 0 0.1) randlinear) dataset
                                                                    5
                                                             lazyppl.bitbucket.io
```

Programming language foundations for statistics

- 1. Quick look at probabilistic programming for statistics
- 2. Function spaces ...

3. ... and understanding them. *models in the abstract ; quasi-Borel spaces*

4. Symmetries

Curry-Howard correspondence

Programming	Maths	Category theory	Logic
Types	Spaces	Objects	Propositions
Programs	Continuous functions	Morphisms	Proofs

Curry-Howard correspondence

Programming	Maths	Category theory	Logic
Types	Spaces	Objects	Propositions
Programs	Continuous functions	Morphisms	Proofs
Probabilistic programs	Measures	?	?

Dataflow property:

```
randlinear :: Prob (RealNum -> RealNum)
randlinear =
   do a <- normal 0 2
        b <- normal 0 3
        let f x = a*x + b
        return f</pre>
```

Dataflow property:

Dataflow property:

Dataflow property:

do c <- normal 0 4
 b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f</pre>

Dataflow property:

randlinear :: Prob (RealNum -> RealNum) randlinear = do a <- normal 0 2 do b <- normal 0 3 b <- normal 0 3 a <- normal 0 2 let $f x = a^*x + b$ let $f x = a^*x + b$ return f return f r r db

$$\int k(\lambda x . ax + b) db da \qquad \int \int k(\lambda x . ax + b) da$$

Dataflow property:

Program lines can be **reordered** and **discarded** if dataflow is preserved.

Related to Fubini's theorem.

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 2
b <- normal 0 3
let f x = a*x + b
return f

$$\iint k(\lambda x.ax + b) db da \qquad \iint k(\lambda x.ax + b) da db$$

$$\iint k(\lambda x.ax + b) da db dc$$

Dataflow property:

Program lines can be **reordered** and **discarded** if dataflow is preserved.

Related to Fubini's theorem.

Also related to Cho & Jacobs MSCS 2019. Fritz Adv Math 2020. Kock TAC 2012

Programming language foundations for statistics

- 1. Quick look at probabilistic programming for statistics
- 2. Function spaces ...

3. ... and understanding them. models in the abstract ; quasi-Borel spaces

4. Symmetries

A semantic model:

Heunen, Kammar, Staton, Yang, LICS 2017

There's a type constructor Prob (a monad), and...

 Prob RealNum contains probability distributions (e.g. normal 0 3, uniform 0 1)

- RealNum -> Prob RealNum contains parameterized distributions (e.g. normal 0)
- Prob (RealNum -> RealNum) contains random functions (e.g. randlinear)
- The dataflow property holds.

Other options:

- Domain-theoretic models; Goubault-Larrecq/Jia/Théron; Jia/Lindenhovius/Mislove/Zamdzhiev LICS2021
- Linear-logic based models; e.g. Ehrhard/Pagani/Tasson 2018 Dahlqvist/Kozen POPL 2020
- Topological-domain-based models...

For now: quasi-Borel spaces

Inspired by:

- Logical relations
- Quasi-topological spaces, diffeological spaces, sequential spaces...
 See also Matache, Moss, Staton, LICS 2022

Defn. A *quasi-Borel space* is a set *X* equipped with a set of random elements, $M \subseteq [\mathbb{R} \rightarrow X]$ such that...

Lemma. One uniform distribution is sufficient to generate all probability measures*.

do { r <- uniform ; return (α r) }

Defn. A *quasi-Borel space* is a set *X* equipped with a set of random elements, $M \subseteq [\mathbb{R} \rightarrow X]$ such that...

Types : quasi-Borel spaces.

Programs : morphisms, i.e. functions $f : X \to Y$ such that

 $f \circ M_X \subseteq M_Y$

$$\xrightarrow{\alpha} X \xrightarrow{f} Y$$

R

Lemma. One uniform distribution is sufficient to generate all probability measures*.

do { r <- uniform ; return (α r) }

Defn. A *quasi-Borel space* is a set *X* equipped with a set of random elements, $M \subseteq [\mathbb{R} \rightarrow X]$ such that...

Types : quasi-Borel spaces.

Programs : morphisms, i.e. functions $f : X \to Y$ such that

 $f \circ M_X \subseteq M_Y$

Lemma. One uniform distribution is sufficient to generate all probability measures*.

do { r <- uniform ; return (α r) }

Defn. A probability measure on a $qBs(X, M_X)$ is a function in M_X modulo \sim .

Defn. A *quasi-Borel space* is a set *X* equipped with a set of random elements, $M \subseteq [\mathbb{R} \rightarrow X]$ such that...

Types : quasi-Borel spaces.

Programs : morphisms, i.e. functions $f: X \to Y$ such that

 $f \circ M_X \subseteq M_Y$

Lemma. One uniform distribution is sufficient to generate all probability measures*.

do { r <- uniform ; return (α r) }

Defn. A probability measure on a $qBs(X, M_X)$ is a function in M_X modulo \sim .

Defn. A *quasi-Borel space* is a set *X* equipped with a set of random elements, $M \subseteq [\mathbb{R} \rightarrow X]$ such that...

Types : quasi-Borel spaces.

Programs : morphisms, i.e. functions $f : X \to Y$ such that

 $f \circ M_X \subseteq M_Y$

Lemma. One uniform distribution is sufficient to generate all probability measures*.

do { r <- uniform ; return (α r) }

Defn. A probability measure on a $qBs(X, M_X)$ is a function in M_X modulo ~.

Defn. A *quasi-Borel space* is a set *X* equipped with a set of random elements, $M \subseteq [\mathbb{R} \rightarrow X]$ such that...

Types : quasi-Borel spaces.

Programs : morphisms, i.e. functions $f : X \to Y$ such that

 $f \circ M_X \subseteq M_Y$

Lemma. One uniform distribution is sufficient to generate all probability measures*.

do { r <- uniform ; return (α r) }

Defn. A probability measure on a $qBs(X, M_X)$ is a function in M_X modulo \sim .

The qBs of reals $(\mathbb{R}, M_{\mathbb{R}})$ has $M_{\mathbb{R}} \subseteq [\mathbb{R} \to \mathbb{R}]$ as the Borel functions.
Quasi-Borel spaces

Defn. A *quasi-Borel space* is a set *X* equipped with a set of random elements, $M \subseteq [\mathbb{R} \rightarrow X]$ such that...

- Types : quasi-Borel spaces.
 - $[RealNum] = \mathbb{R}$
 - [Prob a] = Pr([a])

Programs : morphisms, i.e. functions $f: X \to Y$ such that

 $f \circ M_X \subseteq M_Y$

Defn. A probability measure on a $qBs(X, M_X)$ is a function in M_X modulo \sim .

The qBs of reals $(\mathbb{R}, M_{\mathbb{R}})$ has $M_{\mathbb{R}} \subseteq [\mathbb{R} \to \mathbb{R}]$ as the Borel functions.

Desiderata for a theory of Prob

Dataflow property:

Program lines can be **reordered** and **discarded** if dataflow is preserved.

Related to Fubini's theorem.

Desiderata for a theory of Prob

- The probability monad is commutative and affine. Cf Kock TAC 2012
- The parameterized distributions form a monoidal category Cf Fritz Adv Math 2020, Cho & Jacobs MSCS 2019 Stein & Staton LICS 2021

Dataflow property:

Program lines can be **reordered** and **discarded** if dataflow is preserved.

Related to Fubini's theorem.

A very simple model deducing chance of win from poll.

```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))
```



```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))
```

```
repeat :: Prob a -> Prob [a]
```

Repeatedly draws from a distribution, forever.

```
Observation.
In measure theoretic probability, repeat is defined by
Kolmogorov extension.
```

```
model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli vo
return (take 100 votes , (vot</pre>
```

Theorem (summer 2022). repeat can be defined for any quasi-Borel space a .

repeat :: Prob a -> Prob [a]

Repeatedly draws from a distribution, forever.

```
Observation.
In measure theoretic probability, repeat is defined by
Kolmogorov extension.
```

Programming language foundations for statistics

- 1. Quick look at probabilistic programming for statistics
- 2. Function spaces ...
- 3. ... and understanding them.
- 4. Symmetries and names

Dataflow symmetries

Dataflow property:

Program lines can be **reordered** and **discarded** if dataflow is preserved.

Dataflow symmetries

de Finetti (1931):

also Jacobs, Staton. CMCS 2020

Independence can be analyzed in terms of reordering ('exchangeability')

Dataflow property:

Program lines can be **reordered** and **discarded** if dataflow is preserved.

Names

Robin Milner

Example: Non-parametric clustering

Non-parametric: we don't know how many clusters.

Example: Non-parametric clustering

Non-parametric: we don't know how many clusters.

Translation down to traditional prob.

So: apply *R* to a nominal model to get a measure-theoretic realization.

Theorem:

1. TFDAE: (a) a functor R : NomSet \rightarrow MeasSp

that preserves colimits and finite limits.

(b) a measurable space w/ measurable diagonal.

2. A choice of atomless measure on the space $R(\mathbb{A})$ induces a symmetric monoidal functor extending R, Kleisli(*NameGeneration*) \rightarrow Kleisli(*Giry*)

Each new customer takes a set of dishes. Chance depends on popularity of dishes; sometimes also take some new dishes.

Each new customer takes a set of dishes. Chance depends on popularity of dishes; sometimes also take some new dishes.

Each new customer takes a set of dishes. Chance depends on popularity of dishes; sometimes also take some new dishes.

Each new customer takes a set of dishes. Chance depends on popularity of dishes; sometimes also take some new dishes.

Indian buffets for feature extraction

Example: what are the different features of the countries of the world?

Indian buffets for feature extraction

Example: what are the different features of the countries of the world?

Restaurant metaphor: Each country is a customer, the features are the dishes that they take.

Given experimental data where people say which countries are similar, what are the features?

varro & Griffiths, NeurIPS 2006

Indian buffets for feature extraction

Example: what are the different features of the countries of the world?

Restaurant metaphor: Each country is a customer, the features are the dishes that they take.

Given experimental data where people say which countries are similar, what are the features?

Navarro & Griffiths, NeurIPS 2006

lazyppl output (MAP)

Translation down to traditional prob.

Theorem:

1. TFDAE: (a) a functor R : NomSet \rightarrow MeasSp

that preserves colimits and finite limits.

(b) a measurable space w/ measurable diagonal.

2. A choice of atomless measure on the space $R(\mathbb{A})$ induces a symmetric monoidal functor extending R, Kleisli(*NameGeneration*) \rightarrow Kleisli(*Giry*)

Translation down to traditional prob.

Programming language foundations High level Low level for statistics

- 1. Quick look at probabilistic programming for statistics
- 2. Function spaces ...
- 3. ... and understanding them.
- 4. Symmetries and names

Foundational