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High level view: poll example

A very simple model deducing chance of win from poll.

Question:
A quick poll gives 51:49 votes. What is the chance of

winning?
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High level view: poll example

A very simple model deducing chance of win from poll.

Question:
A quick poll gives 51:49 votes. What is the chance of

winning?

Clue: 1t’s not 51%!
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High level view: poll example

A very simple model deducing chance of win from poll.

model :: Prob ([Bool] , Bool)

model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))
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A very simple model deducing chance of win from poll.

model :: Prob ([Bool] , Bool)

model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))

Crude rejection sampling Monte Carlo:
® Run 1000000s of times, each time
getting (poll result, win?)

® Reject the runs that mis-predict poll

® \Vhat proportion of the remainder
are winners”

# non-rejected runs

Win Lose



High level view: poll example

A very simple model deducing chance of win from poll.

Question:
A quick poll gives 51:49 votes. What is the chance of

winning?
Answer: 0.579.

Crude rejection sampling Monte Carlo:
® Run 1000000s of times, each time
getting (poll result, win?)

® Reject the runs that mis-predict poll

® \Vhat proportion of the remainder
are winners”

# non-rejected runs

Win Lose



High level view: poll example

A very simple model deducing chance of win from poll.

Question:
A quick poll gives 51:49 votes. What is the chance of

winning?
Answer: 0.579.

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street
Open Government Licence v3.0

(See Andrew Gelman and coauthors for a proper discussion of using PPL for election modelling.)
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Probabilistic programming
In practice

\f \.6.1“":-
* i ' Applications to S
AN F TSR - : ABKA
w. i@ social science, 5l
\ biology, s

physical sciences,
machine learning

PYRO

Church,

Anglican, P Mc
@ Hakaru, Y

MonadBayes, °° *® Tttt
Gen...
LazyPPL LazyPPL

https://lazyppl.bitbucket.io

Dash, Kaddar, Paquet, Staton, POPL 2023




Abstraction in
traditional programming

High level e.g. higher-order functions
abstract types

Low level e.g. machine code,
Boolean circuits



Abstraction in
traditional programming

High level e.g. higher-order functions
abstract types

Low level e.g. machine code,
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Abstraction In
probabilistic programming
High level e.g. infinite dimensional systems

higher-order functions
abstract types

Low level e.g. bets, frequencies, decisions
Monte Carlo simulation

High level \/ \/

Low level \/ \/
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Towards weighted sampling

A very simple model deducing chance of win from poll.

model :: Prob ([Bool] , Bool)

model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))

Crude rejection sampling Monte Carlo:
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Towards weighted sampling

A very simple model deducing chance of win from poll.

model :: Prob ([Bool] , Bool)

model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))



Weighted sampling

model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
forM poll (N\actualVote->
score (bernoulliPdf voteShare actualVote))
return (voteShare > 0.5)

likelihood(v) = v>1(1 — v)¥



Weighted sampling

model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
forM poll (N\actualVote->

score (bernoulliPdf voteShare actualVote))
return (voteShare > 0.5)

Weighted Monte Carlo:
® Run 1000000s of times, each time
getting (win?)

® Each time pick a voteShare, and
weight by the likelihood.

weighted count of runs

® Find weighted proportion of winners. Win  Lose



Weighted sampling

likelihood

model :: Prob ([Bool] , Bool)
model = do
voteShare <- uniform 0 1
forM poll (N\actualVote->
score (bernoulliPdf voteShare actualVote))
return (voteShare > 0.5)

o _
&
o _
S
5
& 1 likelihood(v) = v>'(1 = v)¥ Area under curve = 49!51!
101!

Green proportion (win) =~ 0.579
g
3 I I 1

0.0 0.5 voteShare (v) 1.0
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Random linear functions

randlinear :: Prob (RealNum , RealNum)
randlinear =
do a <- normal 0 3
b <- normal 0 3
return (a,b)

normal 1.5 1

0.44

0.21

10 S 0 S 10

type RealNum = Double lazyppl.bitbucket.io



Random linear functions

randlinear :: Prob (RealNum , RealNum)
randlinear =

do a <- normal @ 3
b <- normal 0 3
return (a,b)

We will use this for a
regression problem:

which function

probably generated
these points?

type RealNum = Double lazyppl.bitbucket.io



Random linear functions

randlinear :: Prob (RealNum , RealNum)
randlinear =
do a <- normal 0 3
b <- normal 0 3
return (a,b)

b (intercept)

75 5 23 0 iz s TS5

a (Slope) 10000 sample



Random linear functions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 3
b <- normal 0 3
let f x = a*x + b
return f

X

X 10000 samples



Random linear functions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 3
b <- normal 0 3 LA B VP ‘
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Bayesian regression

randlinear :: Prob (RealNum -> RealNum)

regress :: RealNum -> Prob (a -> RealNum) -> [(a,RealNum)] -> Meas (a -> RealNum)
regress sigma prior dataset =
do f <- sample prior
forM dataset (\(x,y) -> score $ normalPdf (f x) sigma y)
return f

lazyppl includes a type

Meas a i
of unnormalized : mh (regress 0.1 randlinear dataset)

measures and
mh

a Metropolis-Hastings
Inference method.

lazyppl.bitbucket.10



Random linear functions

randlinear :: Prob (RealNum -> RealNum)
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Types as spaces of distributions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 3
b <- normal 0 3
let f x = a*x + b
return f

There's a type constructor Prob (a monad), and...

® Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform @ 1) / \
® Prob Bool contains probability distributions like bernoulli 0.5

lazyppl.bitbucket.10
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Types as spaces of distributions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 3

b <- normal 0 3
let f x = a*x + b
return f

There's a type constructor Prob (a monad), and...

Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform @ 1) / N

normal :: RealNum -> RealNum -> Prob RealNum
IS a parameterized distribution

bernoulli :: RealNum -> Prob Bool
IS a parameterized distribution too

lazyppl.bitbucket.10



Types as spaces of distributions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
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b <- normal 0 3
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return f

There's a type constructor Prob (a monad), and...

® Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform @ 1) / N

® RealNum -> Prob RealNum contains parameterized

distributions
(e.g. normal 0)

lazyppl.bitbucket.10



Types as spaces of distributions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 3
b <- normal 0 3
let f x = a*x + b
return f

There's a type constructor Prob (a monad), and...

® Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform @ 1) / N

® RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

® Prob (RealNum -> RealNum) contains random functions
(e.g. randlinear)

lazyppl.bitbucket.10



Types as spaces of distributions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 3
b <- normal 0 3
let f x = a*x + b

return| f
:: RealNum -> RealNum

There's a type constructor Prob (a monad), and...

® Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform @ 1) / N

® RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

® Prob (RealNum -> RealNum) contains random functions
(e.g. randlinear)

lazyppl.bitbucket.10



Types as spaces of distributions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 3
b <- normal 0 3
let f x = a*x + b

return f
:: Prob (RealNum -> RealNum)

There's a type constructor Prob (a monad), and...

® Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform @ 1) / N

® RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

® Prob (RealNum -> RealNum) contains random functions
(e.g. randlinear)

lazyppl.bitbucket.10



Types as spaces of distributions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 3
b <- normal 0 3
let f x = a*x + b
return f

There's a type constructor Prob (a monad), and...

® Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform @ 1) / N

® RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

® Prob (RealNum -> RealNum) contains random functions
(e.g. randlinear)

lazyppl.bitbucket.10



Types as spaces of distributions

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 3

b <- normal 0 3
let f x = a*x + b
return f

There's a type constructor Prob (a monad), and...

Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform @ 1) / N

RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

Prob (RealNum -> RealNum) contains random functions
(e.g. randlinear)

Prob (Prob Bool) contains random distributions, etc..



Types as spaces of dlstrlbutlons

randlinear :: Prob (RealNum -> RealN§{ —.

randlinear = SCha”enge ~,

do a <- normal @ 3 L Aumann (1961) showed
{that measure-theoretic

b <- normal 0 3
let f x = a*x + b

return f  probability does not support §

} functlon spaces properly' :
There's a type constructor Prob (a trror — —

® Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform 0 1) A

® RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

® Prob (RealNum -> RealNum) contains random functions
(e.g. randlinear)

® Prob (Prob Bool) contains random distributions, etc..



data

eval ::

eval
eval
eval
eval
eval

Random functions
& program synthesis

Expr = Var | Constt RealNum | Add Expr Expr | Mult Expr Expr
| IfLess RealNum Expr Expr

Expr -> (RealNum -> RealNum)

Var x = X

(Constt r) _ =r

(Add el e2) x = (eval el x) + (eval e2 x)

(Mult el e2) x = (eval el x) * (eval eZ2 x)

(IfLess r el e2) x = 1f x < r then eval el x else eval e2 x

lazyppl.bitbucket.10



Random functions
& program synthesis

data Expr = Var | Constt RealNum | Add Expr Expr | Mult Expr Expr
| IfLess RealNum Expr Expr

eval :: Expr -> (RealNum -> RealNum)
eval Var x = x
eval (Constt r) _ =r

eval (Add el e2) x = (eval el x) + (eval e2 x)
eval (Mult el e2) x = (eval el x) * (eval eZ2 x)
eval (IfLess r el e2) x = 1f X < r then eval el x else eval eZ2 x

randexpr :: Prob Expr
randprog :: Prob (RealNum -> RealNum)

randprog = do e <- randexpr
return (eval e)

lazyppl.bitbucket.10



Random functions
data Expr = ... & program synthesis

eval :: Expr -> (RealNum -> RealNum)

randexpr :: Prob Expr
randprog :: Prob (RealNum -> RealNum)

randprog = do e <- randexpr
return (eval e)

lazyppl.bitbucket.10



Random functions
data Expr = ... & program synthesis

eval :: Expr -> (RealNum -> RealNum) l/,L4%¢€?7¢¢f
/////

aff¢4¢9%7>/// 453
randexpr :: Prob Expr el //// &§p
//// Og
randprog :: Prob (RealNum -> RealNum) - X
randprog = do e <- randexpr o &
return (eval e) ] it %?ﬁ

p i(x,0.7) 4 {x +-0.9))

I(if x<8.& thenxelse x| + ((fx<3.3then 2.3 else (ifx<-2.5then (x.(x+ X)) elsa5.0)) +-2.1))

Iif x<3.0 ther 0 § 2lse (if x<4.0 then x els2 ((x+ 2.0) + D.8)))
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Gaussian processes

as random functions v .
wiener :: Prob (RealNum -> RealNum)
4..
®
2 mh (regress 0.3 wiener dataset)
@
r @
0 -
_2 1 1
0 1 2 3 5 6

lazyppl.bitbucket.10



Gaussian processes

as random functions . .
gprbf :: Prob (RealNum -> RealNum)
4..
&
2 - mh (regress 0.3 gprbf dataset)
£
b L4
0..
—2 1 1
0 1 2 3 5 6

lazyppl.bitbucket.10
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Piecewise constant regression

Defn. A point process on a is an inhabitant of Prob [a] o prob gag o).

Dash, Staton. ACT 2020.

ldea: Fit a piecewise constant function
where the change-points come from a e )
point process. 2




Piecewise linear regression

Defn. A point process on a is an inhabitant of Prob [a] o prob gag o).

Dash, Staton. ACT 2020.

Idea: Fit a piecewise linear function

where the change-points come from a ,,’
point process. >

4 .

[
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Piecewise linear regression

Defn. A point process on a is an inhabitant of Prob [a] o prob gag o).

Dash, Staton. ACT 2020.

Idea: Fit a piecewise linear function
where the change-points come from a
point process. 4

What is "piecewise"?
4.




Piecewise constant regression

Defn. A point process on a is an inhabitant of Prob [a]  r prob ¢Bag o).

randconst :: Prob (RealNum -> RealNum)
randconst =
do a <- normal @ 5
let f x = a
return f




Piecewise constant regression

Defn. A point process on a is an inhabitant of Prob [a] o prob gag o).

e.g. poissonPP :: RealNum -> RealNum -> Prob [RealNum]
randconst :: Prob (RealNum -> RealNum) o 3
randconst =
do a <- normal @ 5 ®
let f x = a
return f
splice :: Prob [RealNum] -> °

Prob (RealNum -> RealNum) ->
Prob (RealNum -> RealNum)

S -
O.
mh (regress 0.1 (splice (poissonPP 0@ 0.1) randconst) dataset)

0 1 2 3 4 5 6
lazyppl.bitbucket.10



Piecewise constant regression

Defn. A point process on a is an inhabitant of Prob [a] o prob gag o).

e.g. poissonPP :: RealNum -> RealNum -> Prob [RealNum]

randlinear :: Prob (RealNum -> RealNum) ° q
randlinear = -~
do a <- normal @ 3 o

b <- normal 0 3
let f x = a*x + b
return f

splice :: Prob [RealNum] -> o
Prob (RealNum -> RealNum) -> &
Prob (RealNum -> RealNum)

X ]
0 -

mh (regress 0.1 (splice (poissonPP 0@ 0.1) randlinear) dataset

0 1 2 3 4 5 6
lazyppl.bitbucket.10
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Curry-Howard correspondence

. Category
Programming theory
Types Spaces Objects Propositions
Programs Continuous Morphisms Proofs

functions



Curry-Howard correspondence

. Category
Programming theory
Types Spaces Objects Propositions
Programs Contln_uous Morphisms Proofs
functions
Probabilistic Measures 5 .

programs



Desiderata for a theory of Prob

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.




Desiderata for a theory of Prob

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0@ 2
b <- normal 0 3
let f x = a*x + b
return f

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.




Desiderata for a theory of Prob

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 2 do b <- normal @ 3
b <- normal 0 3 a <- normal @ 2
let f x = a*x + b let f x = a*x + b
return f return f

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.




Desiderata for a theory of Prob

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 2 do b <- normal @ 3
b <- normal 0 3 a <- normal @ 2
let f x = a*x + b let f x = a*x + b
return f return f

0 |

Z_nor'mal a

0- 1 - 0- |
norma

3- 2_normal a

@_:::::::>>’———__,——
normal b
3_

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.




Desiderata for a theory of Prob

randlinear :: Prob (RealNum -> RealNum)
randlinear = do ¢ <- normal 0 4
do a <- normal @ 2 do b <- normal 0 3 b <- normal 0 3
b <- normal 0 3 a <- normal 0 2 a <- normal 0 2
let f x = a*x + b let f x = a*x + b let f x = a*x + b
return f return f return f

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.




Desiderata for a theory of Prob

randlinear :: Prob (RealNum -> RealNum)
randlinear = do ¢ <- normal 0 4
do a <- normal @ 2 do b <- normal 0 3 b <- normal 0 3
b <- normal 0 3 a <- normal 0 2 a <- normal 0 2
let f x = a*x + b let f x = a*x + b let f x = a*x + b
return f return f return f

0 |
_normal a
3 \X -> f
| " |
0 a*x + b 0- |
normal b normal a
2" 27 \X -> f

®->/ a*x " b
normal b
0- T

~|In 1 [
Dataflow property: 4-%

Program lines can be reordered and discarded
If dataflow Is preserved.




Desiderata for a theory of Prob

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 2 do|b|<- normal @ 3
b <- normal 0 3 al<- normal @ 2
let f x = a*x + b let f x = a*x + b
return f return f

”kux .ax + b)dbda ”kux Lax + b)| da db

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.

Related to Fubini’'s theorem.




Desiderata for a theory of Prob

randlinear :: Prob (RealNum -> RealNum)
randlinear = do/c <- normal 0 4
do a <- normal 0@ 2 do|b|<- normal 0 3 b <- normal 0 3
b <- normal 0 3 al<- normal 0 2 a <- normal 0 2
let f x = a*x + b let f x = a*x + b let f x = a*x + b
return f return f return f

”kux .ax +b)dbda ”kux ax + b)| da db

&

[Jk(/lx .ax + b)dadbdc

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.

Related to Fubini’s theorem.
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A semantic model:

Quasi-Borel
spaces

n, Kammar, Staton, Yang, LICS 2017

There's a type constructor Prob (a monad), and...

® Prob RealNum contains probability distributions

(e.g. normal @ 3, uniform @ 1) / N

® RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

® Prob (RealNum -> RealNum) contains random functions
(e.g. randlinear)

® The dataflow property holds.



Other options:

e Domain-theoretic models:

* Linear-logic based models; [shamsimrorzzs

» Topological-domain-based models. . st

Goubault-Larrecg/Jia/Théron; Jia/Lindenhovius/Mislove/Zamdzhiev LICS2021

For now: quasi-Borel spaces

Heunen, Kammar, Staton, Yang, LICS 2017

Inspired by:

e Logical relations

* Quasi-topological spaces, diffeological spaces,

Se q ue n'“ al S paces _ |see also Matache, Moss, Staton, LiCs 2022




Quasi-Borel spaces

Defn. A quasi-Borel space is a set
X equipped with a set of random

elements, M C [R — X] such
that...

Lemma. One uniform distribution
IS sufficient to generate all probability
measures®.

do { r <- uniform ; return (a r) }

Heunen, Kammar, Staton, Yang, LICS 2017




Heunen, Kammar, Staton, Yang, LICS 2017

Quasi-Borel spaces

Defn. A quasi-Borel space is a set
X equipped with a set of random

elements, M C [R — X] such
that...

Types : quasi-Borel spaces.

Programs : morphisms, i.e.
functions f : X — Y such that

Foll, C axY

Lemma. One uniform distribution
IS sufficient to generate all probability
measures®.

do { r <- uniform ; return (a r) }



Heunen, Kammar, Staton, Yang, LICS 2017

Quasi-Borel spaces

Defn. A quasi-Borel space Is a set Defn. A probability measure on a
X equipped with a set of random gBs (X, My) is a function in M/
elements, M C [R — X] such modulo ~.

that...

Types : quasi-Borel spaces.

Programs : morphisms, i.e.
functions f : X — Y such that

foll, C

Lemma. One uniform distribution
IS sufficient to generate all probability
measures®.

do { r <- uniform ; return (a r) }
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Quasi-Borel spaces

Defn. A quasi-Borel space Is a set Defn. A probability measure on a
X equipped with a set of random gBs (X, My) is a function in M/
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X equipped with a set of random gBs (X, My) is a function in M/
elements, M C [R — X] such modulo ~.
that...
The gBs of reals (R, Mg) has
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(RealNum)] =R
(Prob a) =Pr(l{a))

Programs : morphisms, I.e.
functions f : X — Y such that

fol, C



Desiderata for a theory of Prob

randlinear :: Prob (RealNum -> RealNum)
randlinear = . e —— Jolclo normal @ 3

do a <- Norma l"'.« R T— “ . VLT LI . , nOr-mq]_ @ 3
b < norma Theorem._ T.he quasi-Borel space § . . o 3
let f x = @model satisfies the dataflow X = a*x + b
_ pro perty. Heunen, Kammar, Staton, Yang, LICS 2017 ’ ]

return f n f

”k(zx “ax + b)dbda J } k(2. ax + b da db

[Jk(/lx .ax + b)dadbdc

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.

Related to Fubini’'s theorem.




Desiderata for a theory of Prob

Theorem. The quasi-Borel space §
model satisfies the dataflow

Joroperty.

e The probability monad is commutative
and affine. |cfkock Tac 2012
 The parameterized distributions form
a monoidal category | G sacobs mscs zo1s

Stein & Staton LICS 2021

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.

Related to Fubini’'s theorem.
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repeat in quasi-Borel spaces

A very simple model deducing chance of win from poll.

model :: Prob ([Bool] , Bool)

model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))

# non-rejected runs

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street

Open Government Licence v3.0 ) » \ , W| N LOSG



https://www.nationalarchives.gov.uk/doc/open-government-licence/

repeat in quasi-Borel spaces

model :: Prob ([Bool] , Bool)

model = do
voteShare <- uniform 0 1
votes <- repeat (bernoulli voteShare)
return (take 100 votes , (voteShare > 0.5))

repeat :: Prob a -> Prob [ad]
Repeatedly draws from a distribution, forever.

.-

lObservation.

In measure theoretic probability, repeat is defined by
jJKolmogorov extension.




repeat in quasi-Borel spaces

.-

fTheorem (summer 2022).

model :: Prob ([Bool] , Bool) _
model = do repeat can be defined for

voteshare <- uniform 0 1 Jany quasi-Borel space a.
votes <- repeat (bernoulli vo ™= " .

return (take 100 votes , (vot

repeat :: Prob a -> Prob [ad]
Repeatedly draws from a distribution, forever.

.-

lObservation.

In measure theoretic probability, repeat is defined by
jJKolmogorov extension.
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Dataflow symmetries

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 2 do b <- normal @ 3
b <- normal 0 3 a <- normal @ 2
let f x = a*x + b let f x = a*x + b
return f return f

0 |

Z_nor'mal a

0- 1 - 0- |
norma

3- 2_normal a

@_:::::::>>—’_——_,,—
normal b
3_

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.




Dataflow symmetries

randlinear :: Prob (RealNum -> RealNum)
randlinear =
do a <- normal 0 2 do b <- normal @ 3
b <- normal 0 3 a <- normal @ 2
let f x = a*x + b let f x = a*x + b
return f return f
d e FI n ettl (193 1) : also Jacobs, Staton. CMCS 2020

Independence can be analyzed Iin
terms of reordering (‘exchangeability’)

Dataflow property:

Program lines can be reordered and discarded
If dataflow Is preserved.




Names

2

(

. 5 o Q. https Jftwitter.com/CompSciOxford/statul[ 159284 9751049113600

Client Server

qetlance()

Virtwal address space

DG O020000
100010000
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® —o 9 o—So—Sy v—@
let x dTresh-nane()}in ... Lo B e g O UL
a "

(defmacro two-fypnca (f v)
(let ((fname ))
“(let ((,fname ,

(1ist (funcall ,fname ,v) (funcall ,fname ,v)))))

COmmunicating
and mobhile

(] Systems: the

---------------------------------- -Calculus

—— —
-—-—————

Robhlhﬂﬂner




Chinese restaurant process
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irandom table or a new table. '
{Chance depends on popularity of tables. |
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Chinese restaurant process

D =/

: | j \ &

irandom table or a new table.

Chance depends on popularity of tables. |

iEach new customer either sitsata |



Example: Non-parametric clustering
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Example: Non-parametric clustering

8 1 e oo Restaurant

: metaphor:

° Each point is a

& customer, the clusters
0% 2 are the tables.
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Translation down to traditional prob.

o e e 1So: apply R to a nominal |
tmodel to get a f

| measure-theoretic

—— oS S jrealization. ;

i Theorem:

1. TFDAE: (a) a functor R : NomSet — MeasSp

that preserves colimits and finite limits.
(b) a measurable space w/ measurable dlagonal :

2 A choice of atomless measure on the space R(A) mduces |

- a symmetric monoidal functor extending R,
| MesnWerneCangienon) — INESICy)

cf Sabok, Staton, Stein, Wolman, POPL 2021
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Indian buffets for feature extraction

Example: what are the different features of the
countries of the world_?

Restaurant A V
metaphor:

Each country Is a

customer, the features

are the dishes that they

take. =~

i Given experimental data where |wr & © W
 people say which countries are § = * .
isimilar, what are the features? | | ° -

Navarro & Griffiths, NeurlPS 2006




Indian buffets for feature extraction

Example: what are the different features of the
countries of the world_?

~ _ \ {l~ i“'l r__"'(v - - 01> a4 s
Restaurant L el RN L PR
metaphor: ok | Cuba 1
. : Germany -
Each country Is a R " Indonesia -
customer, the features o O
are the dishes that they jameice”
‘ apan -
take 2 Libya -
' Nigeria - L
PSS S———— O Philippines A
) . ] Russia -
i Given experimental data where Spain -
ipeople say which countries are | et
S|m|Iar what are the features? | zimbabwe |~ [

=4 Navarro & Griffiths, NeurlPS 2006 |azypp| OutpUt (MAP)




Translation down to traditional prob.

- .- - - 1 S0: apply R to a nominal §

-2 = - - tmodel to get a
- 2 e i measure-theoretic
2 2 & (realization. '.

{ Theorem:

1. TFDAE: (a) a functor R : NomSet — MeasSp
that preserves colimits and finite limits.

(b) a measurable space w/ measurable dlagonal :

2 A choice of atomless measure on the space R(A) mduces |

- a symmetric monoidal functor extending R,
| WeshWeneeGangruton) — Meidi(Cry)

cf Sabok, Staton, Stein, Wolman, POPL 2021




Translation down to traditional prob.

W W 1so: apply R to a nominal
jure-theoretic
lation. |

 Challenge:
{New symmetries,
lnew programs:
~|new statistical models

TTheorem asls
1. TFDAE: (a) a functor R : NomSet — MeasSp
-;'? that preserves colimits and finite limits.

(b) a measurable space w/ measurable diagonal. ?:

2 A choice of atomless measure on the space R(A) mduces

- a symmetric monoidal functor extending R,
i

cf Sabok, Staton, Stein, Wolman, POPL 2021
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