
Programming
language
foundations for
statistics

Sam Staton, Oxford
partly based on joint work with Ackerman,
Dash, Freer, Jacobs, Kaddar, Moss,
Paquet, Perrone, Roy, Sabok, Stein,
Wolman, Yang, and others.

LMS/BCS-FACS evening seminar

Programming language
foundations for statistics

1. Quick look at  
probabilistic programming for statistics 
 example; discussion; Monte Carlo

2. Function spaces ...

3. ... and understanding them.

4. Symmetries

High level view: poll example
A very simple model deducing chance of win from poll.

Question:  
A quick poll gives 51:49 votes. What is the chance of
winning?

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street  
Open Government Licence v3.0

https://www.nationalarchives.gov.uk/doc/open-government-licence/

High level view: poll example
A very simple model deducing chance of win from poll.

Question:  
A quick poll gives 51:49 votes. What is the chance of
winning?

Clue: it’s not 51%!

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street  
Open Government Licence v3.0

https://www.nationalarchives.gov.uk/doc/open-government-licence/

High level view: poll example
A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- repeat (bernoulli voteShare)
 return (take 100 votes , (voteShare > 0.5))

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street  
Open Government Licence v3.0

https://www.nationalarchives.gov.uk/doc/open-government-licence/

High level view: poll example
A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- repeat (bernoulli voteShare)
 return (take 100 votes , (voteShare > 0.5))

Crude rejection sampling Monte Carlo:
• Run 1000000s of times, each time

getting (poll result, win?)

• Reject the runs that mis-predict poll

• What proportion of the remainder
are winners?

Win Lose

no
n-

re
je

ct
ed

 ru
ns

High level view: poll example
A very simple model deducing chance of win from poll.

Crude rejection sampling Monte Carlo:
• Run 1000000s of times, each time

getting (poll result, win?)

• Reject the runs that mis-predict poll

• What proportion of the remainder
are winners?

Win Lose

no
n-

re
je

ct
ed

 ru
ns

Question:  
A quick poll gives 51:49 votes. What is the chance of
winning?  
Answer: 0.579.

High level view: poll example
A very simple model deducing chance of win from poll.

Question:  
A quick poll gives 51:49 votes. What is the chance of
winning?  
Answer: 0.579.

(See Andrew Gelman and coauthors for a proper discussion of using PPL for election modelling.)

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street  
Open Government Licence v3.0

https://www.nationalarchives.gov.uk/doc/open-government-licence/

Probabilistic programming  
in practice

Stan

Church,  
Anglican, 
Hakaru, 
MonadBayes, 
Gen...
LazyPPL
https://lazyppl.bitbucket.io

Applications to  
social science, 
biology,  
physical sciences,
machine learning

...
Dash, Kaddar, Paquet, Staton, POPL 2023

Abstraction in  
traditional programming

Low level e.g. machine code, 
 Boolean circuits

High level e.g. higher-order functions 
 abstract types

Abstraction in  
traditional programming

Low level e.g. machine code, 
 Boolean circuits

High level e.g. higher-order functions 
 abstract types

Engineering Foundational

High level ✔ ✔
Low level ✔ ✔

Abstraction in  
probabilistic programming

Low level e.g. bets, frequencies, decisions 
 Monte Carlo simulation

High level e.g. infinite dimensional systems
 higher-order functions 
 abstract types

ML / stats apps Foundational

High level ✔ ✔
Low level ✔ ✔

Programming language
foundations for statistics

1. Quick look at  
probabilistic programming for statistics 
 example; discussion; Monte Carlo

2. Function spaces ...

3. ... and understanding them.

4. Symmetries

High level view: poll example
A very simple model deducing chance of win from poll.

Question:  
A quick poll gives 51:49 votes. What is the chance of
winning?  
Answer: 0.579.

(See Andrew Gelman and coauthors for a proper discussion of using PPL for election modelling.)

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street  
Open Government Licence v3.0

https://www.nationalarchives.gov.uk/doc/open-government-licence/

High level view: poll example
A very simple model deducing chance of win from poll.

Crude rejection sampling Monte Carlo:
• Run 1000000s of times, each time

getting (poll result, win?)

• Reject the runs that mis-predict poll

• What proportion of the remainder
are winners?

Win Lose

no
n-

re
je

ct
ed

 ru
ns

Question:  
A quick poll gives 51:49 votes. What is the chance of
winning?  
Answer: 0.579.

Towards weighted sampling
A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- repeat (bernoulli voteShare)
 return (take 100 votes , (voteShare > 0.5))

Crude rejection sampling Monte Carlo:
• Run 1000000s of times, each time

getting (poll result, win?)

• Reject the runs that mis-predict poll

• What proportion of the remainder
are winners?

Win Lose

no
n-

re
je

ct
ed

 ru
ns

Towards weighted sampling
A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- repeat (bernoulli voteShare)
 return (take 100 votes , (voteShare > 0.5))

likelihood(v) = v51(1 − v)49

model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 forM poll (\actualVote->
 score (bernoulliPdf voteShare actualVote))  
 return (voteShare > 0.5)

Weighted sampling

model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 forM poll (\actualVote->
 score (bernoulliPdf voteShare actualVote))  
 return (voteShare > 0.5)

Weighted sampling

Weighted Monte Carlo:
• Run 1000000s of times, each time  

getting (win?)

• Each time pick a voteShare, and  
weight by the likelihood.

• Find weighted proportion of winners. Win Lose

w
ei

gh
te

d
co

un
t o

f r
un

s

Weighted sampling

Area under curve =

Green proportion (win)

49! 51!
101!

≈ 0.579

voteShare ()v

lik
el

ih
oo

d

likelihood(v) = v51(1 − v)49

model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 forM poll (\actualVote->
 score (bernoulliPdf voteShare actualVote))  
 return (voteShare > 0.5)

Programming language
foundations for statistics

1. Quick look at  
probabilistic programming for statistics

2. Function spaces ... 
 Examples ; higher-order functions

3. ... and understanding them.

4. Symmetries

Abstraction in  
probabilistic programming

Low level e.g. bets, frequencies, decisions 
 Monte Carlo simulation

High level e.g. infinite dimensional systems
 higher-order functions 
 abstract types

ML / stats apps Foundational

High level ✔ ✔
Low level ✔ ✔

Random linear functions

nor
mal

 0
3

normal 1.5 1

type RealNum = Double lazyppl.bitbucket.io

randlinear :: Prob (RealNum , RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 return (a,b)

Random linear functions

type RealNum = Double lazyppl.bitbucket.io

We will use this for a
regression problem:

which function
probably generated
these points?

randlinear :: Prob (RealNum , RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 return (a,b)

Random linear functions
randlinear :: Prob (RealNum , RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 return (a,b)

b
(in

te
rc

ep
t)

a (slope) 10000 samples

Random linear functions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

f
x

x 10000 samples

Random linear functions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

f
x

x 100 samples

Bayesian regression

mh (regress 0.1 randlinear dataset)

randlinear :: Prob (RealNum -> RealNum)

regress :: RealNum -> Prob (a -> RealNum) -> [(a,RealNum)] -> Meas (a -> RealNum)
regress sigma prior dataset =
 do f <- sample prior
 forM dataset (\(x,y) -> score $ normalPdf (f x) sigma y)
 return f

lazyppl includes a type 
 Meas a  
of unnormalized
measures and 
 mh  
a Metropolis-Hastings
inference method. lazyppl.bitbucket.io

Random linear functions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

f
x

x 100 samples

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• Prob Bool contains probability distributions like bernoulli 0.5

lazyppl.bitbucket.io

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

lazyppl.bitbucket.io

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• normal :: RealNum -> RealNum -> Prob RealNum  
is a parameterized distribution

• bernoulli :: RealNum -> Prob Bool  
is a parameterized distribution too

lazyppl.bitbucket.io

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• RealNum -> Prob RealNum contains parameterized
distributions 
(e.g. normal 0)

lazyppl.bitbucket.io

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

• Prob (RealNum -> RealNum) contains random functions 
(e.g. randlinear)

lazyppl.bitbucket.io

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

:: RealNum -> RealNum

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

• Prob (RealNum -> RealNum) contains random functions 
(e.g. randlinear)

lazyppl.bitbucket.io

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

:: Prob (RealNum -> RealNum)

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

• Prob (RealNum -> RealNum) contains random functions 
(e.g. randlinear)

lazyppl.bitbucket.io

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

• Prob (RealNum -> RealNum) contains random functions 
(e.g. randlinear)

lazyppl.bitbucket.io

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

• Prob (RealNum -> RealNum) contains random functions 
(e.g. randlinear)

• Prob (Prob Bool) contains random distributions, etc..

Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

• Prob (RealNum -> RealNum) contains random functions 
(e.g. randlinear)

• Prob (Prob Bool) contains random distributions, etc..

Challenge:  
Aumann (1961) showed
that measure-theoretic
probability does not support
function spaces properly!

Random functions  
& program synthesis

data Expr = Var | Constt RealNum | Add Expr Expr | Mult Expr Expr
 | IfLess RealNum Expr Expr

eval :: Expr -> (RealNum -> RealNum)
eval Var x = x
eval (Constt r) _ = r
eval (Add e1 e2) x = (eval e1 x) + (eval e2 x)
eval (Mult e1 e2) x = (eval e1 x) * (eval e2 x)
eval (IfLess r e1 e2) x = if x < r then eval e1 x else eval e2 x

lazyppl.bitbucket.io

Random functions  
& program synthesis

data Expr = Var | Constt RealNum | Add Expr Expr | Mult Expr Expr
 | IfLess RealNum Expr Expr

eval :: Expr -> (RealNum -> RealNum)
eval Var x = x
eval (Constt r) _ = r
eval (Add e1 e2) x = (eval e1 x) + (eval e2 x)
eval (Mult e1 e2) x = (eval e1 x) * (eval e2 x)
eval (IfLess r e1 e2) x = if x < r then eval e1 x else eval e2 x

randexpr :: Prob Expr

randprog :: Prob (RealNum -> RealNum)
randprog = do e <- randexpr
 return (eval e)

lazyppl.bitbucket.io

Random functions  
& program synthesisdata Expr = ...

eval :: Expr -> (RealNum -> RealNum)

randexpr :: Prob Expr

randprog :: Prob (RealNum -> RealNum)
randprog = do e <- randexpr
 return (eval e)

lazyppl.bitbucket.io

Random functions  
& program synthesisdata Expr = ...

eval :: Expr -> (RealNum -> RealNum)

randexpr :: Prob Expr

randprog :: Prob (RealNum -> RealNum)
randprog = do e <- randexpr
 return (eval e)

mh
 0
.1
 (
re
gr
es
s
0.
25
 r
an
dp
ro
g
da
ta
se
t)

wiener :: Prob (RealNum -> RealNum)

mh (regress 0.3 wiener dataset)

lazyppl.bitbucket.io

Gaussian processes  
as random functions

Gaussian processes  
as random functions
gprbf :: Prob (RealNum -> RealNum)

mh (regress 0.3 gprbf dataset)

lazyppl.bitbucket.io

Programming language
foundations for statistics

1. Quick look at  
probabilistic programming for statistics

2. Function spaces ... 
 Examples ; higher-order functions

3. ... and understanding them.

4. Symmetries

Piecewise constant regression
Defn. A point process on a is an inhabitant of Prob [a] (or Prob (Bag a)).

Idea: Fit a piecewise constant function  
where the change-points come from a 
point process.

Dash, Staton. ACT 2020.

Piecewise linear regression
Defn. A point process on a is an inhabitant of Prob [a] (or Prob (Bag a)).

Idea: Fit a piecewise linear function  
where the change-points come from a 
point process.

Dash, Staton. ACT 2020.

Piecewise linear regression
Defn. A point process on a is an inhabitant of Prob [a] (or Prob (Bag a)).

Idea: Fit a piecewise linear function  
where the change-points come from a 
point process.

Dash, Staton. ACT 2020.

What is "piecewise"?

Piecewise constant regression
Defn. A point process on a is an inhabitant of Prob [a] (or Prob (Bag a)).

randconst :: Prob (RealNum -> RealNum)
randconst =
 do a <- normal 0 5
 let f x = a
 return f

Piecewise constant regression

randconst :: Prob (RealNum -> RealNum)
randconst =
 do a <- normal 0 5
 let f x = a
 return f

mh (regress 0.1 (splice (poissonPP 0 0.1) randconst) dataset)

Defn. A point process on a is an inhabitant of Prob [a] (or Prob (Bag a)).

lazyppl.bitbucket.io

e.g. poissonPP :: RealNum -> RealNum -> Prob [RealNum]

splice :: Prob [RealNum] ->  
 Prob (RealNum -> RealNum) ->  
 Prob (RealNum -> RealNum)

Piecewise constant regression

mh (regress 0.1 (splice (poissonPP 0 0.1) randlinear) dataset)

Defn. A point process on a is an inhabitant of Prob [a] (or Prob (Bag a)).

lazyppl.bitbucket.io

e.g. poissonPP :: RealNum -> RealNum -> Prob [RealNum]

splice :: Prob [RealNum] ->  
 Prob (RealNum -> RealNum) ->  
 Prob (RealNum -> RealNum)

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

Programming language
foundations for statistics

1. Quick look at  
probabilistic programming for statistics

2. Function spaces ...

3. ... and understanding them. 
 models in the abstract ; quasi-Borel spaces

4. Symmetries

Curry-Howard correspondence

Programming Maths Category
theory Logic

Types Spaces Objects Propositions

Programs Continuous
functions Morphisms Proofs

Probabilistic
programs Measures ? ?

Curry-Howard correspondence

Programming Maths Category
theory Logic

Types Spaces Objects Propositions

Programs Continuous
functions Morphisms Proofs

Probabilistic
programs Measures ? ?

Desiderata for a theory of Prob

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 2
 b <- normal 0 3
 let f x = a*x + b
 return f

Desiderata for a theory of Prob

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 2
 b <- normal 0 3
 let f x = a*x + b
 return f

do b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

Desiderata for a theory of Prob

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 2
 b <- normal 0 3
 let f x = a*x + b
 return f

do b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

Desiderata for a theory of Prob

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

normal

normal

\x ->
a*x + b

a

b

f

0
2

0
3

normal

normal

\x ->
a*x + b

a

b

f

0
2

0
3

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 2
 b <- normal 0 3
 let f x = a*x + b
 return f

do b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

do c <- normal 0 4  
 b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

Desiderata for a theory of Prob

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

Desiderata for a theory of Prob

normal

normal

\x ->
a*x + b

a

b

f

0
3

0
2

normal

normal

\x ->
a*x + b

a

b

f

0
2

0
3

normal
c

0
4

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 2
 b <- normal 0 3
 let f x = a*x + b
 return f

do b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

do c <- normal 0 4  
 b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 2
 b <- normal 0 3
 let f x = a*x + b
 return f

do b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

∫ ∫ k(λx . ax + b) db da ∫ ∫ k(λx . ax + b) da db

Desiderata for a theory of Prob

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

Related to Fubini’s theorem.

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 2
 b <- normal 0 3
 let f x = a*x + b
 return f

do b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

do c <- normal 0 4  
 b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

∫ ∫ k(λx . ax + b) db da ∫ ∫ k(λx . ax + b) da db

∫ ∫ ∫ k(λx . ax + b) da db dc

Desiderata for a theory of Prob

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

Related to Fubini’s theorem.
Also related to  
Cho & Jacobs MSCS 2019. 
Fritz Adv Math 2020.  
Kock TAC 2012

Programming language
foundations for statistics

1. Quick look at  
probabilistic programming for statistics

2. Function spaces ...

3. ... and understanding them. 
 models in the abstract ; quasi-Borel spaces

4. Symmetries

A semantic model:
Quasi-Borel

spaces
Heunen, Kammar, Staton, Yang, LICS 2017

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3, uniform 0 1)

• RealNum -> Prob RealNum contains parameterized
distributions (e.g. normal 0)

• Prob (RealNum -> RealNum) contains random functions 
(e.g. randlinear)

• The dataflow property holds.

Other options:
• Domain-theoretic models;
• Linear-logic based models;
• Topological-domain-based models...

Inspired by:
• Logical relations
• Quasi-topological spaces, diffeological spaces,

sequential spaces...

For now: quasi-Borel spaces
Heunen, Kammar, Staton, Yang, LICS 2017

Goubault-Larrecq/Jia/Théron; Jia/Lindenhovius/Mislove/Zamdzhiev LICS2021

e.g. Ehrhard/Pagani/Tasson 2018 
Dahlqvist/Kozen POPL 2020

e.g. Huang/Morrisett/Spitters

see also Matache, Moss, Staton, LICS 2022

Quasi-Borel spaces

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

 do { r <- uniform ; return (α r) }

Defn. A quasi-Borel space is a set
X equipped with a set of random
elements, such
that…

M ⊆ [ℝ → X]

Heunen, Kammar, Staton, Yang, LICS 2017

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

Quasi-Borel spaces

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

 do { r <- uniform ; return (α r) }

Types : quasi-Borel spaces.

Programs : morphisms, i.e.
functions such thatf : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set
X equipped with a set of random
elements, such
that…

M ⊆ [ℝ → X]

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

Heunen, Kammar, Staton, Yang, LICS 2017

ℝ
α X

f Y

Quasi-Borel spaces

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

 do { r <- uniform ; return (α r) }

Types : quasi-Borel spaces.

Programs : morphisms, i.e.
functions such thatf : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set
X equipped with a set of random
elements, such
that…

M ⊆ [ℝ → X]

Defn. A probability measure on a
qBs is a function in
modulo . 
 

(X, MX) MX
∼

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

Heunen, Kammar, Staton, Yang, LICS 2017

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Quasi-Borel spaces

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

 do { r <- uniform ; return (α r) }

Types : quasi-Borel spaces.

Programs : morphisms, i.e.
functions such thatf : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set
X equipped with a set of random
elements, such
that…

M ⊆ [ℝ → X]

Defn. A probability measure on a
qBs is a function in
modulo . 
 

(X, MX) MX
∼

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

Heunen, Kammar, Staton, Yang, LICS 2017

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Quasi-Borel spaces

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

 do { r <- uniform ; return (α r) }

Types : quasi-Borel spaces.

Programs : morphisms, i.e.
functions such thatf : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set
X equipped with a set of random
elements, such
that…

M ⊆ [ℝ → X]

Defn. A probability measure on a
qBs is a function in
modulo . 
 

(X, MX) MX
∼

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

Heunen, Kammar, Staton, Yang, LICS 2017

-10

-8

-6

-4

-2

0

2

4

6

8

10

00.10.20.30.40.50.60.70.80.91

β

Quasi-Borel spaces

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

 do { r <- uniform ; return (α r) }

Types : quasi-Borel spaces.

Programs : morphisms, i.e.
functions such thatf : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set
X equipped with a set of random
elements, such
that…

M ⊆ [ℝ → X]

Defn. A probability measure on a
qBs is a function in
modulo . 
 

(X, MX) MX
∼

The qBs of reals has
 as the Borel

functions. 

(ℝ, Mℝ)
Mℝ ⊆ [ℝ → ℝ]

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*.

Heunen, Kammar, Staton, Yang, LICS 2017

Quasi-Borel spaces

Types : quasi-Borel spaces.

〖 RealNum 〗

〖 Prob a 〗

Programs : morphisms, i.e.
functions such that

= ℝ

= Pr()

f : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set
X equipped with a set of random
elements, such
that…

M ⊆ [ℝ → X]

Defn. A probability measure on a
qBs is a function in
modulo . 
 

(X, MX) MX
∼

The qBs of reals has
 as the Borel

functions. 

(ℝ, Mℝ)
Mℝ ⊆ [ℝ → ℝ]

〖 a 〗

Heunen, Kammar, Staton, Yang, LICS 2017

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 3
 b <- normal 0 3
 let f x = a*x + b
 return f

do b <- normal 0 3
 a <- normal 0 3
 let f x = a*x + b
 return f

do c <- normal 0 3  
 b <- normal 0 3
 a <- normal 0 3
 let f x = a*x + b
 return f

∫ ∫ k(λx . ax + b) db da ∫ ∫ k(λx . ax + b) da db

∫ ∫ ∫ k(λx . ax + b) da db dc

Desiderata for a theory of Prob

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

Related to Fubini’s theorem.

Theorem. The quasi-Borel space
model satisfies the dataflow
property. Heunen, Kammar, Staton, Yang, LICS 2017

do b <- normal 0 3
 a <- normal 0 3
 let f x = a*x + b
 return f

∫ ∫ k(λx . ax + b) da db

Desiderata for a theory of Prob

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

Related to Fubini’s theorem.

• The probability monad is commutative
and affine.

• The parameterized distributions form  
a monoidal category

cf Kock TAC 2012

cf Fritz Adv Math 2020,  
 Cho & Jacobs MSCS 2019 
 Stein & Staton LICS 2021

Theorem. The quasi-Borel space
model satisfies the dataflow
property.

repeat in quasi-Borel spaces

A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- repeat (bernoulli voteShare)
 return (take 100 votes , (voteShare > 0.5))

no

n-
re

je
ct

ed
 ru

ns

repeat in quasi-Borel spaces

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street  
Open Government Licence v3.0 Win Lose

https://www.nationalarchives.gov.uk/doc/open-government-licence/

model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- repeat (bernoulli voteShare)
 return (take 100 votes , (voteShare > 0.5))

repeat in quasi-Borel spaces

repeat :: Prob a -> Prob [a]

Repeatedly draws from a distribution, forever.

Observation.  
In measure theoretic probability, repeat is defined by
Kolmogorov extension.

model :: Prob ([Bool] , Bool)
model = do
 voteShare <- uniform 0 1
 votes <- repeat (bernoulli vo
 return (take 100 votes , (vot

repeat in quasi-Borel spaces

repeat :: Prob a -> Prob [a]

Repeatedly draws from a distribution, forever.

Observation.  
In measure theoretic probability, repeat is defined by
Kolmogorov extension.

Theorem (summer 2022).  
repeat can be defined for
any quasi-Borel space a.

Programming language
foundations for statistics

1. Quick look at  
probabilistic programming for statistics

2. Function spaces ...

3. ... and understanding them.

4. Symmetries and names

Dataflow symmetries

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 2
 b <- normal 0 3
 let f x = a*x + b
 return f

do b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

normal

normal

\x ->
a*x + b

a

b

f

0
2

0
3

normal

normal

\x ->
a*x + b

a

b

f

0
2

0
3

Dataflow symmetries

Dataflow property:
Program lines can be reordered and discarded  
if dataflow is preserved.

de Finetti (1931):
Independence can be analyzed in
terms of reordering ('exchangeability')

also Jacobs, Staton. CMCS 2020

randlinear :: Prob (RealNum -> RealNum)
randlinear =
 do a <- normal 0 2
 b <- normal 0 3
 let f x = a*x + b
 return f

do b <- normal 0 3
 a <- normal 0 2
 let f x = a*x + b
 return f

Names

Staton

ç

Names
let x = fresh-name() in ...

ç

ç

Chinese restaurant process

😀

Each new customer either sits at a
random table or a new table.  
Chance depends on popularity of tables.

Chinese restaurant process

😀 😀

Each new customer either sits at a
random table or a new table.  
Chance depends on popularity of tables.

Chinese restaurant process

😀 😀😀

Each new customer either sits at a
random table or a new table.  
Chance depends on popularity of tables.

Chinese restaurant process

😀 😀 😀😀

Each new customer either sits at a
random table or a new table.  
Chance depends on popularity of tables.

Chinese restaurant process

😀 😀 😀😀 😀

😀

😀😀

😀

Each new customer either sits at a
random table or a new table.  
Chance depends on popularity of tables.

…

Example: Non-parametric clustering

Non-parametric: we don’t know how many clusters.

Restaurant
metaphor:  
Each point is a
customer, the clusters
are the tables.

😀

…
😀 😀
😀

😀 😀
😀😀

😀
😀

Example: Non-parametric clustering

Non-parametric: we don’t know how many clusters.

Restaurant
metaphor:  
Each point is a
customer, the clusters
are the tables.

😀

…
lazyppl output (MAP)

😀 😀
😀

😀 😀
😀😀

😀
😀

Translation down to traditional prob.

😀 😀Theorem:
1. TFDAE: (a) a functor  
 that preserves colimits and finite limits.
 (b) a measurable space w/ measurable diagonal.
2. A choice of atomless measure on the space induces  
 a symmetric monoidal functor extending , 

R : NomSet → MeasSp

R(𝔸)
R

Kleisli(NameGeneration) → Kleisli(Giry)

So: apply to a nominal
model to get a
measure-theoretic
realization.

R

cf Sabok, Staton, Stein, Wolman, POPL 2021

😀

…
😀 😀
😀

😀 😀
😀😀

😀
😀

Indian buffet process

👷

Each new customer takes a set of dishes.  
Chance depends on popularity of dishes;  
sometimes also take some new dishes.

Griffiths & Ghahramani, JMLR 2011

Indian buffet process

👷
👮

👮

Each new customer takes a set of dishes.  
Chance depends on popularity of dishes;  
sometimes also take some new dishes.

Griffiths & Ghahramani, JMLR 2011

Indian buffet process

👷
👮

👮

👩🎨 👩🎨 👩🎨

Each new customer takes a set of dishes.  
Chance depends on popularity of dishes;  
sometimes also take some new dishes.

Griffiths & Ghahramani, JMLR 2011

Indian buffet process

Each new customer takes a set of dishes.  
Chance depends on popularity of dishes;  
sometimes also take some new dishes.

👷
👮

👮

👩🎨 👩🎨 👩🎨
👩🚒 👩🚒

🦸🦸 🦸

…

…

Griffiths & Ghahramani, JMLR 2011

Indian buffets for feature extraction
Example: what are the different features of the
countries of the world?

Indian buffets for feature extraction
Example: what are the different features of the
countries of the world?
Restaurant
metaphor:  
Each country is a
customer, the features
are the dishes that they
take.

Given experimental data where
people say which countries are
similar, what are the features? …

Navarro & Griffiths, NeurIPS 2006

Indian buffets for feature extraction
Example: what are the different features of the
countries of the world?
Restaurant
metaphor:  
Each country is a
customer, the features
are the dishes that they
take.

Given experimental data where
people say which countries are
similar, what are the features?

lazyppl output (MAP)Navarro & Griffiths, NeurIPS 2006

Translation down to traditional prob.

😀 😀Theorem:
1. TFDAE: (a) a functor  
 that preserves colimits and finite limits.
 (b) a measurable space w/ measurable diagonal.
2. A choice of atomless measure on the space induces  
 a symmetric monoidal functor extending , 

R : NomSet → MeasSp

R(𝔸)
R

Kleisli(NameGeneration) → Kleisli(Giry)

So: apply to a nominal
model to get a
measure-theoretic
realization.

R

cf Sabok, Staton, Stein, Wolman, POPL 2021

…

Translation down to traditional prob.

😀 😀Theorem:
1. TFDAE: (a) a functor  
 that preserves colimits and finite limits.
 (b) a measurable space w/ measurable diagonal.
2. A choice of atomless measure on the space induces  
 a symmetric monoidal functor extending , 

R : NomSet → MeasSp

R(𝔸)
R

Kleisli(NameGeneration) → Kleisli(Giry)

So: apply to a nominal
model to get a
measure-theoretic
realization.

R

cf Sabok, Staton, Stein, Wolman, POPL 2021

…
Challenge:  
New symmetries,  
new programs:  
new statistical models

Programming language
foundations  
for statistics

1. Quick look at  
probabilistic programming for statistics

2. Function spaces ...

3. ... and understanding them.

4. Symmetries and names

ML / stats apps Foundational

High level ✔ ✔
Low level ✔ ✔

