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High level view: poll example
A very simple model deducing chance of win from poll.

Question:  
A quick poll gives 51:49 votes. What is the chance of 
winning?
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High level view: poll example
A very simple model deducing chance of win from poll.

Question:  
A quick poll gives 51:49 votes. What is the chance of 
winning?

Clue: it’s not 51%!
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High level view: poll example
A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  votes <- repeat (bernoulli voteShare)
  return (take 100 votes , (voteShare > 0.5))

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street  
Open Government Licence v3.0

https://www.nationalarchives.gov.uk/doc/open-government-licence/


High level view: poll example
A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  votes <- repeat (bernoulli voteShare)
  return (take 100 votes , (voteShare > 0.5))

Crude rejection sampling Monte Carlo:
• Run 1000000s of times, each time 

getting (poll result, win?)


• Reject the runs that mis-predict poll


• What proportion of the remainder 
are winners?

Win Lose
# 

no
n-

re
je

ct
ed

 ru
ns



High level view: poll example
A very simple model deducing chance of win from poll.

Crude rejection sampling Monte Carlo:
• Run 1000000s of times, each time 

getting (poll result, win?)


• Reject the runs that mis-predict poll


• What proportion of the remainder 
are winners?

Win Lose
# 

no
n-

re
je

ct
ed

 ru
ns

Question:  
A quick poll gives 51:49 votes. What is the chance of 
winning?  
Answer:  0.579.



High level view: poll example
A very simple model deducing chance of win from poll.

Question:  
A quick poll gives 51:49 votes. What is the chance of 
winning?  
Answer:  0.579.

(See Andrew Gelman and coauthors for a proper discussion of using PPL for election modelling.)
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Probabilistic programming  
in practice

Stan

Church,  
Anglican, 
Hakaru, 
MonadBayes, 
Gen...
LazyPPL
https://lazyppl.bitbucket.io

Applications to  
social science, 
biology,  
physical sciences,
machine learning

...
Dash, Kaddar, Paquet, Staton, POPL 2023
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Low level e.g. machine code, 
       Boolean circuits

High level e.g. higher-order functions 
       abstract types
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Abstraction in  
probabilistic programming

Low level e.g. bets, frequencies, decisions 
       Monte Carlo simulation

High level e.g. infinite dimensional systems
       higher-order functions 
       abstract types

ML / stats apps Foundational

High level ✔ ✔
Low level ✔ ✔
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winning?  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Towards weighted sampling
A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  votes <- repeat (bernoulli voteShare)
  return (take 100 votes , (voteShare > 0.5))
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Towards weighted sampling
A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  votes <- repeat (bernoulli voteShare)
  return (take 100 votes , (voteShare > 0.5))



likelihood(v) = v51(1 − v)49

model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  forM poll (\actualVote-> 
      score (bernoulliPdf voteShare actualVote))  
  return (voteShare > 0.5)

Weighted sampling



model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  forM poll (\actualVote-> 
      score (bernoulliPdf voteShare actualVote))  
  return (voteShare > 0.5)

Weighted sampling

Weighted Monte Carlo:
• Run 1000000s of times, each time  

getting (win?)


• Each time pick a voteShare, and  
weight by the likelihood.


• Find weighted proportion of winners. Win Lose
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Weighted sampling

Area under curve = 

Green proportion (win) 

49! 51!
101!

≈ 0.579
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likelihood(v) = v51(1 − v)49

model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  forM poll (\actualVote-> 
      score (bernoulliPdf voteShare actualVote))  
  return (voteShare > 0.5)
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       Monte Carlo simulation
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Random linear functions
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type RealNum = Double lazyppl.bitbucket.io

randlinear :: Prob (RealNum , RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     return (a,b)



Random linear functions

type RealNum = Double lazyppl.bitbucket.io

We will use this for a 
regression problem:

which function 
probably generated 
these points? 

randlinear :: Prob (RealNum , RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     return (a,b)
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Random linear functions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     let f x = a*x + b
     return f
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Random linear functions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     let f x = a*x + b
     return f
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Bayesian regression

mh (regress 0.1 randlinear dataset)

randlinear :: Prob (RealNum -> RealNum)

regress :: RealNum -> Prob (a -> RealNum) -> [(a,RealNum)] -> Meas (a -> RealNum)
regress sigma prior dataset =
  do f <- sample prior
     forM dataset (\(x,y) -> score $ normalPdf (f x) sigma y) 
     return f

lazyppl includes a type 
     Meas a  
of unnormalized 
measures and 
     mh  
a Metropolis-Hastings 
inference method. lazyppl.bitbucket.io



Random linear functions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     let f x = a*x + b
     return f

f 
x

x 100 samples



Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     let f x = a*x + b
     return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3,  uniform 0 1)

• Prob Bool contains probability distributions like bernoulli 0.5

lazyppl.bitbucket.io
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Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     let f x = a*x + b
     return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3,  uniform 0 1)

• normal :: RealNum -> RealNum -> Prob RealNum  
is a parameterized distribution

• bernoulli :: RealNum -> Prob Bool  
is a parameterized distribution too

lazyppl.bitbucket.io
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Types as spaces of distributions
randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     let f x = a*x + b
     return f

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3,  uniform 0 1)

• RealNum -> Prob RealNum contains parameterized 
distributions (e.g. normal 0)

• Prob (RealNum -> RealNum) contains random functions 
(e.g. randlinear)

• Prob (Prob Bool) contains random distributions, etc..

Challenge:  
Aumann (1961) showed 
that measure-theoretic 
probability does not support 
function spaces properly!



Random functions  
& program synthesis

data Expr = Var | Constt RealNum | Add Expr Expr | Mult Expr Expr
          | IfLess RealNum Expr Expr

eval :: Expr -> (RealNum -> RealNum)
eval Var x = x
eval (Constt r) _ = r
eval (Add e1 e2) x = (eval e1 x) + (eval e2 x)
eval (Mult e1 e2) x = (eval e1 x) * (eval e2 x)
eval (IfLess r e1 e2) x = if x < r then eval e1 x else eval e2 x

lazyppl.bitbucket.io



Random functions  
& program synthesis

data Expr = Var | Constt RealNum | Add Expr Expr | Mult Expr Expr
          | IfLess RealNum Expr Expr

eval :: Expr -> (RealNum -> RealNum)
eval Var x = x
eval (Constt r) _ = r
eval (Add e1 e2) x = (eval e1 x) + (eval e2 x)
eval (Mult e1 e2) x = (eval e1 x) * (eval e2 x)
eval (IfLess r e1 e2) x = if x < r then eval e1 x else eval e2 x

randexpr :: Prob Expr

randprog :: Prob (RealNum -> RealNum)
randprog = do e <- randexpr 
              return (eval e)
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Random functions  
& program synthesisdata Expr = ...

eval :: Expr -> (RealNum -> RealNum)

randexpr :: Prob Expr

randprog :: Prob (RealNum -> RealNum)
randprog = do e <- randexpr 
              return (eval e)
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Random functions  
& program synthesisdata Expr = ...

eval :: Expr -> (RealNum -> RealNum)

randexpr :: Prob Expr

randprog :: Prob (RealNum -> RealNum)
randprog = do e <- randexpr 
              return (eval e)
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wiener :: Prob (RealNum -> RealNum)
  

mh (regress 0.3 wiener dataset)

lazyppl.bitbucket.io

Gaussian processes  
as random functions



Gaussian processes  
as random functions
gprbf :: Prob (RealNum -> RealNum)
  

mh (regress 0.3 gprbf dataset)

lazyppl.bitbucket.io
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Piecewise constant regression
Defn. A point process on a is an inhabitant of Prob [a]  (or Prob (Bag a)).

    
Idea: Fit a piecewise constant function  
where the change-points come from a 
point process.

Dash, Staton. ACT 2020.



Piecewise linear regression
Defn. A point process on a is an inhabitant of Prob [a]  (or Prob (Bag a)).

    
Idea: Fit a piecewise linear function  
where the change-points come from a 
point process.

Dash, Staton. ACT 2020.



Piecewise linear regression
Defn. A point process on a is an inhabitant of Prob [a]  (or Prob (Bag a)).

    
Idea: Fit a piecewise linear function  
where the change-points come from a 
point process.

Dash, Staton. ACT 2020.

What is "piecewise"?



Piecewise constant regression
Defn. A point process on a is an inhabitant of Prob [a]  (or Prob (Bag a)).

randconst :: Prob (RealNum -> RealNum)
randconst =
  do a <- normal 0 5 
     let f x = a
     return f



Piecewise constant regression

randconst :: Prob (RealNum -> RealNum)
randconst =
  do a <- normal 0 5 
     let f x = a
     return f

mh (regress 0.1 (splice (poissonPP 0 0.1) randconst) dataset)

Defn. A point process on a is an inhabitant of Prob [a]  (or Prob (Bag a)).

lazyppl.bitbucket.io

    
e.g. poissonPP :: RealNum -> RealNum -> Prob [RealNum]

splice :: Prob [RealNum] ->  
          Prob (RealNum -> RealNum) ->  
          Prob (RealNum -> RealNum)



Piecewise constant regression

mh (regress 0.1 (splice (poissonPP 0 0.1) randlinear) dataset)

Defn. A point process on a is an inhabitant of Prob [a]  (or Prob (Bag a)).

lazyppl.bitbucket.io

    
e.g. poissonPP :: RealNum -> RealNum -> Prob [RealNum]

splice :: Prob [RealNum] ->  
          Prob (RealNum -> RealNum) ->  
          Prob (RealNum -> RealNum)

randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     let f x = a*x + b
     return f
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Types Spaces Objects Propositions

Programs Continuous 
functions Morphisms Proofs

Probabilistic 
programs Measures ? ?



Desiderata for a theory of Prob

Dataflow property: 
Program lines can be reordered and discarded  
if dataflow is preserved. 



randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 2 
     b <- normal 0 3 
     let f x = a*x + b
     return f
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randlinear =
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     b <- normal 0 3 
     let f x = a*x + b
     return f

do b <- normal 0 3 
   a <- normal 0 2 
   let f x = a*x + b
   return f
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randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 2
     b <- normal 0 3 
     let f x = a*x + b
     return f

do b <- normal 0 3 
   a <- normal 0 2
   let f x = a*x + b
   return f

do c <- normal 0 4  
   b <- normal 0 3 
   a <- normal 0 2 
   let f x = a*x + b
   return f

Desiderata for a theory of Prob

Dataflow property: 
Program lines can be reordered and discarded  
if dataflow is preserved. 



Dataflow property: 
Program lines can be reordered and discarded  
if dataflow is preserved. 

Desiderata for a theory of Prob
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randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 2
     b <- normal 0 3 
     let f x = a*x + b
     return f

do b <- normal 0 3 
   a <- normal 0 2
   let f x = a*x + b
   return f

do c <- normal 0 4  
   b <- normal 0 3 
   a <- normal 0 2 
   let f x = a*x + b
   return f



 

 

randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 2 
     b <- normal 0 3 
     let f x = a*x + b
     return f

do b <- normal 0 3 
   a <- normal 0 2 
   let f x = a*x + b
   return f

∫ ∫ k(λx . ax + b) db da ∫ ∫ k(λx . ax + b) da db

Desiderata for a theory of Prob

Dataflow property: 
Program lines can be reordered and discarded  
if dataflow is preserved. 

Related to Fubini’s theorem.



 

 

 

 

randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 2 
     b <- normal 0 3 
     let f x = a*x + b
     return f

do b <- normal 0 3 
   a <- normal 0 2 
   let f x = a*x + b
   return f

do c <- normal 0 4  
   b <- normal 0 3 
   a <- normal 0 2 
   let f x = a*x + b
   return f

∫ ∫ k(λx . ax + b) db da ∫ ∫ k(λx . ax + b) da db

∫ ∫ ∫ k(λx . ax + b) da db dc

Desiderata for a theory of Prob

Dataflow property: 
Program lines can be reordered and discarded  
if dataflow is preserved. 

Related to Fubini’s theorem.
Also related to  
Cho & Jacobs MSCS 2019. 
Fritz Adv Math 2020.  
Kock TAC 2012
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A semantic model:
Quasi-Borel 

spaces
Heunen, Kammar, Staton, Yang, LICS 2017

There’s a type constructor Prob (a monad), and…

• Prob RealNum contains probability distributions  
(e.g. normal 0 3,  uniform 0 1)

• RealNum -> Prob RealNum contains parameterized 
distributions (e.g. normal 0)

• Prob (RealNum -> RealNum) contains random functions 
(e.g. randlinear)

• The dataflow property holds.



Other options:
• Domain-theoretic models;
• Linear-logic based models;
• Topological-domain-based models...

Inspired by:
• Logical relations
• Quasi-topological spaces, diffeological spaces, 

sequential spaces...

For now: quasi-Borel spaces
Heunen, Kammar, Staton, Yang, LICS 2017

Goubault-Larrecq/Jia/Théron; Jia/Lindenhovius/Mislove/Zamdzhiev LICS2021

e.g. Ehrhard/Pagani/Tasson 2018 
Dahlqvist/Kozen POPL 2020

e.g. Huang/Morrisett/Spitters

see also Matache, Moss, Staton, LICS 2022



Quasi-Borel spaces

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*. 

 do { r <- uniform ; return (α r) }

Defn. A quasi-Borel space is a set 
X equipped with a set of random 
elements,  such 
that…

M ⊆ [ℝ → X]

Heunen, Kammar, Staton, Yang, LICS 2017

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*. 



Quasi-Borel spaces

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*. 

 do { r <- uniform ; return (α r) }

Types : quasi-Borel spaces.

Programs : morphisms, i.e. 
functions  such thatf : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set 
X equipped with a set of random 
elements,  such 
that…

M ⊆ [ℝ → X]

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*. 

Heunen, Kammar, Staton, Yang, LICS 2017

ℝ
α X

f Y



Quasi-Borel spaces

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*. 

 do { r <- uniform ; return (α r) }

Types : quasi-Borel spaces.

Programs : morphisms, i.e. 
functions  such thatf : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set 
X equipped with a set of random 
elements,  such 
that…

M ⊆ [ℝ → X]

Defn. A probability measure on a 
qBs  is a function in  
modulo . 
 

(X, MX) MX
∼

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*. 

Heunen, Kammar, Staton, Yang, LICS 2017
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Quasi-Borel spaces
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Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*. 

 do { r <- uniform ; return (α r) }

Types : quasi-Borel spaces.

Programs : morphisms, i.e. 
functions  such thatf : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set 
X equipped with a set of random 
elements,  such 
that…

M ⊆ [ℝ → X]

Defn. A probability measure on a 
qBs  is a function in  
modulo . 
 

(X, MX) MX
∼

The qBs of reals  has 
 as the Borel 

functions. 

(ℝ, Mℝ)
Mℝ ⊆ [ℝ → ℝ]

Lemma. One uniform distribution  
is sufficient to generate all probability  
measures*. 

Heunen, Kammar, Staton, Yang, LICS 2017



Quasi-Borel spaces

Types : quasi-Borel spaces.

〖 RealNum 〗

〖 Prob a 〗

Programs : morphisms, i.e. 
functions  such that

= ℝ

= Pr( )

f : X → Y

f ∘ MX ⊆ MY

Defn. A quasi-Borel space is a set 
X equipped with a set of random 
elements,  such 
that…

M ⊆ [ℝ → X]

Defn. A probability measure on a 
qBs  is a function in  
modulo . 
 

(X, MX) MX
∼

The qBs of reals  has 
 as the Borel 

functions. 

(ℝ, Mℝ)
Mℝ ⊆ [ℝ → ℝ]

〖 a 〗

Heunen, Kammar, Staton, Yang, LICS 2017



 

 

 

 

randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 3 
     b <- normal 0 3 
     let f x = a*x + b
     return f

do b <- normal 0 3 
   a <- normal 0 3 
   let f x = a*x + b
   return f

do c <- normal 0 3  
   b <- normal 0 3 
   a <- normal 0 3 
   let f x = a*x + b
   return f

∫ ∫ k(λx . ax + b) db da ∫ ∫ k(λx . ax + b) da db

∫ ∫ ∫ k(λx . ax + b) da db dc

Desiderata for a theory of Prob

Dataflow property: 
Program lines can be reordered and discarded  
if dataflow is preserved. 

Related to Fubini’s theorem.

Theorem. The quasi-Borel space 
model satisfies the dataflow 
property. Heunen, Kammar, Staton, Yang, LICS 2017



 

 

do b <- normal 0 3 
   a <- normal 0 3 
   let f x = a*x + b
   return f

∫ ∫ k(λx . ax + b) da db

Desiderata for a theory of Prob

Dataflow property: 
Program lines can be reordered and discarded  
if dataflow is preserved. 

Related to Fubini’s theorem.

• The probability monad is commutative 
and affine. 

• The parameterized distributions form  
a monoidal category 

cf Kock TAC 2012

cf Fritz Adv Math 2020,  
    Cho & Jacobs MSCS 2019 
    Stein & Staton LICS 2021

Theorem. The quasi-Borel space 
model satisfies the dataflow 
property. 



repeat in quasi-Borel spaces



A very simple model deducing chance of win from poll.
model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  votes <- repeat (bernoulli voteShare)
  return (take 100 votes , (voteShare > 0.5))
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repeat in quasi-Borel spaces

Simon Walker / HM Treasury & Simon Dawson / No10 Downing Street  
Open Government Licence v3.0 Win Lose
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model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  votes <- repeat (bernoulli voteShare)
  return (take 100 votes , (voteShare > 0.5))

repeat in quasi-Borel spaces

repeat :: Prob a -> Prob [a]

Repeatedly draws from a distribution, forever.

Observation.  
In measure theoretic probability, repeat is defined by 
Kolmogorov extension. 



model :: Prob ([Bool] , Bool)
model = do
  voteShare <- uniform 0 1
  votes <- repeat (bernoulli vo
  return (take 100 votes , (vot

repeat in quasi-Borel spaces

repeat :: Prob a -> Prob [a]

Repeatedly draws from a distribution, forever.

Observation.  
In measure theoretic probability, repeat is defined by 
Kolmogorov extension. 

Theorem (summer 2022).  
repeat can be defined for 
any quasi-Borel space a.



Programming language 
foundations for statistics

1. Quick look at  
probabilistic programming for statistics

2. Function spaces ...

3. ... and understanding them.

4. Symmetries and names



Dataflow symmetries

Dataflow property: 
Program lines can be reordered and discarded  
if dataflow is preserved. 

randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 2 
     b <- normal 0 3 
     let f x = a*x + b
     return f

do b <- normal 0 3 
   a <- normal 0 2 
   let f x = a*x + b
   return f

normal

normal

\x -> 
a*x + b

a

b

f

0
2

0
3

normal

normal

\x -> 
a*x + b

a

b

f

0
2

0
3



Dataflow symmetries

Dataflow property: 
Program lines can be reordered and discarded  
if dataflow is preserved. 

de Finetti (1931):
Independence can be analyzed in 
terms of reordering ('exchangeability')

also Jacobs, Staton. CMCS 2020

randlinear :: Prob (RealNum -> RealNum)
randlinear =
  do a <- normal 0 2 
     b <- normal 0 3 
     let f x = a*x + b
     return f

do b <- normal 0 3 
   a <- normal 0 2 
   let f x = a*x + b
   return f



Names

Staton

ç



Names
let x = fresh-name() in ...

ç

ç



Chinese restaurant process

😀

Each new customer either sits at a 
random table or a new table.  
Chance depends on popularity of tables. 
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😀

😀😀

😀

Each new customer either sits at a 
random table or a new table.  
Chance depends on popularity of tables. 

…



Example: Non-parametric clustering

Non-parametric: we don’t know how many clusters. 

Restaurant 
metaphor:  
Each point is a 
customer, the clusters 
are the tables. 

😀

…
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Example: Non-parametric clustering

Non-parametric: we don’t know how many clusters. 

Restaurant 
metaphor:  
Each point is a 
customer, the clusters 
are the tables. 

😀

…
lazyppl output (MAP)
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😀
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😀😀
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Translation down to traditional prob.

😀 😀Theorem: 
1. TFDAE: (a) a functor   
                        that preserves colimits and finite limits.
                  (b) a measurable space w/ measurable diagonal.
2. A choice of atomless measure on the space   induces  
    a symmetric monoidal functor extending , 
     

R : NomSet → MeasSp

R(𝔸)
R

Kleisli(NameGeneration) → Kleisli(Giry)

So: apply  to a nominal 
model to get a 
measure-theoretic 
realization. 

R

cf Sabok, Staton, Stein, Wolman, POPL 2021
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…
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😀

😀 😀
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Indian buffet process

👷

Each new customer takes a set of dishes.  
Chance depends on popularity of dishes;  
sometimes also take some new dishes. 

Griffiths & Ghahramani, JMLR 2011
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Indian buffet process

Each new customer takes a set of dishes.  
Chance depends on popularity of dishes;  
sometimes also take some new dishes. 

👷
👮

👮

👩🎨 👩🎨 👩🎨
👩🚒 👩🚒

🦸🦸 🦸

…

…

Griffiths & Ghahramani, JMLR 2011



Indian buffets for feature extraction 
Example: what are the different features of the 
countries of the world? 



Indian buffets for feature extraction 
Example: what are the different features of the 
countries of the world? 
Restaurant 
metaphor:  
Each country is a 
customer, the features 
are the dishes that they 
take. 

Given experimental data where 
people say which countries are 
similar, what are the features? …

Navarro & Griffiths, NeurIPS 2006
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metaphor:  
Each country is a 
customer, the features 
are the dishes that they 
take. 

Given experimental data where 
people say which countries are 
similar, what are the features? 

lazyppl output (MAP)Navarro & Griffiths, NeurIPS 2006



Translation down to traditional prob.

😀 😀Theorem: 
1. TFDAE: (a) a functor   
                        that preserves colimits and finite limits.
                  (b) a measurable space w/ measurable diagonal.
2. A choice of atomless measure on the space   induces  
    a symmetric monoidal functor extending , 
     

R : NomSet → MeasSp

R(𝔸)
R

Kleisli(NameGeneration) → Kleisli(Giry)

So: apply  to a nominal 
model to get a 
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realization. 

R

cf Sabok, Staton, Stein, Wolman, POPL 2021
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😀 😀Theorem: 
1. TFDAE: (a) a functor   
                        that preserves colimits and finite limits.
                  (b) a measurable space w/ measurable diagonal.
2. A choice of atomless measure on the space   induces  
    a symmetric monoidal functor extending , 
     

R : NomSet → MeasSp

R(𝔸)
R

Kleisli(NameGeneration) → Kleisli(Giry)

So: apply  to a nominal 
model to get a 
measure-theoretic 
realization. 

R

cf Sabok, Staton, Stein, Wolman, POPL 2021

…
Challenge:  
New symmetries,  
new programs:  
new statistical models



Programming language 
foundations  
for statistics

1. Quick look at  
probabilistic programming for statistics

2. Function spaces ...

3. ... and understanding them.

4. Symmetries and names

ML / stats apps Foundational

High level ✔ ✔
Low level ✔ ✔


