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Introduction



Genesis

Model Checking and Theorem Proving are two techniques 

proposed to help designers and developers in producing a 

software that is correct

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck. 
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.



Genesis

Model Checking
M: model of the system 
!: property of interest

M ⊧ !
yes
no + counterexample

Theorem Proving
M: model of the system 
!: property of interest
  M ⊧ !
yes + proof
no

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck. 
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.



Preliminaries

Model Checking + Theorem Proving
M: model of the system

!: property of interest
M ⊧ !

yes + proof
no + counterexample

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck. 
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.



Preliminaries

Model Checking + Theorem Proving
M: model of the system

!: property of interest
M ⊧ !

yes + proof
no + counterexample

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck. 
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.

Assumption: the model M of the system is completely 
specified, i.e., it is a definitive model



Partial Models

However, in practice, models can be only 
partially specified or incomplete



Partial Models (Formal Methods)

• A modal process logic
Larsen, Kim G., and Bent Thomsen. 
Logic in Computer Science, 1988

• Model checking partial state spaces with 3-valued temporal logics
G Bruns, P Godefroid
Computer Aided Verification,1999

• Multi-valued model checking via classical model checking.
Gurfinkel, Arie, and Marsha Chechk. 
Lecture notes in computer science 2003

• Dealing with Incompleteness in Automata-Based Model Checking
C Menghi, P Spoletini, C Ghezzi
Formal Methods, 2016



Partial Models (Software Engineering)

• Managing design-time uncertainty
Michalis Famelis· Marsha Chechik. 
Software & Systems Modeling, 2017.

• Partial models: Towards modeling and reasoning with uncertainty
M Famelis, R Salay, M Chechik
Software Engineering (ICSE), 2012

• Synthesis of partial behavior models from properties and scenarios
S Uchitel, G Brunet, M Chechik
IEEE Transactions on Software Engineering, 2009



Partial Models (Requirements Engineering)

• Supporting early decisionmaking in the presence of uncertainty.
Horkoff, J., Salay, R., Chechik, M., Di Sandro, A.: 
Requirements Engineering Conference, 2014

• Integrating Goal Model Analysis with Iterative Design
C Menghi, P Spoletini, C Ghezzi
International Working Conference on Requirements Engineering: 
Foundation for Software Quality, 2017



Running Example



Running Example



Running Example

- When the light is red, it will always be green 

- Red lights up infinitely often

- Green lights up infinitely often



Problem Statement

Question
How to help designers in producing correct
software with model checking and theorem 

providing results for partial models?

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck. 
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.
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Contribution (THRIVE) 

- THRIVE: THRee valued Integrated Verification framEwork for partial models. 
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always be green 

- THRIVE: THRee valued Integrated Verification framEwork for partial models. 
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Contribution (THRIVE)

- THRIVE: THRee valued Integrated Verification framEwork for partial 

models. 



Contribution (THRIVE)

- THRIVE: THRee valued Integrated Verification framEwork for partial 

models. 

- Red lights up infinitely often 
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An instance of THRIVE

• Model of the system: 

Partial Kripke Structures (PKS) 

• Property of interest: 

Linear Time Temporal Logic (LTL)



An instance of THRIVE

• Two possible semantics of LTL over PKS can be considered

• Three-valued semantics: it is based on information ordering T>?>⟘

• Thorough semantics: it is based on the notion of refinement

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

Generalized model checking: reasoning about partial state spaces
Bruns, G., Godefroid, P.
CONCUR 2000



An instance of THRIVE: Model checking

Two possible semantics of LTL over PKS can be considered

Model checking Result

Three-Valued
faster (it exploits two runs of 
classical model checkers)

Not "correct" when ? is returned

Thorough
slower (it requires more complex 
verification procedures)

Correct

Generalized model checking: reasoning about partial state spaces

Bruns, G., Godefroid, P.

Model checking partial state spaces with 3-valued temporal logics.

Bruns, G., Godefroid, P.

CAV 1999

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

Generalized model checking: reasoning about partial state spaces
Bruns, G., Godefroid, P.
CONCUR 2000
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An instance of THRIVE: Model checking

The three-valued model checking can be solved as follows

Model checking partial state spaces with 3-valued temporal logics.
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An instance of THRIVE: Model checking

The three-valued model checking can be solved as follows

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

I do my best to 
violate the 
property



An instance of THRIVE: Model checking

The three-valued model checking can be solved as follows

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

I do my best to 
satisfy the 
property



An instance of THRIVE: Model checking

The three-valued model checking can be solved as follows

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

If none of the 
previous condition 

holds



An instance of THRIVE: Theorem Proving

The deductive verification framework produces a proof which 

explains why M ⊧ φ 

• it identifies failed states
• it applies a set of deduction rules

(successors, induction, conjunction rule)

From model checking to a temporal proof.
Peled, Doron, and Lenore Zuck. 
Proceedings of the 8th international SPIN workshop on Model checking of software. 2001.
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An instance of THRIVE: Running example 

- When the light is red, it will always be green

T
T



An instance of THRIVE: Running example 

- Green lights up infinitely often

⟘
⟘

T
T



An instance of THRIVE: Running example

- Red lights up infinitely often

⟘
⟘

T
T



An instance of THRIVE: Model checking

Two possible semantics of LTL over PKS can be considered

Model checking Result

Three-Valued
faster (it exploits two runs of 
classical model checkers)

Not correct when ? is returned

Thorough
slower (it requires more complex 
verification procedures)

Correct

Generalized model checking: reasoning about partial state spaces

Bruns, G., Godefroid, P.

Model checking partial state spaces with 3-valued temporal logics.

Bruns, G., Godefroid, P.

CAV 1999

Model checking partial state spaces with 3-valued temporal logics.
Bruns, G., Godefroid, P.
CAV 1999

Generalized model checking: reasoning about partial state spaces
Bruns, G., Godefroid, P.
CONCUR 2000



An instance of THRIVE:  Correctness

•What about the thorough semantics?

•In many practically interesting cases, the thorough 
semantics is not more precise than the three-valued*

•If the LTL formula is Self-minimizing the result is 
correct**

*  How thorough is thorough enough?
    Gurfinkel, A., Chechik, M. 
    CHARME 2005

**Model checking vs. generalized model checking: 
   semantic minimizations for temporal logics
    Godefroid, P., Huth, M. 
    Logic in Computer Science, 2005



An instance of THRIVE:  Correctness

• most of the patterns proposed in literature are expressed 

using self-minimising formulae *

• if satisfies some constraints (sufficient conditions) then it 

is self-minimizing **

*   Model checking vs. generalized model checking: semantic minimizations for temporal logics. 
Godefroid, P., Huth, M.
Logic in Computer Science

**   Efficient patterns for model checking partial state spaces in CTL ∩ LTL
Antonik, A., Huth, M
Notes Theor. Comput. Sci
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Preliminary Evaluation

RQ: How effective is THRIVE w.r.t. incremental development? 



Preliminary Evaluation

• we simulated the design of a critical software system*

• the system is used by physicians to check visual problems

*    P. Arcaini, S. Bonfanti, A. Gargantini, A. Mashkoor, and E. Riccobene. 
Formal validation and verification of a medical software critical component. 
In Formal Methods and Models for Codesign, pages 80–89. IEEE, 2015. 



Preliminary Evaluation

• We designed three properties that the system has to satisfy 

following well-known property patterns**

• We created an abstraction of the final model

• We checked how THRIVE supports incremental development

**  M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. 
Property specification patterns for finite-state verification. 
In Proceedings of the second workshop on Formal methods in software practice, pages 7–15. ACM, 1998. 



Preliminary Evaluation

For property ψ1, THRIVE returns a definitive counterexample 
showing the reason for the violation. 

The property is wrong.



Preliminary Evaluation

For property ψ2, THRIVE returns the T value, since the 
property is satisfied. 

The proof enabled us understanding the reason for the 
satisfaction.



Preliminary Evaluation

For property ψ3, THRIVE returns the value ? and 
• a possible counterexample shows the violation for the 

pessimistic approximation
• The possible proof shows why the property of interest is 

satisfied on the optimistic approximation
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Lessons learned



Lessons learned

Creating new instances of THRIVE is not easy!

• Choose/define a semantics of formulae on partial models 

is not easy 

• it influences the model checker and the theorem improving 

that can be used



Lessons learned

• The selection of the model checkers and the theorem 
proving to be combined must be done carefully to 
ensure the correctness of the obtained framework

• The selected model checker/theorem prover may be 
changed to be successfully combined
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Conclusions



Conclusions and Future Work

• We propose THRIVE

• We show an instance of THRIVE that considers PKS and LTL

• We assess effectiveness on a simulated experiment



Conclusions and Future Work

Future Work: integrate THRIVE on top of existing 
theorem provers and model checkers
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Introduction



Motivation

From model checking to a temporal proof for partial models
A Bernasconi, C Menghi, P Spoletini, LD Zuck, C Ghezzi
International Conference on Software Engineering and Formal Methods (SEFM), 2017

Model Checking + Theorem Proving

M: partial model 

ϕ: property 

THRIVE: THRee valued Integrated Verification framEwork for partial models. 

M ⊧ ϕ
No (⊥)  + counterexample Yes (⊤)  + definitive proof

Maybe (?) + possible counterexample and proof



Motivation

From model checking to a temporal proof for partial models
A Bernasconi, C Menghi, P Spoletini, LD Zuck, C Ghezzi
International Conference on Software Engineering and Formal Methods (SEFM), 2017

Model Checking + Theorem Proving

M: partial model 

ϕ: property 

THRIVE: THRee valued Integrated Verification framEwork for partial models. 

M ⊧ ϕ
No (⊥)  + counterexample Yes (⊤)  + definitive proof

Maybe (?) + possible counterexample and proof

Deductive Proofs



Motivation

Deductive proofs

• are usually difficult to understand

• their size significantly grows with the size of the model analysed



Motivation

How could we provide more effective support and 
guidance to engineers when properties of interest 

are satisfied or possibly satisfied?
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Running Example



Vacuum-cleaner robot



Vacuum-cleaner robot: Initial Design



Vacuum-cleaner robot: Initial Design

⊤: satisfied

?

?

?: possibly satisfied

⊥: violated⊥: violated

⊥⊤



Vacuum-cleaner robot: Revision

• During a revision, an engineer can:

• add/remove states

• add/remove transitions

• change the values of the propositions



Vacuum-cleaner robot: Revision
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Topological Proofs

A topological proof is a slice of the model 
that witnesses property satisfaction



Topological Proofs

A topological proof is a slice of the model 
that witnesses property satisfaction

If the engineer does not modify elements of the 
models in the topological proof,                                                            

then the revision will not violate the property



TOrPEDO



TOrPEDO



TOrPEDO



TOrPEDO



TOrPEDO



TOrPEDO



TOrPEDO



TOrPEDO
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Topological Proofs

A topological proof is a slice of the model 
that witnesses property satisfaction



Topological Proofs 

Propositional Clause (TPP)

⟨CLEANING, reached, ⊤⟩
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Topological Proofs 

Propositional Clause (TPP)

⟨CLEANING, reached, ⊤⟩



Topological Proofs 

Propositional Clause (TPP)

⟨CLEANING, reached, ⊤⟩



Topological Proofs 

Transitions-from-state Clause (TPT)

⟨MOVING,{MOVING,CLEANING}⟩



Topological Proofs 

Transitions-from-state Clause (TPT)

⟨MOVING,{MOVING,CLEANING}⟩



Topological Proofs 

Transitions-from-state Clause (TPT)

⟨MOVING,{MOVING,CLEANING}⟩



Topological Proofs

Initial-states Clause (TPI)

⟨{OFF}⟩ 



Topological Proofs

Initial-states Clause (TPI)

⟨{OFF}⟩ 



Topological Proofs



Topological Proofs

• Revision rules. An engineer should not

• add or remove transitions whose source state is in a 
transition included in the TPT-clauses; 

• change the value of propositions that are in a TPP-clause; 

• remove states that are in any TPT, TPP, or TPI clause; 

• change the initial states if they are in a TPI-clause.



Topological Proofs

If the engineer follows the revision rules,                                                            
then the revision will not violate the property



Vacuum-cleaner robot: Revision
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Automated Support



Topological proof computation

Model

Negation of 
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL: 
Clauses

LTL:
 Conflicting

 Clauses
Topological 

Proof



Topological proof computation

Model

Negation of 
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL: 
Clauses

LTL:
 Conflicting

 Clauses
Topological 

Proof



Topological Proof Computation

Model

Negation of 
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL: 
Clauses

LTL:
 Conflicting

 Clauses
Topological 

Proof

* In our experiments we considered an extended version of PLTL-MUP, namely Hybrid, that improves the PLTL-MUP 
performances by combining it with TRP++UC.
Finding minimal unsatisfiable subsets in linear temporal logic using BDDs, 
Sergeant T, Gore ́ SR, Thomson J (2013) 
https://cs. anu.edu.au/courses/csprojects/13S1/Reports/Timothy_Sergeant_Report.pdf . 



Topological proof computation

Model

Negation of 
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL: 
Clauses

LTL:
 Conflicting

 Clauses
Topological 

Proof



Re-check



Re-check

The re-check verifies that the engineer did not:

• add or remove transitions whose source state is in a 
transition included in the TPT-clauses; 

• change the value of propositions that are in a TPP-clause; 

• remove states that are in any TPT, TPP, or TPI clause; 

• change the initial states if they are in a TPI-clause. 
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Evaluation

• RQ1: How does the size of the proofs computed by the 

analysis component compares with the size of the original 

models?



RQ1: Size of The Topological Proofs

• We considered 60 model-requirement combinations 

• 12 models (PKS)

• five properties per model

• We run TOrPEDO and computed the topological proofs

• We compared the size of the topological proof and the size 

of the model



RQ1: Size of The Topological Proofs

Topological proofs are approximately 60% smaller 
than the respective models 



Evaluation

• RQ1: How does the size of the proofs computed by the 

analysis component compares with the size of the original 

models?

• RQ2: How does the re-check component support the 

creation of model revisions?



RQ2: Support Provided by the Re-check Component

• We considered three models and five properties per model

• for each model we considered four revisions

• We run TOrPEDO and computed the topological proofs

• We computed the percentage of cases in which the re-check 

component confirmed that the revision was compliant with 

the topological proof



RQ2: Support Provided by the Re-check Component

In 78% of the cases, the re-check component confirmed that 
the revision was compliant with the topological proof.



Evaluation

• RQ1: How does the size of the proofs computed by the 

analysis component compares with the size of the original 

models?

• RQ2: How does the re-check component support the 

creation of model revisions?

• RQ3: What is the scalability of TOrPEDO?



RQ3: Scalability of TOrPEDO

• To have a ballpark estimation of the scalability of TOrPEDO we 

• assessed its performance on the models used in RQ1 and RQ2

• manually designed an additional model with 10 states and 5 
atomic propositions and 26 transitions



RQ3: Scalability of TOrPEDO

For the models of RQ1 and RQ2, TOrPEDO required on 
average less than 10s to compute the topological proof.

For the additional example, the topological proof was 
computed in 1m33s.
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Conclusions and Future Work

• We proposed TOrPEDO, an integrated framework that 

supports the iterative model design 

• We defined the novel notion of Topological Proofs

• We evaluated TOrPEDO by assessing the support provided 

by the analysis and re-check components and their 

scalability



Conclusions and Future Work

Our results show that 

• proofs are 60% smaller than the original models

• revision can be verified 78% of the cases by executing a 
simple syntactic check

• the scalability of existing tools is not sufficient



Conclusions and Future Work

Future Work: We need to develop a more efficient
procedure to  extract topological proofs
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Introduction



Problem Definition

In our previous work, we implemented TOrPEDO using 

•  NuSMV as a model checker, and 

•  PLTL-MUP to compute a minimal subset of unsatisfiable 

LTL formulae (from an unsatisfiable set of LTL formulae)

We will refer to this instance of TOrPEDO as TOrPEDO-MUP.



Topological Proof Computation

Model

Negation of 
the

Property

Sys2LTL
GetUC

(PLTL-MUP) GetTP

(P)KS

LTL

LTL: 
Clauses

LTL:
 Conflicting

 Clauses
Topological 

Proof



Problem

Can we reduce the computational cost required 

to compute topological proofs?
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Contribution: TOrPEDO-SMT

We propose TOrPEDO-SMT

•  converts LTL formulae into an SMT problem*

* Linear encodings of bounded LTL model checking
Schuppan V, Latvala T, Junttila T, Heljanko K, Biere A (2006) 
Log Methods Comput Sci, 2, 
Episciences.org



Contribution: TOrPEDO-SMT

We propose TOrPEDO-SMT

•  converts LTL formulae into an SMT problem*

•  relies on Bit-Vectors**

** On how bit-vector logic can help verify LTL-based specifications. 
Pourhashem KMM, Rossi MG, Baresi L (2020) 
IEEE Trans Softw Eng, pp 1–1

** Efficient scalable verification of LTL specifications
Baresi L, Kallehbasti MMP, Rossi M (2015)
International conference on software engineering, pp 711–721. IEEE



Contribution: TOrPEDO-SMT



Contribution: TOrPEDO-SMT



Contribution: TOrPEDO-SMT

LTL2PL: converts LTL formulae into PL (Propositional Logic)  

• Unrolls the LTL formula up to length k



Contribution: TOrPEDO-SMT

GetUC: computes the unsatisfiable core of a PL formula
• we employ the Z3 Theorem Prover 



Contribution: TOrPEDO-SMT

PL2LTL: maps the conflicting propositional clauses to LTL
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Evaluation

• RQ3: How efficient is TOrPEDO in analyzing models and 

how does TOrPEDO-SMT compare to TOrPEDO-MUP?



Comparison of Efficiency (RQ3): Benchmark

• We generated a set of random models 
• The models have an increasing number of states (i.e., 10, 20, 

30, and 40)

• The models are generated from the grade crossing semaphore 
example

• We considered two properties (satisfied and possibly satisfied)



Comparison of Efficiency (RQ3): Methodology

• We run TOrPEDO-MUP and TOrPEDO-SMT

• For TOrPEDO-SMT, we set 86 for the bound k*
• We set two hours as the timeout

* We selected this value since it ensures the correctness of the result, i.e., we set its value by considering to the size of the recurrence diameter 
(the longest initialised loop-free path in the state graph) and the size of the Büchi automaton representing the negation of the property 

Clarke E, Kroening D, Ouaknine J, Strichman O (2005) 
Computational challenges in bounded model checking. 
Int J Softw Tools Technol Transf 7(2):174–183
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Comparison of Efficiency (RQ3): Results

The answer to RQ3 is that, on the considered models,

• TOrPEDO-SMT can verify within the timeout models 
which are double in size compared to TOrPEDO-MUP



Comparison of Efficiency (RQ3): Results

When both tools finished within the timeout, TOrPEDO-SMT is 
significantly faster than TOrPEDO-MUP.
TOrPEDO-SMT required on average 1.4m, TOrPEDO-MUP 
required 15m.



Evaluation

• RQ4: How useful is TOrPEDO-SMT in supporting the 

designers in the model design on an example in the 

genomic domain?



Usefulness (RQ4): Benchmark Model

• We considered a (small) model from the genomic domain, 

related to Gene Regulatory Networks (GRNs). 

• GRNs are collections of molecular regulators, interacting with 

each other



Usefulness (RQ4): Benchmark Model

•  The PKS represents the status of genes with propositions

•  The proposition is true if the gene is activated.

•  states describes the status of the genes

•  The PKS consists of 64 states

•  Transitions encode how the status of the genes can change



Usefulness (RQ4): Benchmark Model

• We considered two LTL properties from the literature discussed 

with domain experts

• We simulated an incremental model design with TOrPEDO



Usefulness (RQ4): Results
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twice



Usefulness (RQ4): Results

• We evaluated three properties on five models
• We run the analysis three times and used the syntactic check

twice

• The topological proofs provide useful information



Usefulness (RQ4): Results

The answer to RQ4 is that the topological proofs and 
counterexamples provided by TOrPEDO effectively supported the 
development of a (P)KS representing a gene regulatory network. 
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Correctness

The algorithm is correct if the LTL clauses are contradicting
• The correctness depends on the value of k
• If k is higher than the completeness threshold, the LTL 

clauses are contradicting

* Linear completeness thresholds for bounded model checking.
Kroening D, Ouaknine J, Strichman O, Wahl T, Worrell J (2011) 
Computer aided verification, Springer

* Linear encodings of bounded LTL model checking
Schuppan V, Latvala T, Junttila T, Heljanko K, Biere A (2006) 
Log Methods Comput Sci, 2, Episciences.org

* Completeness and complexity of bounded model checking.
Clarke E, Kroening D, Ouaknine J, Strichman O (2004) 
International conference on verification, model checking, and abstract interpretation, Springer



Practical Guidelines

• Designers can 

•  initially choose a value for k that is reasonably large
•  increase or decrease the value of k depending on 

• the efficiency of the analysis
• the importance of the soundness



Why Faster

• TORPEDO-MUP is FPSPACE complete, TORPEDO-SMT is NP-
complete



Why Faster

• The Z3 Theorem Prover offers a mature technology; 
• an industry-strength tool, 
• awarded by ETAPS (Test of Time Award) and ACM SIGPLAN 

(Programming Languages Software Award) 
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Trace Diagnostics

properties

System

Trace 
Checking

Violated
System Requirements

Execution Trace



Problem

How do we explain why 
a property is violated by a trace?



Contribution (TD-SB-TemPsy)

TD-SB-TemPsy: A trace-diagnostic approach for signal-based 

temporal properties. 

• analyzes a trace and a property violated by the trace;

• provides an explanation for the property violation.



Contribution (TD-SB-TemPsy)

TD-SB-TemPsy relies on 

• violation causes and 

• diagnoses.



Contribution (TD-SB-TemPsy)

Violation cause: characterizes one of the possible behaviors 
of the system that may lead to the property violation.

Diagnoses: information associated with the property violation



Contribution (TD-SB-TemPsy)

Violation cause: characterizes one of the possible behaviors 
of the system that may lead to the property violation.



Contribution (TD-SB-TemPsy)

Violation cause: characterizes one of the possible behaviors 
of the system that may lead to the property violation.

A violation cause should satisfy the following relation: 

• if the violation cause holds, then the corresponding 

requirement should be violated



Topological Proofs and Violation Clauses: Parallelism

A topological proof is a slice of the model 
that witnesses property satisfaction

A violation cause is a construct that if satisfied by a 
(slice) of the trace witnesses property violation



Contribution (TD-SB-TemPsy)

The paper describes

•  TD-SB-TemPsy, a trace-diagnostic approach for signal-
based temporal properties expressed in SB-TemPsy-DSL,

• a methodology for defining violation causes and diagnoses, 
with formal guarantees of the soundness of the violation 

causes 



Contribution (TD-SB-TemPsy)

The paper describes

•  a catalog of 34 violation causes, each associated with one 

diagnosis, 
•  evaluates TD-SBTemPsy on two datasets, including one 

industrial case study.



TD-SB-TemPsy Evaluation

Evaluated with an Industrial Case Study

• 361 traces given by our industrial partner
• 98 requirements specified in SB-TemPsy-DSL
• Total: 35378 trace - property combinations



TD-SB-TemPsy Evaluation

TD-SB-TemPsy yielded a diagnosis within a timeout of 1 
minute for 83.66% of the combinations
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No Implementation
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Automated Verification of Cyber-Physical Systems: From Theory to Practice
Workshop on Software Reliability for Madrid Flight on Chip
https://flightonchip.es/workshop19/

Verification and Validation: from Theory to Practice and Back Again
November 6th, 2020
https://www.deib.polimi.it/eng/events/details/2111

Reflection 1: There is a synergy between theory and practice

Limitations on the 
efficiency



Reflections and Lessons Learned and Speculations

Automated Verification of Cyber-Physical Systems: From Theory to Practice
Workshop on Software Reliability for Madrid Flight on Chip
https://flightonchip.es/workshop19/

Verification and Validation: from Theory to Practice and Back Again
November 6th, 2020
https://www.deib.polimi.it/eng/events/details/2111

Reflection 1: There is a synergy between theory and practice
Improvement of the 
efficiency
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Automated Verification of Cyber-Physical Systems: From Theory to Practice
Workshop on Software Reliability for Madrid Flight on Chip
https://flightonchip.es/workshop19/

Verification and Validation: from Theory to Practice and Back Again
November 6th, 2020
https://www.deib.polimi.it/eng/events/details/2111

Reflection 1: There is a synergy between theory and practice

Evaluation on the 
industrial domain
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Reflection 2: The results are teamwork

Bernasconi, Anna

Zuck, Lenore D
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Boufaied, ChaimaBianculli, Domenico

Briand, Lionel C

Rizzi, Alessandro Maria



Reflections and Lessons Learned and Speculations

Reflection 2: The results are teamwork

Bernasconi, Anna Rizzi, Alessandro Maria

They are first authors!



Reflections and Lessons Learned and Speculations

Reflection 3: Some of the reviewers significantly helped us in 

improving the papers.

VMCAI 2019: REVIEW 3 (Reject)

For LTL formulae, the separated normal form […] One can 
create an equisatisfiable normalized formula, but not an 
equivalent one. Why this should still work and how the 
reasons/understanding is explained using a non-equivalent 
formula is not discussed at all.

It was indeed equivalent.
Thanks a lot!
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Reflection 4: Did we reach ``The Independence Day of 

Witnessing the Correctness of Systems’’?



Reflections and Lessons Learned and Speculations

Reflection 4: Did we reach ``The Independence Day of 

Witnessing the Correctness of Systems’’?

Well, no, I think there is a lot of work that still to be done.
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Reflections and Lessons Learned and Speculations

Variety of the 

modeling formalisms

Variety of the Requirements 

Specification Languages

Developing 

Techniques that are 

Complete

Usability 

for the End Users
Trade-off 

Expressiveness and 

Performances



Reflections and Lessons Learned and Speculations

Reaching 

````The Independence Day of Witnessing 

the Correctness of Systems’’’’ 

is a journey, everyone is invited!

Enjoy the trip!
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