
Backend APIs and Testing
Riya Dennis

(Adarga)

A bit about me:

I am Riya Dennis, currently working as a Senior Software Engineer at Adarga.
With over 12 years of experience in designing and developing backend systems, I have had
the privilege of working in feature teams and collaborating closely with product, quality,
and infrastructure teams.
Throughout my career, I have gained extensive expertise in developing backend systems for
web and mobile applications using a wide range of technologies.

LinkedIn:
https://www.linkedin.com/in/riya-dennis-b631a026/

https://www.linkedin.com/in/riya-dennis-b631a026/

Backend is
any part of a
software that
users do not
see

If front end is the skin of a software application, backend is the
meat and bones that is keeping it up and running.

Backend Systems’ Architecture

We have two approaches to design backend systems:
• Monoliths
• Microservices

The decision to choose which approach depends heavily on your
organization structure and user requirements.
For smaller applications monoliths still will work as a viable solution.
We need to always consider whether the complexity of microservices is
worth the effort.

Monolithic
Architecture

• Monolithic Architecture:
• Structures the application as a single

deployable/executable component that
shares a single database.

• The component contains all the
application’s subdomains.

• Since there is only a single component,
all operations are local.

Microservices
Architecture
(Synchronous)
Microservices is an
architectural style that
structures an application as a
collection of services that are:

• Organized around
business communication
lines.

• Owned by a small team.

• Loosely coupled.

• Independently
deployable.

Microservices use API’s
• API (Application Programming Interface) is the doorways or frameworks that allow data

exchange between services.

• API defines a contract between data provider and consumer.

• API should be shared with rest of the organisation so that other teams can track the
changes.

• There are different strategies to do this all of them should enable seamless
communication between different teams.

• The changes should be forward and backward compatible.

Asynchronous Messaging

There are two basic message
patterns that microservices can
use to communicate:
• Synchronous
• Asynchronous

Synchronous messaging the
caller will wait for the response
from the receiver.
In Asynchronous messaging a
service sends a message and do
not wait for a response. One or
more services will process the
message asynchronously

Types of API

• GraphQL

• REST

GraphQL

• is a query language for APIs
• is a runtime for fulfilling those queries

with your existing data.
• provides a complete and

understandable description of the data
in your API

• gives clients the power to ask for
exactly what they need and nothing
more.

• released by Facebook in 2015

Queries and Mutations

• GraphQL queries can traverse related objects and their
fields, letting clients fetch lots of related data in one
request, instead of making several roundtrips as one would
need in a classic REST architecture

• Mutation is the right convention to send requests to
modify or add server-side data.

REST (Representational State Transfer)

• REST was introduced in 2000 and is been
around for many years which makes the
ecosystem more stable with lots of tooling and
support

• Services that implement this architecture are
call RESTful services.

• There are lots of free RESTful API’s available
for you to access and play with like :

https://rapidapi.com/

Creating REST API’s is also easy and simple

https://rapidapi.com/spoonacular/api/recipe-food-nutrition

API test pyramid in the demo

integration

contract

unit

expensive

cheap

Ef
fo

rt
 a

nd
 c

on
fid

en
ce

Fe
ed

ba
ck

 ti
m

e

Tests in the demo explained

UNIT TESTS ARE WRITTEN TO TEST THE BASIC
COMPONENTS OF A SERVICE THIS IS ACHIEVED BY
MOCKING OTHER DEPENDENCIES LIKE DATABASE

OR MESSAGE QUEUE.

CONTRACT TEST FOCUS ON INTERFACES AND
INTEGRATIONS, DEPENDENCIES ARE MOCKED

LIKE IN THE UNIT TESTS.

INTEGRATION TESTS WILL BRING UP ALL THE
DEPENDENCIES OF THE SERVICE AND WILL

INTERACT WITH TO TEST DIFFERENT SCENARIOS.

Thank you

Link for demo app in git hub:
https://github.com/riyadennis/sigist

https://github.com/riyadennis/sigist

