
@
a_

ba
ng

se
r

Why you, as a tester, 
should take note of 

platform engineering
Abby Bangser
@a_bangser

she/her



@
a_

ba
ng

se
r

Quality is part of a larger ecosystem.
Platform engineering is just a newer addition.



@
a_

ba
ng

se
r

Some other reasons you may be interested in…
1. The selfish reason

○ How platforms came to be
○ Examples of platform use cases for QAs

2. The opportunistic reason
○ Inner-sourced platforms giving everyone a voice
○ Service offerings and service configurations

3. The career path reason
○ Developing (and testing) a platform



@
a_

ba
ng

se
r

@
a_

ba
ng

se
r

The selfish reason
Internal platforms 
determine ease of 
access to necessary 
tooling



@
a_

ba
ng

se
r

The history of Dev/Ops, DevOps, and now Platform
Want a new tool or environment?

Make a request to a backlog with an 
indeterminate amount of time to 
resolve



@
a_

ba
ng

se
r

The history of Dev/Ops, DevOps, and now Platform



@
a_

ba
ng

se
r

The history of Dev/Ops, DevOps, and now Platform

Want a new tool or environment?

Climb a learning curve for building it 
yourself, or do without



@
a_

ba
ng

se
r

Want a new tool or environment?

Access one on demand, or advocate for an 
addition to the platform product roadmap

The history of Dev/Ops, DevOps, and now Platforms



@
a_

ba
ng

se
r

A platform definition
A platform is a product that serves or 
enables other products or services.

Platforms (in the context of digital 
business) exist at many levels. They 
range from high-level platforms that 
enable a platform business model to 
low-level platforms that provide a 
collection of business and/or technology 
capabilities that other products or 
services consume to deliver their own 
business capabilities.

- Gartner

https://www.gartner.com/en/information-technology/glossary/platform-digital-business



@
a_

ba
ng

se
r

My experience building internal platforms
● I have been on a team specifically called "platform" since 2018

● Typical work would be:

○ Upgrading the server versions

○ Creating databases using Infrastructure-as-Code (IaC)

○ Debugging and extending delivery pipelines

○ Researching new tools (e.g. DynamoDB on Amazon)



@
a_

ba
ng

se
r

User experience with the Platforms I built
● Some actions were on demand, e.g. local test environments

● Many actions were self-service code, e.g. terraform modules for a DB

● Most actions were completely manual, e.g. secrets rotation

● None of the requests were optional



@
a_

ba
ng

se
r

Revisiting the platform definition
A platform is a product that serves or 
enables other products or services.

Platforms (in the context of digital 
business) exist at many levels. They 
range from high-level platforms that 
enable a platform business model to 
low-level platforms that provide a 
collection of business and/or technology 
capabilities that other products or 
services consume to deliver their own 
business capabilities.

- Gartner

https://www.gartner.com/en/information-technology/glossary/platform-digital-business



@
a_

ba
ng

se
r

Extending to a platform engineering definition
A platform is a product that serves or 
enables other products or services.

Platforms (in the context of digital 
business) exist at many levels. They 
range from high-level platforms that 
enable a platform business model to 
low-level platforms that provide a 
collection of business and/or technology 
capabilities that other products or 
services consume to deliver their own 
business capabilities.

- Gartner

The goal is a frictionless, self-service 
developer experience that offers the 
right capabilities to enable developers 
and others to produce valuable 
software with as little overhead as 
possible.

The platform should increase 
developer productivity, along with 
reducing the cognitive load.

- also Gartner

https://www.gartner.com/en/information-technology/glossary/platform-digital-business

https://www.gartner.com/en/articles/what-is-platform-engineering



@
a_

ba
ng

se
r

Arguably, I was building a “platform".
You should expect a “platforms experience".



@
a_

ba
ng

se
r

Central Ops
● Team is focused on reducing their own 

toil

● Requests for an existing service are 
done via a queue (ticket or pull 
request)

● Requests for a new offering are treated 
as a backlog item

● Success is stable infrastructure

● Team is focused on improving 
application developer workflows

● Requests for an existing service are 
done via a self-serve interface

● Requests for a new offering are treated 
as a feature request

● Success is increased business value

Platform Engineering



@
a_

ba
ng

se
r

Platforms are software, they need engineering
● User needs are explored and prioritised (Platform-as-a-Product!)

● The team must build and run their own software (apply DevOps!)

● Clear boundaries supports a clear ownership model (domain modeling)



@
a_

ba
ng

se
r

Be selfish, ask for what you need.
Demand a better experience.

Expect self-service and on-demand offerings.



@
a_

ba
ng

se
r

Things you can ask for
● Visibility into the platform roadmap



@
a_

ba
ng

se
r

Things you can ask for
● Visibility into the platform roadmap

● Common requests should be made 
available self-service and on-demand



@
a_

ba
ng

se
r

Things you can ask for
● Visibility into the platform roadmap

● Common requests should be made 
available self-service and on-demand

● Shared responsibility model should be 
clearly defined for all offerings

https://cloudacademy.com/blog/aws-shared-responsibility-model-security/



@
a_

ba
ng

se
r

@
a_

ba
ng

se
r

The opportunistic 
reason

Platforms enable 
dissemination of 
quality principles, 
practices, and tools



@
a_

ba
ng

se
r

Team Topologies has 
provided a spotlight on 
platforms at least in part 
due to the focus on
interaction models



@
a_

ba
ng

se
r

Quality has been on this evolution for years
● Do the testing yourself, find and 

understand the risk

● Identify the opportunities for improving 
quality and design a goal

● Work with the team to execute a plan to 
reach that goal

● Build tools and processes to support the 
quality process independent of doing 
everything yourself



@
a_

ba
ng

se
r

Example platform offering:
Test environment-as-a-Service

clitool create test-env \
version=123 \
ttl=1day

Your environment is ready for use. 🎉
The URL is:

https://test-env-blue-sky.acme.com

To view the database, load the following 
configuration file into your local viewer:

~/.acme/test-envs/data/config-blue-sky



@
a_

ba
ng

se
r

Be opportunistic, disseminate your message.
Codify aspects of quality in platform offerings.

Offer tooling that will enable quality.



@
a_

ba
ng

se
r

Offer as-a-Service model for quality
● Linting and other code quality tools

● Mutation testing

● Chaos engineering

● Observability

● Test environments



@
a_

ba
ng

se
r

But it doesn't have to be complete services

Reviewing template 
configurations can have an 
outsized impact



@
a_

ba
ng

se
r

And evolve offerings, e.g. test env-as–a-Service
● The data sanitation strategy

● Making sure telemetry is provided with all test environments

● Providing a way to quickly raise issues for a specific environment

● …



@
a_

ba
ng

se
r

@
a_

ba
ng

se
r

The career path 
reason

Platforms are a 
growing domain and 
they require testing



@
a_

ba
ng

se
r

Platform engineering may be 
vendor engineering,
but that doesn't reduce its 
complexity or value



@
a_

ba
ng

se
r

The same delivery cycle

requires the same holistic testing

@janetgregoryca



@
a_

ba
ng

se
r

Platforms APIs require testing
● User research to define next steps for the platform

● Unit testing of the business logic behind the API

● UAT testing of the API experience

● Production testing of the final product



@
a_

ba
ng

se
r

Broaden your career options.
Pioneer in a relatively unexplored domain.

Define what quality means for internal platforms.



@
a_

ba
ng

se
r

Upskill in platforms
● Explore infrastructure test automation

● Get comfortable on the command line

● Join communities that are talking about this

● Build your own helper tools



@
a_

ba
ng

se
r

Focus on your platform
● Do (even informal) code reviews of platform code

● Think like a user researcher for internal platforms

● Explore the backlog and other team charters



@
a_

ba
ng

se
r

Summary
Platform engineering is not testing.

But quality is part of a bigger ecosystem and depends on platforms. 

This is "just another hype cycle".

But with every hype cycle there are nuggets of greatness.
You can (and should) build on the progression platforms provide.

Platforms are an unexplored and (historically) underinvested in domain.

But quality professionals are made to explore and the domain is growing.



@
a_

ba
ng

se
r

Thank you!
Reach out to learn more about building platforms 
with Kratix.io or Platform Engineering in general

abby@syntasso.io
@a_bangser


