
Algebraic Subtyping

Stephen Dolan

University of Cambridge
Computer Laboratory

Trinity College

September 2016

This dissertation is submitted for
the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing
which is the outcome of work done in collaboration except where specifically
indicated in the text.

Neither it nor any substantial part has already been submitted nor is being
concurrently submitted for a degree or diploma or other qualification at the
University of Cambridge or any other institution.

This dissertation does not exceed the regulation length of 60,000 words,
including tables and footnotes.

Algebraic Subtyping

Stephen Dolan

Summary
Type inference gives programmers the benefit of static,

compile-time type checking without the cost of manually speci-
fying types, and has long been a standard feature of functional
programming languages. However, it has proven difficult to inte-
grate type inference with subtyping, since the unification engine
at the core of classical type inference accepts only equations, not
subtyping constraints.

This thesis presents a type system combining ML-style para-
metric polymorphism and subtyping, with type inference, prin-
cipal types, and decidable type subsumption. Type inference is
based on biunification, an analogue of unification that works with
subtyping constraints.

Making this possible are several contributions, beginning
with the notion of an “extensible” type system, in which an open
world of types is assumed, so that no typeable program becomes
untypeable by the addition of new types to the language. While
previous formulations of subtyping fail to be extensible, this the-
sis shows that adopting a more algebraic approach can remedy
this. Using such an approach, this thesis develops the theory
of biunification, shows how it is used to infer types, and shows
how it can be efficiently implemented, exploiting deep connec-
tions between the algebra of regular languages and polymorphic
subtyping.

Acknowledgements

First, I thank my supervisor Alan Mycroft, for his valuable advice, gentle
guidance, and general willingness to engage in deep technical conversation
about every bizarre tangent I wandered off along.

I am grateful for many conversations with Leo White, which improved
both the ideas in this thesis and their presentation. I also thank Daan Leijen
for helpful comments and vital encouragement, and all of the denizens of the
Computer Lab in Cambridge who provided such a stimulating atmosphere,
particularly my office-mate Raphaël Proust. I thank Trinity College and OCaml
Labs for funding this work.

Especially, I thank Louise, for her unflagging love, support and compan-
ionship, which got me through darker times and made brighter ones that
much brighter.

Contents

1 Introduction 9
1.1 Types and data flow . 9
1.2 Contributions . 10
1.3 Design principles for subtyping . 11

1.3.1 Extensibility . 11
1.3.2 Algebra before syntax . 12

1.4 Failures of extensibility . 12
1.4.1 Vacuous reasoning . 13
1.4.2 Closed-world polymorphism and free algebras 14

1.5 Structure of the thesis . 15

2 Background 17
2.1 Order theory . 18

2.1.1 Lattices . 18
2.1.2 Lattices and subtyping . 19
2.1.3 Suborders versus sublattices 19
2.1.4 Distributive lattices . 20
2.1.5 Distributivity and subtyping 21
2.1.6 Recursive types and subtyping 22
2.1.7 Fixed, pre-fixed and post-fixed points 23
2.1.8 Other fixed point results and Bekič’s construction 25

2.2 Semirings and Kleene algebra . 26
2.2.1 Axiomatising the regular languages 27
2.2.2 Kleene algebra via pre-fixed points 28
2.2.3 Complete and *-continuous Kleene algebras 29

2.3 Category theory . 29
2.3.1 Categories of orders . 30
2.3.2 Concrete categories and free objects 31
2.3.3 Aside: orders versus categories for subtyping 32

3 Constructing types 33
3.1 Simple types . 35

3.1.1 Algebras, initial and otherwise 35
3.1.2 Subtyping . 36
3.1.3 Least and greatest types . 37

3.2 A (distributive) lattice of types . 38
3.2.1 Syntactic construction . 39
3.2.2 Comparing the lattices . 40
3.2.3 Components and coproducts 41

3.3 Type variables . 42
3.3.1 Open versus closed-world type variables 43
3.3.2 Constructing free algebras 43

6 CONTENTS

3.3.3 Properties of substitutions 44
3.4 Recursive types . 45

3.4.1 Completion via coalgebra 46
3.4.2 Completion via metrics . 48
3.4.3 Completion via orders . 49

3.5 Summary . 52

4 The type system 55
4.1 Properties of the type system . 57

4.1.1 Instantiation . 57
4.1.2 Weakening . 58
4.1.3 Substitution . 60
4.1.4 Soundness . 60

4.2 Typing schemes and subsumption 63
4.2.1 Equivalence of typing schemes 65

4.3 Reformulated typing rules . 66
4.3.1 Example of generalisation 67
4.3.2 Equivalence of original and reformulated rules 68

5 Polarity and biunification 71
5.1 Polar types . 72

5.1.1 Recursive types . 73
5.1.2 Polar typing schemes . 75

5.2 Unification and subtyping . 75
5.2.1 Bisubstitutions . 76
5.2.2 Parameterisation and typing 78
5.2.3 The instances of a typing scheme 79
5.2.4 Comparison with unification 80

5.3 Solving constraints with bisubstitutions 81
5.3.1 Atomic constraints . 81
5.3.2 Decomposing constraints 82
5.3.3 The biunification algorithm 83

5.4 Correctness of biunification . 84
5.4.1 Stability and idempotence 84
5.4.2 Solving atomic constraints 86
5.4.3 Solving multiple constraints 87
5.4.4 Stability of biunification . 88
5.4.5 Biunification of unsatisfiable constraints 89
5.4.6 Atomic subconstraints suffice 89
5.4.7 Biunification of satisfiable constraints 91

6 Principal type inference 93
6.1 Principality . 93

6.1.1 Example . 94
6.2 Principal type inference . 95

6.2.1 Principality for functions 96
6.2.2 Principality for booleans and records 98
6.2.3 Principality for let-bindings 99

6.3 Summary of the algorithm . 99

7 Representation of types 101
7.1 Type automata . 102

CONTENTS 7

7.1.1 Head constructors . 103
7.1.2 Constructing type automata 103
7.1.3 Deconstructing automata 104

7.2 Simplifying type automata . 105
7.2.1 Encoding types as regular languages 105
7.2.2 Undoing the encoding . 109
7.2.3 Simplifying types as languages 111

7.3 Simplifying typing schemes . 113
7.3.1 Scheme automata . 114
7.3.2 Simplifying scheme automata 115
7.3.3 Converting scheme automata to type automata 116

7.4 Biunification of automata . 118
7.4.1 Termination and complexity 118

8 Deciding subsumption 121
8.1 Deciding the example . 121
8.2 Deciding complex subtyping . 122

8.2.1 Reduced form and deterministic automata 123
8.3 Subsumption algorithm . 124
8.4 Deciding admissability of flow edges 125
8.5 Summary . 126

9 Extensions 129
9.1 User-defined types . 129

9.1.1 Variance and mutability . 130
9.1.2 Type parameter notation 131

9.2 Sum types . 132
9.2.1 Tagged records . 133
9.2.2 Row and presence variables 134

9.3 Complex function types . 136
9.3.1 Multiple arguments . 136
9.3.2 Named arguments . 136

9.4 Effect systems . 137

10 Related work 139
10.1 The subtyping order . 140

10.1.1 Structural and non-structural subtyping 140
10.1.2 Recursive types . 141

10.2 Polymorphism . 141
10.2.1 ML-style polymorphism . 142
10.2.2 System F-style polymorphism 142
10.2.3 Ad-hoc polymorphism . 142

10.3 Simplification and entailment . 144
10.3.1 Entailment . 144

11 Conclusions and future work 147
11.1 Future work . 147

11.1.1 Advanced recursive types 148
11.1.2 First-class polymorphism 149
11.1.3 Module systems and higher-kinded types 150

Bibliography 151

1 Introduction

The most important thing in the programming language
is the name. A language will not succeed without a good
name. I have recently invented a very good name and
now I am looking for a suitable language.

—Donald Knuth (attributed)

Programmers working in functional languages such as ML and its progeny
have long enjoyed powerful type inference, being able to write

f x y = {foo : x, bar : y}

and have their compiler statically determine that the function f returns a
record, whose foo and bar fields have whatever types f’s first and second
arguments have. Symbolically,

f : ∀αβ. α→ β→ {foo : α, bar : β}

For even longer, programmers have reasoned about programs (with perhaps
less enjoyment) using preconditions and postconditions. In particular, the output
of one function can be passed as the input to a second provided that the
postcondition provided by the first satisfies the precondition required by the
second. For instance, the output of f can be passed to the function g, written

g x = x.foo

since g requires that only that its input have a field called foo, while f provides
a output having such a field.

This reasoning is inherently asymmetrical. The function f may produce
an output with a stronger postcondition than g requires: in the example,
f’s output also has a field called bar. This is at odds with conventional
approaches to type inference, which boil the program down to a collection of
type equations, equating the types provided as outputs with those required
as inputs. Such an approach leaves no room for the condition provided by f
to be stronger than that required by g.

1.1 Types and data flow
By requiring that the type provided when a value is produced (e.g. the result
of f) be exactly equal to the type required when the value is consumed (e.g. the

10 1.2. CONTRIBUTIONS

argument to g), conventional approaches to type inference ignore the direction
of data flow. This makes heavy use of language features such as records quite
cumbersome, and an object-oriented style of programming almost impossible.
However, the downsides of ignoring data flow are not limited to features such
as records and objects, and even cause some simple functions to be less useful
than one might expect.

Consider the select function, which takes three arguments: a predicate p,
a value v and a default d, and returns the value if the predicate holds of it,
and the default otherwise:

select p v d = if (p v) then v else d (1.1)

In ML and related languages, select has type scheme

∀α. (α→ bool)→ α→ α→ α (1.2)

This type is quite strange, in that it demands that whatever we pass as the
default d be acceptable to the predicate p. But this constraint does not arise
from the behaviour of the program: at no point does our function pass d to p.

Let’s examine the actual data flow of this function:

v

argument to p result

d

Only by ignoring the orientation of the edges above could we conclude
that d flows to the argument of p. Indeed, this is exactly what ML does: by
turning data flow into equality constraints between types, information about
the direction of data flow is ignored. Since equality is symmetric, data flow is
treated as undirected.

Type systems which support subtyping care about the direction of data
flow. With subtyping, a source of data must provide at least the guarantees
that the destination requires, but is free to provide more.

The type system described in this thesis supports subtyping. It ascribes to
the select function the following type:

∀αβ. (α→ bool)→ α→ β→ (αtβ) (1.3)

This represents the data flow graph above: the predicate p must accept the
value v (of type α), but the default d may be of a different type β. The output,
being of type αtβ, can only be used in contexts that accept both α and β.

1.2 Contributions
I contribute a type system, in the vein of ML, with:

• Decidable type inference and let-polymorphism

• Principal types

• Decidable polymorphic subsumption

• Compact inferred types

CHAPTER 1. INTRODUCTION 11

• An efficient1 inference algorithm

• A rich type system, including records and variant types.

The system accepts all core ML programs. They are even typeable with the
same type schemes, although my system may also give them more general
types (such as the select function above).

Type inference with subtyping has traditionally been considered difficult,
not least because the usual approach based on unification does not work:
Hindley-Milner type inference relies on extracting equations from the pro-
gramming and substituting one side for the other, but a subtyping constraint
does not justify substitution.

There have been many previous systems that achieved various of the above
points, but none that managed them all simultaneously. An account of the
relationship to previous work is given in Chapter 10.

1.3 Design principles for subtyping

The major difference between the type system of this thesis and previous
work lies not in the typing rules, syntax or semantics of programs, but in the
collection of types themselves. Rather than just write down a definition of
types and subtyping, we first consider some guiding principles for how those
types should behave.

1.3.1 Extensibility

The first guiding principle is extensibility. I say that a type system is extensible
when no typeable program becomes untypeable merely by the addition of
more types to the language. In other words, extensible type systems are those
which never rely on the non-existence of certain types: they assume an open
world of types, rather than a closed one.

Extensibility is desirable for various reasons. Firstly, programming lan-
guages evolve and new features and types are added to subsequent versions
of a language. In order to ensure that old programs written in earlier versions
of the language continue to function, it is necessary that those old programs
did not rely on the lack of the new types.

Even if we decide that our language is perfect and unchanging, it is still
impractical for the compiler to know about all types. If the language supports
user-defined types and separate compilation, then the compiler will have to
compile programs knowing only about an incomplete collection of types.

The concept of extensibility has received little attention. I suspect that
this is the case because, most of the time, it appears automatically. Absent
subtyping, no special effort is usually needed to guarantee extensibility.

The situation is different when subtyping is introduced. Later in this chap-
ter (Section 1.4), we see how previous approaches have broken extensibility
with seemingly-natural definitions of subtyping. In Chapter 3, I demonstrate
a different approach to subtyping which preserves extensibility.

1 Efficient in the same sense as ML: tends to run fast, but with some effort pathological cases
can be constructed

12 1.4. FAILURES OF EXTENSIBILITY

1.3.2 Algebra before syntax
The second guiding principle is to place more emphasis on the algebra than
on the syntax of types. The algebra of types consists of the operations defined
on types and relations between them: which types are subtypes of or equal
to other types, whether types form a lattice, and so on. Knowing the algebra
of types is quite useful when writing programs, as it allows the programmer
to reason about the types in use being equivalent or at least compatible.
Accordingly, this thesis will focus first on deciding what the right algebra of
types is, and only secondarily on finding syntax to represent it.

More pithily, the idea is to

Find the simplest algebra of types, and some syntax for them

This is to be contrasted with the standard approach, which starts with
the simplest syntax for types, and proceeds to build some algebra out of them.
If minimality of syntax is the primary goal, it is all too easy to make the
algebraic structure unusably complicated. We see several examples of this
accidental complexity below.

One benefit of an algebraic approach is that it makes extensibility easier to
attain. The basic tools of syntactic reasoning (definitions by abstract syntax,
induction over terms) assume a closed world of terms, and so if extensibility
holds it does so by coincidence or hard work2. On the other hand, the basic
tools of algebra (axiomatic definitions, equational reasoning) are extensible by
default.

1.4 Failures of extensibility
Next, we walk through a standard approach to subtyping, showing how
the principle of extensibility can be quite easily broken by innocent-looking
definitions, and how it can be repaired by a careful treatment of the algebra
of types. The following is quite informal, and the full exposition is deferred
to Chapter 3.

As a running example, we consider a simple functional language with
records and a primitive boolean type. Informally, the types of this language
are defined by an abstract syntax like:

types = boolean type | function types | record types (1.4)

To support subtyping, the above types are equipped with some partial
ordering. Most of the details of this ordering are not relevant at the moment
(although we discuss them thoroughly later, in Chapter 3). The only salient
point is that function types, record types, and the boolean type are pairwise
incomparable: while there are some subtyping rules giving subtyping rela-
tionships between, say, two different record types, there are none between
record and function types.

Not only are function and record types incomparable, but they also have
no common upper or lower bounds. This fact prevents the partial order of
types from forming a lattice. In order to perform type inference, it is very
useful for types to form a lattice, since then the result type of a conditional
expression can be typed as the least upper bound of the result types of its
cases.

2Both of which the author takes pains to avoid.

CHAPTER 1. INTRODUCTION 13

So, subtyping systems often use a different definition of types which does
indeed form a lattice:

types = boolean type | function types | record types | ⊥ | > (1.5)

The new type ⊥ is a subtype of all types, and thus uninhabited, containing no
values, while > is a supertype of all types, and thus uninformative, containing
all values. The addition of these two types causes the partial order of types to
form a lattice (for the usual definitions of function and record subtyping).

However, this lattice turns out to be quite ill-behaved in practice. In the
presence of type variables, it is difficult to decide even quite simple subtyping
properties [SAN+02, Reh98, Pri04].

Below, we demonstrate that this bad behaviour is a result of its failure to
be extensible, and by sticking to the design principles described in Section 1.3
we can avoid it.

1.4.1 Vacuous reasoning
Using the lattice defined by (1.5), it is the case for every function type τf and
record type τs that

τf u τs 6 bool (1.6)

where u is the lattice meet operator. Thus, the lattice of (1.5) assumes that
there are not, and will never be, values which are simultaneously records
(have attributes) and functions (may be applied). I note that such values were
not originally present, but were later added, to the programming languages
C++, Python, and others.

Thus, extensibility demands we count statements like (1.6) as false. In
particular, we should have separate, incomparable types τs u τf, τs u bool,
τf u bool. That they are all currently uninhabited is not reason enough to
identify them.

Let’s re-examine the original definition (1.4), which defined the set of types
to be the disjoint union of the sets of function types, record types, and the
boolean type. Writing + for disjoint union, we express this as:

types = boolean type + function types + record types (1.7)

Disjoint union is the coproduct in the category of sets, so we have a good
excuse to use the symbol +.

We introduce subtyping by equipping the set of types with a partial order.
Since the coproduct of partial orders is given by disjoint union, the above
definition is a good description of the poset of types.

Next, we desire that types form a lattice. The algebraically simplest thing
to do is to continue in our current vein: leave (1.7) unchanged, but interpret it
as a coproduct of lattices rather than a coproduct of posets or plain sets.

Unfortunately, (1.5) did not do this. Instead of the algebraically simplest
definition, (1.5) uses the syntactically simplest definition: taking the disjoint
union (coproduct of sets or posets), and adding just enough to make it a lattice
(top and bottom elements). This does result in a lattice, but the resulting
type system is not extensible and the lattice does not satisfy any useful
universal properties (see Section 3.2). In order to extensibly define a lattice, or
any other algebraic structure, we should use a lattice coproduct rather than
attempting to impose structure on the disjoint union. Furthermore, we should

14 1.4. FAILURES OF EXTENSIBILITY

exclude vacuous reasoning by demanding that the lattice be distributive (see
Section 2.1.5).

So, we conclude that the extensible way to define a subtyping system is to
define types as a coproduct of distributive lattices.

1.4.2 Closed-world polymorphism and free algebras
The above sets out our approach to defining monomorphic types, but the
treatment of type variables has been conspicuously absent. In particular, we
need to define the subtyping relationship between terms that contain type
variables. Using→ to construct function types, and α,β, . . . for type variables,
we ask whether

α→ α 6 ⊥ → > (1.8)

In much work, the meaning of such propositions is defined by quantification
over the ground (type-variable-free) types. That is, we interpret the above
statement as

∀τ. τ→ τ 6 ⊥ → > (1.9)

This particular statement is easily shown true using the subtyping rule for
functions, noting that τ 6 > and ⊥ 6 τ for all τ. However, similar questions
lead to surprising difficulties. The following example is due to Pottier [Pot98b,
p.86], and takes place in a lattice of types defined in the style of (1.5) without
records or booleans. That is, the only types are function types, > and ⊥.

(⊥ → >)→ ⊥ 6 (α→ ⊥)tα (1.10)

Statement (1.10) holds, as can be shown by case analysis on α: if α = >, then
it holds trivially. Otherwise, α 6 ⊥ → > (the largest function type), and so
(⊥ → >)→ ⊥ 6 α→ ⊥ by contravariance.

However, this example is fragile. Extending the type system with a more
general function type τ1

◦→ τ2 (a supertype of τ1 → τ2, say “function that
may have side effects”) gives a counterexample α = (> ◦→ ⊥) ◦→ ⊥. This
counterexample arises even though the extension did not affect the subtyping
relationship between existing types, and only added new ones.

This is a separate issue from the one considered above. Even if we con-
struct the lattice of ground types in an extensible fashion (as a coproduct of
distributive lattices), we can still observe such behaviour. Instead, the problem
is with the treatment of type variables by quantifying over ground types. By
quantifying over ground types to interpret statements about type variables,
we assume a closed world of types.

This situation has parallels in mainstream algebra. Suppose we work with
the ring of two elements B: this is an algebraic structure consisting of two
elements {0, 1}, with addition defined as exclusive-or (an abelian group with
identity 0), and multiplication defined as conjunction (a monoid with identity
1, distributing over addition).

It is the case in B that
x2 = x

as is easily checked by case analysis. Indeed, xn = x, from which one deduces
that an arbitrary polynomial

∑
i aix

i must be equal to 0, 1 or x.
However, this is not what is usually meant by “polynomial over B”. Instead,

we form the ring of polynomials in x over B (denoted B[x]) by adding x as an
indeterminate, a fresh element distinct from any element in B. Addition and

CHAPTER 1. INTRODUCTION 15

multiplication are defined in B[x] by treating x as subject only to the defining
axioms of rings. So, in B[x],

x3 + x3 + x2 = x2

x3 + x3 + x2 6= x

because x3 + x3 = (1+ 1)x3 = 0x3 = 0, but x2 6= x. This interpretation of
the variable x is more algebraically well-behaved, as B[x] satisfies a useful
universal property: If we have an arbitrary ring R, a ring homomorphism
φ : B→ R, and an element x̂ ∈ R, then there exists a unique homomorphism
θ : B[x]→ R extending φ such that θ(x) = x̂.

In other words, B[x] is extensible, in the sense of Section 1.3.1: if R is some
ring containing all the elements of B and possibly others (that is, equipped
with a homomorphism B → R), then any two terms interpreted equally in
B[x] will be interpreted equally in R, for all values of x ∈ R.

Applying this idea to types is straightforward. We must avoid handling
type variables by quantifying over ground types. Rather, define type variables
as opaque indeterminates, without assuming they range over concrete ground
types. Thus, we modify (1.7) to the following:

types = boolean type+ function types+ record types+ type variables (1.11)

Using this as the definition of types rather than something like (1.5) gives an
extensible and algebraically natural lattice of types.

This definition of the subtyping lattice in an algebraically simple rather
than syntactically simple manner is the main novelty of this thesis. Of course,
there is a lot of work between this definition and a working programming
language (giving this document its heft), but much of it proceeds along the
same lines as previous work. It is only the extensible and algebraically well-
behaved subtyping lattice that allow us to move past the usual sticking points
of subtyping such as eliminating constraints, polymorphic subsumption, type
scheme simplification, and the like.

1.5 Structure of the thesis
Chapter 2 provides some mathematical background in order theory, category
theory, and Kleene algebra. The order theory goes a little further than most
treatments of the subtyping order, including describing why we might want
the subtyping order to be a distributive lattice (Section 2.1.5), and analysing the
interactions between subtyping and recursive types (Section 2.1.6), which are
more subtle than usually given credit for. Category theory is used to formalise
the idea of the “simplest” algebra of types that we sought in Section 1.3.2,
while Kleene algebra becomes useful in the representation of types as automata
in Chapters 7 and 8.

Chapters 3 and 4 define the MLsub type system. The major novelty is the
design and construction of an extensible lattice of types, which is built up
step-by-step in Chapter 3. The concrete syntax, semantics and even typing
rules are entirely standard, and appear in Chapter 4 along with a proof of
soundness and related properties, as well as an alternative presentation of the
type system (Section 4.3) upon which the inference algorithm is based.

Chapters 5 and 6 together present the algorithm to infer principal types for
MLsub. Chapter 5 introduces polar types, a syntactic restriction of types, and

16 1.5. STRUCTURE OF THE THESIS

biunification, an analogue of unification for solving subtyping constraints over
polar types. Chapter 6 shows that polar types suffice for type inference (that
is, while not all types are polar, every typeable expression has a principal type
which is), and specifies the inference algorithm based on biunification.

Chapters 7 and 8 show how types may be represented compactly as automata.
Section 7.2 proves the representation theorem, that types are equivalent iff their
automata accept the same language, which allows standard algorithms of
automata theory to operate on types, and Section 7.4 shows how biunification
can be efficiently implemented directly on automata. Chapter 8 devises an
algorithm to decide subsumption, which compares polymorphic type schemes
and can be used for e.g. signature matching.

Chapter 9 discusses some extensions of the minimal MLsub language, by
showing how other type system features (such as user-defined types, variance
annotations, sums, etc.) can be integrated easily into the framework developed
here.

Chapter 10 reviews related work, and Chapter 11 presents some future work
and concludes.

2 Background

Order is a necessity for everyone, but not everyone
understands it in the same way.

—Fausto Cercignani

The central problem studied in this thesis is type inference, the act of examining
a program and inferring its type.

When examining a program, we find that its subexpressions place con-
straints on what types we may assign to it. For instance, suppose we are given
an application of a function of type τ1 → τ2 to an argument of type τ3. The
application can be typed only if values of type τ3 can be passed where a value
of type τ1 is expected. Before the type inference algorithm can give a type to
the application, this constraint must be dealt with.

In the classical Hindley-Milner type inference algorithm, the constraint is
an equality constraint, with the application being typeable only when τ1 = τ3.
Types are defined as first-order terms, and equality constraints are dealt with
using unification.

Subtyping allows for more interesting constraints, in particular by not
requiring symmetry: just because we can pass a τ3 whenever a τ1 is expected
does not imply the reverse. This models many language features: naively, we
might expect a record with more fields to work in any context where one with
fewer suffices. However, the classical theory of unification does not apply to
subtyping constraints, and so the standard approach to type inference fails.

Lacking unification (or an equivalent), previous work on inference with
subtyping has used constrained types, in which constraints like τ3 6 τ1
are simply attached to the type. In general, this can lead to unwieldy
types, since the set of attached constraints grows with the size of the pro-
gram [HM95]. Heuristic methods of reducing the size of the constraint set
have been devised [Pot01, EST95a], but a general means is elusive not least
because of the difficulty of determining whether two constraint sets are equiv-
alent [SAN+02, NP99, Reh98, Pri04]. This and other related work is discussed
in Chapter 10.

In this thesis, we take an alternative approach. By using an algebraic
approach to define the lattice of types, we construct a type system supporting
an analogue of unification (the biunification of Chapter 5), allowing subtyping
constraints to be eliminated just as equality constraints are in the Hindley-
Milner system, and removing the need for constrained types altogether. The
result is a system that infers types that are usually as compact as ML’s, and
where comparison between types is decidable.

18 2.1. ORDER THEORY

This depends crucially on several subtleties of the construction of types,
which are explored in Chapter 3. Before then, some mathematical background
is needed, on order theory (for the subtyping relation itself), category theory
(to formalise the “simplest algebra” of types sought in the introduction), and
Kleene algebra (useful for the efficient automaton representation of types of
Chapter 7).

What follows is a terse, incomplete and highly selective introduction to
those topics, biased heavily towards what is needed to develop this thesis.
For a better introduction to order theory, I recommend Davey and Priestley’s
wonderful Introduction to Lattices and Order [DP02], while for category theory I
recommend Mac Lane’s classic Categories for the Working Mathematician [ML78].
For a heady mix of both, as well as the sort of topology we touch on in
Section 3.4, read Johnstone’s Stone Spaces [Joh86]. For a thorough introduction
to reasoning about fixed points and Kleene algebra, I recommend Backhouse’s
Galois connections and fixed point calculus [Bac02].

2.1 Order theory
A preorder 6 on a set A is a reflexive transitive binary relation on A. Any
preorder induces an equivalence relation ≡ on A called its kernel, defined as
a ≡ b iff a 6 b and b 6 a.

A partial order is a preorder additionally satisfying antisymmetry: if a 6 b
and b 6 a, then a = b. Equivalently, a partial order is a preorder whose
kernel is equality. If 6 is any preorder on A, then it generates a partial order
on the quotient A/≡, that is, the set of equivalence classes of the kernel of 6.
A poset is a set equipped with a partial order.

If S is a subset of some poset A, then an upper bound of S is an element
a ∈ A such that s 6 a for all s ∈ S. The least upper bound or join of S is that
upper bound b of S such that b 6 a for every upper bound a of S. The join of
S need not exist in general, but is unique if it does. We write

⊔
S for the join of

S, abbreviating
⊔
{a,b} to at b and

⊔
∅ to ⊥. We also abbreviate

⊔
{ai | i ∈ I}

as
⊔
i∈I ai. The join of the empty set ⊥ is the least element of the partial order

A.
The dual of the join is the greatest lower bound or meet. The meet of S is

written as
d
S, binary meets as u and the meet of the empty set (greatest

element) as >.

2.1.1 Lattices
A lattice is a poset all of whose finite subsets have a meet and a join (we say it
“has finite joins” and “has finite meets”). A join-semilattice is a poset which has
finite joins, while a meet-semilattice has finite meets.

Some authors define lattices in terms of the binary join and meet operators
t and u, admitting as lattices orders lacking greatest or least elements, and
using the term bounded lattice to imply their presence. By defining lattices
in terms of finite, possibly-empty meets and joins, we employ the opposite
convention: all lattices are bounded.

For example, the collection Pf(N) of finite subsets of N ordered by ⊆
is a join-semilattice, with joins given by ∪ and least element ∅. It is not a
meet-semilattice despite having all non-empty meets (given by intersections),
since it has no greatest element.

CHAPTER 2. BACKGROUND 19

A complete lattice is a poset which has arbitrary joins and arbitrary meets,
while complete join-semilattices and complete meet-semilattices have one or the
other. Pf(N) is not a complete join-semilattice, as it fails to have arbitrary
joins: the union of {1}, {1, 2}, {1, 2, 3}, . . . is not a finite set.

A subset D of a partial order A is said to be directed when any finite subset
of D has an upper bound in D. In a join-semilattice, any nonempty subset
closed under join is directed, but directedness is more general: directed sets
are not required to contain least upper bounds. For instance, the subset of
Pf(N) consisting of sets of even-numbered cardinality is directed: while the
union of two finite sets of numbers both having even cardinality may not
have an even number of elements, the union is certainly contained in some
set of even cardinality. A directed-complete partial order is a poset of which any
directed subset has a least upper bound. We say that such a poset has directed
joins.

Lemma 1 (Complete = Finite + Directed). A poset has arbitrary joins iff it has
both finite and directed joins.

Proof. Clearly a poset with arbitrary joins has finite and directed joins. For
the converse, consider an arbitrary subset S. Let T be the set:{⊔

S ′ | S ′ a finite subset of S
}

All joins above are finite, so T exists. T is directed, so
⊔
T exists and is equal

to
⊔
S.

This pattern reoccurs frequently: the behaviour of arbitrary subsets can be
determined from the behaviour of finite subsets and directed subsets, since
every set is the union of the directed family of its finite subsets.

The dual of a directed subset is a codirected subset (hence codirected meet,
codirected complete partial order, etc.), and so we note that a poset has arbitrary
meets iff it has both finite and codirected meets.

2.1.2 Lattices and subtyping
We define subtyping as a partial order on types, where if s 6 t for types s, t
then all values of type s are also values of type t. In order to support type
inference, it is very useful to have the types under the subtyping order form a
lattice.

Suppose we have a conditional expression of the form if c then a else
b, where a is an expression of type s and b is an expression of type t. Any
type u which is an upper bound of {s, t} is an acceptable type of the entire
expression, since by subtyping both a and b are of type u. Principal type
inference requires that there be a single best type for the whole expression,
so there should be a least such u. Thus, inferring types for conditional
expressions requires that the subtype order is a join-semilattice.

Conversely, suppose we have a λ-abstraction which binds the variable x
and contains two subexpressions a and b. If a requires x to be of type s and b
requires x to be of type t, then the best type for x is su t, which is the greatest
type satisfying the requirements of both a and b.

2.1.3 Suborders versus sublattices
A suborder of a poset A is a subset of A ordered by the restriction of A’s order.
A sublattice of a lattice is a subset of a lattice closed under finite meets and

20 2.1. ORDER THEORY

finite joins (and similarly sub-(complete lattice), sub-(join semilattice), and so
on.). The concept of a sublattice must be carefully separated from that of a
suborder which happens to form a lattice. To clarify, consider the following
three partially ordered sets:

• P(N), the subsets of N

• P+(N), the subsets of N closed under addition

• Pf>(N), the subsets of N which are either finite or the entirety of N

All sets are ordered using ⊆. P+(N) and Pf>(N) are sub-orders of P(N),
since they are partially ordered sets inheriting their order from P(N).

All three of these are complete lattices. In P(N), joins are given by union
and meet by intersection. P+(N) and Pf>(N) have the same meets, but joins
in P+(N) are given by the closure of the union under addition, while joins in
Pf>(N) are given by the union only if finite, and N otherwise.

However, while P+(N) is both a lattice and a sub-order of P(N), it is not a
sublattice of P(N). In P+(N), the join of {0} and {2} is the set of even natural
numbers, that is, the closure of {0, 2} under addition. Since the join of {0} and
{2} in P(N) is {0, 2}, the two orders disagree on lattice structure, so P+(N) is
not a sublattice of P(N).

In Pf>(N), finite joins and finite meets and are given by union and inter-
section, so Pf>(N) is in fact a sublattice of P(N). While Pf>(N) agrees with
P(N) on arbitrary meets, they disagree on some infinite joins. So, we say
that Pf>(N) is a sub-(complete meet semilattice) but not a sub-(complete join
semilattice) nor a sub-(complete lattice) of P(N).

2.1.4 Distributive lattices
A lattice is said to be distributive when meets distribute over joins and joins
distribute over meets, that is, when the following identities hold:

au (bt c) = (au b)t (au c)
at (bu c) = (at b)u (at c)

Either of these identities implies the other (for specific a,b, c these statements
are independent, but if one holds for all a,b, c then so does the other), so we
say that the property of being distributive is self-dual.

Generalising distributivity to the infinite case is more complex. The dis-
tributive identities can be written as follows:

au
⊔
b∈S

b =
⊔
b∈S

(au b)

at
l

b∈S
b =

l

b∈S
(at b)

The distributivity condition above is equivalent to these identities for finite S:
we say that meet distributes over finite joins, and join distributes over finite
meets. This condition generalises in various ways: we might have a lattice in
which:

• meets distribute over directed joins, or

• meets distribute over arbitrary joins, or

CHAPTER 2. BACKGROUND 21

• joins distribute over codirected meets, or

• joins distribute over arbitrary meets

Unlike the finite case, these conditions are not self-dual. For instance, in
the lattice of open sets of a topological space, meets always distribute over
arbitrary joins, while joins do not in general distribute over arbitrary meets.
An analogue of Lemma 1 holds: meet distributes over arbitrary joins iff meet
distributes over finite joins and meet distributes over directed joins.

Still, these distributivity conditions are not fully infinitary, since they
involve finite joins or meets distributing over possibly-infinite ones. A lattice
is said to be completely distributive if it satisfies the following more complex
condition, for an arbitrary family xi,j of elements indexed by i ∈ I, j ∈ J(i):

l

i∈I

⊔
j∈J(i)

xi,j =
⊔
f∈F

l

i∈I
xi,f(i)

where f ranges over the set F of functions of domain I such that f(i) ∈ J(i).
Complete distributivity is a self-dual property. However, there exist lattices

in which finite meets distribute over arbitrary joins, and finite joins over
arbitrary meets, and yet the lattice fails to be completely distributive1.

2.1.5 Distributivity and subtyping
While there is clear intuition behind requiring the subtyping order to form
a lattice (Section 2.1.2), it is less obvious why we might want the subtyping
lattice to be distributive.

Distributive lattices have very well-behaved coproducts, which simplifies
the subtyping relation (see Section 3.2.3). More generally, distributivity pre-
cludes the sort of vacuous reasoning that we decried in Section 1.4.1, in which
we strove to avoid statements like (1.6), where

au b 6 c

despite there being no relationship between a, b and c. Distributivity turns
out to be exactly the algebraic condition we can impose on the lattice which
effectively forbids this sort of vacuous reasoning. While this is hard to see
directly from the definition, there are several alternative presentations of
distributivity which make the connection clearer. Below, we present four
conditions, all equivalent to distributivity:

Meet-distributivity We can avoid the problem in (1.6) by demanding that all
subtyping relationships between the meet of two types and another type
follow from some property of the first two. Formally,

If au b 6 c, then a ′ u b ′ = c for some a ′,b ′ where a 6 a ′,b 6 b ′

Forbidden sublattices Alternatively, we can simply demand that our lattice
does not contain the two prototypical non-extensible lattices of Figure 2.1
(M3 vacuously admits au b 6 c, while N5 suffers a similar problem by
admitting xu z 6 y vacuously):

The lattice does not contain M3 or N5 as a sublattice
1 Coming up with examples is quite tricky, though. Some examples are complete atomless

Boolean algebras (completely distributive complete Boolean algebras are atomic), such as the
lattice of open-regular sets of a perfect topological space.

22 2.1. ORDER THEORY

ba c

(a) M3

x

y

z

(b) N5

Figure 2.1: The non-distributive lattices M3 and N5

Representation as sets Another condition is to require that our lattice of types
be representable as a powerset lattice, by assuming a homomorphism
φ mapping types to some set A, such that φ(τ1 u τ2) = φ(τ1)∪φ(τ2),
and similarly for joins. In other words,

There exists a lattice homomorphism to some powerset lattice

Cut-elimination We frequently need to decide statements like (1.6), of the
form a0 u a1 u . . . 6 b0 t b1 t We call such statements sequents,
by analogy with Gentzen’s sequent calculus which also has a finite set
of terms on the left, interpreted conjunctively, and a finite set of terms
on the right, interpreted disjunctively. An important property of the
sequent calculus is the cut-elimination theorem, which can be written in
lattice notation as follows:

d
iAi 6 c t

⊔
j Bj

d
iAi u c 6

⊔
j Bjd

iAi 6
⊔
j Bj

The four conditions above are all equivalent [DP02, CC00] to distributivity.
Distributivity has other side benefits: the coproduct of distributive lattices is
rather more well-behaved than the coproduct of general lattices, which will
ease construction of the subtyping lattice (see Section 3.2).

2.1.6 Recursive types and subtyping
In systems based on Hindley-Milner type inference, whether or not to include
equirecursive types is a design decision, with no especially strong technical
reasons to go either way. Including recursive types allows more programs,
but also allows some questionable programs that would perhaps be better
excluded.

In particular, the principality properties of type inference are unaffected
by the presence of recursive types. The concrete inference algorithms are
essentially the same, although care must be taken to implement unification
correctly (either supporting unification of infinite terms, or having an occurs
check).

However, with subtyping and in particular a least type ⊥, recursive types
cannot be omitted without losing principality. Consider the following term:2

f = λg.f(g true)

2This term can also be defined non-recursively, using a fixpoint combinator

CHAPTER 2. BACKGROUND 23

The function f can be given any of the following types:

(bool→ ⊥)→ ⊥
(bool→ bool→ ⊥)→ ⊥
(bool→ bool→ bool→ ⊥)→ ⊥

These are all non-recursive types. However, the principal type of the function f
is the following recursive type:

(µα.bool→ α)→ ⊥

Subtyping causes there to be terms typeable with finite types, yet whose
principal types are recursive.

However, the usual characterisation of recursive types as being unique fixed
points of their defining equations is not quite enough to handle subtyping
correctly.

2.1.7 Fixed, pre-fixed and post-fixed points
Suppose f : A→ A represents such a recursive definition, where A is a poset.
To interpret the definition, we frequently choose not just an arbitrary fixed
point but the least fixed point a, giving us the reasoning principle:

If f(x) = x, then a 6 x

Or, even better, we require the unique fixed point a, giving the principle:

If f(x) = x, then a = x

Unfortunately, for our applications to subtyping, neither of these reasoning
principles is strong enough. The issue is that the hypothesis f(x) = x is an
equation, whereas our knowledge about types consists of inequations f(x) 6 x
or x 6 f(x). We need reasoning principles that have such conditions as their
hypotheses.

A pre-fixed point of a function f is some a such that f(a) 6 a. Dually, a
post-fixed point of f is some a such that f(a) > a. We denote the set of pre-fixed
points of f as Pre(f), the set of post-fixed points as Post(f), and the set of fixed
points as Fix(f). Note that Fix(f) = Pre(f)∩ Post(f).

The useful properties of fixed points correspond to minimal, maximal or
unique elements of Pre(f), Post(f) and Fix(f). The least or unique post-fixed
point is uninteresting, since this is the least element of A (if it exists). Dually,
the greatest or unique pre-fixed point is equally uninformative. This leaves five
useful properties that a point a might have, listed below with their reasoning
principles.

unique fixed point: f(a) = a, and if f(x) = x, then a = x

least fixed point: f(a) = a, and if f(x) = x, then a 6 x
greatest fixed point: f(a) = a, and if f(x) = x, then a > x

least pre-fixed point: f(a) 6 a, and if f(x) 6 x, then a 6 x
greatest post-fixed point: f(a) > a, and if f(x) > x, then a > x

These properties are not all independent. Clearly, any point which is both the
least and greatest fixed point is the unique fixed point. Less obviously, when
we take f to be monotone (that is, x 6 y implies f(x) 6 f(y)), least pre-fixed
points are least fixed points3:

3The categorically inclined will recognise this as Lambek’s lemma.

24 2.1. ORDER THEORY

Lemma 2. If a is the least pre-fixed point of monotone f, then a is the least fixed
point of f.

Proof. f(a) 6 a since a is a pre-fixed point, so f(f(a)) 6 f(a) by monotonicity
of f. But this means f(a) is a pre-fixed point, so a 6 f(a).

However, the converse of this does not hold! A least fixed point of f is
not necessarily a least pre-fixed point. Consider the function f : R → R

defined by f(x) = 2x, which has a unique fixed point at 0, yet every x 6 0 is
a pre-fixed point with no least such point. In other words, if a function has
a least pre-fixed point, then it must also have a least fixed point, and they
must coincide. But if a function has a least fixed point, it need not have a least
pre-fixed point.

Naively, it might seem that this counterexample relies crucially on the
lack of a least real number. This is not the case, as demonstrated by the
following counterexample on a bounded poset. Consider the poset P, whose
elements are the integers and a greatest element >, ordered in the following
unconventional way:

0 6 1 6 2 6 3 6 . . . 6 −3 6 −2 6 −1 6 >

Define the function f : P → P as follows:

f(x) =

n+ 1 if x = n,n ∈N

−(n+ 1) if x = −n,n ∈N,n 6= 0
> if x = >

In other words, f moves non-negative integers one step right, negative integers
one step left, and leaves > where it is. This is a monotone function, with a
unique fixed point > which is also the greatest post-fixed point. However,
this function has no least pre-fixed point, as −n for every nonzero n ∈N is a
pre-fixed point.

A correct treatment of recursive types and subtyping requires least pre-
fixed and greatest post-fixed points, rather than mere fixed points. Happily,
most of the standard fixed-point theorems do in fact prove the least pre-
fixed point property, although they are rarely stated in generality. Here is
Tarski’s fixed-point theorem, stated in least pre-fixed point form. The proof
is essentially copied from that of Theorem 1 in Tarski’s paper [Tar55] (with
notation changed), although Tarski’s paper and most subsequent literature
state the result only in the weaker fixed-point form. First, we split off an
independently useful lemma:

Lemma 3. The meet of a set of pre-fixed points of a monotone function is a pre-fixed
point.

Proof. Let P ⊆ Pre(f), u =
d
P. For any x ∈ P, u 6 x, so f(u) 6 f(x) 6 x,

making f(u) a lower bound of P. Since u is the greatest such lower bound,
f(u) 6 u.

Theorem 4 (Tarski’s pre-fixed point theorem). If f is a monotone function on a
complete lattice A, then f has a least pre-fixed point.

Proof.
d
Pre(f) is a pre-fixed point by Lemma 3, and the least such by con-

struction.

CHAPTER 2. BACKGROUND 25

Occasionally, we are interested not in the least pre-fixed point of a function
f but in the least pre-fixed point above some starting point x. If x ∈ Post(f),
then this follows as a corollary:

Lemma 5. For a complete lattice A, monotone f : A → A, and x ∈ Post(f), then
Ux, defined as

Ux = {y | y ∈ A, x 6 y}

is a complete lattice, and f restricts to a monotone function Ux → Ux.

Proof. The meet or join of a set of elements above x is above x, so Ux is clearly
complete. If y ∈ Ux (that is, x 6 y), then x 6 f(x) 6 f(y), so f(y) ∈ Ux as
well.

Corollary 6. For a complete lattice A, monotone f : A→ A, and x ∈ Post(f), f has
a least pre-fixed point above x.

Proof. Apply Tarski’s pre-fixed point theorem to Ux and f.

As a further corollary, we get Tarski’s result that Fix(f) is a complete lattice:

Corollary 7. For a complete lattice A, monotone f : A → A, Fix(f) is a complete
lattice (as a suborder, not sublattice, of A)

Proof. For any F ⊆ Fix(f),
⊔
F is a post-fixed point by the dual of Lemma 3,

which has a least pre-fixed (therefore least fixed) point above it by the previous
corollary, so Fix(f) has arbitrary least upper bounds. The dual argument gives
arbitrary lower bounds.

2.1.8 Other fixed point results and Bekič’s construction
In order to obtain Tarski’s result that every monotone function has a least
pre-fixed point, it is not necessary to assume A be a complete lattice. In fact, a
directed-complete poset suffices, and this precisely characterises such posets.
Specifically, due to results of Abian and Brown [AB61] and Markowsky [Mar76],
we know the following are equivalent:

• A is a directed-complete partial order.

• A is chain-complete, having joins of totally ordered subsets.

• Every monotone f : A→ A has a least fixed point.

• Every monotone f : A→ A has a least pre-fixed point.

Conspicuously missing from this list is the property of having a fixed point
(not necessarily a least one) for every monotone function, a condition known
as the fixed point property and not known to be equivalent to anything in
particular. Davis [Dav55] proved as a sort of converse to Tarksi’s theorem that
a lattice has a fixed point property iff it is complete. For posets not known
to be lattices, the property is quite difficult to deal with, and it has been an
open problem for several decades whether the product of two posets with
the fixed point property retains the property. For a detailed discussion, read
Schröder [Sch12].

These results are thoroughly classical. The axiom of choice is needed to
equate directed-complete and chain-complete posets, and classical transfinite
induction is the proof method of choice for many of the fixed point theorems.

26 2.2. SEMIRINGS AND KLEENE ALGEBRA

I assume a classical setting throughout this thesis, but to the constructively-
minded I point out Pataraia’s beautiful proof that directed-complete posets
have the fixed point property [Esc03], and Bauer’s negative results [Bau12]
showing that the fixed-point theorems fail constructively on chain-complete
posets.

We sometimes need to find simultaneous fixed points, that is, given func-
tions f : A×B→ A and g : A×B→ B, find a ∈ A,b ∈ B such that

f(a,b) = a g(a,b) = b

Such situations arise when resolving a set of mutually recursive type con-
straints. As mentioned above, we cannot conclude that A× B has the fixed
point property just because A and B do. However, suppose that the fixed
points (or least pre-fixed points) are assigned in a monotone fashion. That is,
we have a fixed point or least pre-fixed point µf for every monotone f, and
moreover, if f 6 f ′ pointwise then µf 6 µf ′. In this case, a construction of
Bekič4 gives simultaneous fixed points of f and g:

µ(f× g) =

(
µa.f(a,µb.g(a,b))
µb.g(µa.f(a,b),b)

)

The stronger condition is needed to ensure that

a 7→ f(a,µb.g(a,b))

is itself a monotone function, allowing the outer use of µ.
This construction will be particularly useful in Chapter 5, when the finding

of least pre-fixed points is restricted to functions of a particular syntactic form
µα.t. Bekič’s construction allows us to use this single-variable construction to
find simultaneous fixed points in multiple variables.

2.2 Semirings and Kleene algebra
A semiring consists of a set equipped with constants 0, 1 and binary operators
+, ·, such that + is associative and commutative with identity 0, · is associative
with identity 1, + distributes over ·, and 0 · a = a · 0 = 0.

The semirings of interest in this thesis are idempotent semirings, satisfying
the extra condition a+ a = a. This condition gives the semiring a semilattice
structure, with + as join and 0 as the least element. In other words, an
idempotent semiring is a semilattice with a binary operation · which preserves
finite joins and has identity 1.

While the connection between partial orders and subtyping is direct, the
usefulness of semirings for subtyping is less obvious. The link arises from
two important examples of semirings.

First, given a semilattice A, the semilattice morphisms A → A form an
idempotent semiring, with composition as · and the identity function as 1.
Since type substitutions (Section 3.3.3) preserve t and u, they are semilattice
morphisms and form a semiring.

Second, the regular languages over some finite alphabet form an idempo-
tent semiring, with + as union, 0 as the empty language, · as concatenation,

4The correct spelling of Hans Bekič’s surname is unclear. In Programming Languages and Their
Definition [BJ84], a collection of his work, his name is variously given as Bekic, Bekić and Bekič,
although perhaps this has more to do with the limitations of typewriters than personal preference.

CHAPTER 2. BACKGROUND 27

and 1 as the language consisting of the empty string. The regular languages
have an efficient representation as finite automata, and so can be efficiently
manipulated.

Section 7.2 exploits the semiring algebra of these two constructions, pre-
senting algorithms which represent and manipulate types and type substitu-
tions as though they were regular languages. To prove this valid, we must
understand the equational theory of regular languages.

2.2.1 Axiomatising the regular languages
As well as the functions +, · and constants 0, 1 of semiring theory, regular
languages are described using the Kleene star, a unary operator ∗. To justify
manipulating types as regular languages, we must show that all equations
true of regular languages hold of types.

Axiomatising the equations true of regular languages is quite tricky. The
obvious approach is to augment the definition of an idempotent semiring with
some identities concerning ∗, for instance:

a∗ = 1+ a · a∗ (a∗)∗ = a∗

a∗ = 1+ a∗ · a (a+ b)∗ = a∗(ba∗)∗

While these identities do hold of regular languages, they are not complete:
there are identities of regular languages not derivable from the rules of
semirings augmented by the above. In fact, no finite list of identities com-
pletely axiomatises the equations of regular languages, a result first proved by
Redko [Red64]5.

Instead, the behaviour of ∗ can be specified using an identity and an
implication. A left-handed Kleene algebra is an idempotent semiring with a
unary operator ∗ satisfying:

a∗ = a · a∗ + 1
a · x 6 x =⇒ a∗ · x 6 x

Theorem 8 (Completeness for left-handed Kleene algebras). All equations of
regular languages hold in every left-handed Kleene algebra. That is, two finite terms
built of variables, 0, 1, +, · and ∗ denote equal regular languages iff they have the
same interpretation in every left-handed Kleene algebra.

This result was stated without proof by Conway [Con71], and finally
proved by Boffa [Bof95], relying on work by Krob [Kro91]. Recently, Kozen
and Silva [KS12] published a much shorter proof.

A right-handed Kleene algebra is an idempotent semiring satisfying flipped
versions of the above rules:

a∗ = a∗ · a+ 1
x · a 6 x =⇒ x · a∗ 6 x

The completeness result holds for these as well, since every right-handed
Kleene algebra is a left-handed one with the arguments to · swapped. However,
right- and left-handed Kleene algebras are not equivalent: Kozen [Koz90]
constructs a right-handed algebra which is not left-handed. The completeness

5This paper is out of print, in Russian, and quite difficult to get a hold of, so the interested
reader is directed to a shorter proof by Conway [Con71, p. 105], which is merely out of print.

28 2.2. SEMIRINGS AND KLEENE ALGEBRA

result means that their equational theories agree (that is, they have the same
valid identities), but they disagree on implications or general first-order
sentences.

An algebra which is both a left-handed and right-handed Kleene algebra is
called a Kleene algebra, a concept which (with its completeness result) predates
the one-handed variety [Koz90].

2.2.2 Kleene algebra via pre-fixed points
The behaviour of ∗ in a (perhaps one-handed) Kleene algebra can be better
understood as constructing pre-fixed points. In fact, left-handed Kleene
algebras can be characterised as semirings with least pre-fixed points of affine
maps f(x) = a · x+ b.

Theorem 9. For an idempotent semiring A, the following are equivalent:

• A is a left-handed Kleene algebra.

• A contains a least pre-fixed point µx. a · x+ b of every affine map f(x) =

a · x+ b, such that

(µx. a · x+ b) · c = (µx. a · x+ b · c)

Proof. (⇒) The affine map f(x) = a · x+ b has least pre-fixed point a∗ · b since
it is a fixed point:

a · (a∗ · b) + b = (a · a∗ + 1) · b = a∗ · b

and given any pre-fixed point y (with a ·y+b 6 y), a∗ ·y 6 y (since a ·y 6 y),
and so a∗ · b 6 y (since b 6 y). It satisfies the second condition since
(a∗ · b) · c = a∗ · (b · c).

(⇐) Define a∗ = µx.a · x+ 1, implying a∗ = a · a∗ + 1. Given a · x 6 x, we
have that x is a pre-fixed point of y 7→ a · y+ x, so

a∗ · x = (µy. a · y+ 1) · x = µy. a · y+ x 6 x

This characterisation tells us that the ∗ operator on a given semiring making
it into a left-handed Kleene algebra is unique. Either least pre-fixed points of
affine maps exist or they don’t, but there is never a choice of definitions for ∗.

Furthermore, suppose a given semiring has a (necessarily unique) opera-
tor ∗ making it a left-handed Kleene algebra, and a (also necessarily unique)
operator making it a right-handed Kleene algebra (which we now label † to
disambiguate). By the completeness theorems, left- and right- handed Kleene
algebras satisfy all identities of regular languages, in particular:

a∗ = a∗ · a+ 1

a† = a · a† + 1

However, a† is the least x satisfying x · a + 1 6 x, while a∗ is the least x
satisfying a · x+ 1 6 x, giving that a† 6 a∗ and a∗ 6 a†, making ∗ and †

coincide.
So, the structure of a (one- or both-handed) Kleene algebra is completely

determined by its underlying semiring! Adding the operator ∗ is not a new
operation, so much as an assertion that certain pre-fixed points already exist
in the semiring.

CHAPTER 2. BACKGROUND 29

2.2.3 Complete and *-continuous Kleene algebras

One- or both-handed Kleene algebras manage to capture all of the identities of
regular languages, but are in some respects still quite ill-behaved. In particular,
we might think that a∗ is given as the least upper bound of its powers:

1+ a+ a · a+ a · a · a+ . . .

However, this least upper bound is not guaranteed to exist in an arbitrary
Kleene algebra, and even when it does it is not guaranteed to be equal to a∗!
Note that this does not contradict the completeness theorem: the statement
a∗ = 1+a+a ·a+ . . . is not an “identity” in the sense of an equation between
finite terms.

This odd behaviour can be precluded by requiring stronger properties. A
complete idempotent semiring6 is an idempotent semiring where arbitrary, not
just finite, joins exist and are preserved by multiplication. All such semirings
are Kleene algebras, where a∗ =

⊔
k a
k.

However, complete idempotent semirings require a little too much. If we
work with formal languages, demanding that all joins exist takes us out of
the domain of regular languages and includes arbitrary formal languages.
This defeats the point somewhat: the usefulness of Kleene algebras lies in
their including sufficiently many joins and fixed points to describe recursive
structures, but sufficiently few that finite automata can be used as represen-
tations. Specifically, in Section 7.2, we use Kleene algebras to describe those
types that can be written using a finite, well-behaved syntax (the polar types
of Chapter 5). This syntax is closed under finite join and forming recursive
types, but definitely not under arbitrary joins.

A happy balance is found in the definition of ∗-continuous Kleene algebras7,
which are subsets of a complete idempotent semiring containing 0, 1, and
closed under +, · and ∗. Thus, a ∗-continuous semiring must have a well-
behaved ∗, but may be small enough to be described by finite syntax.

It is a theorem of Conway and Kozen that the ∗-continuous Kleene algebras
are exactly those semirings equipped with an operation ∗ satisfying:

a · b∗ · c =
⊔
k

a · bk · c

2.3 Category theory

I assume some knowledge of category theory in order to construct the lattice
of types in Chapter 3. However, a purely syntactic version of the construction
appears in that chapter, and category theory is not needed to understand the
rest of the thesis (although the syntactic construction will seem somewhat
unmotivated and arbitrary without the categorical explanation).

Only basic category theory is assumed: categories, sums, products, and
functors. Chapter 3 uses initial algebras to interpret recursive definitions,
while free objects have a brief cameo, but these concepts are explained as
needed.

6Kozen’s terminology [Koz90]. Conway calls these S-algebras.
7Conway’s N-algebras

30 2.3. CATEGORY THEORY

2.3.1 Categories of orders
The development of the type system in this thesis is explained using a few
order-themed categories, including:

Pos The category whose objects are partially ordered sets and whose mor-
phisms are monotone functions.

Lat The category whose objects are lattices and whose morphisms are func-
tions that preserve finite meets and finite joins.

DLat The category whose objects are distributive lattices and whose mor-
phisms are functions that preserve finite meets and finite joins.

Note that by defining the morphisms of Lat and DLat in terms of finite
rather than binary meets and joins, we ensure that morphisms preserve the
least and greatest elements (as these are empty joins and meets respectively).

There is an important functor (−)op : Pos→ Pos, the dual functor, which
acts on a poset by reversing the ordering. This is a functor: for any monotone
f : A→ B, we have:

a 6A a
′ =⇒ f(a) 6B f(a

′)

Equivalently,
a >A a

′ =⇒ f(a) >B f(a
′)

so we can take fop = f as a morphism from Aop to Bop.
Since the dual of a lattice is a lattice, and likewise for a distributive lattice,

the functor (−)op is also well-defined for Lat and DLat:

(−)op : Pos→ Pos

(−)op : Lat→ Lat

(−)op : DLat→ DLat

Another other useful functor on the category of posets is:

(−)> : Pos→ Pos

This functor acts on a poset by adjoining a new greatest element, and acts on
morphisms by preserving the new element:

f>(x) =

{
> if x = >
f(x) otherwise

If f preserves all joins, then so does f>. Consider a complete lattice L and
some S ⊆ L>. If > ∈ S, then

f>(tS) = f>(>) =
⊔
x∈S

f>(x)

Otherwise, tS 6= >, so:

f>(tS) = f(tS) =
⊔
x∈S

f(x) =
⊔
x∈S

f>(x)

Conversely, if f preserves all meets, then so does f>. Consider again some
S ⊆ L>, and let S ′ = S\{>}. Since > is the identity of u, we have uS = uS ′, so:

f>(uS) = f>(uS ′) = f(uS ′) =
l

x∈S ′
f(x) =

l

x∈S ′
f>(x)

CHAPTER 2. BACKGROUND 31

The same argument shows that f> preserves all finite meets and joins if f does.
The effect of this is that the functor (−)> defines not only a functor on the
category of posets, but also a functor on the categories of lattices and complete
lattices. Furthermore, adjoining a new top element preserves distributivity, so
this also defines a functor on the category of distributive lattices, as well as on
the various categories of complete distributive lattice.

Similarly, we define the functor (−)⊥ which adds a new bottom element,
and satisfies (L>)op = (Lop)⊥, as well as the functor (−)>⊥ which adds both a
new top and a new bottom element.

2.3.2 Concrete categories and free objects
These categories all have a similar structure: their objects are sets with some
extra structure, and the morphisms are those functions between the sets which
preserve this structure. This idea can be made formal as a concrete category,
which is a category equipped with a functor |−| : C → Set known as a forgetful
functor, whose effect is to forget any structure of C beyond plain sets and
return the underlying sets and functions. For instance, the forgetful functor
|−| : Pos→ Set maps each poset A to its set of elements |A|, ignoring the order
with which A is equipped. A Pos-morphism f : A→ B (that is, a monotone
function f from A to B) is mapped to the Set-morphism |f| : |A|→ |B| (that is,
a function |f| from A to B) by simply forgetting that f preserves ordering.

For each of the categories Pos, Lat and DLat, products are taken the same
way as in Set, by Cartesian products:

|A×B| = |A|× |B|

However, this is not the case for sums in Lat and DLat, since the sum of two
lattices is given by a construction quite unlike disjoint union:

|A+B| 6= |A|+ |B|

This distinction is of central importance in Section 3.2.
A poset, lattice or distributive lattice can be made out of any set using a

construction called the free object, hence the terms free lattice and free distributive
lattice (free posets being rather boring). Given a set V whose elements are
called generators, the free lattice Free(V) is a lattice consisting of all terms
built from elements of V and the lattice operations, quotiented by equivalence
under the lattice laws. For V = a,b, Free(V) contains the following elements:

⊥,au b,a,b,at b,>

Since the laws for lattices and distributive lattices differ, the free lattice and
the free distributive lattice on the same set V are quite different, when V has
more than two elements. For instance, the free distributive lattice on three
generators contains 20 elements (arranged as on page 8), while the free lattice
on three generators is infinite.

The defining property of a free lattice (or free object in general) is that
a function from the generators to some lattice A can be extended uniquely
to a morphism from Free(V) to A. More formally, there is a natural bijec-
tion between the functions (Set-morphisms) V → |A| and the morphisms
Free(V)→ A.

Free (distributive) lattices are used in Section 3.3.2 to formalise type vari-
ables, where their defining property is used to understand substitution: an

32 2.3. CATEGORY THEORY

assignment of types to type variables (a function) can be extended to a lat-
tice morphism. In other words, type terms with variables can be uniquely
interpreted as types once you know what types are assigned to each variable.

2.3.3 Aside: orders versus categories for subtyping
A partial order (in fact, any preorder) can be interpreted as a category, by
taking the objects of the category to be the elements of the partial order, and
supposing a single morphism a→ b whenever a 6 b. The reflexivity of the
order provides identity morphisms, and transitivity provides composition.

This is a deep connection, with many of the concepts of category theory
being mirrored precisely in order theory. Most definitions and theorems carry
over directly, with the assumption of uniqueness of morphisms simplifying
the order-theoretic versions.

The question arises, therefore, of why to bother with order theory at all?
Subtyping could be expressed by placing types in a category instead of a
partial order, removing the need for orders. Apart from missing out on the
usefulness of various order-theoretic results that do not generalise well to
categories (in particular, the fixed-point theorems), there is a deeper reason
not to do this.

Subtyping between types is done implicitly by a type system, without any
program-level marker to signify the point at which subtyping happens. As
a programmer, I expect to be able to control any operation that the program
does which affects its result. In other words, when the compiler implicitly
applies subtyping, I require that it makes no choices in doing so: between two
types there should not be a choice of possible subtyping routes. Categorically,
morphisms should be unique, which selects from possible categories exactly
those that correspond to orders.

3 Constructing types

What are numbers and what should they be?

—Richard Dedekind

Numbers are usually integers.

—GNU assembler reference manual

For the bulk of this thesis, we study a minimal calculus with subtyping,
containing booleans, records, and functions. These three features are just
enough to make the subtyping relation realistically awkward, while remaining
minimal:

• Booleans give a base type, incomparable to types made with any other
type constructor.

• Functions give type constructor with type parameters of different vari-
ance: function types are contravariant in their domain and covariant in
their range.

• Records give subtyping relations between type constructors of different
arity, since a record type with more fields is a subtype of one with fewer.

Including all of these types keeps us out of several well-known easier special
cases: function types mean we cannot assume purely covariant subtyping, while
record types mean we cannot use structural subtyping1, and so we are forced
to tackle the problem in generality. In Chapter 9, we see how the system
developed to handle boolean, record and function types smoothly extends to
other features, like variant types (sums), mutable references, and effects.

The typing rules for this minimal calculus are the standard typing rules for
ML, augmented with the standard subtyping rule, so I unimaginatively call
it MLsub. Two presentations of the typing rules (the familiar ML-style ones,
and an equivalent reformulation that makes the inference algorithm clearer)
are presented and discussed in detail in the next chapter.

1 The terminology here is unfortunate. In the subtyping literature, structural subtyping (as op-
posed to non-structural subtyping) refers to a subtyping relation that relates only type constructors
of the same arity, precluding width subtyping on records. In object-orientation literature, struc-
tural typing (as opposed to nominal typing) refers to subtyping relations that are implicitly formed
from similar structures, rather than having to be explicitly declared via subclassing annotations.
Confusingly, by these definitions, structural typing requires non-structural subtyping!

34

The syntax, semantics and even typing rules of MLsub are entirely standard.
The novelty that makes principal type inference possible lies instead in a part
of the language often treated too briefly: the definition of the types themselves.

Conventionally, types get a one-line definition laying out their syntax:

τ ::= bool | τ1 → τ2 | {`1 : τ1, . . . , `n : τn}

Such a definition can be read in two ways. First, we have the syntactic
viewpoint: types are trees of symbols according to the above grammar. Al-
ternatively, we have the algebraic viewpoint: types are members of the initial
algebra of a functor on Set.

The syntactic viewpoint enables easy implementation: representing syn-
tactic terms as data structures in a compiler is straightforward. The algebraic
viewpoint enables reasoning: that this is an initial algebra allows results about
it to be transported to any other algebra, giving extensibility. Happily, both
viewpoints coincide.

When we introduce subtyping, the story is much the same. The syntactic
presentation is modified by adding an inductively defined subtyping relation,
while the algebraic presentation is modified by taking an initial algebra in Pos
instead of Set. Again, either viewpoint gives the same answer.

However, once we require types to form a lattice rather than a mere poset
(as required for inference), the two viewpoints diverge sharply. Previous work
has (perhaps unthinkingly) consistently chosen the syntactic route, leaving a
system bereft of universal properties or useful algebraic structure. Our goal
here is to construct a collection of types and a subtyping relation, with better
algebraic structure than previous approaches.

The algebraic construction of the collection of types is carried out in stages,
defining the following systems of types, each with more structure than the
previous:

Ts simple types
To simple types, subtyping order
Tb simple types, subtyping order (bounded)
Tl simple types, subtyping lattice
TV simple types, subtyping lattice, type variables
T̃V simple types, subtyping lattice, type variables, recursive types

While systems Ts, To and Tb are entirely standard, Tl diverges from pre-
vious work. The conventional approach to constructing a subtyping lattice
builds instead the lattice T ′l , which while having a pleasantly minimal syntac-
tic definition fails to be extensible or algebraically well-behaved.

A similar situation occurs when moving from Tl to TV . The standard
approach is to first define ground types, and introduce type variables as
meta-variables quantifying over these ground types. Section 1.4 shows how
this approach breaks extensibility, so instead we define TV as a free algebra,
which amounts to treating type variables as opaque indeterminates.

Once we have added recursive types to give T̃V , we have a lattice of types
that is particularly well-behaved algebraically, enabling complete and principal
type inference. In subsequent chapters, we take T = T̃V , and do not refer to
the others.

CHAPTER 3. CONSTRUCTING TYPES 35

3.1 Simple types
Our first attempt at defining types defines the set Ts of simple types, having
functions, records and booleans. Syntactically, this is:

τ ∈ Ts ::= bool | τ1 → τ2 | {`1 : τ1, . . . , `n : τn}

We assume some set L of record labels, over which `i range. Rather than
using a syntactic list, record types are defined as a partial function from record
labels to types, making the order of label-type pairs in record types irrelevant.
Occasionally, we explicitly denote this: {`1 : τ1, `2 : τ2} is the same as {f}
where dom f = {`1, `2}, f(`1) = τ1, f(`2) = τ2. We assume there to be only
finitely many record labels: a finite program can only refer to finitely many
anyway, and having only finitely many type constructors makes our lives
easier when reasoning about completeness and limits in Section 3.4.

An inductive definition like the above can be read as the initial algebra
of a functor. We construct three functors, Bools, Funcs and Recs for boolean,
function and record types, and combine these into a functor Fs of which Ts is
the initial algebra.

There is only one boolean type, so the functor Bools : Set → Set is the
constant functor returning the set 1, which is a singleton set (the terminal
object of Set):

Bools(A) = 1

Function types are given by a pair of types (the domain and the range), so the
functor Funcs returns a product:

Funcs(A) = A×A

Record types are given by a partial function from labels (elements of L) to
types. Since the class of partial functions A⇀ B is isomorphic to the class of
total functions A→ (B+ 1), we choose to write the functor Recs as follows:

Recs(A) = (A+ 1)L

Above, we choose to interpret (−)L as an iterated product, rather than anything
more exotic:

XL = X×X× . . .×X

where the number of terms in the product is the (assumed finite) cardinality
of L.

Thus, the functor Fs : Set→ Set is defined as:

Fs(A) = Bools(A) + Funcs(A) + Recs(A)

and the simple types Ts form the initial algebra of Fs.

3.1.1 Algebras, initial and otherwise
In general, a Fs-algebra (A, f) consists of a set A and a function (Set-morphism)
f : Fs(A) → A. In other words, a Fs-algebra is a set equipped with some
interpretation of boolean, function types and record types, that is, a set with
a distinguished element bool, a function −→ − : A×A→ A, and functions
{`1 : −, . . . `n : −} : An → A.

36 3.1. SIMPLE TYPES

(Bool)
bool 6 bool

(Func)
τ ′1 6 τ1 τ2 6 τ ′2
τ1 → τ2 6 τ ′1 → τ ′2

(RecWidth)
{`1 : τ1, . . . , `n : τn, . . . `n+m : τn+m} 6 {`1 : τ1, . . . `n : τn}

(RecDepth)
τ1 6 τ ′1 . . . τn 6 τ ′n

{`1 : τ1, . . . , `n : τn} 6 {`1 : τ ′1, . . . , `n : τ ′n}

Figure 3.1: Subtyping rules

A morphism between Fs-algebras (A, f) and (B,g) is a function α : A→ B

which respects the Fs-algebra structure, i.e. makes the following diagram
commute:

Fs(A) A

Fs(B) B

f

Fs(α) α

g

In this way, Fs-algebras form a category.
Ts is an Fs-algebra, because it is equipped with an interpretation of

boolean, function and record types. Moreover, it is the initial Fs-algebra,
meaning that for any other Fs-algebra (A, f), there is an Fs-algebra morphism
α : (Ts, id)→ (A, f) which preserves the interpretation of booleans, functions
and record types. This translates into the following universal property:

Proposition 10. For any Fs-algebra (A, f), there is a unique function α : Ts → A

such that:

α(bool) = bool

α(τ1 → τ2) = α(τ1)→ α(τ2)

α({`i : τi}) = {`i : α(τi)}

In other words, working with the initial algebra provides extensibility:
anything we can construct in Ts can be mapped in a structure-preserving way
to any other Fs-algebra, even if the other algebra defines other types as well.

3.1.2 Subtyping
Next, we equip our types with a subtyping order. Syntactically, this is done
by defining the relation 6 inductively according to the rules of Figure 3.1.
Since record types are defined by a partial function rather than a list, we need
no permutation rules. It is a routine proof that the rules of Figure 3.1 do in
fact define a partial order, and we write To for the poset ordered by 6 whose
carrier set is Ts.

Algebraically, we again take To to be an initial algebra, but this time we
take the initial algebra in Pos rather than Set. The functor Boolo : Pos→ Pos
looks the same as before, although this time 1 denotes the singleton poset
rather than the singleton set:

Boolo(A) = 1

CHAPTER 3. CONSTRUCTING TYPES 37

Function types are ordered contravariantly in their domain and covariantly in
their range, so we define:

Funco(A) = Aop ×A

where (−)op : Pos → Pos is the functor that maps every poset (X,6) to its
dual (X,>).

Records are partial functions from L to types, which as before we represent
as total functions from L to types with one extra element. Since (RecWidth)

tells us that records lacking fields are ordered above records containing them,
the extra element is added as a new greatest element to the poset, giving

Reco(A) =
(
A>
)L

where (−)> : Pos→ Pos is the functor that adjoins a new top element.
These functors directly encode the subtyping rules of Fig. 3.1, so we define

Fo : Pos→ Pos as:

Fo(A) = Boolo(A) + Funco(A) + Reco(A)

and To is the initial algebra of Fo. By being initial, this algebra has the same
useful extensibility properties as Ts.

This construction extends the construction of Ts in a strong sense. We have
the forgetful functor |− |Pos : Pos→ Set which turns a poset into a plain set
by dropping its ordering. Since |Aop|Pos = |A|Pos and |A>|Pos = |A|Pos + 1, the
poset functors Boolo, Funco, and Reco agree with their counterparts in Set:

|Boolo(A)|Pos = Bools(|A|Pos)

|Funco(A)|Pos = Funcs(|A|Pos)

|Reco(A)|Pos = Recs(|A|Pos)

3.1.3 Least and greatest types
Syntactically, it is straightforward to add least and greatest types. We define
the bounded types Tb inductively by extending the syntax:

τ ∈ Tb ::= bool | τ→ τ | {`1 : τ1, `2 : τ2, . . . } | ⊥ | >

and order it by the rules of Figure 3.1, augmented with two new rules:

⊥ 6 τ τ 6 >

Algebraically, the construction is similar. We work now in the category Pos>⊥
of bounded posets: those with a least and greatest element, and monotone maps
which preserve the least and greatest elements. We add the new elements to
the definition of Boolb, Funcb and Recb:

Boolb(A) = 1>⊥
Funcb(A) = (Aop ×A)>⊥

Recb(A) =
(
(A>)L

)>
⊥

where the functor (−)>⊥ augments its input with new least and greatest
elements. Since the functors (−)op and (−)> preserve boundedness, we are

38 3.2. A (DISTRIBUTIVE) LATTICE OF TYPES

boolt bool = bool

boolu bool = bool

(τ1 → τ2)t (τ ′1 → τ ′2) = (τ1 u τ ′1)→ (τ2 t τ ′2)
(τ1 → τ2)u (τ ′1 → τ ′2) = (τ1 t τ ′1)→ (τ2 u τ ′2)

{f}t {g} = {h}
where domh = dom f∩ domg

and h(`) = f(`)t g(`)
{f}u {g} = {h}

where domh = dom f∪ domg

and h(`) =

f(`)u g(`) if ` ∈ dom f, ` ∈ domg

f(`) if ` ∈ dom f, ` 6∈ domg

g(`) if ` 6∈ dom f, ` ∈ domg

Figure 3.2: Meet and join

justified in treating them as functors Pos>⊥ → Pos>⊥. The definition of Fb is as
before:

Fb(A) = Boolb(A) + Funcb(A) + Recb(A)

In this category, coproducts are constructed by taking the disjoint union
and identifying the least elements of each summand, as well as the greatest
elements, so we end up adding only a single new top and bottom element,
despite (−)>⊥ appearing in each summand. Again, the algebra Tb is the initial
algebra of this functor Fb.

3.2 A (distributive) lattice of types

So far, the syntactic and algebraic approaches have given the same results.
However, they suggest different moves as soon as we require a lattice rather
than a plain poset of types.

The syntactically simplest lattice to build is to keep the syntax of Tb and
notice that it is, in fact, already a lattice!

T ′l = Tb

I give it a new name T ′l to emphasize that we now consider it equipped with
meets and joins, rather than just a bounded ordering. The computation of
meet and join in T ′l is as shown in Figure 3.2. Cases not matched by Figure 3.2
(e.g. boolt (bool→ bool)) are > (for unmatched joins) or ⊥ (for unmatched
meets).

The algebraically simplest lattice to build is to keep the definition of Fb,
but use a category of lattices instead of posets. In fact, I work with the category
DLat of distributive lattices, since these have better extensibility properties (see

CHAPTER 3. CONSTRUCTING TYPES 39

Section 2.1.5). So, we define Fl : DLat→ DLat as follows:

Booll(A) = 1>⊥
Funcl(A) = (Aop ×A)>⊥

Recl(A) =
(
(A>)L

)>
⊥

Fl(A) = Booll(A) + Funcl(A) + Recl(A)

The functors (−)op, (−)>, and (−)>⊥ are now being used as functors DLat→
DLat rather than Pos→ Pos (see Section 2.3.1). Since the definition of Fl lies
in DLat rather than Pos>⊥, the coproduct is a coproduct of distributive lattices
rather than of bounded posets. Taking the initial algebra of this functor gives
a distributive lattice Tl, which is quite different from T ′l .

3.2.1 Syntactic construction
While it is not vital that Tl be built using the most minimal syntax, we do
desire some syntax describing it, so an explicit construction is useful. We first
show a construction for Fl(A), where A is an arbitrary distributive lattice, and
then iterate this construction to build the initial algebra. We begin by defining
syntactic terms over A representing the three component functors and Fl using
xi to range over A:

tB ::= ⊥ | bool | >
tF ::= ⊥ | x1 → x2 | >
tR ::= ⊥ | {`1 : x1, . . . , `n : xn} | >
t ::= tt t | tu t | tB | tF | tR

Each term tB, tF, tR can be interpreted as an element JtBKB, JtFKF, JtRKR of
Booll(A), Funcl(A), Recl(A) as follows, writing ∗ for the unique member of
the terminal object 1, and i for the inclusion map from L to L>⊥:

J⊥KB = ⊥ JboolKB = i(∗) J>KB = >
J⊥KF = ⊥ Jx1 → x2KF = i((x1, x2)) J>KF = >
J⊥KR = ⊥ J{f}KR = i(f) J>KR = >

We write inj{B,F,R} for the injection maps into the coproduct, and interpret
terms t straightforwardly:

Jt1 t t2K = Jt1Kt Jt2K Jt1 u t2K = Jt1Ku Jt2K
JtBK = injB(JtBKB) JtFK = injF(JtFKF) JtRK = injR(JtRKR)

However, many terms have the same interpretation, for instance:

Jboolt boolK = JboolK

The inclusion map i preserves non-empty meets and joins (it is not a lattice
homomorphism because it does not preserve empty meets and joins, due to
the addition of new ⊥ and > elements). Therefore,

J(x1 → x2)t (x ′1 → x ′2)K = J(x1 u x ′1)→ (x2 t x ′2)K

In fact, when two terms are equal by any of the rules of Fig. 3.2 then they have
equal interpretations, so the elements of Fl(A) are equivalence classes of terms

40 3.2. A (DISTRIBUTIVE) LATTICE OF TYPES

t quotiented by the smallest equivalence relation including the equations of
Fig. 3.2 and those of distributive lattices. We write τ for these equivalence
classes, reserving t for syntactic terms.

Next, we build Tl by iterating this construction. The elements of Fl(0) are
the equivalence classes of terms containing no nesting of the boolean, function
or record type constructors, such as:

⊥ → >
boolu (> → >)

(⊥ → >)t (boolu {` : ⊥})

Similarly, Fl(Fl(0)) contains types with booleans, functions or record types
nested to a depth of at most 2, such as bool→ bool, but not bool→ (bool→
bool). In general, Fkl (0) contains those types representable by terms with at
most k levels of nesting, and the initial algebra is given by taking the disjoint
union of Fkl (0) for all k and removing duplicates.

More formally, we start with the initial object of DLat, which is the dis-
tributive lattice 0 = {>,⊥}. For any distributive lattice L, there is a unique
morphism ! : 0→ L, so we can build the following direct system:

0
!−→ Fl(0)

Fl(!)−−−→ Fl(Fl(0))
Fl(Fl(!))−−−−−−→ . . .

The direct limit of this system is the universal object Tl having injection mor-
phisms injk : Fkl (0)→ Tl such that:

injk+1 ◦Fkl (!) = injk

Explicitly, we build Tl as the disjoint union of Fkl (0) for all k:

Tl =
⊎
k

Fkl (0)/ ∼

quotiented by the equivalence relation ∼, which is the smallest equivalence
relation satisfying:

x ∼ Fkl (!)(x)

for all x ∈ Fkl (0).
To reduce clutter, I generally avoid writing the interpretation maps J−K

from syntactic terms over A to Fl(A) and the injections injk from Fk(0) to
Tl. Thus, I abuse notation by writing bool → bool for the type τ ∈ Tl more
properly denoted:

inj2 JJboolK→ JboolKK

The upshot of this is that while we may interpret bits of syntax t as types
τ ∈ Tl, we cannot assume that each type τ is the interpretation of a unique bit
of syntax. So, we must avoid reasoning by pattern-matching on the syntax of
types, unless we are very careful to respect the equivalences between different
syntactic representations of the same type.

3.2.2 Comparing the lattices
Essentially, Tl differs from T ′l by making fewer terms equal to ⊥ and >. Meets
and joins such as boolu (> → ⊥) are freely added to Tl, whereas T ′l equates
them with ⊥.

Due to its definition as an initial algebra, Tl has a universal property:

CHAPTER 3. CONSTRUCTING TYPES 41

Proposition 11. For any Fl-algebra (A, f), there is a unique monotone function
α : Tl → A such that:

α(τ1 t τ2) = α(τ1)tα(τ2) α(τ1 u τ2) = α(τ1)uα(τ2)
α(⊥) = ⊥ α(>) = >

α(bool) = bool α(τ1 → τ2) = α(τ1)→ α(τ2)

α({`i : τi}) = {`i : α(τi)}

The first conditions can be given more concisely by stating that α is a
lattice homomorphism (a morphism in DLat), rather than just a monotone
function.

The lattice T ′l does not satisfy this universal property, and there may be
no lattice homomorphism T ′l → (A, f) for a Fl-algebra (A, f). This is the
underlying reason for the failure of extensibility we saw in Section 1.4.1: since
T ′l defines the meet of any function type and any record type to be ⊥, it
cannot have a meet-preserving map to a lattice that does not.

While the construction of T ′l is natural from a syntactic point of view
(simply noticing an already-present lattice structure), it is deeply odd from an
algebraic one. We re-explain the construction of T ′l algebraically by starting
with a lattice A (initially, the one-element lattice), and iteratively extending
it. So, we build the lattices Booll(A), Funcl(A) and Recl(A). Next, instead of
taking their coproduct (as in the construction of Tl), we perform the following
steps to make T ′l :

• Forget the lattice structure, taking Booll(A), Funcl(A) and Recl(A) as
mere bounded posets.

• Take a coproduct in Pos>⊥, still ignoring lattice structure.

• Notice the happy accident that the result is a lattice.

Syntactically concise, but not an algebraically satisfying process. In fact, the
algebra of T ′l is remarkably complicated: while calculating meets and joins of
elements of T ′l is fairly straightforward (and can be done efficiently [KPS93]),
once type variables and lattice operations are introduced the subtyping prob-
lem is not even known to be decidable, despite a vast amount of research on
the problem [Pot98b, Reh98, Pri04, SAN+02].

3.2.3 Components and coproducts
The lattice Tl is the initial algebra of Fl, and Tl = Fl(Tl). Expanding defini-
tions, that is:

Tl = 1>⊥ + (T op
l × Tl)

>
⊥ +

(
(T >l)L

)>
⊥

This equation is of the form

Tl =
∑
i

(Ci)
>
⊥

where Ci ranges over the three components: boolean, function and record types.
The functor (−)>⊥ adds an extra top and bottom element to each component,
which are identified by the sum. This ensures that the components are disjoint:
the greatest function type is distinguished from the greatest record type. In
Section 3.3, we consider adding type variables as separate components, while

42 3.3. TYPE VARIABLES

in Chapter 9 we consider various other type constructors (e.g. sum types) as
new components, but the general pattern of defining the lattice of types as a
sum of components persists.

Given two types from the same component, it is straightforward to deter-
mine their subtyping relationship based on the definition of that component.
For instance, given two function types τ1 → τ2 and τ ′1 → τ ′2, we know that
τ1 → τ2 6 τ ′1 → τ ′2 iff τ ′1 6 τ1 and τ2 6 τ ′2, since the function type compo-
nent is T op

l × Tl (that is, two type parameters, with the first contravariant and
the second covariant).

However, it is less obvious when the types are from different compo-
nents. Consider the following general problem, for types τi, τ ′i drawn from
components Ci: l

i

τi 6
⊔
i

τ ′i

Trivially, if τk 6 τ ′k for some k then the above holds, since:
l

i

τi 6 τk 6 τ
′
k 6

⊔
i

τ ′k

Happily, a standard theorem about the coproduct of distributive lattices is
that this holds only in the above trivial case:

Proposition 12.
d
i τi 6

⊔
i τ
′
i iff τk 6 τ ′k for some k.

Proof. See e.g. Grätzer [Grä09, p.131]. Somewhat confusingly, Grätzer and
others refer to the coproduct as the “free product”.

This simple characterisation of subtyping greatly simplifies the problem of
deciding subsumption (see Chapter 8), and is a distinct technical advantage of
making the subtyping order form a distributive lattice. Other systems, taking
a less algebraic and more syntactic approach, are much less simple in this
regard. For instance, in the lattice T ′l described previously, Proposition 12 is
violated since the following holds:

bool 6 (> → ⊥)t {` : ⊥}

because the right-hand side is equal to >. This made the subtyping problem
inordinately difficult in previous work that took this approach, since subtyping
relationships may obtain even though no type constructor appears on both
sides of 6.

3.3 Type variables
The lattice Tl is distributive, and contains booleans, record and function types
with a useful universal property. However, it is not quite enough to treat type
variables in a satisfying way.

Suppose we have an Fl-algebra (A, f), and a set of type variables V .
Type variables are represented abstractly in A by means of some function
i : V → |A|, where |A| is the underlying set of the lattice A (that is, the functor
|− | is the forgetful functor from DLat to Set). An assignment of variables is
another function ρ : V → |A|. The essential property that we need is that any
assignment ρ, mapping type variables to types, can be uniquely extended to a
substitution ρ̂, mapping types to types. There are two subtly different ways to
formalise this, depending on exactly what we allow ρ(v) to range over:

CHAPTER 3. CONSTRUCTING TYPES 43

Definition 13 (Closed-world variable assignment). For any assignment ρ : V →
|A|, there is a unique morphism ρ̂ : (A, f)→ (A, f), such that ρ̂(i(v)) = ρ(v) for all
variables v ∈ V (or equivalently, |ρ̂ · i| = ρ).

This definition is “closed-world”, because it only allows for quantification
over A. If we have a larger structure of types B, this definition gives us no way
to assign elements of B to variables. To be extensible, we need to be able to
substitute elements of an arbitrary algebra of types for type variables, giving
the following open-world version:

Definition 14 (Open-world variable assignment). For any Fl-algebra (B,g) and
assignment ρ : V → |B|, there is a unique morphism ρ̂ : (A, f) → (B,g), such that
ρ̂(i(v)) = ρ(v) for all variables v ∈ V (or equivalently, |ρ̂ · i| = ρ).

This is the categorical definition of a free object2. If A satisfies the open-
world variable assignment condition, then A is a free object over V .

3.3.1 Open versus closed-world type variables
One might wonder why we need to distinguish the open-world and closed-
world descriptions of type variables, when no special attention is paid to the
fact in most treatments of ML-like languages.

In fact, without subtyping, Herbrand’s theorem saves us from needing to
draw the distinction. Herbrand’s theorem tells us that an existential formula
which is falsifiable must be falsifiable in a syntactic Herbrand structure, or
in other words, that anything that can go wrong under open-world variable
assignment can already go wrong in a closed world.

Section 1.4.2 showed that this is not the case once a subtyping lattice
is introduced, since Eq. (1.10) is falsified only in an open-world extension
of the type system. Herbrand’s theorem does not apply, since we are not
looking for a counterexample among all logical structures but only among
the lattice-ordered ones. Thus, we have to be quite careful about open-
versus closed-world variable assignment, since we can no longer rely on their
coincidence.

3.3.2 Constructing free algebras
As explained in Section 1.4.2, the idea is to extend the syntax of types with
explicit type variables. This is an intuitive, but still essentially syntactic
approach: we treat variables opaquely by adding them directly to the syntax.
Algebraically, adding a set V of variables to the definition of Fl amounts to
working with the initial algebra of the functor FV : DLat→ DLat, defined as:

FV (A) = Fl(A) + Free(V)
= Booll(A) + Funcl(A) + Recl(A) + Free(V)

In fact, the initial algebra of FV (which we call TV) is the free object over V in
the category of Fl-algebras, called the free Fl-algebra over V :

Theorem 15. The initial algebra of FV is the free Fl-algebra over V .

Proof. Let (A, fV) be the initial FV -algebra, and suppose we are given some
Fl-algebra (B,g) and a variable assignment ρ : V → |B|.

2See Section 2.3.2 for a more introductory description of free objects

44 3.3. TYPE VARIABLES

By the universal property of Free, there is a unique morphism α : Free(V)→
B such that |α| = ρ, making (B,g+ α) a FV -algebra. By initiality, there is a
unique morphism ρ̂ : A→ B making this diagram commute:

FV (A) A

FV (B) B

fV

FV(ρ̂) ρ̂

g+α

The morphism fV is f+ i, for some f : Fl(A) → A and i : Free(V) → A. The
morphism FV (ρ̂) is Fl(ρ̂) + 1, allowing us to rewrite the above diagram as:

Fl(A) A Free(V)

Fl(B) B Free(V)

f

Fl(ρ̂) ρ̂

i

1

g α

This gives ρ̂ as the unique F-algebra morphism (A, f)→ (B,g) (the left square)
making ρ̂ · i = α (the right square) and therefore |ρ̂ · i| = |α| = ρ.

The concrete construction of TV is the same as that of Tl: the direct limit
(that is, disjoint union with duplicates identified) of the following:

0
!−→ FV (0)

FV(!)−−−−→ FV (FV (0))
FV(FV(!))−−−−−−−→ . . .

Just like Tl, the lattice TV can be represented as a sum
∑
i(Ci)

>
⊥ of com-

ponents Ci. Since Free preserves sums (being a left adjoint), and the free
(distributive or otherwise) lattice on one generator is 1>⊥, we have:

Free(V) =
∑
v∈V

1>⊥

So, the components Ci consist of booleans, functions, records, plus one
component for each type variable.

3.3.3 Properties of substitutions
For any assignment ρ : V → TV , the construction above gives a substitution
ρ̂ : TV → TV which allows us to substitute types for type variables. The
general categorical formulation of this ensures ρ̂ is a morphism of DLat,
meaning that for any assignment ρ,

ρ̂(⊥) = ⊥ ρ̂(>) = >
ρ̂(τ1 t τ2) = ρ̂(τ1)t ρ̂(τ2) ρ̂(τ1 u τ2) = ρ̂(τ1)u ρ̂(τ2)

It would not have been much more effort to prove this by hand, by induction
on a syntactic representation of TV . However, once we extend TV with
recursive types in the next section, this categorical formulation gives us the
above properties without the hassle of syntactic reasoning under µ-binders.

According to Definition 14, the substitution ρ̂ corresponding to an assign-
ment ρ is a morphism of FV -algebras, not just a morphism of DLat. In other
words, we know that ρ̂ respects the algebraic structure, giving the expected

CHAPTER 3. CONSTRUCTING TYPES 45

properties of substitutions:

ρ̂(bool) = bool

ρ̂(τ1 → τ2) = ρ̂(τ1)→ ρ̂(τ2)

ρ̂({`1 : τ1, . . . , `n : τn}) = {`1 : ρ̂(τ1), . . . , `n : ρ̂(τn)}

Although we generally take the set V of variables to be finite, there is an
easy mechanism to construct fresh variables. The inclusion map from the
set V to V + 1 gives a function i : V → TV+1. Since TV is a free algebra, we
can read i as an assignment and get the substitution î : TV → TV+1. In other
words, if we need a fresh variable, we can map types from TV (the algebra
of types with variables drawn from V) to TV+1 (the algebra of types with
variables drawn from V , and one extra).

Having established that these substitutions work the same way as their
familiar syntactic counterparts, in the rest of this thesis we will generally gloss
over the distinction between an assignment ρ (mapping type variables to types)
and its associated substitution ρ̂ (mapping types to types). In later chapters,
we abuse notation slightly: having defined ρ’s action on type variables, we
call ρ a “substitution” and write ρ(τ) for what should technically be ρ̂(τ).

3.4 Recursive types
To interpret the recursive type µα.bool→ α, we need to find a fixed point, a
solution τ of τ = bool→ τ. It is easy to see that TV contains no such solution,
so solve such equations we need some completeness property.

Throughout this chapter we have avoided making choices as much as pos-
sible, deriving the definition of types from the desired components (functions,
records and booleans), and the desired properties (first a set, then a poset,
then a lattice, and so on.). This leads us to an algebraically simple definition,
which as we’ll see later on makes type inference much easier.

However, now that we need recursive types, we find that there are multiple
ways to proceed and it seems we are forced to choose. We must construct a
completion of TV , and there are several ways we might do so:

• By using a terminal coalgebra instead of an initial algebra, we admit more
elements. Syntactically, this amounts to including elements represented
by infinite terms, such as:

bool→ (bool→ (bool→ . . .))

• By giving TV a metric, we may find its metric completion, giving a com-
plete metric space where Banach’s theorem applies.

• By using the order completion of TV , we can construct a complete lattice,
so that the Knaster-Tarski theorem applies.

All of these techniques are useful: infinite syntactic terms give a useful
intuition, Banach’s theorem proves uniqueness of solutions to equations like
τ = bool→ τ, and the Knaster-Tarski theorem proves that solutions are least
pre-fixed and greatest post-fixed points (as explained in Section 2.1.7, we
need both properties to correctly treat the interaction of recursive types and
subtyping).

Happily, we need make no choice: all three coincide.

46 3.4. RECURSIVE TYPES

3.4.1 Completion via coalgebra
We constructed TV as an initial algebra, taking the direct limit of:

0
!−→ FV (0)

FV(!)−−−−→ F2V (0)
F2V(!)
−−−−→ . . .

Thus, TV is the universal object with injections injk : FkV (0)→ Tl such that:

injk+1 ◦FkV (!) = injk

Since distributive lattices also have a terminal object 1 (the one-element lattice
{∗ = > = ⊥}), with a unique morphism ¡ : L→ 1, we can construct the dual of
the above, the inverse system:

1
¡←− FV (1)

FV(¡)←−−− F2V (1)
F2V(¡)
←−−− . . .

The terminal coalgebra T̃V is the inverse limit of the above system, that is, the
universal object having projection morphisms πk : T̃V → FkV (1) such that:

FkV (¡) ◦ πk+1 = πk

Explicitly, we construct T̃V as the subset of the product of Fi(1) where the
components agree:

T̃V = {τ̃ | ∀k. τ̃k ∈ FkV (1), τ̃k = FV (¡)(τ̃k+1)}

Like the elements of FkV (0), the elements of FkV (1) can be represented by
finite terms, using the same representation of FV described in Section 3.2.1. I
continue to use the convention introduced at the end of that section to both
omit explicit interpretation maps (writing bool→ bool ∈ F2V (0), even though
F2V (0) consists of equivalence classes of syntactic terms) and to omit explicit
injections into the direct limit (writing bool→ bool ∈ TV).

The terms of FkV (1) contain type constructors nested to a depth of at most
k, so that ∗ → ∗ ∈ FV (1), and > → (> → ∗) ∈ F2V (1). Intuitively, these are
types whose syntax has been truncated at a depth k, with any deeper structure
replaced with ∗, so we call them truncations. The elements τ̃ of T̃V are infinite
sequences of truncations, where each is a truncation of the next.

There is a canonical morphism φ from TV (the initial algebra of F) to
T̃V (the terminal coalgebra of F), which maps every finite type (element of
TV) to its sequence of truncations (element of T̃V). For example, for a type
τ = {`1 : bool→ bool}t bool, φ(τ) is:

φ(τ)0 = ∗
φ(τ)1 = {`1 : ∗}t bool

φ(τ)2 = {`1 : ∗ → ∗}t bool

φ(τ)3 = {`1 : bool→ bool}t bool

φ(τ)3+i = φ(τ)3

Since every element τ of TV has a finite syntactic representation, φ(τ) is
eventually constant: φ(τ)i = φ(τ)j for all i, j greater than some i0. However,
not all elements of T̃V are of this form. For instance, T̃V contains an element τ̃

CHAPTER 3. CONSTRUCTING TYPES 47

given by:

τ̃0 = ∗
τ̃1 = bool→ ∗
τ̃2 = bool→ (bool→ ∗)
τ̃3 = bool→ (bool→ (bool→ ∗)
τ̃4 = . . .

This is a solution to τ̃ = bool→ τ̃, and therefore is not φ(τ) for any τ.

Algebra structure of T̃V Since T̃V is the terminal coalgebra of F , Lambek’s
lemma tells us that T̃V and FV (T̃V) are isomorphic. In particular, there is a
morphism f : FV (T̃V) → T̃V , giving T̃V the structure of an FV -algebra. This
allows us to interpret the type constructors bool,→ and { . . . } as operations
on T̃V , giving e.g. an element τ̃1 → τ̃2 ∈ T̃V for τ̃1, τ̃2 ∈ T̃V .

Explicitly characterising this morphism is useful. There are maps λi :

FV (T̃V)→ FiV (1) given by:

λi =

{
¡ if i = 0
FV (πk) if i = k+ 1

Since T̃V is the terminal coalgebra of FV , this implies there is a morphism
f : FV (T̃V)→ T̃V such that:

FV (πk) = πk+1 ◦ f

Since f is used to interpret the type constructors, this implies that e.g.

πk+1(τ̃1 → τ̃2) = πk(τ̃1)→ πk(τ̃2)

Intuitively, we truncate a function type to k+ 1 levels by truncating its domain
and result types to k levels.

Representation as infinite terms The most direct way to represent the el-
ements of T̃V syntactically is as infinite sequences of truncations, as above.
However, it is also possible to represent the final coalgebra T̃V by defining
syntax coinductively. Since the definition of FV has not changed, we still
use the inductive definition of terms over A from Section 3.2.1 (augmented
with type variables as per Section 3.3). Thus, we need a mixture of inductive
and coinductive definitions: the structure of FV is inductive, and the final
coalgebra is coinductive:

tB ::= ⊥ | bool | >
tF ::= ⊥ | t1 → t2 | >
tR ::= ⊥ | {`1 : t1, . . . , `n : tn} | >

 (coinductively)

t ::= t1 t t2 | t1 u t2 | tB | tF | tR | α (inductively)

Syntactically, this amounts to representing elements of T̃V with infinite terms,
where only finitely many occurrences of t and u are allowed before a type
constructor (bool, →, or { . . . }). Alternatively, infinite paths through the
syntax of a term must have infinitely many type constructors.

48 3.4. RECURSIVE TYPES

We only use this representation for illustrative purposes: reasoning for-
mally using it requires an awkward mix of induction and coinduction, and
care to respect the equivalence of different syntax for the same type. The
algebraic reasoning permitted by the other characterisations of T̃V is much
more direct, despite requiring more work to set up.

3.4.2 Completion via metrics

We define a family of equivalence relations ≈k on T̃V as follows:

τ̃1 ≈k τ̃2 iff πkτ̃1 = πkτ̃2

and extend it to TV :

τ1 ≈k τ2 iff φ(τ1) ≈k φ(τ2)

Intuitively, τ1 ≈k τ2 if τ1 and τ2 are equal to a depth k, that is, if it is necessary
to look under k layers of type constructors to spot the difference. Note that
τ1 ≈k+1 τ2 implies τ1 ≈k τ2 (since equality at πk+1 implies equality at πk
by definition of inverse limits), and if τ1 ≈k τ2 for all k, then τ1 = τ2.

We can use ≈k to define ultrametrics on TV and T̃V . An ultrametric d on a
set A is a function d : A×A→ R such that:

d(x,y) > 0

d(x,y) = 0 iff x = y

d(x, z) 6 max(d(x,y),d(y, z))

The difference between an ultrametric and an ordinary metric is the use of
max instead of + in the definition above. The ultrametric d on TV is defined
as:

d(τ1, τ2) =

{
0 if τ1 = τ2

2−k where k is the least natural number such that τ1 6≈k τ2

Intuitively, the closer this metric measures τ1 and τ2, the greater the depth to
which they are equal. The ultrametric on T̃V is defined identically.

Completeness and completion A Cauchy sequence in T̃V is an infinite se-
quence τ̃i whose elements become arbitrarily close to each other. Formally,
the sequence is Cauchy if:

∀ε ∃n0 ∀i, j > n0. d(τ̃i, τ̃j) < ε

or equivalently,
∀k ∃n0 ∀i, j > n0. πkτ̃i = πkτ̃j

Again equivalently, this means that there exists a sequence of truncations xi
such that:

∀k ∃n0 ∀i > n0. πkτ̃i = xi

However, the sequence xi determines a member x̃ ∈ T̃V (given by πkx̃ = xk),
and the above shows that limi τ̃i = x̃. Therefore, every Cauchy sequence in
T̃V converges: T̃V is a complete metric space.
TV is not complete, since x̃ may not be of the form φ(τ) for τ ∈ TV (we

saw an example of this in the previous section). However, for every τ̃ ∈ T̃V ,

CHAPTER 3. CONSTRUCTING TYPES 49

we can find some τ ∈ TV such that φ(τ) ≈k τ̃, since the truncation πkτ̃ is
the truncation of at least one τ ∈ T̃V (intuitively, we can take a syntactic
representation of any truncation, replace all ∗ with >, and have a syntactic
representation of some type with that truncation). Thus, while not all elements
of T̃V are of the form φ(τ), they are all within distance 2−k of some φ(τ), for
all k.

The map φ : TV → T̃V preserves ≈k, and so preserves distances (it is an
isometry). Since every element of T̃V is arbitrarily close to the image of φ, we
say that the image of φ is dense in T̃V . Since T̃V is complete, φ is therefore a
completion of TV , so we may equivalently define T̃V as the metric completion
of TV .

Completions of metric spaces can also be characterised by a universal
property. If A is any complete metric space, and f : TV → A is continuous/non-
distance-increasing/contractive, then there is a unique f̃ : T̃V → A which is
also continuous/non-distance-increasing/contractive, such that f̃ ◦φ = f. In
other words, any function that specifies values for the dense subset φ(TV) can
be extended to specify values for the whole of T̃V .

Unique fixed points Since T̃V is complete, Banach’s fixed point theorem
proves that every contractive function has a unique fixed points. A function
is contractive when it brings points closer together by some factor, that is,
when there exists some λ < 1 such that d(f(x), f(y)) < λd(x,y). In terms of
the relations ≈k, a function f : T̃V → T̃V is contractive iff:

τ̃1 ≈k τ̃2 =⇒ f(τ̃1) ≈k+1 f(τ̃2)

The FV -algebra structure of T̃V gives an interpretation of the type constructors
bool,→ and { . . . }, mapping FV (T̃V) to T̃V . Furthermore,→ is a contractive
function from T̃V × T̃V to TV :

Proposition 16. If τ1 ≈k τ ′1 and τ2 ≈k τ2 then τ1 → τ2 ≈k+1 τ ′1 → τ ′2

Proof. πk+1(τ̃1 → τ̃2) = πk(τ̃1) → πk(τ̃2) = πk(τ̃
′
1) → πk(τ̃

′
2) = πk+1(τ̃

′
1 →

τ̃ ′2)

Similarly, record type constructors are contractive. Since πk are lattice ho-
momorphisms, the lattice operations t and u preserve ≈k: they are therefore
non-distance-increasing functions, which may be composed with a contractive
function to yield a contractive function.

So, any function produced by composing t, u and type constructors is
contractive, as long as any uses of the argument to the function are guarded
by an occurrence of→ or { . . . }. For instance, consider:

f(τ) = bool→ τ

Above, f is a contractive function, so it has a unique solution which we call
µα.bool→ α.

3.4.3 Completion via orders

Characterising T̃V as a metric completion gives us Banach’s theorem and
unique fixed points of contractive maps. However, it does not quite prove the
least pre-fixed point or greatest post-fixed point properties that we require.

50 3.4. RECURSIVE TYPES

T̃V is the inverse limit of the distributive lattices FkV (1). Since the set of
variables V and the set of record labels L were both assumed to be finite,
and the operations used to define FV preserve finiteness, each lattice FkV (1)
(and FkV (0)) is finite. T̃V is therefore a profinite distributive lattice, meaning a
distributive lattice arising as the inverse limit of a system of finite distributive
lattices.

Profinite distributive lattices are complete, since finite distributive lattices
are trivially complete and completeness is preserved by inverse limits. There-
fore, the Knaster-Tarski theorem applies to T̃V , giving us least pre-fixed and
greatest post-fixed points of monotone functions. For instance, given the
monotone function α 7→ bool → α, we have least and greatest fixed points
which we label µ+α.bool→ α and µ−α.bool→ α, and the following reasoning
principles:

bool→ τ 6 τ =⇒ µ+α.bool→ α 6 τ

τ 6 bool→ τ =⇒ τ 6 µ−α.bool→ α

Since α 7→ bool→ α is contractive, we use the results of the previous section
to conclude that

µ+α.bool→ α = µ−α.bool→ α

We write this as simply µα.bool→ α. Thus, contractive monotone functions
have a fixed point, which is the greatest pre-fixed point, the least post-fixed
point, and the unique fixed point, which are all the properties we need to
reason about recursive types.

The construction of T̃V above used ultrametric techniques, and turned
out to be a profinite distributive lattice. This was not coincidence: profinite
distributive lattices are intimately connected with ultrametrics. We spend the
rest of this section exploring this connection, leading to a third characterisation
of T̃V : the initial algebra of a functor in the category ProfDLat of profinite
distributive lattices.

Profiniteness T̃V is not just complete, but profinite. The profinite distribu-
tive lattices is an unusually well-behaved class having several equivalent
characterisations, and is a natural generalisation of finite distributive lattices.

Finite distributive lattices have a very simple representation theory. Given
any poset P, its lower sets are the collection Down(P) of downwards-closed
subsets of P. Down(P) is always a distributive lattice (with meet and join given
by intersection and union), and Birkhoff’s celebrated representation theorem
for finite posets says that all finite distributive lattices arise as Down(P) for
some finite P.

Naively generalised to the infinite case, this theorem fails as there are
infinite distributive lattices not of the form Down(P) for any P. Priestley gener-
alised in one direction, determining representations for all distributive lattices
(which specialise to Down(P) in the finite case). Generalising in the other
direction, determining which distributive lattices are of the form Down(P), we
get exactly the profinite distributive lattices:

Theorem 17. For a distributive lattice L, the following conditions are equivalent:

(i) L is isomorphic to Down(P) for some poset P.

(ii) L is the inverse limit of a system of finite distributive lattices.

CHAPTER 3. CONSTRUCTING TYPES 51

(iii) L can be topologised with a Stone topology.

(iv) L is completely distributive and algebraic.

Proof. The equivalence of (i), (ii) and (iii) is shown by Johnstone [Joh86, p.
249]. Winskel [Win83] shows the equivalence of (i) and (iv).

We note that case (iii), topologising L with a Stone topology, is essentially
what we were doing by defining an ultrametric on T̃V . A Stone topology
is a topology which is compact, Hausdorff and 0-dimensional. The topology
induced by an ultrametric is always Hausdorff and 0-dimensional [DG56].
Each of the relations ≈k has only finitely many equivalence classes, since the
equivalence classes are members of FkV (1) which we already noted is finite. In
metric terms, this means that for any k, there are finitely many elements of T̃V
(representatives of the equivalence classes of ≈k) such that every other τ̃ ∈ T̃V
is within distance 2−k of one of them, and likewise for TV . This property is
called being totally bounded, and it is a standard theorem that a metric space is
compact iff it is both complete and totally bounded.

Thus, the ultrametric induces a Stone topology on T̃V (indeed, the unique
Stone topology on T̃V , since a lattice can be topologised with a compact
Hausdorff topology in at most one way [Joh86, p. 277]).

Canonical extension As well as building T̃V as a terminal coalgebra, or
equivalently as the metric completion of TV , we now show that the same
structure arises as the canonical extension of TV , a purely order-theoretic notion.

There are several inequivalent completion procedures in order theory, the
best-known of which is the Dedekind-MacNeille completion DM (also known as
completion by cuts), which builds the reals from the rationals. However, DM
won’t suit our purposes, because DM(L) is not in general a distributive lattice
even when L is. In fact, the lattice structure of DM(L) generally has nothing to
do with the lattice structure of L: DM is best thought of as a completion from
posets to complete lattices (and indeed, is adjoint to the forgetful functor from
complete lattices to posets).

There is a more suitable completion procedure: the canonical extension
CanonExt(L) of a distributive lattice L is complete and preserves all joins and
meets from L. More precisely, CanonExt(L) is complete, completely distributive
and algebraic (i.e. profinite), and is universal with this property (that is,
CanonExt is left adjoint to the forgetful functor from complete, completely
distributive algebraic lattices to distributive lattices [GJ94, DHP07]).

Theorem 18. T̃V = CanonExt(TV)

Proof. We must show that T̃V satisfies the universal property of CanonExt(TV).
That is, we are given a homomorphism ψ : TV → L for some profinite
distributive lattice L, and must find a unique complete homomorphism α :

T̃V → L such that α ◦φ = ψ.
We take L to be topologised as a Stone space, and ψ to be continuous

(which we may do by Theorem 17). Since T̃V is the metric completion of TV ,
this gives us a unique continuous α : T̃V → L such that α ◦φ = ψ, and it
remains only to show that α is a complete homomorphism.

To show α is a complete homomorphism, we must show it preserves all
meets and joins. We prove this for joins, as the case for meets is identical.
Since α preserves all joins iff it preserves finite and directed ones, and since
continuous functions between compact Hausdorff topological lattices always

52 3.5. SUMMARY

preserve directed joins [Joh86, p. 273], we need only prove α preserves empty
and binary joins.

That α preserves empty joins is trivial, since φ and ψ both preserve ⊥. For
binary joins, consider α(τ̃t τ̃ ′). Since φ(TV) is dense in T̃V , τ̃ and τ̃ ′ are given
as limits of elements of TV :

τ̃ = lim
i
φ(τi)

τ̃ ′ = lim
i
φ(τ ′i)

for some sequences τi, τ ′i ∈ TV . By continuity of t, α and ψ, and the fact that
ψ is a complete homomorphism:

α(τ̃t τ̃ ′) = α((lim
i
φ(τi))t (lim

i
φ(τ ′i)))

= lim
i
α(φ(τi))t lim

i
α(φ(τ ′i))

= lim
i
ψ(τi)t lim

i
ψ(τ ′i)

= ψ(τ̃)tψ(τ̃ ′)
= ψ(τ̃t τ̃ ′)

T̃V as an initial algebra CanonExt is a functor, left adjoint to the forgetful
functor from profinite distributive lattices to distributive lattices (in fact, it
is the same as the profinite completion [GJ94, DHP07]). As such, it preserves
colimits. Since TV is defined as a direct limit (a type of colimit), this allows us
to simplify the definition, noting that CanonExt(L) = L when L is finite:

T̃V = CanonExt
(

lim−→ 0
!−→ FV (0)

FV(!)−−−−→ F2V (0)
F2V(!)
−−−−→ . . .

)
= lim−→ CanonExt(0) !−→ CanonExt(FV (0))

FV(!)−−−−→ CanonExt(F2V (0))
F2V(!)
−−−−→ . . .

= lim−→ 0
!−→ FV (0)

FV(!)−−−−→ F2V (0)
F2V(!)
−−−−→ . . .

where the latter two limits are taken in the category of ProfDLat of profinite
distributive lattices. For any finite set of variables V , this category has free
objects F̃ree(V) (which are the same as Free(V) in DLat). So, we define the
functor F̃V : ProfDLat→ ProfDLat in exactly the same way as FV :

B̃oolV (A) = 1>⊥
F̃uncV (A) = (Aop ×A)>⊥

R̃ecV (A) =
(
(A>)L

)>
⊥

F̃V (A) = B̃oolV (A) + F̃uncV (A) + R̃ecV (A) + F̃ree(V)

T̃V is both the initial algebra and the terminal coalgebra of F̃V .

3.5 Summary

Each of the stages in the construction of T̃V is characterised as the initial
algebra of a functor:

CHAPTER 3. CONSTRUCTING TYPES 53

is the initial algebra of. . . adding. . .
Ts Fs : Set→ Set simple types
To Fo : Pos→ Pos subtyping order
Tb Fb : Pos>⊥ → Pos>⊥ least and greatest types
Tl Fl : DLat→ DLat distributive subtyping lattice
TV FV : DLat→ DLat type variables
F̃V F̃V : ProfDLat→ ProfDLat recursive types

Many of these functors have similar definitions: Fs and Fo have the same
definition (albeit in different categories), as do Fb and Fl and also FV and
F̃V . The general idea is that we change the definition of F when we want to
add new elements to the collection of types: for instance, when adding least
and greatest types (moving from Fo to Fb) or when adding type variables
(moving from Fl to FV).

If, on the other hand, we want to demand more structure from the collection
of types, for instance, that it be a partial order (moving from Fs to Fo), a
lattice (moving from Fb to Fl) or closed under recursive equations (moving
from FV to F̃V), then we should keep the same definition of F but interpret it
in a more suitable category. In this fashion, we end up with a collection of
types with the right structure, retaining the extensibility properties of being
an initial algebra.

54 3.5. SUMMARY

4 The type system

Come to think of it, though, that may just be one of the
dangers of the formal approach to thought: it is too easy
to be tidy and elegant without having sufficient
justification for the particular systematization.

—Dana Scott

The Hindley-Milner type system occupies a coveted sweet spot in language
design: enough polymorphism is available that interesting programs can be
written and typechecked, and yet no type annotations are necessary. More
formally, the type inference algorithm of the Hindley-Milner system is:

• Sound: Type inference generates only type schemes for which a valid
derivation exists.

• Complete: Every typeable program is ascribed a type scheme by the
inference algorithm.

• Principal: The type scheme given to a program by type inference is at
least as general as any other scheme for the program.

Polymorphism in the Hindley-Milner system distinguishes types from type
schemes. Types are monomorphic, built out of type constructors, variables and
base types, but no ∀ quantifiers. Type schemes are polymorphic, consisting
of a possibly-empty sequence of ∀ quantifiers before a type. This form of
polymorphism, which allows ∀ only at the top level of a type scheme, is called
prenex polymorphism.

Typing rules for the Hindley-Milner system appear in Figure 4.1. Of several
equivalent presentations, we choose one without explicit rules for generali-
sation and specialisation. Instead, type schemes are introduced by the rule
(Let) (hence the alternative name let-polymorphism for prenex polymorphism)
and eliminated by the rule (Var-∀). In this way, an expression bound to
an identifier by let may be used at any monomorphic instantiation of its
polymorphic type.

All versions of ML treat variables bound by λ and variables bound by let
quite differently. The presentation below makes this explicit by using separate
syntactic categories for both kinds of variable: variables x are bound by λ and
given monomorphic types τ, while variables x̂ are bound by let and given
polymorphic type schemes ∀~α.τ where ~α denotes a finite sequence of distinct

56

Type environments:
Γ ::= ε | Γ , x : τ | Γ , x̂ : ∀~α.τ

Typing rules:

(Var-λ)
Γ ` x : τ

Γ(x) = τ

(Var-∀)
Γ ` x̂ : τ[~τ/~α]

Γ(x̂) = ∀~α.τ

(Abs)
Γ , x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

(App)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2

(Let)
Γ ` e1 : τ1 Γ , x̂ : ∀~α.τ1 ` e2 : τ2

Γ ` let x̂ = e1 in e2 : τ2
~α not free in Γ

Figure 4.1: Hindley-Milner type system with function types. See text for
additional rules concerning record and boolean types and subtyping

type variables. Typing environments Γ mix both kinds of variable, mapping
λ-bound variables x to types and let-bound variables x̂ to type schemes.

The language we study is a straightforward extension of ML with subtyp-
ing, called MLsub. Types τ range over the distributive lattice T̃V , defined in
the previous chapter, which we refer to from now on simply as T (leaving the
set of type variables V implicit). Expressions e have the following syntax:

e ::= x | λx.e | e1 e2 |

{`1 = e1, . . . , `n = en} | e.` |
true | false | if e1 then e2 else e3 |

x̂ | let x̂ = e1 in e2

Above, x and x̂ range over program variables, and ` ranges over some set L
of record labels. In the record construction syntax { . . . }, the `i are assumed
distinct.

We begin with the typing rules of the Hindley-Milner type system, as
presented in Fig. 4.1. The typing rules of MLsub are these, augmented with a
subtyping rule and rules for typing booleans and records, given below. The
dynamic semantics are given by a small-step operational semantics, shown in
Section 4.1.4. Both the typing rules and the operational semantics are entirely
standard, and appear more-or-less verbatim in textbooks [Pie02].

The subtyping rule of MLsub is straightforward, allowing replacement of
a type with any supertype, according to the subtyping relation:

(Sub)
Γ ` e : τ
Γ ` e : τ ′

τ 6 τ ′

Simple as it is, this rule causes difficulties. Unlike the others, this rule is not
syntax-directed, so determining exactly when it should be applied is hard.
More importantly, the asymmetry of the subtyping relation between types
means that unification is not a suitable means of solving constraints between
types, breaking Milner’s Algorithm W and its descendants.

The major contribution of this thesis is a type system in the Hindley-Milner
vein, which includes the above (Sub) rule with a nontrivial subtyping relation,
while preserving soundness, completeness and principality of type inference.
Despite repeated attempts, this has not been done before.

CHAPTER 4. THE TYPE SYSTEM 57

Presentations of a minimal Hindley-Milner calculus often limit themselves
to function types, as the extension to larger type languages (e.g. including
sum and product types) presents no new difficulties. However, a subtyping
relation including only function types is qualitatively easier to deal with than
a more realistic one. So, to make the presentation more interesting, I introduce
booleans:

(True)
Γ ` true : bool

(False)
Γ ` false : bool

(If)
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

as well as records:

(Cons)
Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` {`1 = e1, . . . , `n = en} : {`1 : τ1, . . . , `n : τn}

(Proj)
Γ ` e : {` : τ}
Γ ` e.` : τ

The typing rules for booleans and records are also entirely standard.

4.1 Properties of the type system
Since the typing rules of MLsub are just those of ML augmented with a
standard subtyping rule, most of the familiar properties of the ML type
system hold for MLsub.

4.1.1 Instantiation
The first property we prove is instantiation, which allows us to replace type
variables with types throughout a type derivation. First, we say that two type
schemes are alpha-equivalent if they disagree only on the names of bound
variables. That is, ∀~α.τ1 and ∀~β.τ2 are alpha-equivalent when τ2 = τ1[~β/~α]

and ~β are not free in ∀~α.τ1.
We write dom Γ for the set of λ- and let-bound variables mentioned in

Γ , and write Γ1 ≡ Γ2 if Γ1 and Γ2 have the same domain, assign equal types
to each λ-bound variable, and assign alpha-equivalent type schemes to each
let-bound variable. Typing respects this equivalence relation:

Proposition 19. If Γ1 ` e : τ and Γ2 ≡ Γ1, then Γ2 ` e : τ

Proof. Straightforward induction on derivations, noting in case (Var-∀) that
τ1[~τ/~α] and τ2[~τ/~β] are equal when ∀~α.τ1 and ∀~β.τ2 are alpha-equivalent.

Recall from Section 3.3.3 that a type variable assignment is a map from type
variables to types, and a substitution is an assignment extended to map types
to types. We adopt the notation [τ1/α, τ2/β] for an assignment which maps
α 7→ τ1,β 7→ τ2 and γ 7→ γ for all other type variables γ. We leave implicit the
step of turning an assignment (operating on type variables) into a substitution
(operating on types), giving e.g. [τ1/α](α→ α) = τ1 → τ1.

Substitutions are lattice homomorphisms (Section 3.3.3), so they preserve
the subtyping relation:

τ1 6 τ2 =⇒ ρ(τ1) 6 ρ(τ2)

58 4.1. PROPERTIES OF THE TYPE SYSTEM

We extend type variable substitutions ρ to operate on type schemes by capture-
avoiding substitution. Formally, we define

ρ(∀~α.τ) = ∀~β.ρ ′(τ)

where ρ ′(~α) = ~β, and for every type variable γ not in ~α, ρ ′(γ) = ρ(γ) and the
variables ~β are not free in ρ(γ). We then extend substitutions to operate on
whole type environments, writing ρ(Γ) for the application of ρ pointwise to
the types and type schemes in Γ .

The instantiation lemma allows us to apply substitutions to both the
environment and type of a derivation, preserving validity:

Lemma 20 (Instantiation). If Γ ` e : τ then ρ(Γ) ` e : ρ(τ).

Proof. Induction on the derivation, which is straightforward except for the
cases involving type variables ((Var-∀) and (Let)).

(Var-∀)
Γ ` x̂ : τ[~τ/~α]

Γ(x̂) = ∀~α.τ

We have ρ(Γ)(x̂) = ∀~α.ρ ′(τ) where ρ ′ is as above. We use (Var-∀) to instanti-
ate this type scheme with ρ(~τ)/~α, giving:

ρ(Γ) ` x̂ : ρ ′(τ)[ρ(~τ)/~α]

However, since ρ ′ agrees with ρ on variables not in ~α, ρ ′(τ)[ρ(~τ)/~α] =

ρ(τ[~τ/~α]), so ρ(Γ) ` x̂ : ρ(τ[~τ/~α]).
Case (Let):

(Let)
Γ ` e1 : τ1 Γ , x̂ : ∀~α.τ1 ` e2 : τ2

Γ ` let x̂ = e1 in e2 : τ2
~α not free in Γ

Were we to directly apply the inductive hypothesis to give ρ(Γ) ` e1 : ρ(τ1),
we would get stuck trying to apply (Let) afterwards, since even if ρ(~α) are
variables, they need not be free in ρ(Γ).

Instead, we devise an alternative substitution ρ2 which maps ~α to distinct
variables ~β not free in ρ(Γ), and agrees with ρ on all other variables. Since ~α

are not free in Γ , ρ2(Γ) = ρ(Γ). Applying the inductive hypothesis (with ρ2)
gives:

ρ(Γ) ` e1 : ρ2(τ1)

Applying the inductive hypothesis (with ρ) to the second hypothesis gives:

ρ(Γ , x̂ : ∀~α.τ1) ` e2 : ρ(τ2)

Let ρ ′ be as above so that ρ(x̂) = ∀~α.ρ ′(τ1). Since ρ ′ and ρ2 both agree with
ρ except on ~α (with ρ ′ being the identity on ~α and ρ2 mapping them to ~β),
∀~α.ρ ′(τ1) and ∀~β.ρ2(τ1) are alpha-equivalent. So, by Proposition 19,

ρ(Γ),∀~β.ρ2(τ1) ` e2 : ρ(τ2)

The rule (Let) now applies, giving the result.

4.1.2 Weakening
The next property is weakening, which allows us to weaken any type derivation
by replacing Γ with some Γ ′ making stronger assumptions. We formalise the
strength relationship between two type environments by writing Γ2 6 Γ1
whenever:

CHAPTER 4. THE TYPE SYSTEM 59

• dom Γ2 ⊇ dom Γ1

• Γ2(x̂) and Γ1(x̂) are alpha-equivalent for x̂ ∈ dom Γ1

• Γ2(x) 6 Γ1(x) for x ∈ dom Γ1

That is, if Γ2 6 Γ1 then Γ2 has more bindings, and assigns a subtype of Γ1’s
type to every λ-bound variable in Γ1. For let-bound variables, we require Γ1
and Γ2 to be alpha-equivalent, and we leave subtyping between polymorphic
type schemes (subsumption) until Section 4.2.

This relation is a preorder:

Proposition 21. 6 is a preorder on environments.

Proof. Reflexivity is trivial, and transitivity follows from transitivity of both ⊇
and subtyping.

By antisymmetry of subtyping, the kernel of this relation is ≡ (that is, if
Γ1 6 Γ2 and Γ2 6 Γ1, then Γ1 ≡ Γ2).

The weakening lemma is as follows:

Lemma 22 (Weakening). If Γ1 ` e : τ and Γ2 6 Γ1, then Γ2 ` e : τ

Proof. Induction on the height of the derivation, which is straightforward
except for the cases involving variables: (Var-λ), (Var-∀), (Abs) and (Let).

Case (Var-λ): We have Γ1(x) = τ, and Γ2(x) 6 τ since Γ2 6 Γ1. So,
Γ2(x) 6 τ, and the result follows by applying (Var-λ) followed by (Sub).

Case (Var-∀): The type schemes are alpha-equivalent, so the result follows
from Proposition 19.

Case (Abs): Γ2 6 Γ1 implies Γ2, x : τ 6 Γ1, x : τ, so the inductive hypothesis
applies.

Case (Let): Given

(Let)
Γ1 ` e : τ Γ1, x̂ : ∀~α.τ ` e ′ : τ ′

Γ1 ` let x̂ = e in e ′ : τ ′
~α not free in Γ1

We could use the inductive hypothesis to show Γ2 ` e : τ, but unfortunately ~α

need not be free in Γ2 so the side-condition of (Let) would not be satisfied.
Instead, we first apply Lemma 20 with a substitution ρ mapping ~α to

distinct variables ~β not free in either Γ1 or Γ2 and other variables to themselves,
giving:

Γ1 ` e : τ[~β/~α]

Since the construction in Lemma 20 does not change the height of the deriva-
tion, we may then apply the inductive hypothesis to get Γ2 ` e : τ[~β/~α]. Since
∀~β.τ[~β/~α] is alpha-equivalent to ∀~α.τ, we have:

Γ2, x̂ : ∀~β.τ[~β/~α] 6 Γ1, x̂ : ∀~α.τ

The inductive hypothesis then tells us

Γ2, x̂ : ∀~β.τ[~β/~α] : e ′ : τ ′

from which (Let) applies, giving the result.

60 4.1. PROPERTIES OF THE TYPE SYSTEM

4.1.3 Substitution
Since MLsub distinguishes two kinds of variable, there are two substitution
lemmas, for λ- and let-bound variables.

Given an environment Γ , we write Γx for Γ with any binding for x removed,
and similarly Γx̂. The first substitution lemma handles λ-bound variables:

Lemma 23 (Substitution (λ-bound)). If Γ ` e : τ, Γ(x) = τx and Γx ` e ′ : τx then
Γx ` e[e ′/x] : τ.

Proof. Induction on the typing derivation of e. Straightforward application of
the induction hypothesis in all cases except (Var-λ) and (Abs).

Case (Var-λ): if the variable being typed is x, the variable being substi-
tuted, then e[e ′/x] is e ′, τ = τx, Γx ` e ′ : τx by hypothesis, so Γ ` e[e ′/x] : τ
by weakening. If the variable being typed is y, some variable other than x,
then e[e ′/x] = e and Γ ` e : τ by hypothesis.

Case (Abs): if the variable being abstracted is x, the variable being substi-
tuted, then x is not free in e so Γx ` e[e ′/x] : τ since e[e ′/x] = e and Γ ` e : τ
by hypothesis. Otherwise, the variable being abstracted is some other variable
y, and e = λy.e1 and the induction hypothesis applies.

The second lemma handles let-bound variables, and has a slightly more
complex statement because of polymorphism:

Lemma 24 (Substitution (let-bound)). If Γ ` e : τ, Γ(x̂) = ∀~α.τx and Γx̂ ` e ′ : τx,
then Γx̂ ` e[e ′/x̂] : τ.

Proof. Induction on typing derivation of e, straightforward except in case
(Var-∀) and (Let).

Case (Var-∀): As before, the variable being typed is either the same
variable as x̂, or some other variable ŷ. If x̂, then e[e ′/x̂] = e ′ and τ = τx[~τ/~α],
and Γx̂ ` e ′ : τx[~τ/~α] is given by applying Lemma 20 (after perhaps renaming
~α by Proposition 19 to ensure ~α not free in Γx̂).

Case (Let): If the variable being bound is x̂, then e = let x̂ = e1 in e2 for
some e1, e2. The induction hypothesis applies to the typing of e1, and then
(Let) applies giving the result. Otherwise e = let ŷ = e1 in e2 for some other
variable y, and the induction hypothesis applies to both e1 and e2, which
again gives the result after applying (Let).

4.1.4 Soundness
Next, we show that typeable MLsub programs do not go wrong, with respect
to a standard small-step call-by-value operational semantics. The soundness
proof is by proving progress and preservation theorems [WF94].

We first identify the values, ranged over by v, which are those expressions
of the following forms:

v ::= true | false | λx.e | {`1 = v1, . . . , `n = vn}

Next, we define reduction contexts R as follows:

R ::= • e | v • |
{`1 = v, . . . , `i = •, `i+1 = e, . . . } | •.` |
if • then e else e
let x̂ = • in e

CHAPTER 4. THE TYPE SYSTEM 61

We write R[e] for the expression formed by substituting e into the hole in R
marked by •. Finally, the small-step transition relation is the least relation −→
including:

(λx.e)v −→ e[v/x]

{`1 = v1, . . . `i = vi, . . . `n = vn}.`i −→ vi

if true then e1 else e2 −→ e1

if false then e1 else e2 −→ e2

let x̂ = v in e→ e[v/x̂]

R[e] −→ R[e ′] if e −→ e ′

Despite the fact that the typing rules and operational semantics of MLsub
are both entirely standard, the soundness result does not follow directly,
since the definition of types T = T̃V is larger than the collection of types
usually used. Happily, the standard proof of soundness for ML via progress
and preservation theorems turns out not to depend very much on the exact
collection of types in use!

The tricky part of a progress and preservation proof is the inversion lemma,
which proves that, say, a value of type τ1 → τ2 must be a λ-abstraction, and
generally relies on some inversion principle for types. In the present work,
we do not have a strong inversion principle for the subtyping relation: just
because τ 6 τ1 → τ2 does not imply that τ is a function type (it may be ⊥,
or even something like (τ1 → τ2)uβu bool). However, the following weaker
inversion principles turn out to suffice:

Lemma 25 (Subtype inversion). If τ1 → τ2 6 τ ′1 → τ ′2, then τ ′1 6 τ1, τ2 6 τ ′2.
If {f} 6 {g}, then f(`) 6 g(`) for ` ∈ domg.

Proof. Direct from the construction of F̃V (T̃V), which is isomorphic to T̃V .

Lemma 26 (Value inversion). If Γ ` v : s→ t, then v = λx.e.
If Γ ` v : bool, then v ∈ {true, false}.
If Γ ` v : {` : t}, then v = { . . . , ` = v, . . . }.

Proof. Values can only be typed with the rules (Abs), (Bool) or (Cons).
Violations of the above condition would require an application of (Sub), which
would require a subtyping relationship between a function and a boolean,
a function and a record, or a boolean and a record type, all of which are
prohibited by Proposition 12 of Section 3.2.3.

In other words, we have the standard subtyping rules of co/contra-variance
for function types and width and depth subtyping for record types, and a
limited inversion principle: if we have a subtyping relation between two
function types, we may derive subtyping between their domains and ranges,
and if we have a subtyping relation between two record types we may derive
subtyping between their fields. We also know that there are no subtyping
relations between the boolean type and any function type, between any
function type and any record type, or between the boolean type and any
record type.

Note that we do not assume that this necessarily describes all subtyping
relations: we may have additional types with unspecified subtyping relations.
In particular, given that τ ′ 6 τ1 → τ2 we cannot conclude that τ ′ is of the
form τ ′1 → τ ′2.

62 4.1. PROPERTIES OF THE TYPE SYSTEM

With these lemmas in hand, the actual soundness proof consists of proving
progress and preservation theorems.

Theorem 27 (Progress). If ` e : τ then either e is a value, or e −→ e ′ for some e ′.

Proof. Induction on the typing derivation of e. Cases (Var-λ) and (Var-∀)
are impossible. In cases (Abs), (True) and (False), e is a value. In the
other cases:

(App)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2

By induction hypotheses, e1 progresses or is a value. If it progresses, then
so does e1 e2, so assume it is the value v1. Similarly, if e2 progresses then
so does v1 e2, so assume it is a value. Now we have v1 v2, but v1 = λx.e ′1 by
value inversion, so the term progresses.

(Cons)
Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` {`1 = e1, . . . , `n = en} : {`1 : τ1, . . . , `n : τn}

By IH, each ei progresses or is a value. If any progress, then so does e, so
assume all are values. Therefore e is a value as well.

(Proj)
Γ ` e ′ : {` : τ}
Γ ` e ′.` : τ

By IH, e ′ progresses or is a value. If it progresses, then so does e ′, so assume
it is a value. By value inversion, it has a field labelled `, so e = e ′.` progresses.

(If)
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

By IH, e1 progresses or is a value. If it progresses, so does e, so assume it is a
value. By value inversion, it is true or false, so e progresses.

(Let)
Γ ` e1 : τ1 Γ , x̂ : ∀~α.τ1 ` e2 : τ2

Γ ` let x̂ = e1 in e2 : τ2
~α not free in Γ

By IH, e1 progresses or is a value. Either way, e progresses.

Theorem 28 (Preservation). If ` e : τ and e −→ e ′, then ` e ′ : τ.

Proof. Induction on the reduction e → e ′, and examination of the typing
derivation of ` e : τ.

(λx.e)v −→ e[v/x]: The general case of a typing derivation of (λx.e)v : τ

looks like:
Γ , x : τ1 ` e : τ2
Γ ` λx.e : τ1 → τ2

(Abs)

Γ ` λx.e : τ3 → τ4
(Sub)

Γ ` v : τ3
Γ ` (λx.e)v : τ4

(App)

Γ ` (λx.e)v : τ
(Sub)

Since applications of rule (Sub) are not syntax-directed, it may be applied
more or fewer times than above. However, any derivation can be brought
into the above form where (Sub) is used exactly once in each allowable
location, since reflexivity of subtyping allows a use of (Sub) to be inserted
and transitivity allows multiple uses to be combined.

The side-conditions of (Sub) specify:

τ1 → τ2 6 τ3 → τ4 τ4 6 τ

CHAPTER 4. THE TYPE SYSTEM 63

By Lemma 25, τ2 6 τ4 and τ3 6 τ1, so by subtyping (i.e. applying (Sub)))
we have

Γ , x : τ1 ` e : τ Γ ` v : τ1

from which Lemma 23 gives Γ ` e[v/x] : τ.

{`1 = v1, . . . `n = vn}.`i −→ vi: Typing derivations look like this (with
(Sub) again applied exactly once in each possible location):

Γ ` v1 : τ1 . . . Γ ` vi : τi . . . Γ ` en : τn
Γ ` {`1 = v1, . . . `i = vi, . . . `n = vn} : {f}

(Cons)

Γ ` {`1 = v1, . . . `i = vi, . . . `n = vn} : {g}
(Sub)

Γ ` {`1 = v1, . . . `i = vi, . . . `n = vn}.`i : τ ′
(Proj)

Γ ` {`1 = v1, . . . `i = vi, . . . `n = vn}.`i : τ
(Sub)

The side-conditions of (Sub) are that τ ′ 6 τ and {f} 6 {g}. Since `i is in the
domain of both,

τi = f(`i) 6 g(`i) = τ
′ 6 τ

so by subtyping, Γ ` vi : τ.

if b then e1 else e2 −→ ei: Typing derivations are (again with (Sub) in-
serted exactly once where possible):

Γ ` b : bool Γ ` e1 : τ ′ Γ ` e2 : τ ′

Γ ` if b then e1 else e2 : τ ′
(If)

Γ ` if b then e1 else e2 : τ
(Sub)

By side-condition of (Sub), τ 6 τ ′, so Γ ` ei : τ.

let x̂ = v in e→ e[v/x̂]: Typing derivations are (again with (Sub) inserted
exactly once where possible):

Γ ` v : τ1 Γ , x̂ : ∀~α.τ1 ` e : τ2
Γ ` let x̂ = v in e : τ2

(Let)

Γ ` let x̂ = v in e : τ
(Sub)

The result follows by applying Lemma 24 and (Sub) (since τ2 6 τ).

R[e] −→ R[e ′]: The typing derivation of ` R[e] : τ has ` e : τ ′ as a hypothe-
sis for some τ ′, by case analysis of possible R. Replacing this hypothesis with
` e ′ : τ ′ (from the induction hypothesis) gives ` R[e ′] : τ.

4.2 Typing schemes and subsumption
Up to this point, we have ignored the important question of subsumption, the
analogue of subtyping between type schemes, since the relation 6 relates
two environments only when they assign alpha-equivalent type schemes to
let-bound variables. This is a subtle affair, since subsumption must combine
both ways in which types are manipulated by the type system: instantiation,
as done by rule (Var-∀), and subtyping, as done by rule (Sub).

We tackle this in two parts. In this part, we introduce typing schemes
which describe the interaction of instantiation and subtyping in the absence
of free let-bound variables. In Section 4.3, we then show how these typing

64 4.2. TYPING SCHEMES AND SUBSUMPTION

schemes are used to build the reformulated typing rules for MLsub, a type
system equivalent to the original but based on typing schemes instead of
type schemes. The inference algorithm of Chapter 6 and the subsumption
algorithm of Chapter 8 are both based on typing schemes.

First, we introduce monotype environments ∆ which are type environments
binding no let-bound variables (and so lacking ∀-quantifiers):

∆ ::= ε | ∆, x : τ

Monotype environments inherit the ordering 6 of standard environments.
Note that two monotype environments ∆1, ∆2 have a greatest lower bound
∆1 u ∆2 in this ordering which is also a monotype environment, where
dom(∆1 u ∆2) = dom∆1 ∪ dom∆2, and (∆1 u ∆2)(x) = ∆1(x) u ∆2(x), in-
terpreting ∆i(x) = > if x 6∈ dom∆i (for i ∈ {1, 2}).

A typing scheme [∆]τ is a pair of a monotype environment ∆ and a type τ,
representing both the type of an expression and the types of its free λ-bound
variables. Substitutions can be applied to typing schemes by applying them to
both components, so ρ([∆]τ) is [ρ(∆)]ρ(τ). We extend the subtyping relation
6 to typing schemes, covariantly in τ and contravariantly in ∆:

[∆2]τ2 6 [∆1]τ1 iff τ2 6 τ1, ∆1 6 ∆2

However, there is a more subtle ordering we place on typing schemes called
subsumption, which allows for the instantiation of type variables as well as
subtyping. The subsumption relation 6∀ is defined as follows:

[∆2]τ2 6
∀ [∆1]τ1 iff ρ([∆2]τ2) 6 [∆1]τ1 for some substitution ρ

In other words, [∆2]τ2 subsumes [∆1]τ1 if some substitution instance of [∆2]τ2
is a subtype of [∆1]τ1.

Proposition 29. 6∀ is a preorder.

Proof. 6∀ is trivially reflexive. For transitivity, assume [∆3]τ3 6∀ [∆2]τ2 and
[∆2]τ2 6∀ [∆1]τ1. We have, by monotonicity of substitutions:

ρ([∆3]τ3) 6 [∆2]τ2, ρ ′([∆2]τ2) 6 [∆1]τ1 =⇒ ρ ′(ρ([∆3]τ3)) 6 [∆1]τ1

and so [∆3]τ3 6∀ [∆1]τ1 using the substitution ρ ′ ◦ ρ.

The subsumption relation 6∀ can alternatively be characterised as the
smallest order including both subtyping and instantiation.

Lemmas 20 and 22 prove that weakening and instantiation preserve ty-
peability, implying the following proposition:

Proposition 30. For let-free e, if ∆1 ` e : τ1 and [∆1]τ1 6∀ [∆2]τ2, then ∆2 ` e :
τ2.

This definition of subsumption is simpler than the subsumption relation
used by Trifonov and Smith [TS96] and Pottier [Pot98b], which has more the
flavour of a simulation relation, requiring that for every instance of [∆1]τ1
there is an instance of [∆2]τ2 which is a subtype:

[∆2]τ2 6
∀
sim [∆1]τ1 iff ∀ρ ′∃ρ. ρ([∆2]τ2) 6 ρ ′([∆1]τ1)

Thanks to the algebraic construction of T , the two definitions are equivalent:

CHAPTER 4. THE TYPE SYSTEM 65

Proposition 31. 6∀ and 6∀sim are the same relation.

Proof. Suppose [∆2]τ2 6∀ [∆1]τ1, so there is some ρ0 such that ρ0([∆2]τ2) 6
[∆1]τ1. For any ρ ′, take ρ = ρ ′ · ρ0, and ρ([∆2]τ2) 6 ρ ′([∆1]τ1) follows by
monotonicity of substitution. Alternatively, supposing [∆2]τ2 6∀sim [∆1]τ1,
take ρ ′ to be the identity substitution, giving a ρ such that ρ([∆2]τ2) 6
[∆1]τ1.

This result did not hold for previous formulations of the lattice of types,
as the proof uses the identity substitution which maps each type variable to
itself. This requires that the type variables have a presence of their own in the
subtyping lattice, rather than quantifying over ground types (see Section 3.3
for a thorough discussion). With the extensible formulation as a free algebra,
subsumption as simulation and subsumption as generalisation plus subtyping
coincide.

4.2.1 Equivalence of typing schemes
The subsumption relation 6∀ is a preorder, not a partial order, and it induces
a nontrivial equivalence relation ≡∀. We leave the algorithm for deciding
6∀ and ≡∀ until Chapter 8. For now, we merely give some examples of the
non-triviality.

Any two typing schemes which are alpha-equivalent subsume each other,
since each is a substitution instance of the other. In effect, typing schemes are
always closed, never having free type variables. Relations between a typing
scheme and its environment are instead expressed using the ∆ part of a typing
scheme [∆]τ.

However, typing schemes can be equivalent by ≡∀ without being alpha-
equivalent. Suppose we have a function first which takes two (curried) argu-
ments and returns the first. The second argument, therefore, is unused and
does not affect the result type. ML expresses this using polymorphism, giving
a typing scheme like:

first : []α→ β→ α

The same effect can be expressed with subtyping, giving instead:

first : []α→ >→ α

We need not choose: these are equivalent by ≡∀. The second is an instantiation
of the first, while the first is a supertype of the second.

Suppose instead we have the function choose which again takes two argu-
ments, but returns one or the other randomly. The ML-style typing scheme is
now:

choose : []α→ α→ α

while the subtyping-style typing scheme is:

choose : []β→ γ→ (βt γ)

The latter directly expresses the subtyping constraints: choose may take ar-
guments at two different types, but will return their upper bound. So, the
second, more complicated type may appear to be more general, and indeed it
subsumes the first by instantiation.

Perhaps surprisingly, the first also subsumes the second, making both
equivalent! To show this, we need to instantiate α so that α→ α→ α becomes

66 4.3. REFORMULATED TYPING RULES

a subtype of β → γ → (β t γ), and the instantiation α = β t γ suffices.
Intuitively, these typing schemes are equivalent because they describe the
same data flow: both allow input to flow from either argument to the result.

So, the type inference algorithm for MLsub sees both of these as equiva-
lent. Indeed, the efficient automaton-based representation of typing schemes
introduced in Chapter 7 represents both typing schemes for choose identically,
while Section 7.3.3 shows how the conversion from automata back to syntactic
types picks the simpler, former typing scheme for choose for display to the
user.

4.3 Reformulated typing rules
Next, we reformulate the typing rules of MLsub into an equivalent form based
on typing schemes [∆]τ rather than on type schemes ∀~α.τ.

The standard typing rules record constraints between a type and the
environment by reusing the same type variable in both, which necessitates
a careful treatment of free and bound type variables (notably in the side-
condition of (Let)). Instead, we consider typing schemes to always be closed,
that is, never having any free variables. Constraints between a type and the
environment are recorded using the ∆ part of a typing scheme [∆]τ, relying
on coincidence of program variable names x rather than type variable names
α.

Describing a type system in this style is not novel, but what is new is
that, thanks to the lack of explicit constraints, we can prove this equivalent
to the standard ML-style formulation (in Section 4.3.2). Therefore, in this
work the reformulated rules are not a type system defined oddly, but sim-
ply an alternative representation that clarifies the process of type inference
(Chapter 6).

Instead of type environments Γ , which map variables to types or type
schemes, the reformulated rules use typing environments Π to assign typing
schemes (not type schemes) to let-bound variables:

Π ::= ε | Π, x̂ : [∆]τ

The reformulated rules produce judgements of the form Π e : [∆]τ, and are
shown in their entirety in Fig. 4.2. For these typing rules, I assume a prior
stage of alpha-renaming that ensures all λ- and let-binders bind distinct names.
Alternatively, de Bruijn indices can be used, or some tedious relabelling can
be done during typing to keep track of the domains of various Π and ∆.

The role of instantiation is played by the (Sub) rule since the relation
6∀ includes substitution of types for type variables. Note the lack of side-
conditions about free type variables when generalising in the (Let)-rule:
mentions of a type variable α in one typing scheme [∆]τ have no relation to
mentions in any other, and the connection between constraints on the same
program variable x arising from different parts of the program is maintained
by the presence of x in multiple ∆, not by coincidence of type variable names.
Accordingly, freshening of type variables which is usually done in rule (Var)

by systems based on ML can in fact be done at any time using (Sub) and an
substitution that permutes variables.

As with the original typing rules, these reformulated rules allow weak-
ening. We write Π2 6∀ Π1 when domΠ2 ⊇ domΠ1 and Π2(x̂) 6∀ Π1(x̂) for
x̂ ∈ domΠ1.

CHAPTER 4. THE TYPE SYSTEM 67

(Var-Π)
Π x̂ : [∆]τ

Π(x̂) = [∆]τ

(Var-∆)
Π x : [x : τ]τ

(Abs)
Π e : [∆, x : τ]τ ′

Π λx. e : [∆]τ→ τ ′

(App)
Π e1 : [∆]τ→ τ ′ Π e2 : [∆]τ

Π e1 e2 : [∆]τ ′

(Let)
Π e1 : [∆1]τ1 Π, x̂ : [∆1]τ1 e2 : [∆2]τ2

Π let x̂ = e1 in e2 : [∆1 u∆2]τ2
(True)

Π true : []bool
(False)

Π false : []bool

(If)
Π e1 : [∆]bool Π e2 : [∆]τ Π e3 : [∆]τ

Π if e1 then e2 else e3 : [∆]τ

(Cons)
Π e1 : [∆]τ1 . . . Π en : [∆]τn

Π {`1 = e1, . . . , `n = en} : [∆]{`1 : τ1, . . . , `n : τn}

(Proj)
Π e : [∆]{` : τ}
Π e.` : [∆]τ

(Sub)
Π e : [∆]τ
Π e : [∆ ′]τ ′

[∆]τ 6∀ [∆ ′]τ ′

Figure 4.2: Reformulated MLsub typing rules

Proposition 32 (Weakening for). If Π1 e : [∆]τ and Π2 6∀ Π1, then
Π2 e : [∆]τ.

Proof. By straightforward induction on derivations, using rule (Sub) in case
(Var-Π).

4.3.1 Example of generalisation
The reformulated rules treat let-generalisation differently than the original
rules for ML. For example, consider the term

λx. let ŷ = x in ŷ

This example is a little tricky, since the type of the inner let-bound expression
cannot be fully generalised since it depends on the type of the λ-bound
variable x. To keep track of this, the original (Let) rule has a side-condition
ensuring that type variables free in Γ are not generalised. Without this side-
condition, we would be able to infer the unsound type scheme ∀αβ.α → β

for the above term.
In the reformulated rules, there is no such side-condition. Instead, the

dependence of types of let-bound expressions upon their λ-bound environ-
ment is maintained in ∆, and the (Let) rule moves ∆ into Π before typing the
body of a let-expression. The application of (Let) in a type derivation for the
example expression looks like:

(Let)
 x : [x : α]α ŷ : [x : α]α ŷ : [x : α]α

 let y = x in y : [x : α]α

68 4.3. REFORMULATED TYPING RULES

Since [x : α] appears in the resulting type scheme, the (Abs) rule can be
applied to get the type scheme []α→ α, but not []α→ β.

4.3.2 Equivalence of original and reformulated rules
These rules are equivalent to the original rules, in that

` e : τ iff e : []τ

To show this we need a means of converting between Γ -style environments
and Π-style environments. First, we show how a type environment Γ may be
split into a monomorphic part m(Γ) and a polymorphic part p(Γ):

m(ε) = ε p(ε) = ε

m(Γ , x : τ) = m(Γ), x : τ p(Γ , x : τ) = p(Γ)

m(Γ , x̂ : ∀~α.τ) = m(Γ) p(Γ , x̂ : ∀~α.τ) = p(Γ), x̂ : [m(Γ)]τ

(provided ~α not free in Γ)

The last case’s requirement that ~α not be free in Γ can always be satisfied by
renaming the bound variables ~α in ∀~α.τ, if necessary.

Lemma 33. If Γ ` e : τ, then p(Γ) e : [m(Γ)]τ

Proof. Induction on the derivation of Γ ` e : τ. Most cases are straightforward,
since they do not manipulate the environment and a direct analogue exists in
. The exceptions are (Var-λ), (Var-∀), (Abs), (Let) and (Sub).

Case (Var-λ): if Γ(x) = τ, then m(Γ)(x) = τ so [x : τ]τ 6∀ [m(Γ)]τ and the
result follows by applying (Var-∆) and (Sub).

Case (Var-∀): We have Γ(x̂) = ∀~α.τ, and we assume ~α are not free in Γ ,
possibly by renaming the bound variables. Then, [m(Γ)]τ 6∀ [m(Γ)]τ[~τ/~α],
and since p(Γ)(x̂) 6∀ [m(Γ)]τ the result follows by (Var-Γ) and (Sub).

Case (Abs): Since p(Γ , x : τ) = Γ and m(Γ , x : τ) = m(Γ), x : τ, the result
follows directly by applying (Abs).

Case (Let): Given an application of (Let):

Γ ` e1 : τ1 Γ , x̂ : ∀~α.τ1 ` e2 : τ2
Γ ` let x̂ = e1 in e2 : τ2

~α not free in Γ

we have by the induction hypothesis (noting how the side-condition means
p(Γ , x̂ : ∀~α.τ1) need perform no renaming):

p(Γ) e1 : [m(Γ)]τ1 p(Γ), x̂ : [m(Γ)]τ1 e2 : [m(Γ)]τ2

and applying (Let) gives the result.
Case (Sub): If τ 6 τ ′, then also [m(Γ)]τ 6∀ [m(Γ)]τ ′, so the (Sub) rule

can be directly applied.

For the converse, an environment Γ and a monomorphic environment ∆
may be combined into a single environment Γ u ∆, whose domain is their
domains’ union, and where (Γ u∆)(x) = Γ(x) u∆(x) for λ-bound variables
common to both domains. This allows us to combine separate Π and ∆ into a
single environment as follows:

r(ε) = ε

r(Π, x̂ : [∆]τ) = (r(Π)u∆), x̂ : ∀~α.τ

(~α are those variables free in τ but not ∆)

CHAPTER 4. THE TYPE SYSTEM 69

Lemma 34. If Π e : [∆]τ, then r(Π)u∆ ` e : τ.

Proof. Induction on the derivation of Π e : [∆]τ. Again, the result is trivial
for those rules that do not touch the environment and have direct analogues
in `, leaving (Var-∆), (Var-Π), (Abs), (Let), (Sub).

Case (Var-∆): (r(Π) u (x : τ))(x) 6 τ, so the result follows by (Var-λ)
and (Sub).

Case (Var-Π): If Π(x̂) = [∆]τ, then (r(Π)u∆)(x̂) = ∀~α.τ, where ~α are the
variables free in τ but not ∆, so the result follows by (Var-∀), where each
type variable is replaced with itself.

Case (Abs): By the induction hypothesis, r(Π)u (∆, x : τ) ` e : τ ′. By the
assumption of distinct variable names, x must not be in the domain of r(Π) or
∆, so (r(Π)u (∆, x : τ)) = (r(Π)u∆), x : τ and (Abs) applies.

Case (Let): By the induction hypothesis,

r(Π)u∆1 ` e1 : τ1 r(Π)u∆1 u∆2, x̂ : ∀~α.τ1 ` e2 : τ2

where ~α are those variables free in τ ′ but not ∆. By weakening, r(Π)u∆1 u
∆2 ` e1 : τ1, and so (Let) applies, giving the result.

Case (Sub): By the induction hypothesis, r(Π) u ∆ ` e : τ and [∆]τ 6∀

[∆ ′]τ ′, so ρ([∆]τ) 6 [∆ ′]τ ′ for some ρ. By Lemma 20, we therefore have
ρ(r(Π) u∆) ` e : ρ(τ). Since typing schemes are closed (that is, do not have
free variables), we may assume (by renaming if necessary) that the variables
mentioned in [∆]τ are disjoint from those mentioned in Π, and thus that
ρ(r(Π) u ∆) = r(Π) u ρ(∆) 6 r(Π) u ∆ ′. So, by weakening and subtyping,
r(Π)u∆ ′ ` e : τ ′.

Theorem 35. ` e : τ iff e : []τ

Proof. Using the above two lemmas for the two directions, noting that p(ε) = ε,
m(ε) = ε and r(ε) = ε.

These reformulated rules are at the core of the type inference algorithm in
Chapter 6.

70 4.3. REFORMULATED TYPING RULES

5 Polarity and biunification

How can intuition deceive us on this point?

—Henri Poincaré

MLsub is defined in terms of the lattice T = T̃V , which is algebraically
well-behaved: it is distributive, an initial algebra, and so on. However, T
is uncountable (due to the presence of infinite types), and contains many
odd-looking types such as:

boolt ((⊥ → ⊥)u {a : bool})

The purpose of this chapter is to carve out a subset of T called the polar
types, and show that they support an analogue of unification we call biunifica-
tion. The polar types are defined syntactically, and there are only countably
many of them.

Not all types (i.e. elements of T) can be written as polar types. However,
restricting to polar types loses no expressiveness, because of the following
central result:

The principal type of any typeable expression is a polar type.

This result is stated and proved in detail in Chapter 6, and the proof is by
construction: the type inference algorithm produces polar principal types.

The relationship between types (elements of T) and polar types is similar
to that between the real numbers and pairs of integers representing rationals.
The real numbers have useful completeness properties, allowing the taking of
limits (while T is a complete lattice, allowing the taking of arbitrary meets
and joins), but reals are uncountably many and difficult to compute with
directly (again, just like T). On the other hand, pairs of integers m

n are
easy to compute with (as are polar types), although some operations like
the cube root are not always defined (like polar types, which have certain
restrictions on taking meets and joins). Finally, while every fraction m

n can
be interpreted as a real (and every polar type as an element of T), there are
generally multiple representations for a given number: 12 and 2

4 have the same
interpretation as reals (similarly, there are syntactically distinct polar types
whose interpretations in T agree).

The central idea of polar types is to distinguish between the types used
to describe inputs (called negative types) and those used to describe outputs
(positive types). Due to subtyping, output types represent lower bounds (a

72 5.1. POLAR TYPES

program produces a τ, which may be used at any supertype of τ), while input
types represent upper bounds (a program requires a τ, and any subtype of τ
may be provided).

For safety of execution, each subexpression of a program constrains its
inputs and outputs in some way, and to check types is to check the conjunction
of those constraints. In a lattice, the conjunction of lower bound constraints is
described with t, while the conjunction of upper bounds is described with u:

a 6 x and b 6 x iff at b 6 x
x 6 a and x 6 b iff x 6 au b

Equivalently, if a program chooses randomly to produce either an output of
type τ1 or one of type τ2, the actual output type is τ1 t τ2. Similarly, if a
program uses an input in once a context where a τ1 is required and again in a
context where a τ2 is, then the actual input type is τ1 u τ2.

So, we follow Pottier [Pot98b] and restrict polar types so as to only allow t
in output (positive) types, while u is allowed only in input (negative types). A
good portion of the apparent difficulty of solving subtyping constraints comes
from allowing t in negative positions or u in positive, which roughly amounts
to admitting disjunctions of typing constraints. Enforcing polarity removes
disjunctions, and makes possible the biunification algorithm for eliminating
constraints.

5.1 Polar types
Polar types are defined as syntactic terms, split into positive type terms t+ and
negative type terms t−, defined simultaneously:

t+ ::= α | t+ t t+ | ⊥ | bool | t− → t+ | {`1 : t+1, . . . , `n : t+n} | µα.t+

t− ::= α | t− u t− | > | bool | t+ → t− | {`1 : t−1, . . . , `n : t−n} | µα.t−

Recursive types (those beginning µ) have two additional syntax restrictions.
First, recursive types must be guarded, in that occurrences of α inside µα.t
must be underneath at least one → or { . . . } (allowing µα.bool → α but
not µα.bool t α). Secondly, recursive types must be covariant, in that α
may only occur in µα.t to the left of an even number of → signs (allowing
µα. (α→ bool)→ bool but ruling out µα.α→ bool).

We use the Roman letter t for these to indicate that they are purely syntactic:
⊥t⊥ and ⊥ are different positive type terms, leaving the Greek letter τ to refer
to elements of T . The syntactic nature of t+, t− means we can pattern-match
on syntax, which is how we define the biunification algorithm of Section 5.3.3.

Syntactic type terms t+, t− denote elements τ of T . Due to the guarded-
ness and covariance restrictions, recursive terms have unique interpretations
which are both least pre-fixed and greatest post-fixed points of their defining
equations (see Section 3.4). We write t+1 ≡ t

+
2 when t+1 and t+2 denote the same

element τ of T , even though t+1 and t+2 may be syntactically different.
We often leave the step moving from the syntactic object t+ to its algebraic

denotation τ implicit. In particular, given a type substitution ρ, we write
ρ(t+) for ρ applied to the denotation of t+, and we write t+1 6 t

+
2 when their

denotations are subtypes.
In this way, polar types give a syntax for a particular subset of T . This

subset is expressive enough to write the type of the introduction’s select

CHAPTER 5. POLARITY AND BIUNIFICATION 73

function (1.1) as a positive type term:

(α→ bool)→ α→ β→ (αtβ)

However, the syntax cannot express types such as (αtβ)→ (αtβ) as either
a positive or a negative type term. Despite these restrictions, polar types
suffice to describe the principal type of any MLsub expression, a fact which
underlies the approach to type inference presented in this thesis.

Note that neither the denotations of positive nor negative type terms form
a sublattice of T : positive types are not closed under meet, and negative types
are not closed under join. However, positive types are a sub-(join semilattice)
of T , while negative types are a sub-(meet semilattice).

5.1.1 Recursive types
Our first syntactic restriction, guardedness, is necessary to ensure uniqueness
of fixpoints (since φ(α) = α has many fixed points) and appears in most
presentations of recursive types. Our second syntactic restriction, covariance, is
necessary to ensure existence of greatest pre-fixed points and least post-fixed
points: without the covariance condition, φ could fail to be monotonic and
have many pre-fixed points but no least one.

Our syntax does not actually require that α appear at all in µα.t+, but this
causes no issues: if α is not free in t+, then µα.t+ = t+ as constant functions
have unique fixed points.

While the syntax for polar type terms t+, t− requires guardedness and
covariance, we can weaken both of these requirements in derived operations.
First, we note that every polar type term can be separated into a guarded and
unguarded part:

Proposition 36. For all positive type terms t+ and variables α, there exist positive
type terms t+α and t+g such that t+α ∈ {⊥,α}, α is guarded in t+g, and t+ is equivalent
to t+α t t+g.

Proof. By induction on the syntax of t+.
Case α: t+α = α, t+g = ⊥.
Case β, β 6= α: t+α = ⊥, t+g = β

Case ⊥: t+α = ⊥, t+g = ⊥.
Case tt t ′: by induction, t = tα t tg, t ′ = t ′α t t ′g, so t = (tα t t ′α)t (tg t

t ′g), where tα t t ′α can be written as ⊥ or α and α is guarded in tg t t ′g.
Case bool, t→ t, { . . . }: t+α = ⊥, t+g = t+ is guarded.
Case µβ.t ′: by induction, t ′ = t ′αt t ′g, and by the fixed-point property t+ =

t ′α t t ′g[µβ.t ′/α], where t ′g[µβ.t ′/α] denotes the replacement of occurrences
of α in t ′g (which must be positive) by µβ.t ′.

Using this fact, we can weaken the guardedness condition and define a
general least pre-fixed point operator µ+ as follows:

µ+α.t+ = µα.t+g

where t+ separates into t+α and t+g as above. We still assume α occurs covari-
antly in t+, but it may be unguarded.

Proposition 37. µ+α.t+ is the least pre-fixed point of α 7→ t+.

74 5.1. POLAR TYPES

Proof. If α is in fact guarded in t+, then clearly µ+α. t+ = µα. t+g, which is the
least pre-fixed point. Otherwise, t+ = αt t+g and µ+α. t+ is the least pre-fixed
point of α 7→ α t t+g. Since, for all x, x t t+g 6 x iff t+g 6 x, α 7→ t+ and
α 7→ αt t+g have the same pre-fixed points, and thus the same least pre-fixed
point.

We thus have a least pre-fixed point operator µ+ on positive types which
does not require guardedness, and dually a greatest post-fixed point operator
µ−. Guardedness is still required to show that they coincide, since for instance:

µ+α.α = ⊥ 6= > = µ−α.α

So, the guardedness restriction can be relaxed, but it still seems that the
covariance restriction reduces expressiveness because the syntax excludes
e.g. µα.α → α, even though by contractivity (Section 3.4.2) a unique type
τ = τ → τ exists in T . However, with some effort, polar types can indeed
express this type.

The trick is to separate the positive and negative occurrences of α: we look
for two types τ1, τ2 such that:

τ1 = τ2 → τ1 τ2 = τ1 → τ2

Here, τ1 depends on itself only covariantly, as does τ2. We can thus introduce
well-formed µ-types:

τ1 = µα. τ2 → α τ2 = µβ. τ1 → β

Substitution gives:

τ1 = µα. (µβ. τ1 → β)→ α τ2 = µβ. (µα. τ2 → α)→ β

The µ operator is monotone (Section 3.4.3), so τ1 and τ2 still depend on
themselves only covariantly, allowing us to use the µ operator again to remove
the recursion:

τ1 = µα ′.µα. (µβ.α ′ → β)→ α τ2 = µβ ′.µβ. (µα.β ′ → α)→ β

Since the fixed points are unique, we can collapse the repeated µ operators:

τ1 = µα. (µβ.α→ β)→ α τ2 = µβ. (µα.β→ α)→ β

These types are the same, since the syntaxes are α-equivalent. Alternatively,
we can see τ1 = τ2 since they both satisfy τ = τ→ τ, which we know has a
unique solution by contractivity. Guardedness is crucial here: only by noting
that e.g. τ1 is guarded in τ2 → τ1 may we introduce the µ operator. If the
type were not guarded, we would have to use µ+ for τ1 and µ− for τ2 (or vice
versa), and we would not be able to conclude that τ1 = τ2.

Separating the positive and negative occurrences of type variables is a
standard technique for dealing with recursive type equations, although in
general one must be very careful about whether least (µ+) or greatest (µ−)
fixed points are being constructed (see e.g. Freyd [Fre92]). Here, the fact that
guardedness causes µ+ and µ− to coincide simplifies matters.

The construction above is due to Bekič [Bek84] (see Section 2.1.8), who
showed how to use a finite collection of least pre-fixed point operators on
ordered sets (here µ+ on positive types and µ− on negative ones) to construct a
least pre-fixed point operator on their product. This allows the construction of
recursive types like τ = τ→ τ using polar types as above, but more generally
allows finding the least solution of finite systems of simultaneous equations
over polar types, where “least” means having the smallest positive types and
largest negative ones.

CHAPTER 5. POLARITY AND BIUNIFICATION 75

5.1.2 Polar typing schemes
A polar typing scheme [D−]t+ is a typing scheme (Section 4.2) where the types
D−(x) of λ-bound variables are given by negative type terms, and the type of
the result t+ is given by a positive type term.

A polar typing scheme denotes pointwise a typing scheme [∆]τ, and we
write ρ([D−]t+) to mean the application of ρ to this denotation.

Our inference algorithm works solely with polar typing schemes, and
the principality result (Section 6.1) shows that these suffice: every typeable
program has a principal typing scheme which is polar.

5.2 Unification and subtyping
Unification is at the heart of the Hindley-Milner type inference algorithm for
ML, and in this chapter we define and explore a subtyping-aware analogue
called biunification which plays the same role for MLsub.

Constraints arise when inferring types for programs written in ML. Sup-
pose an application f x, where the environment Γ informs us that

f : (α→ β)→ (α→ β)

x : int→ int

Type checking can proceed only under the constraint α → β = int → int.
Unification allows us to eliminate this constraint, turning it into the substitution
[int/α, int/β]. After applying this substitution, we have

f : (int→ int)→ (int→ int)

x : int→ int

and type inference may proceed by applying (App).
Previous work on extending ML-style type inference with subtyping gener-

ally does not manage to eliminate constraints. Instead, previous work modifies
the typing judgement to include an explicit set of constraints, giving a judge-
ment form Γ ` e : τ|C. Much research concentrated on methods for optimising
the constraint set C, by converting it to smaller but equivalent forms. However,
these methods are heuristic: no construction of a minimal constraint set was
found, nor even a means to determine whether two constrained types are
equivalent or in the subsumption relation (see Section 10.3).

The biunification technique described below allows subtyping constraints
to be eliminated, and so does not require adding a constraint set C to the
typing judgement. It is the main ingredient in the algorithm for computing
principal types in the next chapter.

Several situations where unification is used in Hindley-Milner type in-
ference can be distinguished based on the direction of data flow, which is
relevant when considering subtyping. As explained previously, types for
outputs are given by positive types t+, while types for inputs are given by
negative types t−. The cases are as follows:

An input flows to an output In ML, using a λ-bound input directly as an
output does not require any actual unification. Instead, when typing
λx.e a fresh type variable α is generated in the (Abs) rule, and entered
into the environment as the type of x. In the reformulated rules for
MLsub, the same effect occurs in the (Var-∆) rule, where the type

76 5.2. UNIFICATION AND SUBTYPING

for x is given principally by [x : α]α (since typing schemes are closed,
freshness is not a concern here: see Section 4.2.1).

Two inputs or two outputs flow together Two outputs flow together in the
result type of an if-expression, and an input flows to two places when
a λ-bound variable is used twice. In ML, both of these situations cause
the input or output types to be unified, which as we saw in Section 1.1
results in a loss of precision. In MLsub, two output types τ+1 and τ+2
flowing together give a result of type τ+1 t τ

+
2, while an input used at

types τ−1 and τ−2 is given type τ−1 u τ
−
2.

It may seem odd that the equivalent of an operation which may fail
in ML (unification) is an operation which always succeeds in MLsub
(introduction of t or u). However, note that different types emerging
from an if-expression or being used in a λ-abstraction cannot cause a
program to go wrong, but merely for an output or input to be under- or
over-constrained.

An output flows to an input When the output of one expression flows to the
input of another, they must be compatible. Elimination forms, such
as application and projection, require their input to be the output of
a suitable introduction form. These are the situations which cause
programs to go wrong if not typed correctly, and are the constraints
that biunification must handle. Since the constraints involve an output
flowing to an input, they are of the form t+ 6 t−.

Given a set of constraints (for ML, of the form t1 = t2, and for us of
the form t+1 6 t

−
2), the purpose of the unification algorithm is to compute a

substitution that solves those constraints.
There are two terms that must be carefully defined: “substitution” and

“solves”. Substitutions as normally conceived are awkward here, because
substituting a polar type term for a type variable does not in general preserve
the polarity restrictions, since type variables may be used both positively
and negatively. This issue is resolved in the next section, while the issue of
knowing what it means to “solve” constraints hinges on subtleties of ML’s
type schemes described in Section 5.2.2.

5.2.1 Bisubstitutions

To operate on polar type terms, we generalise from substitutions to bisubsti-
tutions, which map type variables to a pair of a positive and a negative type
term. We write:

ξ = [t+/α+, t−/α−]

for the bisubstitution ξ which maps positive occurrences of α to t+ and
negative ones to t−, written ξ(α+) = t+ and ξ(α−) = t−. The types t+ and
t− are not in general assumed to be related, although later we prove that
biunification produces only stable bisubstitutions, which do relate the two.

A bisubstitution ξ may be applied to a positive or negative term by replac-
ing positive occurrences of α with ξ(α+) and negative ones with ξ(α−). This
maintains the syntactic structure of polar types, mapping positive types t+ to

CHAPTER 5. POLARITY AND BIUNIFICATION 77

positive types ξ(t+) and negative types t− to negative types ξ(t−) as follows:

ξ(t+1 t t
+
2) = ξ(t

+
1)t ξ(t

+
2) ξ(t−1 u t

−
2) = ξ(t

−
1)u ξ(t

−
2)

ξ(⊥) = ⊥ ξ(>) = >
ξ(bool) = bool ξ(bool) = bool

ξ(t− → t+) = ξ(t−)→ ξ(t+) ξ(t+ → t−) = ξ(t+)→ ξ(t−)

ξ({f}) = {f ◦ ξ} ξ({f}) = {f ◦ ξ}

ξ(µα.t+) = µα.ξ ′(t+) ξ(µα.t−) = µα.ξ ′(t−)

where ξ ′(α+) = α, ξ ′(α−) = α, and ξ ′ otherwise agrees with ξ.
Bisubstitutions can be composed, defining ξζ as follows:

ξζ(α+) = ξ(ζ(α+)) ξζ(α−) = ξ(ζ(α−))

Composition is associative with identity 1, defined as the identity bisubstitu-
tion mapping every variable to itself.

We also write ξ([D−]t+) to describe a bisubstitution acting pointwise on a
polar typing scheme [D−]t+, giving another polar typing scheme.

We write ξ ≡ ζ when two bisubstitutions ξ and ζ map the same variable to
equivalent types, that is, when ξ(α+) ≡ ζ(α+) and ξ(α−) ≡ ζ(α−) for all type
variables α. Up to ≡, bisubstitutions preserve u and t:

Bisubstitutions preserve t and u:

Proposition 38. ξ(t+1 t t
+
2) = ξ(t

+
1)t ξ(t

+
2), ξ(t

−
1 u t

−
2) = ξ(t

−
1)u ξ(t

−
2)

Proof. Induction on the syntax of t±1 , t±2 . Alternatively, this can be shown
by taking a bisubstitution to be an ordinary substitution ρ by splitting each
variable into separate positive and negative copies, since we know from
Section 3.3.3 that substitutions preserve meets and joins.

The latter argument proves a slightly stronger result: bisubstitutions pre-
serve all meets and joins, including infinite ones.

We may add two bisubstitutions as follows:

(ξ+ ζ)(α+) = ξ(α+)t ζ(α+) (ξ+ ζ)(α−) = ξ(α−)u ζ(α−)

These equations extend to all polar types:

Proposition 39. (ξ+ ζ)(t+) = ξ(t+)t ζ(t+), (ξ+ ζ)(t−) = ξ(t−)u ζ(t−)

Proof. Induction on the syntax of t+, t−.

The operation + is idempotent, commutative and associative up to ≡,
(inheriting these properties from t and u), and has identity 0, defined as:

0(α+) = ⊥ 0(α−) = >

0 acts on types by replacing all of their free variables with > and ⊥. Since
ξ(t+) = t+ when t+ has no free variables, ξ0 = 0. However, it is not the case
that 0ξ = 0, since e.g.

(0[(> → α)/α+])(α+) = 0(> → α) = > → ⊥ 6≡ ⊥ = 0(α+)

The operation + defines a semilattice, which induces an ordering on bisubsti-
tutions:

ξ 6 ζ iff ξ+ ζ ≡ ζ

78 5.2. UNIFICATION AND SUBTYPING

This is a preorder, or a partial order up to ≡. Expanding the definition of +, we
see that ξ 6 ζ iff, for all type variables α, ξ(α+) 6 ζ(α+) and ζ(α−) 6 ξ(α−):
thus, bisubstitutions are ordered covariantly in the types they assign to positive
variable occurrences, and contravariantly in the types they assign to negative
variable occurrences.

Bisubstitution addition distributes over composition on both sides:

Proposition 40. ξ · (ζ1 + ζ2) ≡ ξ · ζ1 + ξ · ζ2
Proof. (ξ · (ζ1+ζ2))(α+) = ξ(ζ1(α

+)tζ2(α+)), which is ξ(ζ1(α+))tξ(ζ2(α+))

by Proposition 38, and dually for α−.

Proposition 41. (ζ1 + ζ2) · ξ ≡ ξ · ζ1 + ξ · ζ2
Proof. ((ζ1 + ζ2) · ξ)(α+) = (ζ1 + ζ2)(ξ(α

+)), which is ζ1(ξ(α+)) t ζ2(ξ(α+))

by Proposition 39, and dually for α−.

In particular, these results imply that both application and composition of
bisubstitution are monotonic.

5.2.2 Parameterisation and typing
ML is often described by placing it in the framework of some more complex
type theory, like System F or Fω or the Calculus of Constructions. This
viewpoint describes ML as the rank-1 fragment of such a system, where ∀
quantifiers are restricted to only occur at top-level, and analyses the behaviour
of ML as a special case of the larger theory.

This viewpoint misses a crucial fact about ML type schemes, which is
important for MLsub. In systems based on ML, the following type schemes
are equivalent:

∀α∀β .α→ β→ α

∀β ∀α .α→ β→ α

They are equivalent in the sense that, for instance, a module in SML or OCaml
containing a value of the first type can be ascribed to contain a value of the
second. In systems that describe polymorphism as λ-abstraction over types
(including F, Fω and CoC), the two type schemes above are written something
like:

ΛαΛβ .α→ β→ α

ΛβΛα .α→ β→ α

These two are not equivalent, even up to renaming. For instance, applying
both to the type N gives the following clearly distinct types:

Λβ . N→ β→N

Λα .α→N→ α

The presence of explicit type application in F, Fω and CoC makes the exact
parameterisation of a polymorphic type relevant. Conversely, in ML, the pa-
rameterisation is irrelevant and all that matters is the set of possible instances.
Indeed, the above ML type schemes could be written as set comprehensions,
making their equivalence clearer:

{α→ β→ α | α,β types}

{α→ β→ α | β,α types}

CHAPTER 5. POLARITY AND BIUNIFICATION 79

Thus, when manipulating constraints, an ML type checker need only preserve
equivalence of the set of instances, and not equivalence of the parameterisation.
This freedom is not much used in plain ML, since unification happens to
preserve equivalence of the parameterisation. However, this freedom is what
allows MLsub to eliminate subtyping constraints. Consider this example of a
constrained set of natural numbers:

{n2 + 17 | n ∈N, n > 5}

We can remove the constraint n > 5 by substituting max(n, 5) for n:

{max(n, 5)2 + 17 | n ∈N}

This second set does not have the same parameterisation, quantifying over all
n rather than over just those n > 5, and yet it defines the same set.

5.2.3 The instances of a typing scheme
The goal of the inference algorithm (Chapter 6) is to produce, given an input
expression e, a polar typing scheme [D−]t+ that subsumes all other possible
typing schemes for e. It is generally the case that e is typeable with many
different non-polar typing schemes, but the most general one will be polar.

Accordingly, we define the set of (not necessarily polar) instances of a polar
typing scheme [D−]t+ to be the set of typing schemes it subsumes, that is:

{[∆]τ | [D−]t+ 6∀ [∆]τ}

Expanding the definition of subsumption, this is equivalently,

{[∆]τ | ∃ρ.ρ([D−]t+) 6 [∆]τ}

We write C for a finite sequence of constraints t+1 6 t
−
1, . . . t+n 6 t−n, where

each constraint has the form t+ 6 t−. (The order of constraints isn’t relevant,
but we use sequences rather than sets to better match the concrete algorithm
described below, which processes constraints in a particular order). We write
ξC for the application of the bisubstitution ξ to both sides of the constraints in
C (yielding another sequence of constraints), and we say ρ satisfies C (written
ρ |= C) whenever ρ(t+i) 6 ρ(t

−
i) for all constraints t+i 6 t

−
i in C.

Given a polar typing scheme [D−]t+, its instances under C are:

{[∆]τ | ∃ρ |= C. ρ([D−]t+) 6 [∆]τ}

The instances of [D−]t+ under C represent the ways in which [D−]t+ can be
used, subject to C. As such, it is larger for more general [D−]t+ and smaller C:

Proposition 42. If [D−
1]t

+
1 6
∀ [D−

2]t
+ and C1 ⊆ C2, then all instances of [D−

1]t
+
1

under C1 are instances of [D−
2]t

−
2 under C2.

We say that ξ solves C when, for any polar typing scheme [D−]t+, the set of
instances of ξ([D−]t+) is equal to the set of instances of [D−]t+ under C. The
object of the rest of this chapter is to construct and prove the correctness of the
biunification algorithm, which for any satisfiable C constructs a bisubstitution
ξ solving it.

As an example, consider the typing scheme for the identity function
[]α → α and the constraint α 6 {awake : bool}. Simply substituting α’s

80 5.2. UNIFICATION AND SUBTYPING

bound into the type (as per unification) does not solve the constraint, as it
leaves us with the typing scheme

[]{awake : bool}→ {awake : bool}

which has lost information: we should be able to pass {awake = true, number =

5} to this function and know that the result contains a field number. Specifically,
the typing scheme

[]{awake : bool, number : int}→ {awake : bool, number : int}

is one of the instances of []α→ α under α 6 {awake : bool}, and yet is not an
instance of []{awake : bool}→ {awake : bool}.

Following the example on natural numbers above, we notice that the
constraint α 6 {awake : bool} is equivalent to α = αu {awake : bool}, so we
make a replacement, giving:

[]{awake : bool}uα→ {awake : bool}uα

This typing scheme has the correct set of instances. For example, we can pass
the previous sample argument by instantiating α = {awake : bool, number : int}
and see that the return type still mentions a number field. Sadly, this typing
scheme is no longer polar, since u appears positively.

However, this typing scheme has the same set of instances as the following,
which is indeed polar:

[]({awake : bool}uα)→ α

Intuitively, a constraint α 6 t− gives a new upper bound to α, and thus should
only affect occurrences of α used as upper bounds (the negative ones). This
is not a new insight: it was used by Eifrig, Smith and Trifonov [EST95a] and
Pottier [Pot01] to simplify systems of constraints. Here, we use this insight to
not just simplify but entirely eliminate constraints, producing a polar typing
scheme. In general, this requires some special handling of recursive types,
described below in Section 5.3.

5.2.4 Comparison with unification
The concept of a bisubstitution ξ solving subtyping constraints C is the
analogue of the concept of most general unifier in standard unification.

A substitution ρ is said to unify (or to be a unifier of) some finite set of
equations E = {ti = t

′
i | 1 6 i 6 n} when ρ(E) is trivial, that is, ρ(ti) = ρ(t ′i)

for 1 6 i 6 n.
This does not seem to fit with the definition of “solves” above, since

if a bisubstitution ξ solves constraints C, it is not necessarily the case that
ξ(C) is tautological. For instance, if c = α 6 bool, then the bisubstitution
θc = [α u bool/α−] solves {c} (see below), and yet θc(c) = c which is a
nontrivial constraint.

However, while there is no direct analogue of “unifier” with bisubstitutions,
the concept of “most general unifier” fits nicely. A substitution ρ is a most
general unifier of E when it unifies E, and for any ρ2 unifying E there exists
some ρ ′2 such that ρ2 = ρ ′2 ◦ ρ. That is, all unifiers factor through a most
general unifier. When we apply the concepts of instances and instances under
E (from Section 5.2.3) to equations and unifiers, we find that most general
unifiers agree with our definition of “solves” above:

CHAPTER 5. POLARITY AND BIUNIFICATION 81

Proposition 43. ρ is a most general unifier of E iff, for any type t, the set of instances
of ρ(t) is same set as the set of instances of t under E.

Proof. The instances of t under E are the set:

{ρ2(t) | ρ2 unifies E}

By the definition of most general unifiers, this is equivalently:

{ρ ′2(ρ(t)) | ρ
′
2 a substitution}

which is the definition of the instances of ρ(t).

So, bisubstitutions solving constraints is the analogue of most general
unifiers, although in a slightly non-obvious way.

5.3 Solving constraints with bisubstitutions
As in standard unification, biunification works by breaking complex con-
straints down into a collection of simpler ones. We first describe how these
simple constraints are solved, and then move on to the biunification algorithm.

Below, we solve atomic constraints, and in the next section we present the
biunification algorithm which solves arbitrary constraints.

5.3.1 Atomic constraints
The simplest constraints are those between type variables and constructed
types. We say that a positive or negative type term is constructed when it is of
the form t→ t, {`1 : t1, . . . , `n : tn} or bool (that is, it is an application of a
type constructor rather than a type variable or a lattice operator).

A constraint is atomic if it is of the form α 6 t− (with t− constructed),
t+ 6 α (with t+ constructed) or α 6 β.

If α appears in t−, then the bisubstitution [αu t−/α−] does not in general
solve α 6 t−. With standard unification, the occurs check sidesteps this diffi-
culty, by failing whenever α appears in t−. Since we support recursive types
(indeed, we are forced to if we are to have principality: see Section 2.1.6) we
have no such easy escape. In general, solving a constraint α 6 t− may require
us to introduce a recursive type.

So, we solve α 6 t− with the following bisubstitution θ (see Section 5.1.1
for the definition of µ−):

θ = [µ−β.αu [β/α−](t−)/α−]

Note that by unrolling,

θ(α−) = αu [θ(α−)/α−](t−) = αu θ(t−)

Due to its definition via the greatest post-fixed point operator µ−, θ(α−) is the
greatest lower bound of its unrollings:

Proposition 44. θ(α−) =
d
n tn, where t0 = >, tn+1 = αu [tn/α−]t−.

When α does not occur in t−, θ is equivalent to [α u t−/α−]. In general,
θ can be understood as an iterated version of the bisubstitution [α u t−/α−].
Intuitively, when the occurs check fails, we make the substitution infinitely
many times.

82 5.3. SOLVING CONSTRAINTS WITH BISUBSTITUTIONS

Lemma 45. θ(α−) =
d
n t
′
n, where t ′n = [αu t−/α−]n(α−)

Proof. First, we note that t ′n satisfies a recurrence similar to that of tn above:

t ′n+1 = [αu t−/α−]n+1(α−)

= [[αu t−/α−]n/α−](αu t−)
= [t ′n/α

−](αu t−)
= t ′n u [t ′n/α−]t−

It is clear from this recurrence that the sequence t ′n decreases.
Next, we show that it satisfies the same recurrence as tn, proving that

α u [t ′n/α
−]t− = t ′n u [t ′n/α

−]t−. Since t ′n 6 t ′0 = α, the > relation is trivial.
The 6 relation simplifies to:

αu [t ′n/α−]t− 6 t ′n

We prove this by induction on n. In case n = 0, αu t− 6 α. In case n+ 1, we
note (using t ′n+1 6 t

′
n and the induction hypothesis):

αu [t ′n+1/α
−]t− 6 αu [t ′n/α−] 6 t ′n

so

αu [t ′n+1/α
−]t− 6 t ′n u [t ′n/α−]t ′ = t ′n+1

Therefore, sequences tn and t ′n satisfy the same recurrence, with tn starting
from > and t ′n starting from α. Since the recurrence is monotone, that means
that t ′n 6 tn, while since t1 6 α we have tn+1 6 t ′n. The sequences are
sandwiched between each other, so have the same greatest lower bound.

This construction solves atomic constraints α 6 t−, a fact proved in Sec-
tion 5.4.2. Using this construction (and its dual), we can solve any atomic
constraint:

• [µ−β.αu [β/α−](t−)/α−] solves α 6 t−

• [µ+β.αt [β/α+](t+)/α+] solves t+ 6 α

• [µ−β.αu [β/α−](γ)/α−] ≡ [αu γ/α−] solves α 6 γ

For any atomic constraint c, we write θc for the bisubstitution solving it per
the above cases.

In the last case, we have a choice between using [αuβ/α−] or [αtβ/β+]

to solve the constraint α 6 β. Again, this parallels standard unification where
we may solve a constraint α = β either by replacing occurrences of α with β
or vice versa.

5.3.2 Decomposing constraints

Given a non-atomic constraint t+ 6 t−, the biunification algorithm breaks it
down into subconstraints. Atomic subconstraints are solved using θc from
the previous section, while complex subconstraints are handled recursively.

CHAPTER 5. POLARITY AND BIUNIFICATION 83

For a constraint t+ 6 t−, its immediate subconstraints subi(t+ 6 t−) are
defined as follows:

subi(t−1 → t+1 6 t
+
2 → t−2) = {t+2 6 t

−
1, t+1 6 t

−
2}

subi(bool 6 bool) = {}

subi({`1 : t+1, . . . , `n : t+n, . . . `n+k : t+n+k} 6 {`1 : t−1, . . . , `n : t−n})

= {t+1 6 t
−
1, . . . , t+n 6 t

−n}

subi(µα.t+ 6 t−) = {t+[µα.t+/α] 6 t−}

subi(t+ 6 µα.t−) = {t+ 6 t−[µα.t−/α]}

subi(t+1 t t
+
2 6 t

−) = {t+1 6 t
−, t+2 6 t

−}

subi(t+ 6 t−1 u t
−
2) = {t+ 6 t−1, t+ 6 t−2}

subi(⊥ 6 t−) = {}

subi(t+ 6 >) = {}

The function subi is partial: for instance, subi(bool 6 ⊥ → >) fails. The cases
for which it succeeds are characterised as follows:

Proposition 46. For all t+, t−, exactly one of the following hold:

• t+ 6 t− is an atomic constraint

• t+ 6 t− is unsatisfiable

• subi(t+ 6 t−) succeeds

Proof. Case analysis on t+, t−.

The ease of defining subi is the primary technical purpose of the restricted
syntax of polar type terms. There is no way, in general, to decompose a
constraint t1 u t2 6 t3 into a conjunction of simpler constraints, but the syntax
of polar type terms excludes such examples.

Inspection of the definition of subi shows that the immediate subconstraints
are equivalent to the original, and applying bisubstitutions to immediate
subconstraints is the same as applying them to the original constraint:

Proposition 47. If subi(t+ 6 t−) succeeds, then ρ |= t+ 6 t− iff ρ |= subi(t+ 6 t−)

Proposition 48. If subi(t+ 6 t−) succeeds, then subi(ξt+ 6 ξt−) = ξ(subi(t+ 6
t−)).

5.3.3 The biunification algorithm
The biunification algorithm operates on a sequence of constraints C, and
either fails or returns a bisubstitution that solves C. To handle recursive
constraints, the biunification algorithm takes a second argument H, which
is a set of constraints that have already been seen and may be skipped if
seen again. We write the two-argument version as biunify(H;C) and take
biunify(C) = biunify(∅;C). biunify(H;C) is the following recursive function:

biunify(H; ε) = 1 (EMP)

biunify(H; c,C) = biunify(H;C) if c ∈ H (HYP)

biunify(H; c,C) = biunify(θc(H∪ {c}); θcC) · θc if c atomic (ATOM)

biunify(H; c,C) = biunify(H∪ {c}; subi(c),C) if subi(c) succeeds (SUB)

84 5.4. CORRECTNESS OF BIUNIFICATION

Constraints are processed one at a time. Ones that have been seen before
are skipped (case (HYP)), and complex constraints are broken down into
simpler ones (case (SUB)). When an atomic constraint c is reached, it is
eliminated using θc, and its solution is applied both to the output of a
recursive call to biunify, and to the remaining constraints.

The algorithm adds all previously seen constraints to H for recursive
calls. For correctness, this need only be done when decomposing constraints
with recursive types, but doing it for all constraints allows H to act as a
memoisation table. This technique brings the complexity of biunification
from exponential to polynomial, and was introduced by Kozen, Palsberg and
Schwarzbach [KPS93] (for the problem of deciding subtyping, rather than
biunification). We leave further discussion of the algorithm’s time complexity
until Section 7.4.1, after an efficient representation of constraints has been
introduced. As well as performing better than a naive representation, the
efficient representation makes the termination argument much easier.

This is a natural development from the standard unification algorithm.
Indeed, suppose that we replace θc in the definition of biunify with the sub-
stitutions that eliminate equality constraints (e.g. using substitution [bool/α]
instead of the bisubstitution [α u bool/α−]), and we delete from the defini-
tion of subi all lines having to do with records, subtyping or recursive types
(leaving just the first two lines, concerning booleans and functions). Doing
this, we find we have precisely recovered Martelli and Montanari’s unification
algorithm [MM82]!

5.4 Correctness of biunification

Leaving aside the issue of termination, we must still prove correctness of the
biunification algorithm. In particular, we must show that if biunification fails,
then the input constraints C are unsatisfiable, while if it succeeds the resulting
bisubstitution really does solve C.

This is a surprisingly tricky business, much more so than for standard
unification. The extra complexity comes from our more subtle definition of
what it means for a bisubstitution to “solve” a constraint (see Section 5.2.3).
The remainder of this chapter will be spent on proving the correctness of
biunification.

Despite the length, even this proof is not fully rigourous (in particular, the
treatment of the table H of already-seen constraints is somewhat informal). It
is odd that such a short algorithm requires such a detailed proof; we expect
that a more concise argument exists, but leave its development as future work.

5.4.1 Stability and idempotence
Proving that these solutions are correct is made difficult by the complex
definition of what it means for a bisubstitution to solve some constraints,
which hinges on the notion of instances (Section 5.2.3). In this section, we
describe a class of bisubstitutions for which the definition of solving is simpler.

In standard unification, applying any substitution a type yields an instance
of the type. Indeed, this is how “instance” is usually defined. In our setting,
however, things are more subtle. Applying an arbitrary bisubstitution to a
typing scheme does not always yield an instance of the typing scheme, since
bisubstitutions may replace positive and negative occurrences of a variable

CHAPTER 5. POLARITY AND BIUNIFICATION 85

with incompatible types. For instance, clearly

[]α→ α 66∀ []> → bool

and yet the latter can be formed from the former by applying the bisubstitution
[>/α−, bool/α+]. In order to map typing schemes to instances, a bisubsitution
must map positive and negative occurrences of the same variable to related
types:

Lemma 49. ξ([D−]t+) is an instance of arbitrary [D−]t+ iff ξ(α−) 6 ξ(α+) for all
type variables α.

Proof. Construct the substitution ρ(α) = ξ(α−). ρ([D−]t+) is an instance of
[D−]t+, and ρ([D−]t+) 6 ξ([D−]t+) so ξ([D−]t+) is too.

Conversely, if ξ(α−) 66 ξ(α+) for a particular type variable α, then []ξ(α−)→
ξ(α+) is not an instance of []α→ α.

Our second condition is idempotence, the requirement that ξ2 = ξ. We
impose this condition for technical convenience, as it allows us to simplify the
definition of solving (conditions I and II). This is not new: many accounts of
standard unification prove that the unification algorithm produces not merely
most general unifiers, but most general idempotent unifiers [LMM88].

So, we define a stable bisubstitution as any ξ such that ξ2 ≡ ξ, and ξ(α−) 6
ξ(α+) for all type variables α. It is not the case that if ξ solves C, then ξ must
be stable, any more than it is the case that most general unifiers must be
idempotent. However, as we see below, any C which can be solved can be
solved by some stable ξ, so it does no harm to restrict our attention to stable
bisubstitutions. Again, the situation parallels standard unification, where any
unifiable terms can be unified by a most general idempotent unifier.

Recall that ξ solves C if, for any polar typing scheme [D−]t+, the set of
instances of ξ([D−]t+) equals the set of instances of [D−]t+ under C. Expanding
definitions, this is equivalent to the following two conditions:

∀ρ |= C ∃ρ ′ ∀t+, t−. ρ ′(ξt+) 6 ρ(t+), ρ(t−) 6 ρ ′(ξt−) (I)

∀ρ ′ ∃ρ |= C ∀t+, t−. ρ(t+) 6 ρ ′(ξt+), ρ ′(ξt+) 6 ρ(t−) (II)

These are quite unwieldy, but can be simplified under the assumption that ξ
is stable. First, we prove a useful lemma:

Lemma 50. If ρ0 |= C, then ρ ◦ ρ0 |= C for arbitrary ρ

Proof. For any t+ 6 t− ∈ C, ρ0(t+) 6 ρ0(t−) so ρ(ρ0(t+)) 6 ρ(ρ0(t−)).

Lemma 51. If ξ is stable, then ξ solves C iff the following two conditions hold:

∀ρ |= C ∀t+, t−. ρ(ξt+) = ρ(t+), ρ(t−) = ρ(ξt−) (Ia)

∃ρ0 |= C ∀t+, t−. ρ0(t+) 6 ξt+, ξt− 6 ρ0(t−) (IIa)

Proof. Trivially, Ia implies I, by choosing ρ ′ = ρ. For the converse, suppose
ρ |= C and so by I ρ ′(ξt+) 6 ρ(t+), ρ(t−) 6 ρ ′(ξt−) (for some ρ ′, and all t+, t−).
For arbitrary α, since ξ(α−) 6 ξ(α+),

ρ ′(ξ(α−)) 6 ρ ′(ξ(α+)) 6 ρ(α) 6 ρ ′(ξ(α−)) 6 ρ ′(ξ(α+))

making all terms in the above equal. Therefore, ρ ′(ξt+) = ρ(t+), and ρ ′(ξt−) =
ρ(t−). Since ξ2 = ξ,

ρ(ξt+) = ρ ′(ξ2t+) = ρ ′(ξt+) = ρ(t+)

86 5.4. CORRECTNESS OF BIUNIFICATION

giving condition Ia.
Condition II implies IIa by taking ρ to be the identity substitution. For

the converse, suppose ρ0 |= C and ρ0(t+) 6 ξt+, ξt− 6 ρ0(t−). Given any ρ ′,
ρ ′ ◦ ρ0 |= C by Lemma 50, and (ρ ′ ◦ ρ0)(t+) 6 ρ ′(ξt+) since ρ0(t+) 6 ξt+ (and
dually for negative type terms t−), proving II.

In fact, the conditions can be simplified further. Instead of proving con-
ditions Ia, IIa for all types, it suffices just to analyse their behaviour on type
variables:

Lemma 52. Conditions Ia and IIa are equivalent to:

∀ρ |= C ∀α. ρ(ξ(α+)) = ρ(α) = ρ(ξ(α−)) (Ib)

∃ρ0 |= C ∀α. ξ(α−) 6 ρ0(α) 6 ξ(α
+) (IIb)

Proof. Clearly Ia, IIa imply Ib, IIb, and the converse follows by induction on
t+, t−.

It is not in general the case that the composition of two stable bisubstitu-
tions is stable. A useful special case in which this holds is the following:

Lemma 53 (Stability of compositions). If ζ, θ are stable bisubstitutions where
ζ · θ ≡ ζ+ θ, then θ · ζ is stable.

Proof. The first condition follows from monotonicity:

ζθ(α−) 6 ζ(α−) 6 α 6 ζ(α+) 6 ζθ(α+)

The second condition uses Propositions 40 and 41:

(θζ)2 ≡ θζθζ ≡ θ(ζ+ θ)ζ ≡ θζ2 + θ2ζ ≡ θζ+ θζ ≡ θζ

5.4.2 Solving atomic constraints
Our first use of stable bisubstitutions is to prove that the bisubstitutions θc
of Section 5.3.1 do indeed solve atomic constraints c. We prove this using
conditions (Ib), (IIb) above, which require that we first prove θ to be stable.

Lemma 54. For any type variable α and negative type term t−, the bisubstitution
θc is stable.

Proof. By unrolling, θ(α−) ≡ αu [θ(α−)/α−](t−) = αuθ(t−), so clearly θ(α−) 6
α = θ(α+), and for any type variable γ 6= α, θ(γ−) = γ = θ(γ−).

To show that θ2 ≡ θ, it suffices to show that θ2(α−) ≡ θ(α−), since θ is the
identity for α+ and all other type variables. Expanding, we must show:

µ−β.θ(α−)u [β/α−]t− = µ−β.αu [β/α−]t−

For brevity, let φ(τ) be the monotone function mapping τ to [τ/α−]t−. We
show that the equation above holds by showing that both sides have the same
post-fixed points, and therefore the same greatest such point. To do so, we
must show:

τ 6 θ(α−)uφ(τ) iff τ 6 αuφ(τ)
or equivalently,

τ 6 θ(α−) ∧ τ 6 φ(τ) iff τ 6 α ∧ τ 6 φ(τ)

The (⇒) case is trivial, since θ(α−) 6 α. For the converse, if τ 6 αuφ(τ) then
τ is a post-fixed point of αuφ(τ), and thus less than the greatest such point
which is θ(α−).

CHAPTER 5. POLARITY AND BIUNIFICATION 87

Theorem 55. The bisubstitution θ (as defined above) solves the constraint α 6 t−

Proof. θ is stable, so we prove the lemma by verifying conditions Ib, IIb.
(Ib) Suppose ρ |= α 6 t−. ρ(θ(α+)) = ρ(α) trivially, since θ is the identity

on all positive variables. The situation is the same for negative variables other
than α, so we need only prove ρ(α) = ρ(θ(α−)), or equivalently

ρ(α) = ρ(µ−β.αu ([β/α−](t−)))

Using the sequence t−n as defined in Proposition 44, we prove by induction on
n that ρ(α) = ρ(t−n). Case n = 0 is trivial, since αu> ≡ α.

In case n + 1, we note that since ρ(α) 6 ρ(t−n), ρ(t−) 6 ρ([t−n/α
−]t−)

since α− appears only covariantly in t−. Since ρ(α) 6 ρ(t−), this implies
ρ(α) 6 ρ([t−n/α

−]t−) and therefore ρ(α) = ρ(t−n+1).
Since θ(α−) is the meet of t−n, and ρ preserves meets, ρ(θ(α−)) = ρ(α).
(IIb) Choose ρ0(β) = θ(β−) for all type variables β. Since θ is stable,

θ(β−) = ρ0(β) 6 θ(β
+)

To prove (IIb), we must also show ρ0 |= α 6 t−. Since ρ0 = [θ(α−)/α] and
θ(α−) 6 θ(α+), θ(t−) 6 ρ0(t−) as positive occurrences of α are contravariant
in t−. So, it suffices to show that θ(α−) 6 θ(t−), which holds since θ(α−) =

αu θ(t−).

5.4.3 Solving multiple constraints
Next, we see how to construct a bisubstitution that solves a system of multiple
constraints, by breaking it into parts.

Lemma 56. Suppose ξ1, ξ2 and ξ2 · ξ1 are all stable, and ξ1 solves C1 and ξ2
solves ξ1(C2). Then ξ2 · ξ1 solves C1,C2.

Proof. We verify conditions (Ib), (IIb), since all bisubstitutions involved are
assumed stable.

(Ib) Given ρ |= C1,C2, since ξ1 solves C1 we have ρ(ξ1(t+)) = ρ(t+)

and ρ(t−) = ρ(ξ1(t
−)) by condition (Ia). Therefore, ρ |= ξ1(C2) since, for

t+ 6 t− ∈ C2,
ρ(ξ1(t

+)) = ρ(t+) 6 ρ(t−) = ρ(ξ1(t
−))

Since ξ2 solves ξ1(C2), that proves ρ(ξ2(t+)) = ρ(t+) and ρ(t−) = ρ(ξ2(t−)),
so:

ρ(ξ2(ξ1(α
+))) = ρ(ξ1(α

+)) = ρ(α) = ρ(ξ1(α
−)) = ρ(ξ2(ξ1(α

−)))

(IIb) By condition (IIa), we have:

ρ1 |= C1∀t+, t−. ρ1(t+) 6 ξ1(t+), ξ1(t−) 6 ρ1(t−)

ρ2 |= ξ1(C2)∀t+, t−. ρ2(t+) 6 ξ2(t+), ξ2(t−) 6 ρ2(t−)

Let ρ0 = ρ2 ◦ ρ1. We have:

ξ2(ξ1(α
−)) 6 ρ2(ξ1(α

−)) 6 ρ2(ρ1(α)) 6 ρ2(ξ1(α
+)) 6 ξ2(ξ1(α

+))

By Lemma 50, ρ0 |= C1. For t+ 6 t− ∈ C2, we note that ρ2 |= ξ1(t
+) 6 ξ1(t−),

giving:
ρ2(ρ1(t

+)) 6 ρ2(ξ1(t
+)) 6 ρ2(ξ1(t

−)) 6 ρ2(ρ1(t
−))

so ρ0 |= C2.

88 5.4. CORRECTNESS OF BIUNIFICATION

This result allows us to solve a set of constraints by first solving one of
them, applying the solution to the rest, and then solving those, just as biunify
does in case (ATOM). However, this only handles the success case: we need
the following lemma to show correctness in the failure case, so that we know
biunify fails only on unsatisfiable constraints.

Lemma 57. Suppose ξ1, ξ2 and ξ2 · ξ1 are all stable, and ξ1 solves C1. If ξ1(C2)
is unsatisfiable, then so is C1,C2.

Proof. Suppose ρ |= C1,C2. Consider an arbitrary t+ 6 t− ∈ C2. Since ξ1
solves C1, by condition (Ia) we know:

ρ(ξ1(t
+)) = ρ(t+) 6 ρ(t−) = ρ(ξ1(t

−))

so ρ also solves ξ1(C2), a contradiction.

5.4.4 Stability of biunification
The results so far refer mostly to stable bisubstitutions. To apply them to
biunify, we must show that it produces stable results. We prove a slightly
stronger result:

Lemma 58 (Stability of biunify). If ζ is stable, and biunify(ζH; ζC) = ξ, then ξζ is
stable.

Proof. By induction on the structure of recursive calls to biunify.
(EMP): ξ = 1, so ξζ = ζ is stable.
(HYP): We have biunify(ζH, ζC) = ξ, so ξζ is stable by the inductive

hypothesis.
(ATOM): Let ξ ′ be the output of the recursive call to:

biunify(θζ(c)(ζH∪ {ζ(c)}); θζ(c)(ζ(C)))

We have ξ ′ · θζ(c) = ξ, where ζ(c) is atomic.
The inductive hypothesis shows that ξ ′ · (θζ(c) · ζ) is stable, which by

associativity proves ξζ stable, but to use it we must satisfy its precondition
that θζ(c) · ζ is stable. We know that both θζ(c) and ζ are stable (by Lemma 54
for θζ(c) and by assumption for ζ), so we use Lemma 53 and need only prove
that ζ · θζ(c) ≡ ζ+ θ.

For all variables γ,

ζ · θζ(c)(γ+) = ζ(γ+) (ζ+ θ)(γ+) = ζ(γ+)t γ

Since γ 6 ζ(γ+) by stability, ζ(γ+) = ζ(γ+)t γ. A similar argument holds in
the negative case, when γ 6= α. In case α−, we recall that θζ(c) =

d
n t
′
n, where

t ′n = [αu ζ(t−)/α−]n(α−) as in Lemma 45. We prove that ζ(t ′n) = ζ(α−)u t ′n.
Let ξ be the bisubstitution [αu ζ(t−)/α−], so that t ′n+1 = ξ(t ′n). We show that
ζξ = ζ+ ξ as follows (it is trivial for variables other than α−):

ζξ(α−) = ζ(α−)u ζ2(t−) = ζ(α−)u ζ(t−) = (ζ+ ξ)(α−)

Therefore, by induction on n, ζ(t ′n) = ζ(α−) u t ′n, since in case n = 0 this
simplifies to ζ(α−) = ζ(α−)uα as above, while in case n+ 1,

ζ(t ′n+1) = ζ(ξ(t
′
n)) = ζ(t

′
n) + ξ(t

′
n) = ζ(α

−)u t ′n u t ′n+1 = ζ(α−)u t ′n+1

CHAPTER 5. POLARITY AND BIUNIFICATION 89

Since θζ(c)(α−) is the meet of t ′n, this proves that ζ(θζ(c)(α−)) = ζ(α−) u
θζ(c)(α

−) and therefore that ζθ = ζ+ θ.
(SUB): We have biunify(ζH ∪ {ζc}; subi(ζc), ζC) = ξ. By Proposition 48,

subi(ζc) = ζ(subi(c)), so the inductive hypothesis applies showing ξζ to be
stable.

As a corollary, if biunify(H;C) = ξ then ξ is stable, by the above lemma
taking ζ = 1.

5.4.5 Biunification of unsatisfiable constraints
Here, we prove the easier half of the correctness result for biunify, showing
that it fails only on unsatisfiable results.

Theorem 59. If biunify(H;C) fails, then C is unsatisfiable.

Proof. Induction on the structure of recursive calls to biunify. Case (EMP)
cannot fail, so assume C = c,C ′.

If biunify immediately fails because c is not in H, not atomic, and subi(c)
fails, then c (and therefore C) is unsatisfiable by Proposition 46.

Otherwise, a failure must be due to a recursive call to biunify. In cases
(HYP) and (SUB), the argument to the recursive call (either C ′ or subi(c),C ′)
implies C (by Proposition 47), so if the argument is unsatisfiable then so is C.
Case (ATOM) is similarly handled, using Lemma 57 (with Lemmas 54 and 58
providing the required stability preconditions) to show that unsatisfiablity of
θcC

′ implies unsatisfiablity of C.

5.4.6 Atomic subconstraints suffice
Biunification works by breaking complex constraints down into atomic sub-
constraints, like standard unification. To justify this, we must show that the
resulting collection of atomic constraints is equivalent to the original collection
of complex constraints, but this is made tricky by the presence of recursive
types.

We define the set of subconstraints of a constraint is the least set containing
it and closed under subi, and write at(t+ 6 t−) for those subconstraints
of t+ 6 t− which are atomic, and at(C) for the union of at(t+ 6 t−) for
t+ 6 t− ∈ C.

Proposition 60. Any constraint has only finitely many subconstraints.

Proof. Define the set subt(t+) of immediate subterms of a positive type term t+

as follows:

subt(α) = {}

subt(t+1 t t
+
2) = {t+1, t+2}

subt(⊥) = {}

subt(unit) = {}

subt(t− → t+) = {t−, t+}

subt({`1 : t1, . . . , `n : tn}) = {t+1, . . . t+n}

subt(µα.t+) = {t+[µα.t+/α]}

The immediate subterms of a negative type term are defined dually, and the
subterms of a positive or negative type term t+ or t− is the least set containing

90 5.4. CORRECTNESS OF BIUNIFICATION

t+ or t− and closed under subt. Immediate subterms are either syntactic
subterms, or the one-step unrolling in the case of recursive types. Although
naively computing subterms will fail to terminate (as recursive types can be
unrolled arbitrarily), each positive or negative type term nonetheless has a
finite set of subterms, since the recursion is regular.

By inspection of subi, subconstraints are composed of pairs of subterms of
the original constraint, of which there are only finitely many.

An assignment ρ satisfies constraints C iff ρ satisfies at(C), hence solving
the atomic subconstraints of C suffices to solve C. We prove this result in two
parts, first proving it in the absence of recursive types and then extending the
result:

Lemma 61. If C is satisfiable and contains no occurrence of µ, then ρ |= C iff
ρ |= at(C).

Proof. By induction on the total size of C, considering an arbitrary t+ 6 t− ∈ C.
By Proposition 46, either t+ 6 t− is atomic or subi(t+ 6 t−) succeeds (we know
by assumption that it is not unsatisfiable).

If it is atomic, then trivially ρ |= t+ 6 t− iff ρ |= at(t+ 6 t−). If subi(t+ 6 t−)
succeeds, then the result follows by the induction hypothesis (noting that the
total size of subi(t+ 6 t−) is strictly smaller than that of t+ 6 t−, when t+ 6 t−

contains no µ) and using Proposition 47 to show equivalence.

Lemma 62. If C is satisfiable, then ρ |= C iff ρ |= at(C).

Proof. Recall from Section 3.4.1 the projection morphisms πk, which truncate a
type to k levels of type constructor nesting. By definition of T , τ1 6 τ2 iff
πkτ1 6 πkτ2 for all k.

We write ρ |=k C (“ρ satisfies C to depth k”) when πk(ρ(t+)) 6 πk(ρ(t−))
for t+ 6 t− ∈ C. Informally, ρ |=k C when ρ satisfies C as long as we do not
look under more than k type constructors.

Recursive types µα.t are equal to their unrollings [µα.t/α]t, so we may
unroll any recursive types appearing in C without affecting whether ρ |= C.
By unrolling all µ-types, we increase the minimum depth (constructor nesting
level) at which a µ may be found by at least 1, since recursive types are
guarded (see Section 5.1.1).

Form Ck from the constraints C, by unrolling all µ-types k times, and then
truncating the result at depth k (that is, replacing all subterms below k or
more type constructors with ⊥ or >). Since unrolling preserves equivalence,
and the truncation affects the type only below k constructors, we have:

ρ |=k Ck iff ρ |=k C

The set at(Ck) consists of truncated versions of some elements of at(C). It
is not the case that at(Ck) = at(C)k, since not all constraints are truncated
together, but since the constraints in at(Ck) are all truncated versions of
constraints in at(C), we do have:

ρ |=
⋃
k

at(Ck) iff ρ |= at(C)

CHAPTER 5. POLARITY AND BIUNIFICATION 91

Since Ck contains no µ (all occurrences of µ having been removed by trunca-
tion), ρ |=k Ck iff ρ |= at(Ck) by Lemma 61, so:

ρ |= C⇔ ∀k.ρ |=k C

⇔ ∀k.ρ |=k Ck

⇔ ∀k.ρ |=k at(Ck)

⇔ ρ |=
⋃
k

at(Ck)

⇔ ρ |= at(C)

Lemma 63. For stable ξ and satisfiable C, ρ |= at(ξ(C)) iff ρ |= ξ(at(C))

Proof. For non-atomic constraints c ∈ C, subi(ξ(c)) = ξ(subi(c)) by Proposi-
tion 48, while for atomic constraints c ∈ C, ρ |= at(ξ(c)) iff ρ |= ξ(c) (by
Lemma 62) iff ρ |= ξ(at(c)) (since at(c) = {c}).

5.4.7 Biunification of satisfiable constraints
Finally, we have assembled enough machinery to argue that if biunify(∅;C)
succeeds, then it produces a bisubstitution solving C.

The first argument H to biunify is essentially a memoisation table, to handle
recursive types and improve performance. We first show the correctness of a
version of biunification without it, dubbed biunify ′:

biunify ′(ε) = 1 (EMP’)

biunify ′(c,C) = biunify ′(θcC) · θc if c atomic (ATOM’)

biunify ′(c,C) = biunify ′(subi(c),C) if subi(c) succeeds (SUB’)

Lemma 64. If biunify ′(C) = ξ, then ξ solves at(C).

Proof. Induction on the structure of recursive calls to biunify ′. In case (EMP’),
1 trivially solves ε, while in case (SUB’) we note that c,C and subi(c),C have
the same atomic subconstraints, so the inductive hypothesis applies directly.

In case (ATOM’), since c is atomic, we have:

at(c,C) = {c}∪ at(C)

Let ξ be the output of the recursive call to biunify ′(θcC). By the inductive
hypothesis, ξ solves at(θcC), and we must show that ξ · θc solves {c}∪ at(C).

By Lemma 54, θc is stable, and therefore by Lemma 58 so are ξ and ξ · θc.
This lets us apply Lemma 56 to show that ξ · θc solves {c} ∪ at(C), since θc
solves c (Theorem 55) and ξ solves θc(at(C)) (Lemma 63).

So results that biunify ′(C) produces solve C, although it may fail to termi-
nate when it encounters recursive types. The addition of a memoisation table
H solves this:

Theorem 65. If biunify(∅;C) = ξ, then ξ solves C.

Proof. biunify defined the same way as biunify ′, except for the extra argument
H and rule (HYP). biunify does a depth-first search of the atomic constraints
that biunify ′ visits, using H to mark already-visited nodes so that they can be
skipped on a revisit. When an atomic constraint c is solved, θcH is marked
visited, since Lemma 63 combined with condition (Ia) shows that that for any
ρ |= c, ρ |= at(H) iff ρ |= θcat(H). biunify therefore produces a result ξ solving
at(C) (by the same argument as Lemma 64), which solves C by Lemma 62.

92 5.4. CORRECTNESS OF BIUNIFICATION

The argument that biunify does indeed terminate is left until Section 7.4.1,
as it is simpler using the representation of types introduced in Chapter 7.

6 Principal type inference

It is not really difficult to construct a series of inferences,
each dependent upon its predecessor and each simple in
itself. If, after doing so, one simply knocks out all the
central inferences and presents one’s audience with the
starting-point and the conclusion, one may produce a
startling, though perhaps a meretricious, effect.

—Sir Arthur Conan Doyle

This chapter describes the type inference algorithm for MLsub. The algo-
rithm is much the same as Milner’s Algorithm W , with two important differ-
ences: first, biunification (Section 5.2) replaces unification, and second, the use
of the reformulated typing rules makes the treatment of let-polymorphism
slightly different.

6.1 Principality
We say that an expression e is typeable under Π if Π e : [∆]τ for some [∆]τ.
A particular typing scheme [∆pr]τpr is said to be principal for e under Π if the
following holds, for all [∆]τ:

Π e : [∆]τ iff [∆pr]τpr 6
∀ [∆]τ

In other words, a principal typing scheme subsumes all others. A principal
typing scheme, if it exists, is unique up to ≡∀, so we also speak of the principal
typing scheme (of e under Π). This is a direct analogue of Damas’s [DM82]
principality result for the Hindley-Milner type system, which in the reformu-
lated typing rules states that if Π e : [∆]τ then [∆]τ is a substitution instance
of the principal typing scheme [∆pr]τpr. However, the principality property
is rather awkward to state in the traditional rules, as substitutions must be
applied both to the context Γ and the type τ.

The main result of this chapter, which motivates the efficient representation
studied in the following chapters, is that not only does every expression have
a principal typing scheme, but that principal typing scheme is polar.

Proposition 66. If e is typeable under polar typing environment Π, then there exists
a typing scheme [D−

pr]t
+
pr which is both polar and principal for e under Π.

As well as a standard principality result for the polar version of the MLsub
type system, this states a slightly stronger property: not only is there a best

94 6.1. PRINCIPALITY

polar typing scheme, but that polar typing scheme subsumes any other typing
schemes, even non-polar ones.

Due to the equivalence of the reformulated rules with the original rules
(Section 4.3.2), a principality result for the original rules is a straightforward
corollary:

Corollary 67. If ` e : τ, then e has a positive principal type t+pr, such that

` e : τ ′ implies ∃ρ. ρ(t+pr) 6 τ
′

Proof. If ` e : τ, then e : []τ by Theorem 35, and there is some [D−
pr]t

+
pr 6

∀ []τ

by Proposition 66. By definition of 6∀, [D−
pr] must be empty, and ρ(t+pr) 6 τ

for some ρ.

The remainder of this chapter consists of a proof of Proposition 66, which
can be read as an algorithm for computing principal types, or determining
that none exist. We develop this algorithm case-by-case, along with its proof.
The complete algorithm is collected afterwards as a set of inference rules, in
Fig. 6.1.

6.1.1 Example
As an example, consider the problem of finding a principal typing scheme for
the following expression:

(λx. x.foo.bar){foo = y}

Let’s label the function (λx. x.foo.bar) as e1 and its argument {foo = y} as
e2. Suppose that we have already computed the principal typing schemes for
e1 and e2:

(λx. x.foo.bar) : []{foo : {bar : α}}→ α

{foo = y} : [y : β]{foo : β}

It is convenient to assume that the type variables used in the principal type
of e1 are distinct from those used in the principal type of e2, which we
may always do since typing schemes are closed and permit α-renaming (see
Section 4.2.1).

The typing rule (App) cannot be directly applied to the principal types
of e1 and e2, since they are not of the correct form. However, the application
e1 e2 may be typed by first applying (Sub) to e1:

 e1 : []{foo : {bar : α}}→ α

 e1 : [y : {bar : γ}]{foo : {bar : γ}}→ γ
(Sub)

and then to e2:

 e2 : [y : β]{foo : β}
 e2 : [y : {bar : γ}]{foo : {bar : γ}}

(Sub)

This brings the typing schemes into the correct form for the hypotheses of
(App), giving

 e1 e2 : [y : {bar : γ}]γ

This is a typing scheme for e1 e2, but how do we know that it is principal, and
if so how may we construct it algorithmically? First, we note that any typing

CHAPTER 6. PRINCIPAL TYPE INFERENCE 95

derivation for the principal typing scheme of e1 e2 must have the same basic
shape as the above:

 e1 : []{foo : {bar : α}}→ α

 e1 : [∆]τ→ τ ′
(Sub)

 e2 : [y : β]{foo : β}
 e2 : [∆]τ

(Sub)

 e1 e2 : [∆]τ ′
(App)

It is safe to assume that (Sub) is applied exactly once to the hypotheses, since
reflexivity allows us to insert (Sub) if it is absent, and transitivity allows us
to collapse multiple uses to one. It is also safe to assume that (Sub) is not
applied to the conclusion, since to do so always gives a less general typing
scheme, by definition.

For the above to be valid, we must have

[]{foo : {bar : α}}→ α 6∀ [∆]τ→ τ ′

[y : β]{foo : β} 6∀ [∆]τ

By the definition of 6∀, this amounts to finding an substitution ρ such that the
following constraints hold. Note that since we ensured the type variables in
both expressions are distinct, we may use the same ρ for both subsumptions.

ρ({foo : {bar : α}}→ α) 6 τ→ τ ′

∆ 6 [y : ρ(β)]

ρ({foo : β}) 6 τ

The most general solution to ∆ 6 [y : ρ(β)] is simply to choose ∆ = [y : ρ(β)].
Solutions to the other two constraints consist of a choice of ρ, τ and τ ′. To
reduce the number of unknowns, we introduce two fresh type variables δ
and ε and choose τ = ρ(δ) and ε = ρ(τ ′). For brevity, we introduce the
notation ρ |= τ1 6 τ2 as shorthand for ρ(τ1) 6 ρ(τ2), so that the remaining
two constraints can be equivalently rewritten as:

ρ |=
{foo : {bar : α}}→ α 6 δ→ ε

{foo : β} 6 δ

The challenge is to produce a typing scheme which subsumes every typing
scheme [y : ρ(β)]ρ(ε) for ρ satisfying the above constraints. Most previous
work on inference with subtyping punts this question by introducing con-
straints directly to the syntax of typing schemes, producing as a principal
typing scheme something like

[y : β]ε | δ 6 {foo : {bar : α}}, α 6 ε, {foo : β} 6 δ

In the current work, we can use biunification to eliminate these subtyping con-
straints, just as the Hindley-Milner type inference algorithm uses unification
to eliminate equality constraints.

6.2 Principal type inference
For every typing environment Π and expression e, define the typing set (Π e)
to be the following set of typing schemes:

(Π e) = {[∆]τ | Π e : [∆]τ}

96 6.2. PRINCIPAL TYPE INFERENCE

Due to the (Sub) rule, typing sets are always closed under subsumption: if
[∆2]τ2 6∀ [∆1]τ1 and [∆2]τ2 ∈ (Π e), then [∆1]τ1 ∈ (Π e).

If an expression e has a principal typing scheme [∆pr]τpr under Π, then
the typing set (Π e) contains exactly those typing schemes subsumed by
[∆pr]τpr. That is,

(Π e) = {[∆]τ | [∆pr]τpr 6
∀ [∆]τ}

Using the language of Section 5.2.3, e has a principal typing scheme [∆pr]τpr
under Π exactly when the typing set (Π e) is the set of instances of [∆pr]τpr.

So, the principality property (Section 6.1) can be restated as follows: For
every polar typing environment Π and expression e, the typing set (Π e) is
either empty or is the set of instances of some polar typing scheme [D−]t+.

Returning to our example application e1 e2, we see that the typing set
(e1 e2) is:{

[∆]τ

∣∣∣∣∣ ∃ρ |=
{foo : {bar : α}}→ α 6 δ→ ε

{foo : β} 6 δ
, ρ([y : β]ε) 6 [∆]τ

}

Again using the language of Section 5.2.3, we see that this is exactly the set of
instances of [y : β]ε under the constraints C defined as follows:

{foo : {bar : α}}→ α 6 δ→ ε

{foo : β} 6 δ

Given a bisubstitution ξ that solves C, we have:

(e1 e2) = ξ([y : β]ε)

The biunification algorithm will either produce such a ξ, in which case ξ([y :

β]ε) is a principal typing scheme for e1 e2, or prove that C is unsatisfiable, in
which case e1 e2 is untypeable and (e1 e2) is empty.

Our task is to develop an algorithm which constructs a principal polar
typing scheme for any input program e, in any polar typing context Π, or
shows that none exists. We do this by induction on e, using biunification to
eliminate any constraints that arise.

6.2.1 Principality for functions
We begin with λ-bound variables, functions and λ-abstractions.

λ-bound variables Suppose e = x. λ-bound variables are typeable using
(Var-∆) at any typing scheme of the form [x : τ]τ. The typing scheme [x : α]α

subsumes all of these (consider the substitution ρ(α) = τ), so the principal
typing scheme is [x : α]α.

Note that we do not consult Π here: unlike the Hindley-Milner type system,
the reformulated typing rules keep the types of λ-bound variables on the right
of the turnstile.

λ-abstractions Suppose e = λx.e. λ-abstractions are typeable using (Abs),
which requires that e be typeable. Thus, if (Π e) is empty, then so is
(Π λx.e). Otherwise, suppose by the inductive hypothesis that e has
principal polar typing scheme [D−]t+ under Π.

CHAPTER 6. PRINCIPAL TYPE INFERENCE 97

As we noted before, any number of applications of (Sub) can be collapsed
to just one, so the general form of a typing derivation for λx.e is:

Π e : [D−]t+

Π e : [∆, x : τ]τ ′
(Sub)

Π λx.e : [∆]τ→ τ ′
(Abs)

For (Sub) to be applicable, we must have:

[D−]t+ 6∀ [∆, x : τ]τ ′

Write D−
x for D− with x removed from its domain, and note that the above

subsumption is equivalent to:

[D−
x, x : D−(x)]t+ 6∀ [∆, x : τ]τ ′

By function subtyping, this is equivalent to:

[D−
x]D

−(x)→ t+ 6∀ [∆]τ→ τ ′

This means that the order of (Abs) and (Sub) can be swapped above, giving
this derivation of the same typing scheme:

Π λx.e : [D−]t+

Π e : [D−
x, x : D−(x)]t+

(Sub)

Π λx.e : [D−
x]D

−(x)→ t+
(Abs)

Π λx.e : [∆]τ→ τ ′
(Sub)

This shows that any typing scheme for λx.e under Π is an instance of the polar
typing scheme [D−

x]D
−(x)→ t+, so this is the principal typing scheme.

Applications Suppose e = e1 e2. As before, if either (Π e1) or (Π e2)
is empty, then e1 e2 is untypeable and (Π e1 e2) is also empty. Otherwise,
suppose [D−

1]t
+
1 and [D−

2]t
+
2 are the principal polar typing schemes of e1 and

e2.
The rule (Abs) requires that e1 be of type τ→ τ ′ and e2 be of type τ, for

some τ, τ ′, and we may need to use rule (Sub) on one or both of them to
bring this about. By transitivity, we need apply (Sub) only once. So, typing
derivations for e1 e2 look like:

Π e1 : [D−
1]t

+
1

Π e1 : [∆]τ→ τ ′
(Sub)

Π e2 : [D−
2]t

+
2

Π e2 : [∆]τ
(Sub)

Π e1 e2 : [∆]τ ′
(App)

The applications of (Sub) require

[D−
1]t

+
1 6
∀ [∆]τ→ τ ′ [D−

2]t
+
2 6
∀ [∆]τ

The subsumption relation 6∀ is defined in terms of type variable substitutions
(see Section 4.2). Since typing schemes are closed, we can assume that [D−

1]t
+
1

and [D−
2]t

+
2 have no type variables in common, allowing us to use a single

substitution for both subsumptions. So, we require an substitution ρ such that

ρ(t+1) 6 τ→ τ ′ ρ(t+2) 6 τ

∆ 6 ρ(D−
1) ∆ 6 ρ(D−

2)

98 6.2. PRINCIPAL TYPE INFERENCE

By introducing two fresh type variables α,β, included in the domain of ρ,
and taking τ = ρ(α), τ ′ = ρ(β), we can write the typing set (Π e) in the
following form:{

[∆]τ | ∃ρ. ρ(t+1) 6 ρ(α→ β), ρ(t+2) 6 ρ(α), ρ([D
−
1 uD

−
2]β) 6 [∆]τ

}
This is equivalent to the instances of

[ξ(D−
1 uD

−
2)]ξ(β

+)

for some ξ which solves the constraints C:

C = {t+1 6 α→ β, t+2 6 α}

Such a ξ can be found as biunify(C), giving the principal polar typing scheme
ξ([D−

1 uD
−
2]β

+).

6.2.2 Principality for booleans and records
Inferring principal types for booleans and records is similar to inferring types
for functions. They follow the same pattern as above: introduction rules,
which do not require their hypotheses to be of a particular form, do not
require use of biunification, while elimination rules do.

Boolean literals Suppose e = true or e = false: These are typeable using
(True) and (False), both giving principal type (Π e) = []bool.

Conditionals Suppose e = if e1 then e2 else e3: If any of e1, e2, e3 are
untypeable, then so is e. Otherwise, assume that e1, e2, e3 have polar principal
typing schemes [D−

1]t
+
1, [D−

2]t
+
2, [D−

3]t
+
3 under Π.

By a similar line of reasoning to that for applications above, the typing set
(Π e) is given by:[∆]τ

∣∣∣∣∣∣ ∃ρ.
ρ(t+1) 6 bool
ρ(t+2) 6 ρ(α)
ρ(t+3) 6 ρ(α)

, ρ([D−
1 uD

−
2 uD

−
3]α) 6 [∆]τ

and the principal type is found by applying biunification to the constraints
above.

Record constructors Suppose e = {`1 = e1, . . . , `n = en}: Like λ-abstraction,
typing the record construction syntax is just a matter of shuffling types around.
If any of the components ei are untypeable, then so is e. Otherwise, we have
polar principal typing schemes [D−

i]t
+
i for ei under Π, and the principal typing

scheme of e is
[D−
1 u . . .uD

−
n]{`1 : t+1, . . . , `n : t+n}

Record projections Suppose e = e1.`: Again, if e1 is untypeable then so is
e. Otherwise, (Π e1) = [D−

1]t
+
1 and (Π e) is given by:{

[∆]τ
∣∣ ∃ρ. ρ(t+1) 6 {` : α}, ρ([D−

1]α) 6 [∆]τ
}

for some fresh type variable α, so the principal type is

ξ([D−
1]α)

where ξ = biunify(t+1 6 {` : α}).

CHAPTER 6. PRINCIPAL TYPE INFERENCE 99

6.2.3 Principality for let-bindings
Due to the construction of the reformulated typing rules (Section 4.3), it is
relatively straightforward to infer principal types for let-bindings and let-
bound variables. In particular, since typing schemes are closed (Section 4.2.1),
we need not worry about free variables in typing schemes.

Let-bound variables Suppose e = x̂: If x̂ 6∈ domΠ, then x̂ is untypeable.
Otherwise, the principal typing scheme is simply Π(x̂).

Let-bindings Suppose e = let x̂ = e1 in e2: If e1 is untypeable, then so is
e. Otherwise, e1 has principal type [D−

1]t
+
1 under Π, and a general typing

derivation for e looks like:

Π e1 : [D−
1]t

+
1

Π e1 : [∆1]τ1
(Sub)

Π, x̂ : [∆1]τ1 e2 : [∆2]τ2

Π let x̂ = e1 in e2 : [∆1 u∆2]τ2
(Let)

The tricky part here is that we have a choice of many different [∆1]τ1 to insert
into Π, not all of which are polar. So, we cannot directly apply the inductive
hypothesis to the right-hand hypothesis above, because Π, x̂ : [∆1]τ1 need not
be polar.

However, since [D−
1]t

+
1 6
∀ [∆1]τ1, weakening (Proposition 32) gives us the

following:
Π, x̂ : [D−

1]t
+
1 e2 : [∆2]τ2

That is, the most general choice is to insert x into Π with the principal type
of e1. Π, x̂ : [D−

1]t
+
1 is indeed polar, so the inductive hypothesis applies giving

a principal typing scheme [D−
2]t

+
2 for e2. Then, we have the following polar

principal typing scheme for e:

[D−
1 uD

−
2]t

+
2

6.3 Summary of the algorithm
The algorithm described case-by-case in the previous section can be written
compactly as a set of inference rules. We introduce a judgement form ΠC e :
[D−]t+, stating that [D−]t+ is the principal typing scheme of e under the
polar typing context Π. This judgement form is defined according to the
syntax-directed rules of Fig. 6.1, which is a summary of the previous section.

The elimination rules ((App), (If) and (Proj)) refer to the biunification
algorithm in a side-constraint. The type inference algorithm can be imple-
mented by representing typing schemes as syntax and using the biunification
algorithm of Section 5.3.3, but this tends to generate overly complex typing
schemes slowly. Instead, typing schemes should be represented as automata,
and use an optimised version of biunification as described in the next chapter.

100 6.3. SUMMARY OF THE ALGORITHM

(Var-Π)
ΠB x̂ : [D−]t+

Π(x̂) = [D−]t+

(Var-∆)
ΠB x : [x : α]α

(Abs)
ΠB e : [D−]t+

ΠB λx. e : [D−
x]D−(x)→ t+

(App)
ΠB e1 : [D−

1]t
+
1 ΠB e2 : [D−

2]t
+
2

ΠB e1 e2 : ξ([D−
1 uD

−
2]α)

ξ = biunify(t+1 6 t
+
2 → α)

(Let)
ΠB e1 : [D−

1]t
+
1 Π, x̂ : [D−

1]t
+
1 B e2 : [D−

2]t
+
2

ΠB let x̂ = e1 in e2 : [D−
1 uD

−
2]t

+
2

(True)
ΠB true : []bool

(False)
ΠB false : []bool

(If)
ΠB e1 : [D−

1]t
+
1 ΠB e2 : [D−

2]t
+
2 ΠB e3 : [D−

3]t
+
3

ΠB if e1 then e2 else e3 : ξ([D−
1 uD

−
2 uD

−
3]α)

ξ = biunify

 t+1 6 bool
t+2 6 α
t+3 6 α

(Cons)

ΠB e1 : [D−
1]t

+
1 . . . ΠB en : [D−

n]t
+
n

ΠB {`1 = e1, . . . , `n = en} : [D−
1 u . . .uD

−
n]{`1 : t+1, . . . , `n : t+n}

(Proj)
ΠB e : [D−]t+

ΠB e.` : ξ([D−]α)
ξ = biunify(t+ 6 {` : α})

Figure 6.1: Type inference algorithm

7 Representation of types

There can never be surprises in logic.

—Ludwig Wittgenstein

Machines take me by surprise with great frequency.

—Alan Turing

A common criticism of type systems with subtyping and inference is that
they tend to produce large and unwieldy types. These types then require
simplification to convert them into smaller but equivalent types. Without
simplification, systems based on constrained types produce type schemes
with a number of type variables linear in the size of the program, even in the
absence of polymorphism [HM95].

MLsub’s typing schemes do not include a set of constraints, but a naive
implementation of the algorithms of the previous chapter will still generate
large types. For instance, given the function

λx. if x.p then x.q else x.q

a naive implementation of the algorithms assigns the following type

({p : bool}u {q : α}u {q : β})→ (αtβ)

instead of the simpler, but equivalent

{p : bool, q : α}→ α

This chapter presents a representation of polar types and polar typing
schemes as finite automata, which allows efficient implementation of type
inference, as well as a method for simplification which converts complex types
into simpler but equivalent forms.

We define type automata (Section 7.1), show how they represent positive
and negative types (Section 7.1.2), and show how they may be simplified to
smaller but equivalent automata (Section 7.2).

We also describe the simplification of typing schemes (Section 7.3), and
how typing schemes may be represented by scheme automata (Section 7.3.1).
Finally, we implement the biunification algorithm of the previous section in
terms of automata (Section 7.4), giving an algorithm which runs faster than
that of the previous chapter, as well as producing more compact types.

102 7.1. TYPE AUTOMATA

Representing types as some flavour of automata is a standard technique
in dealing with recursive types and subtyping. The novelty here is to treat
the automata as standard finite automata, accepting a regular language, from
which we gain the representation theorem:

Equivalent types have automata accepting equal languages

Thus, the representation is not simply a mapping from syntactic type terms to
automata, but an embedding of types into regular languages. In some ways,
this is a converse to Henglein and Rehof’s result [HR98] on the complexity of
subtype comparisons by reduction from NFA problems: the present result is
that the two are equivalent1.

The connection has been informally noted before. It was not lost on
Pottier [Pot98b] that the canonisation and minimisation algorithms strongly
resembled the standard algorithms for turning a nondeterministic finite au-
tomaton into a minimal deterministic one. However, this is the first time the
general relation has been demonstrated.

The practical upshot of this is to admit a large class of new simplification
algorithms for types: namely, all of those appearing in the literature on
regular languages. Thanks to the representation theorem, any algorithm for
simplifying standard finite automata is automatically valid for simplifying
types.

7.1 Type automata
Types are represented by type automata, a slight variant on standard non-
deterministic finite automata. A type automaton consists of:

• a finite set Q of states

• a designated start state q0 ∈ Q

• a transition table δ ⊆ Q× ΣF ×Q.

• for each state q, a polarity (+ or −) and a set of head constructors H(q).

The alphabet ΣF contains one symbol for each field of each type constructor:

ΣF = {d, r}∪ {` | ` ∈ L}

The symbols d and r represent the domain and range of function types, and a
symbol ` represents each record label.

The transition table δ of a type automaton has the condition that d-
transitions only connect states of differing polarity (due to the contravariance
of function domains), while transitions labelled by any other element of ΣF
connect states of the same polarity. This means that the polarity of every state
reachable from q is determined by that of q, and is in some sense redundant.
However, we find it more clear to be explicit about state polarities.

We use f to quantify over ΣF, and write a transition from q to q ′ labelled

by f as q f−→ q ′ (this notation should not be confused with → as used for
function types).

1However, there are subtle differences between Henglein and Rehof’s subtyping order and the
present work, making the results incomparable, strictly speaking. See Chapter 10 for details.

CHAPTER 7. REPRESENTATION OF TYPES 103

7.1.1 Head constructors
The set of head constructors H(q) are drawn from the set consisting of the
symbols 〈→〉 (representing function types), 〈b〉 (representing the boolean type)
and 〈L〉 for any set L of record labels ` (representing record types) and type
variables (representing themselves). The elements of H(q) represent compo-
nents of the lattice of types (see Section 3.2.3). They are partially ordered
compatibly with the subtyping order, with the order relation inductively
defined as follows:

α 6 α 〈b〉 6 〈b〉 〈→〉 6 〈→〉
L1 ⊇ L2
〈L1〉 6 〈L2〉

Polar types, in general, are a join (positive types) or meet (negative types)
of types constructed from different components. Accordingly, the set H(q)
represents the components used in a particular polar type, and so contains at
most one type constructor from each component. That is, H(q) never contains
two distinct record constructors 〈L1〉 and 〈L2〉.

For instance, if the head constructors H(q+) of the positive state q+ are as
follows:

{α, 〈→〉, 〈b〉}

then q+ represents some type α t (t+1 → t+2) t bool. Dually, the same set of
head constructors on a negative state q− represents some type α u (t−1 →
t−2)u bool.

We define two operations t̃ and ũ on sets of head constructors. Both of
these are simply set union, with the invariant of at most one record type
maintained by reducing according to the following rules:

〈L1〉 t̃ 〈L2〉 = 〈L1∩L2〉 〈L1〉 ũ 〈L2〉 = 〈L1∪L2〉

Generally, a type is represented by an automaton state q by representing
its type constructor (e.g. function) in H(q), and representing its fields (e.g.
domain and range) with transitions.

7.1.2 Constructing type automata
The simplest way to construct a type automaton from a positive or negative
type is to first construct a type automaton containing extra transitions labelled
by ε, and then to remove these transitions in a second pass. This mirrors the
standard algorithm for constructing a nondeterministic finite automaton from
a regular expression.

The grammar of Section 5.1 gives the syntax of positive and negative types.
We assume that all µ operators in a type bind distinct type variables. The set
of subterms of a type is the set of types used in its construction, including the
type itself, but omitting type variables bound by µ. For instance, the subterms
of µα.βt (bool→ α) are:

{µα.βt (bool→ α), βt (bool→ α), β, bool→ α, bool }

The type automaton for a positive type t0 has one state for every subterm
t of t0, written q(t) by slight abuse of notation. The start state q0 is q(t0).
The polarity of q(t) matches that of t, H(q(α)) = {α}, H(q(bool)) = {〈b〉},
H(q(t1 → t2)) = {〈→〉}, and H(q({f}) = {〈`〉 | ` 6∈ dom f}. In all other cases,
H(q(t)) = ∅.

104 7.1. TYPE AUTOMATA

q0

〈b〉

ε

〈→〉

ε

α

d

α

r

(a) With ε-transitions

〈→〉
〈b〉

q0

α

d

α

r

(b) ε-transitions removed

Figure 7.1: Automata construction with ε-transitions

We further abuse notation by defining q(α) = q(µα.t1) for every type
variable α bound by a recursive type µα.t1.

The type automaton has the following transition table:

q(t1 t t2)
ε−→ q(t1) q(t1 t t2)

ε−→ q(t2)

q(t1 u t2)
ε−→ q(t1) q(t1 u t2)

ε−→ q(t2)

q(t1 → t2)
d−−→ q(t1) q(t1 → t2)

r−→ q(t2)

q(µα.t1)
ε−→ q(t1) q({f}) `−→ q(f(`)) for ` ∈ dom f

Finally, we remove ε-transitions using the standard algorithm. For a state
q, we define E(q) as the set of states reachable from q by following zero or
more ε-transitions, and then set:

H(q) =

{⊔̃
q ′∈E(q)H(q

′) if q positive
d̃
q ′∈E(q)H(q

′) if q negative

q
f−→ q ′ iff ∃q ′′ ∈ E(q). q ′′ f−→ q ′

The syntactic restrictions on positive and negative types are important in
ensuring that this process generates a valid type automaton. The positivity
and negativity constraints on function types and the covariance condition
on µ types ensure that d transitions connect states of unlike polarity and r
transitions connect ones of like polarity, while the guardedness condition on
µ types avoids cycles of ε-transitions.

As an example, the type automaton for the positive type (α→ α)t bool is
shown in Figure 7.1, before and after removal of ε-transitions. An example
with recursive types appears in Figure 7.2a. In both figures, negative states
are drawn shaded and H(q) are drawn inside the state q.

7.1.3 Deconstructing automata

Given an automaton, converting it back to a concrete polar type term is
straightforward. For each state q+, q− of the automaton, we construct a
term t(q+), t(q−) of matching polarity. We construct t(q+) as the join of the
following elements:

• α, if α ∈ H(q+)

• bool, if 〈b〉 ∈ H(q+)

CHAPTER 7. REPRESENTATION OF TYPES 105

• t−d → t+r , if 〈→〉 ∈ H(q+), where:

t−d =
l

{t(q ′) | q+
d−−→ q ′}

t+r =
⊔

{t(q ′) | q+
r−→ q ′}

• {f}, if 〈L〉 ∈ H(q+), where dom f = L and:

f(`) =
⊔

{t(q ′) | q+
`−→ q ′}

Note that if none of the above cases apply, t(q+) is a join of zero elements, or
⊥. The negative case t(q−) is constructed dually, as a meet.

Naively implemented, this algorithm does not terminate on automata
containing cycles, but this can be avoided by introducing µ-types to handle
backward edges.

The polar type term recovered from an automaton is t(q0), where q0 is
the start state.

7.2 Simplifying type automata
The constructions described above operate at a very concrete level, turning
pieces of syntax (polar type terms) into labelled graphs (automata). In fact, it
does not even preserve every detail of the syntax of types, since for instance,
α t (⊥ t bool) and bool t α are converted to identical automata, and this
automaton is deconstructed back into αt bool.

In this section, we introduce the representation theorem, showing that the
construction above can be understood at a higher level, as an embedding of
polar types into regular languages:

Polar types
E
�
R

Regular languages

The mapping E is a formalisation of the last section’s construction of automata,
turning types into regular expressions, while R does the opposite job, turning
regular expressions into types. We write E1 ≡ E2 when the regular expressions
E1,E2 denote the same language. Below, we show that E maps equivalent
types to equal languages (Section 7.2.1), R is a left inverse of E (Section 7.2.2),
and that R maps equal languages to equivalent types (Section 7.2.3). Taken
together, these results imply, for any polar types t1, t2 of the same polarity:

t1 ≡ t2 iff E(t1) ≡ E(t2)

We need not work hard to develop algorithms for simplifying types: the
representation theorem reduces this problem to the well-studied problem of
compactly representing regular languages.

7.2.1 Encoding types as regular languages
Standard non-deterministic finite automata (NFAs) do not label their states
with head constructors, but instead label each state as either “accepting” or
“non-accepting”. However, using a careful encoding, we can convert type
automata to standard NFAs in such a way that the subtyping order is reflected
as the subset order between languages.

106 7.2. SIMPLIFYING TYPE AUTOMATA

〈→〉

q0

〈→〉
d

d

α

r

α

r

(a) Type automaton

q0

d−

d+

r−

q∞

〈→〉+

〈→〉− α+
α−

r+

(b) NFA

Figure 7.2: Type automaton and NFA for µβ. (β→ α)→ α.

We work over the alphabet Σ, which type variables, ΣF, and a symbol for
each of record, boolean and function types and each record field. Two copies
of each symbol appear, labelled by + and −:

Σ = V+ ∪ V−∪
Σ+
F ∪ Σ

−
F∪

{〈→〉+, 〈b〉+, 〈{}〉+}∪ {〈`〉+ | ` a label}∪
{〈→〉−, 〈b〉−, 〈{}〉−}∪ {〈`〉− | ` a label}

The encoding of H(q−) for a negative state q− as a language over Σ is rela-
tively straightforward. We write E−(h) for the encoding of a particular head
constructor h ∈ H(q−), and later extend E to work on positive constructors
h ∈ H(q+) and eventually entire type terms. The result of E is a regular
language, which we write using regular expressions E (where λ ranges over
Σ):

E ::= ∅ | ε | λ | E+ E | E · E | E∗

The notation is standard: elements of Σ are used as singleton languages, we
write · for concatenation of languages, + for union and ∗ for Kleene star, while
is the empty language (the identity of +) and ε is the language containing
only the empty string (the identity of ·).

For a head constructor h ∈ H(q−), E−(h) is defined as:

E−(〈→〉) = 〈→〉−

E−(〈b〉) = 〈b〉−

E−(〈L〉) = 〈{}〉− + {〈`〉− | ` ∈ L}

Multiple head constructors are combined with ∪. That is,

E−(H(q−)) =
⋃

h∈H(q−)

E−(h)

Note that
E−(H(q−1) ũH(q

−
2)) = E

−(H(q−1)) + E
−(H(q−2))

since ũ on records is defined by taking the union of the fields.
We do something similar for positive states q+. However, since the join of

two record types takes the intersection of their fields, we must use a slightly
trickier encoding. For positive types, we define E+(h) in terms of the labels

CHAPTER 7. REPRESENTATION OF TYPES 107

absent:

E+(〈→〉) = 〈→〉+

E+(〈b〉) = 〈b〉+

E+(〈L〉) = 〈{}〉+ + {〈`〉+ | ` 6∈ L}

By using this encoding of record fields, we have:

E+(H(q+1) t̃H(q
+
2)) = E

+(H(q+1)) + E
+(H(q+2))

We extend this encoding to work on arbitrary polar type terms:

E+(α) = α+ E−(α) = α−

E+(t1 t t2) = E+(t1) + E+(t2) E−(t1 u t2) = E−(t1) + E−(t2)
E+(⊥) = ∅ E−(>) = ∅

E+(t1 → t2) = d+ · E−(t1) + r+ · E+(t2)
+ E+(〈→〉)

E−(t1 → t2) = d− · E+(t1) + r− · E−(t2)
+ E−(〈→〉)

E+(bool) = E+(〈b〉) E−(bool) = E−(〈b〉)
E+({f}) =

⋃
`∈dom f `

+ · E+(f(`))
+
⋃
6̀∈dom f `

+ · Σ∗
+ E+(〈dom f〉)

E−({f}) =
⋃
`∈dom f `

− · E−(f(`))
+ E−(〈dom f〉)

E+(µα.t) = O+
α(t)

∗ · E+([⊥/α]t) E−(µα.t) = O−
α(t)

∗ · E−([>/α]t)

The auxiliary operations O±α (t) describe the occurrences of a bound variable
α within a µ-binder, and are defined as follows:

O+
α(α) = ε O−

α(α) = ε

O+
α(β) = ∅ O−

α(β) = ∅
O+
α(t1 t t2) = O+

α(t1) +O
+
α(t2) O−

α(t1 u t2) = O−
α(t1) +O

−
α(t2)

O+
α(⊥) = ∅ O−

α(>) = ∅
O+
α(t1 → t2) = d

+ ·O−
α(t1) + r

+ ·O+
α(t2) O−

α(t1 → t2) = d
− ·O+

α(t1) + r
− ·O−

α(t2)

O+
α(bool) = ∅ O−

α(bool) = ∅

O+
α({f}) =

⋃
`∈dom f

`+ ·O+
α(f(`)) O−

α({f}) =
⋃

`∈dom f

`− ·O−
α(f(`))

O+
α(µα.t) = ∅ O−

α(µα.t) = ∅
O+
α(µβ.t) = O+

β(t)
∗ ·O+

α([⊥/β]t) O−
α(µβ.t) = O−

β(t)
∗ ·O−

α([>/β]t)

The operation O±α (t) produces exactly that part of E±(t) referencing occur-
rences of the variable α. More formally, we have:

Proposition 68. If α occurs only positively in t+, then

E+(t+) ≡ O+
α(t

+) ·α+ + E+([⊥/α+]t+)

A type automata for a polar type t+ as constructed per Section 7.1.2, can be
converted to an NFA accepting E+(t+). Figure 7.2a gives an example of a type
automaton, while Figure 7.2b shows the same automaton, after conversion to
a standard NFA. The conversion is done by forgetting polarities of states and
adding a single accepting state q∞ with transitions from each state q to q∞
labelled by each element of E(H(q)).

108 7.2. SIMPLIFYING TYPE AUTOMATA

Note in particular the extra term ` · Σ∗ in the encoding E+({f}), which
helps ensure that the encoding preserves the subtyping order. For example,
consider two type terms

t1 = {`1 : α, `2 : bool}

t2 = {`2 : bool, `3 : β}

which may be read as either positive or negative. Taking them to be negative
types, we have:

E−(t1) = `−1 ·α
− + `−2 · 〈b〉

− + 〈{}〉− + 〈`1〉
− + 〈`2〉

−

E−(t2) = `−2 · 〈b〉
− + `−3 ·β

− + 〈{}〉− + 〈`2〉
− + 〈`3〉

−

The type t3 = {`1 : α, `2 : bool, `3 : β} is the meet of these two types (that is,
t1 u t2 ≡ t3), and we have:

E−(t3) = `−1 ·α
− + `−2 · 〈b〉

− + `−3 ·β
− + 〈{}〉− + 〈`1〉

− + 〈`2〉
−

So, E− respects the meet:

E−(t3) = E−(t1) + E−(t2)

Conversely, by taking them to be positive types we have (writing ` for an
arbitrary record label not among `1, `2, `3):

E+(t1) = `+1 ·α
+ + `+2 · 〈b〉

+ + `3 · Σ∗ + ` · Σ∗ + 〈{}〉+ + 〈`〉+ + 〈`3〉
+

E+(t2) = `1 · Σ∗ + `+2 · 〈b〉
+ + `+3 ·β

+ + ` · Σ∗ + 〈{}〉+ + 〈`〉+ + 〈`1〉
+

The type t4 = {`2 : bool} is their meet, and we have:

E+(t4) = `+1 · Σ
∗ + `+2 · 〈b〉

+ + `3 · Σ∗ + ` · Σ∗ + 〈{}〉+ + 〈`〉+ + 〈`1〉
+ + 〈`3〉

+

and therefore (since Σ∗ + L = Σ∗ for all L):

E+(t4) = E+(t1) + E+(t2)

These relationships hold in general, for arbitrary t1, t2. In fact, a stronger
result holds: E maps equivalent type terms to equal languages. To show this,
we first require a lemma to allow unrolling recursive types:

Lemma 69. E+(µα.t+) = E+([µα.t+/α]t+), and dually for E−

Proof. Note that O+
α separates the occurrences of α in t+ from the rest of

E+(t+), and so:

E+([t+2/α]t
+) = O+

α(t
+) · E+(t+2) + E

+([⊥/α]t+)

Since O+
α(t

+)∗ = O+
α(t

+) ·O+
α(t

+)∗ + ε,

E+(µα.t+) = O+
α(t

+)∗ · E+([⊥/α]t+)
= (O+

α(t
+) ·O+

α(t
+)∗ + ε) · E+([⊥/α]t+)

= O+
α(t

+) · E+(µα.t+) + E+([⊥/α]t+)
= E+([µα.t+/α]t+)

The dual case is identical.

CHAPTER 7. REPRESENTATION OF TYPES 109

R(α+) = (α,>) R(α−) = (⊥,α)

R(〈→〉+) = (> → ⊥,>) R(〈→〉−) = (⊥,⊥ → >)
R(d+) = (χ→ ⊥,>) R(d−) = (⊥,χ→ >)
R(r+) = (> → χ,>) R(r−) = (⊥,⊥ → χ)

R(〈b〉+) = (bool,>) R(〈b〉−) = (⊥, bool)

R(〈{}〉+) = ({` : ⊥ | ` a label},>) R(〈{}〉−) = (⊥, {})

R(〈`〉+) = ({` ′ : ⊥ | ` 6= ` ′},>) R(〈`〉−) = (⊥, {` : >})
R(`+) = ({` : χ, ` ′ : ⊥ | ` 6= ` ′},>) R(`−) = (⊥, {` : χ})

Figure 7.3: Mapping of Σ to type pairs by R

Theorem 70. If t+1 and t+2 are equivalent, then E+(t+1) and E+(t+2) are the same
language, and dually for negative type terms.

Proof. The type terms t+1, t+2 are interpreted as types τ1, τ2 ∈ T . Recall from
Section 3.4.1 that two types τ1, τ2 are equal iff πkτ1 = πkτ2 for all k, where
πk are the projection morphisms that truncate their arguments to a depth of
at most k nested type constructors.

We prove that, for all k, if πkt+1 = πkt
+
2 then E+(t+1) and E+(t+2) contain

the same strings of length 6 k, by induction on k. The k = 0 case is trivial,
and the k+ 1 case proceeds by applying Lemma 69 and its dual repeatedly
to ensure that any occurrences of µ are nested under k+ 1 type constructors,
and then doing structural induction on t+1, t+2.

So, although E+(t+) is defined by examining the syntax of t+, it respects
equivalence between different type terms, making merely syntactic distinctions
irrelevant.

7.2.2 Undoing the encoding
In this section, we build a function R as an inverse to E . In principle, this can
be used to convert type automata back to types for display to the user, by first
converting them to NFAs, finding a regular expression describing the NFA
using Kleene’s algorithm, and finally using R to rebuild the type. In practice,
this is massively more complicated than using the simpler algorithm described
informally in Section 7.1.3. R is a technical ingredient in the proof of the
representation theorem, rather than something that it is useful to implement.
Rmaps regular expressions over Σ to type pairs, which are pairs (t+, t−) of a

positive and a negative type term. This mixture of positive and negative types
is an essential detail of the encoding: regular languages do not distinguish
the two while type terms do, and the most technically convenient thing to do
is to have R produce both a negative and a positive type. We will find below
that R produces (t+,>) when given an automaton representing the positive
type t+, and similarly produces (⊥, t−) given an automaton for t−.

Each of the symbols in Σ is mapped to a type pair by R, as shown in
Fig. 7.3. This table has many cases, since Σ is a fairly large alphabet, but a
simple structure.

110 7.2. SIMPLIFYING TYPE AUTOMATA

• Symbols marked with + are mapped to type pairs (t+,>), while symbols
marked with − are mapped to type pairs (⊥, t−).

• Symbols representing type constructors are mapped to the greatest or
least type with that constructor according to polarity. For instance,
R(〈→〉+) = (> → ⊥,>) since > → ⊥ is the least function type. Note
that R(〈`〉+) is mapped to the least record type not containing field `, in
accordance with the encoding of record types by E above.

• Symbols representing fields are mapped to a context, which is a type
marking the use of a particular field by the particular type variable χ
(which we use for no other purpose).

In order to interpret regular expressions as type terms, we must also interpret
the three operations +, · and ∗ (union, concatenation and Kleene star) as well
as the elements of the alphabet Σ. We define these operations on type pairs,
taking + as meet/join

(t+1, t−1) + (t+2, t−2) = (t+1 t t
+
2, t−1 u t

−
2)

and · as composition of contexts:

(t+1, t−1) · (t
+
2, t−2) =

(⊥,>) if (t+2, t−2) = (⊥,>)(
[t+2/χ

+, t−2/χ
−]t+1,

[t+2/χ
+, t−2/χ

−]t−1

)
otherwise

The constants ∅ and ε and are interpreted as (⊥,>) and (χ,χ), the identities
of + and · respectively. We define (t+, t−)∗ such that:

(t+, t−)∗ = ε+ (t+, t−) · (t+, t−)∗

In the case where χ is guarded and appears covariantly on t+, t−, then such a
(t+∗ , t−∗) can be found as:

(µα.χt [α/χ]t+, µβ.χu [β/χ]t−)

In general, we use Bekič’s technique for finding simultaneous fixed points
(Section 2.1.8), and use the fixed point operators µ+,µ− (as defined in Sec-
tion 5.1.1) to relax the guardedness constraint. The resulting definition of
(t+∗ , t−∗)∗ is the following mouthful:

(t+, t−)∗ =

µ+α.χt

[
α/χ+

µ−β.χu [α/χ+,β/χ−]t−/χ−

]
t+,

µ−β.χu

[
µ+α.χt [α/χ+,β/χ−]t+/χ+

β/χ−

]
t−

Note that this simplifies into the definition above in the case where χ is
guarded and covariant in both t+ and t−.

Since fixed points of type expressions can be found by iteration, we also
have:

Proposition 71.
(t+, t−)∗ ≡

∑
k

(t+, t−)k

CHAPTER 7. REPRESENTATION OF TYPES 111

These definitions recover types from regular expressions over Σ. For
instance, consider the regular expression E = E+(bool→ bool):

E = d+ · 〈b〉− + r+ · 〈b〉+ + 〈→〉+

We calculate R(E):

R(E) = R(d+) ·R(〈b〉−) +R(r+) ·R(〈b〉+) + 〈→〉+

= (χ→ ⊥,>) · (⊥, bool) + (> → χ,>) · (bool,>) + (> → ⊥,>)
≡ (bool→ ⊥,>) + (> → bool,>) + (> → ⊥,>)
≡ (bool→ bool,>)

In general, R inverts E :

Theorem 72. For all t+, t−:

R(E+(t+)) ≡ (t+,>) R(E−(t−)) = (⊥, t−)

Proof. Induction on the height of the syntax tree of t+, t−. All cases are
straightforward calculations like the above, except the difficult case of recursive
types2. We consider the case of a positive recursive type µα.t+, since the
negative case is dual:

R(E+(µα.t+)) = R(O+
α(t

+))∗ ·R(E+([⊥/α]t+))

Since replacing α with ⊥ does not change the height of a syntax tree, we may
use the inductive hypothesis to see that R(E+([⊥/α]t+)) ≡ ([⊥/α]t+,>). Let
(t+α, t−α) be R(O+

α(t
+)). By inspection of the definition of O+ and R, t−α ≡ >.

Proposition 68 states E+(t+) ≡ O+
α(t

+) · α+ + E+([⊥/α+]t+), so by Theo-
rem 74 (proven in the next section) we can apply R to both sides, giving:

R(E+(t+)) ≡ R(O+
α(t

+)) ·R(α+) +R(E+([⊥/α+]t+))

(t+,>) ≡ (t+α,>) · (α,>) + ([⊥/α]t+,>)
t+ ≡ [α/χ]t+α t [⊥/α]t+

Using the simple definition of ∗ (since χ is positive in R(O+
α(t

+))) then gives:

R(E+(µα.t+)) = R(O+
α(t

+))∗ ·R(E+([⊥/α]t+))
≡ (t+α,>)∗ · ([⊥/α]t+,>)
≡ (µα.χt [α/χ]t+α,>) · ([⊥/α]t+,>)
≡ (µα.[⊥/α]t+ t [α/χ]t+α,>)
≡ (µα.t+,>)

7.2.3 Simplifying types as languages
So far, we have shown that E preserves equivalence of types, and that R is
its left inverse. The final ingredient in the representation theorem is to show
that R preserves equivalence of regular expressions: that is, any two regular
expressions over Σ that are equal as languages are mapped to equivalent type
pairs by R. This means that we need not record the exact expression produced
by E , as any representation of the regular language will do, such as a finite
automaton.

We do this by showing that type pairs form a Kleene algebra, which begins
by showing that they form an idempotent semiring. The properties of + are
easily shown:

2As usual.

112 7.2. SIMPLIFYING TYPE AUTOMATA

Proposition 73. + is associative, idempotent and commutative (up to ≡), with
identity 0.

Proof. These properties follow from the same properties of t, u.

To show the relevant properties of ·, it is convenient to use some shorthand
notation. We write t for a type pair (t+, t−), and write [t] for the bisubstitution
[t+/χ+, t−/χ−]. In this notation, we can write · more concisely:

t1 · t2 =

{
0 if t2 = 0

[t2]t1 otherwise

Note that + and · as defined on bisubstitutions in Section 5.2.1 are very close
to those defined for type terms:

[t1 + t2] = [t1] + [t2]

[t1 · t2] =

{
[0] if t2 = 0

[t2] · [t1] otherwise

Since this gives type pairs the structure of a Kleene algebra, we can use
the completeness theorem (Section 2.2.1) to prove the representation theorem:

Theorem 74. If E1 and E2 denote equal regular languages, then R(E1) ≡ R(E2)

Proof. Since E1 = E2 is an equation of regular languages, E1 = E2 holds in all
Kleene algebras by the completeness theorem (Section 2.2.1). The operations
+, · and ∗ on type pairs preserve ≡, so we show that equivalence classes of ≡
form a Kleene algebra.

First, we show that they form an idempotent semiring: · is associative with
identity ε and zero 0, and + distributes over · (all up to ≡).

The identity is trivial, and the zero is by definition. For associativity, we
must show that t1 · (t2 · t3) ≡ (t1 · t2) · t3. First, consider the case when
any of t1, t2, t3 is 0. In that case, both sides collapse to 0, and the equation
holds. Otherwise, the equation holds since composition of bisubstitutions is
associative.

For left distributivity, we must show:

(t1 + t2) · t3 ≡ t1 · t3 + t2 · t3

First, we note that the equation holds trivially if any of t1, t2 or t3 is 0.
Otherwise, assume none are 0, in which case t1 + t2 must also be nonzero
(since if t+1 t t

+
2 ≡ ⊥, then t+1 ≡ t

+
2 ≡ ⊥, and likewise for >), and the result

follows from bisubstitution distributivity (Proposition 39).
For right distributivity, we must show:

t1 · (t2 + t3) ≡ t1 · t2 + t1 · t3

As before, this holds trivially if any of t1, t2, t3 are 0, so we assume them
nonzero whence also t2 + t3 is nonzero, and the equation follows from Propo-
sition 38.

Finally, we note that the semiring is a ∗-continuous Kleene algebra (Sec-
tion 2.2.3) because Proposition 71 holds.

CHAPTER 7. REPRESENTATION OF TYPES 113

Equal languages represent equivalent types, so any algorithm for simpli-
fying finite automata may be used to simplify type automata. One standard
choice is to convert to a deterministic finite automaton using the subset con-
struction and then simplify using Hopcroft’s algorithm. In fact, this describes
the canonisation and minimisation algorithms of Pottier [Pot98b]. By proving a
general representation theorem, we have removed the need to individually
prove correctness of these algorithms as applied to types: that they are correct
as applied to finite automata suffices.

The representation theorem allows other techniques: for instance, Ilie,
Navarro and Yu give a simplification algorithm operating on NFAs [INY04],
relying on Paige-Tarjan partition refinement [PT87]. Thanks to the represen-
tation theorem, we know that this algorithm correctly simplifies types, just
because it correctly simplifies NFAs.

7.3 Simplifying typing schemes
The simplification techniques of the previous section preserve equivalence
as types, and can therefore be used to simplify polar typing schemes by sim-
plifying their component types. However, polar typing schemes admit more
simplifications than those which preserve equivalence of their component
types.

Recall that two typing schemes may be equivalent even though they have
different numbers of type variables, as long as those type variables describe
the same data flow (Section 4.2.1). For instance, the following two typing
schemes for choose are equivalent:

[]α→ α→ α

[]β→ γ→ (βt γ)

More generally, consider a typing scheme

φ(t−1, . . . t−n; t+1, . . . t+m)

parameterised by n negative types and m positive ones, where φ contains no
type variables except via t−i , t+j . For instance,

φchoose(t
−
1, t−2; t+1) = [] t−1 → t−2 → t+1

A simple instance P of φ is a typing scheme formed from φ where t−i (1 6 i 6 n)
is given as

d
P+i for some finite set P+i of type variables (taking

d
∅ to be >),

while t+j (1 6 j 6 m) is similarly given as
⊔
P−j (taking

⊔
∅ to be ⊥). In

this manner, the two typing schemes for choose are the simple instances
φchoose(α,α;α) and φchoose(β,γ;βt γ).

For a given simple instance P of φ, we say that there is a flow edge i j if
P−i and P+j have a type variable in common. Note that both simple instances
giving typing schemes for choose have the same two flow edges: 1 1 and
2 1.

In general, two simple instances of the same φ with the same flow edges
are equivalent, allowing us to simplify polar typing schemes by relabelling
flow edges with different variables. To prove this, we prove the following
stronger result:

Theorem 75. Given two simple instances P,Q of a typing scheme

φ(t−1, . . . t−n; t+1, . . . t+m)

114 7.3. SIMPLIFYING TYPING SCHEMES

where every flow edge of P is a flow edge of Q, then

φ(P) 6∀ φ(Q)

Proof. By definition of 6∀, we seek some substitution ρ such that ρ(φ(P)) 6
φ(Q). Since φ is contravariant in negative occurrences of variables and
covariant in positive ones, it suffices to find ρ satisfying, for all 1 6 i 6 n, 1 6
j 6 m:

ρ
(⊔

P+i

)
6
⊔
Q+
i

l
Q−
j 6 ρ

(l
P−j

)
which is equivalent to:

ρ(α) 6
⊔
Q+
i for α ∈ P+i

l
Q−
j 6 ρ(α) for α ∈ P−j

We choose ρ(α) as follows:

ρ(α) =
l{⊔

Q+
i

∣∣∣α ∈ P+i}
Trivially, this satisfies ρ(α) 6

⊔
Q+
i for α ∈ P+i . For the other conditions,

consider some α ∈ P−j . For each i such that α ∈ P+i , we have a flow edge i j

which by assumption must also appear in Q. Therefore, we must have some
variable βij in both Q+

i and Q−
j , so:

l
Q−
j 6

l{
βij
∣∣α ∈ P+i }

6
l{

Q+
i

∣∣α ∈ P+i }
= ρ(α)

The upshot of this result is that the precise naming of variables does not
matter, and only the placement of flow edges is important. This finally makes
precise the intuition of Section 1.1 and Section 4.2.1, where it was noted that
the purpose of type variables in MLsub typing schemes is merely to label data
flow.

So, we adopt a representation of typing schemes which does away with
explicit variables, and represents flow edges directly.

7.3.1 Scheme automata
Typing schemes are represented by scheme automata. Scheme automata have a
domain X, which is a set of λ-bound variables corresponding to dom(D−) in a
polar typing scheme [D−]t+. A scheme automaton with domain X consists of:

• a finite set Q of states

• (multiple) designated start states q0 and qx for x ∈ X

• a transition table δ ⊆ Q× ΣF ×Q

• for each state q, a polarity (+ or −) and a set of head constructors H(q)

CHAPTER 7. REPRESENTATION OF TYPES 115

〈→〉

qf

d r
〈→〉

q0

d r

(a) [f : α→ β]α→ β

〈→〉

qf

d r
〈→〉

q0

d r

(b) [f : (α→ β)u γ](α→ β)t γ

Figure 7.4: Two scheme automata

• a set of flow edges q− q+

Instead of a single start state, a scheme automaton has distinguished negative
states qx for each x ∈ X (corresponding to D−(x) in a typing scheme [D−]t+),
and a positive state q0 (corresponding to t+ in a typing scheme [D−]t+). The
transition table δ retains the polarity condition of type automata.

The set H(q) follows the same rules as type automata, but unlike type au-
tomata never contains type variables. Type variables are represented implicitly
as flow edges, instead of appearing in H(q) as they do in type automata.

To construct a scheme automaton from a typing scheme [D−]t+, we start
by constructing type automata for t+ and D−(x) (for each x ∈ dom(D−)). The
states and transitions of the scheme automata are given by the disjoint union
of those of the type automata, and the start states q0 and qx are the start
states of each type automaton.

For each type variable α, we add flow edges q− q+ for every q−,q+ such
that α ∈ H(q−),α ∈ H(q+). Having represented type variables as flow edges
in this way, we remove all type variables from the head constructors H(q). In
Fig. 7.4a, we see a scheme automaton for the typing scheme [f : α→ β]α→ β,
with flow edges q− q+ drawn as dashed lines.

Two typing schemes may be represented by the same scheme automaton,
despite syntactic differences. For instance, the two typing schemes for choose
above are represented identically.

7.3.2 Simplifying scheme automata
As well as simplifications using the representation theorem, scheme automata
can also be simplified by removing redundant flow edges. Consider the two
typing schemes whose scheme automata are shown in Figs. 7.4a and 7.4b. It
is easy to see that

[f : (α→ β)u γ](α→ β)t γ 6∀ [f : α→ β](α→ β)

by instantiating γ 7→ (α→ β). However, it is also the case that:

[f : α→ β](α→ β) 6∀ [f : (α→ β)u γ](α→ β)t γ

116 7.3. SIMPLIFYING TYPING SCHEMES

since (α → β) u γ 6 (α → β) 6 (α → β) t γ. Thus, both typing schemes
are equivalent. As scheme automata, these differ only in the presence of
a flow edge representing γ. Although both are equivalent, the scheme not
mentioning γ is shorter and easier to read. In order to concisely display typing
schemes, it is useful to able to detect and remove redundant flow edges. We
say that a flow edge q− q+ is admissable if adding it results in an equivalent
typing scheme. Admissable flow edges can be characterised by subtyping:

Proposition 76. A flow edge q− q+ is admissable iff t− 6 t+, where t−, t+ are
the types represented by q−,q+.

Proof. Let φ(t−, t+) be the typing scheme parameterised by the types repre-
sented by q−,q+, which is contravariant in its first parameter and covariant in
its second. After adding the flow edge q− q+, the resulting typing scheme
is φ(t− uα, t+ tα) for fresh α. Regardless of whether t+ 6 t−, it is always the
case that φ(t−, t+) 6∀ φ(t− uα, t+ tα), since t− uα 6 t− and t+ 6 t+ tα. By
expanding 6∀, the converse holds iff we can find some ρ such that:

φ(ρ(t− uα), ρ(t+ tα)) 6 φ(t−, t+)

which holds iff:

ρ(t+) 6 t+ t− 6 ρ(t−)

ρ(α) 6 t+ t− 6 ρ(α)

If t− 66 t+, then no ρ satisfying t− 6 ρ(α) 6 t+ can exist, while if t− 6 t+ then
ρ = [t−/α] suffices.

This suggests a straightforward heuristic algorithm for optimising the set
of flow edges in a scheme automaton. First, we remove all of them. Then, we
add them back one at a time, skipping any that are admissable. While the
success of this heuristic depends greatly on the order flow edges are processed
in, I found that a reverse postorder traversal (so that flow edges on child nodes
are processed before parents) gave good results.

Of course, in order to implement this we must have an algorithm that
decides subtyping problems of the form t− 6 t+ (recall that biunification
operates on constraints t+ 6 t−, so is unsuitable). Such an algorithm is
described in Chapter 8, as it forms the core of the subsumption algorithm.

7.3.3 Converting scheme automata to type automata
The two typing schemes for choose in Section 7.3.1 are represented by the same
scheme automaton, since they have the same flow edges. To display this to the
user, the scheme automaton is converted back to type automata and then to a
syntactic typing scheme. Our conversion heuristic chooses the []α→ α→ α

representation, as it involves introducing fewest type variables.
The flow edges of a scheme automaton are the edges of a bipartite graph

whose nodes are the negative and positive states. Each type variable α
introduces a biclique of edges: that is, a set of negative and a set of positive
states (the two sides of the biclique), with a flow edge between all pairs of the
negative and positive states. To convert back from a scheme automaton, the
flow edges must be decomposed into a union of such bicliques, each of which
is then labelled with a type variable.

This problem, called biclique decomposition is NP-complete. However, we
have found that a simple greedy heuristic works well in practice. For each

CHAPTER 7. REPRESENTATION OF TYPES 117

q−
1

q−
2

q−
3

q−
4

q+
5

q+
6

q+
7

q+
8

Figure 7.5: Example bipartite graph of flow edges with Gr(q−3) marked

state q− or q+, we write Flow(q−) or Flow(q+) for the set of states to which
there are flow edges:

Flow(q−) = {q+ | q− q+}

Flow(q+) = {q− | q− q+}

We extend Flow to operate on sets Q of states of the same polarity:

Flow(Q) =
⋂
q∈Q

Flow(q)

Sets of negative and positive states (Q−,Q+) form a biclique exactly when
Flow(Q−) = Q+ and Flow(Q+) = Q−.

Lemma 77. For any Q, (Flow(Q), Flow(Flow(Q))) forms a biclique.

Proof. By construction, Flow is an antitone Galois connection (polarity), so

Flow(Flow(Flow(Q))) = Flow(Q)

by general properties of Galois connections.

The greedy biclique Gr(q) of a state q (of either polarity) is the biclique
(Flow({q}), Flow(Flow({q}))). For the example in Fig. 7.5, Gr(q) is as follows:

States Flow edges
Gr(q−1) {q−1}, {} 0

Gr(q−2) = Gr(q+5) = Gr(q+6) {q−2}, {q
+
5,q+6,q+7} 3

Gr(q−3) = Gr(q−4) = Gr(q+8) {q−3,q−4}, {q
+
7,q+8} 4

Gr(q+7) {q−2,q−3,q−4}, {q
+
7} 3

Our heuristic algorithm for biclique decomposition is to compute the size of
Gr(q) for each q, greedily remove the largest biclique found assigning it a
type variable, and iterate until no flow edges remain. Note that Gr(q) must in
general be recomputed after each step, since e.g. Gr(q+7) changes after the flow
edges of Gr(q−3) are removed, although this can be optimised by recomputing
only those states whose flow edges have changed.

This algorithm is far from optimal. However, it does produce optimal
results when the graph is a disjoint union of bicliques (with no two bicliques
sharing a node in common). This class of easy biclique decomposition prob-
lems correspond to those typing automata in which no node is labelled by
more than one variable, which include all of the ML type schemes. So, any

118 7.4. BIUNIFICATION OF AUTOMATA

typing scheme which can be written without use of t and u will be rendered
as such with a minimal number of variables by this algorithm, although this
algorithm will not in general introduce the minimal number of t and u when
this number is above zero.

7.4 Biunification of automata
As well as enabling simplification, type and scheme automata are useful to
efficiently implement type inference. In fact, our implementation uses them
throughout: types and typing schemes are always represented as automata,
and syntactic types are only used for input and output. To this end, we
implemented the biunification algorithm of Section 5.3.3 in terms of scheme
automata, which turns out to be simpler than the description in terms of
syntactic types. Our implementation is imperative, and destructively updates
automata.

The algorithm biunify(H;C) takes as input a set of hypotheses H, a set of
constraints C, and produces as output a bisubstitution. In the imperative
implementation, the hypotheses and constraints are both represented by
pairs of states of a scheme automaton. The output bisubstitution is not
represented explicitly: instead, the scheme automaton is mutated. Since the
scheme automaton represents H and C, mutating it simultaneously applies a
bisubstitution to H, C and the output.

For states q1,q2 of a given scheme automaton (both positive or both nega-
tive) we define the operation merge(q1,q2) which adds the head constructors,
transitions and flow edges of q2 to q1. More specifically, merge(q1,q2)
modifies the automaton by adding, for all q ′, f,

• transitions q1
f−→ q ′ when q2

f−→ q ′

• flow edges q ′ q1 when q ′ q2 (if q1,q2 positive)

• flow edges q1 q ′ when q2 q ′ (if q1,q2 negative)

and by setting H(q1) to H(q1)t̃H(q2) when q1,q2 positive, or H(q1)ũH(q2)
when q1,q2 negative.

If the state q1 represents an occurrence of a type variable α (i.e. α ∈ H(q1)
in the type automaton representation, or q1 has a flow edge in the scheme
automaton representation), and q2 represents some type t, then the effect of
merge(q1,q2) is to perform the atomic constraint elimination θα6t or θt6α
as per Section 5.3.1. The addition of new transitions by merge may introduce
cycles, which corresponds to introducing µ-types during atomic constraint
elimination.

As earlier, the biunification algorithm operates on constraints t+ 6 t−, here
represented as pairs of states (q+1,q−2). Instead of threading the argument H
through all recursive calls, we use a single mutable table T of previously-seen
inputs. The biunification algorithm for automata is shown in Figure 7.6.

7.4.1 Termination and complexity
Each recursive call to biunify either terminates immediately or adds a pair of
states not previously present to T . Since there are finitely many such states,
this must terminate.

CHAPTER 7. REPRESENTATION OF TYPES 119

function biunify(q+,q−)
if (q+,q−) 6∈ T then
T ← T ∪ {(q+,q−)}
if ∃x ∈ H(q+),y ∈ H(q−). x 66 y then

fail
for q ′+ where q− q ′+ do

merge(q ′+,q+)

for q ′− where q ′− q+ do
merge(q ′−,q−)

for q ′−,q ′+ where q+ d−−→ q ′−,q− d−−→ q ′+ do
biunify(q ′+,q ′−)

for q ′−,q ′+, f 6= d where q+ f−→ q ′+,q− f−→ q ′− do
biunify(q ′+,q ′−)

Figure 7.6: Biunification algorithm for scheme automata

Suppose the input automaton has n states and m transitions. There are
O(n2) possible pairs of states, and therefore O(n2) possible recursive calls to
biunify. Since biunify iterates over pairs of transitions, the total about of work
is bounded by their number, so the worst-case complexity is O((n+m)2).

However, this complexity is difficult to attain. In particular, in the common
case where the automaton is a tree (that is, there are no states reachable by
two routes nor cycles), each state can be visited only once, giving O(n+m)

complexity.
In practice, the algorithm is sufficiently performant that our online demo

retypes the input program on each keystroke, without noticeable delay.

120 7.4. BIUNIFICATION OF AUTOMATA

8 Deciding subsumption

Seek simplicity and distrust it.

—Alfred North Whitehead

So far, we have discussed type inference (constructing a type for an unannotated
program) but not type checking (validating that a program matches a provided
type). In order to support optional type annotations, we must be able to
compare a user-provided type to an inferred type.

Suppose the programmer writes the following type annotation:

f : {x : α, y : α}→ {x : αt bool}

and gives the following implementation:

f = λx. x

In order to check whether the implementation matches the annotation, we
must determine whether there is a typing derivation giving this typing scheme
to f. Type inference produces the following typing scheme for the implemen-
tation of f:

f : []α→ α

By the principality theorem (Proposition 66), we know that the typing schemes
with which f can be typed are exactly the instances of the above. Thus, the
implementation matches the annotation if and only if:

[]α→ α 6∀ []{x : α, y : α}→ {x : αt bool}

In order to check type annotations, we must decide the relation 6∀.
In this chapter, we develop an algorithm for deciding subsumptions. While

this was considered an intractable problem in previous frameworks, we see
below that the algebraic construction of types (Chapter 3) makes this relatively
straightforward.

8.1 Deciding the example
The tools we developed in Chapter 5 are not sufficient for the task. The
annotation is not a constraint in the sense of those that we eliminated with
bisubstitution. We require that f be polymorphic in α: that is, we should have:

f : {x : τ, y : τ}→ {x : τt bool}

122 8.2. DECIDING COMPLEX SUBTYPING

for any type τ. We are not searching for a particular α, but making a statement
true for all α. Biunification, which attempts to solve constraints by producing
a bisubstitution, does not respect this. Furthermore, biunification works only
on constraints of the form t+ 6 t−, whereas here we need to compare two
positive types.

So, we begin solving the problem by hand, before generalising the tech-
nique into an algorithm below. Expanding the definition of 6∀, we seek to
decide whether there exists ρ such that:

ρ(α→ α) 6 {x : α, y : α}→ {x : αt bool}

By function subtyping, this is equivalently:

{x : α, y : α} 6 ρ(α)

ρ(α) 6 {x : αt bool}

Thus, the subsumption holds iff we can choose some ρ(α) such that

{x : α, y : α} 6 ρ(α) 6 {x : αt bool}

We can do this if and only if

{x : α, y : α} 6 {x : αt bool}

The previous statement implies this one by transitivity, and if this statement
holds so does the previous, since we can choose ρ(α) to be {x : α, y : α} or
{x : α} or anything in between. This subtyping statement holds, since:

{x : α, y : α} 6 {x : α} 6 {x : αt bool}

Thus, we have reduced the original subsumption problem to a subtyping prob-
lem, in which there is no ρ to guess. The subsumption algorithm below
follows the same pattern of recursively decomposing a subsumption problem,
although in general it will produce many subtyping problems to be solved, all
of the form t− 6 t+.

8.2 Deciding complex subtyping
So far, the only subtyping constraints we have looked at have been those of the
form t+ 6 t− that are handled by the biunification algorithm (Section 5.3.3).
However, the subsumption algorithm below works by reducing a subsumption
problem to a set of subtyping problems of the form t− 6 t+, for which
biunification will not suffice. Biunification solves a harder problem than
deciding subtyping: like unification, it must not just decide the truth of a
constraint but produce a (bi)substitution solving it. Although merely deciding
t− 6 t+ subtyping problems is simpler, the form of the constraint adds
difficulties.

Positive types may involve t, while negative types may involve u. Any
instance of t appearing to the left of 6 allows a constraint to be split into
subconstraints, since:

τ1 t τ2 6 τ3 iff τ1 6 τ3 ∧ τ2 6 τ3

Similarly, u on the right of 6 is easily handled. Biunification takes advantage
of this, accepting constraints with t only on the left and u only on the right,
and grinding them down into atomic subconstraints.

CHAPTER 8. DECIDING SUBSUMPTION 123

There is no similarly easy trick to handle t appearing on the right. It is
the case that:

τ1 6 τ2 ∨ τ1 6 τ3 =⇒ τ1 6 τ2 t τ3
but the converse is not true. For instance,

α→ α 6 (> → α)t (α→ ⊥)

while α→ α 66 > → α and α→ α 66 α→ ⊥. This has been a sticking point for
previous work [TS96, Pot98b], which has generally had to settle for a sound
but incomplete algorithm for subsumption. For illustration, upon facing a
constraint τ1 6 τ2 t τ3 it is sound but incomplete in general to proceed by
deciding τ1 6 τ2 and τ1 6 τ3, since the results only allow you to say “yes” or
“maybe” to the original question.

By contrast, the algorithms below precisely decide subsumption and
t− 6 t+ subtyping. This is not due to the algorithms themselves, which are
neither terribly complicated nor terribly novel, bearing a strong resemblance
to previous work (e.g. Pottier’s sound-but-incomplete entailment [Pot98b, p.
79] and Trifonov and Smith’s sound-but-incomplete 6∀dec [TS96]).

Rather, it is due to the algebraic construction of types in Chapter 3, which
give better reasoning properties about the subtyping relation than previous
work. Since types are constructed as a coproduct of distributive lattices (see
Section 3.2.3), Proposition 12 allows us to handle t on the right when the
join is between terms of different components. For instance, consider again
Pottier’s awkward example seen in Section 1.4.2:

(⊥ → >)→ ⊥ 6 (α→ ⊥)tα

Proposition 12 says that since α → ⊥ and α are from different components
(one is a function type, the other a type variable), this holds iff (⊥ → >) →
⊥ 6 α→ ⊥. In turn, by function subtyping that holds iff α 6 ⊥ → >, which
is false.

Thus, the construction of types using lattice coproducts (Section 3.2) and
the treatment of type variables as indeterminates (Section 3.3) greatly simplify
deciding complex subtyping relationships.

8.2.1 Reduced form and deterministic automata
Proposition 12 applies only to subtyping problems τ1 6 τ2 when τ1 is a meet
and τ2 a join of types constructed from distinct components. In order to use
it, we must be able to bring polar types and type automata into this form.

Any polar type can be brought into this form, which we now term reduced
form. Positive polar types are joins of constructed and recursive types. The µ-
binders can be gotten rid of by unrolling (guardedness ensures this eventually
leaves constructed types), and the condition of distinct components can be
ensured by merging subterms in the same component. For example, suppose
we have the following positive type:

{`1 : α}t {`1 : β, `2 : β}t µγ.α→ γ

This is not in reduced form, both because there are two members of the join
in the same component (the two record types), and a recursive type. We bring
it into reduced form by unrolling the recursive type and merging the records,
like so:

{`1 : αtβ}tα→ (µγ.α→ γ)

124 8.3. SUBSUMPTION ALGORITHM

Likewise, a state q of a type or scheme automaton is said to be in reduced
form when q has:

• exactly one outgoing d-transition and r-transition, if 〈→〉 ∈ H(q)

• exactly one outgoing `-transition for ` ∈ L if 〈L〉 ∈ H(q)

States in reduced form correspond to polar types in reduced form (having
at most one type from each component), so Proposition 12 can be applied to
decide subtyping between types that they represent.

Rather than devise an algorithm for converting the states of an automaton
to reduced form, we point out that one already exists: the classical algorithm
for converting a nondeterministic finite automaton to a deterministic one (the
subset construction). Since it is well-known that this results in an automaton
accepting the same language, the representation theorem of Section 7.2 tells
us that it also does not affect the type represented by the automaton.

A minor technicality is that the subset construction produces an automaton
where states have at most one outgoing transition with a given label, whereas
the definition of reduced form required exactly one. This is easily remedied by
inserting the missing transitions, transitioning to a new state q where H(q) is
empty and q has no outgoing transitions. As a finite automaton, this transition
adds no new accepted strings, so the representation theorem again tells us the
transformation is valid.

For states q in reduced form, we adopt the notation r(q) for the unique
successor of q along an r-transition (if 〈→〉 ∈ H(q)) and likewise with other
transition symbols. If 〈→〉 ∈ q, then q represents a meet or a join (according
to polarity), one of whose terms is a function type of domain d(q) and range
r(q).

8.3 Subsumption algorithm
The subsumption algorithm compares scheme automata in reduced form. We
note that in order to decide subsumption (6∀), it suffices to decide equivalence
of typing schemes (≡∀):

Proposition 78. [∆1]τ1 6∀ [∆2]τ2 iff [∆2]τ2 ≡∀ [∆1 u∆2]τ1 t τ2

Proof. Since [∆2]τ2 6 [∆1 u∆2]τ1 t τ2, [∆2]τ2 ≡∀ [∆1 u∆2]τ1 t τ2 iff [∆1 u
∆2]τ1 t τ2 6∀ [∆2]τ2. Suppose [∆1]τ1 6∀ [∆2]τ2, that is, ρ([∆1]τ1) 6 [∆2]τ2
for some ρ. Assuming [∆1]τ1 and [∆2]τ2 contain distinct sets of type variables
(renaming if needed), that gives ρ([∆1 u ∆2]τ1 t τ2) = [∆2]τ2, and hence
[∆1 u∆2]τ1 t τ2 6∀ [∆2]τ2.

Conversely, suppose [∆1 u∆2]τ1 t τ2 6∀ [∆2]τ2, that is, ρ([∆1 u∆2]τ1 t
τ2) 6 [∆2]τ2 for some ρ. We have

ρ([∆1]τ1) 6 ρ([∆1 u∆2]τ1 t τ2) 6 [∆2]τ2

and so [∆1]τ1 6 [∆2]τ2.

That is, we may form least-upper-bounds in the 6∀ ordering by using
t on the type component and u on the environment components of typing
schemes.

The subsumption algorithm decides [∆1]τ1 6∀ [∆2]τ2 essentially by com-
puting [∆1 u∆2]τ1 t τ2, and checking whether this differs from [∆2]τ2. Intu-
itively, to check the subsumption in the example above, we first represent the

CHAPTER 8. DECIDING SUBSUMPTION 125

〈→〉

I

d r

(a) α→ α

〈→〉

I

〈x,y〉

d

x y
〈x〉

r

〈b〉

x

(b) {x : α, y : α}→ {x : αt bool}

Figure 8.1: Reduced-form scheme automata for subsumption example

two typing schemes as scheme automata in reduced form (Figs. 8.1a and 8.1b).
We lay the diagram in Fig. 8.1a on top of that in Fig. 8.1b, and match up corre-
sponding states, comparing their head constructors. If all of the corresponding
head constructors are in the subtyping relation, we move onto the flow edges.
Laying Fig. 8.1a on top of Fig. 8.1b creates a new flow edge between the states
labelled 〈x,y〉 and 〈x〉, and so we check whether this new flow edge is admissable
(see Section 7.3.2) using the algorithm in Section 8.4.

Given a subsumption problem [D−
1]t

+
1 6
∀ [D−

2]t
+
2, with the typing schemes

represented as scheme automata in reduced form, we begin by calling:

subsume+(q+1,q+2) where q+1,q+2 represent t+1, t+2
subsume−(q−2,q−1) for each x ∈ domD−

2, where q−1,q−2 represent D−
1(x),D

−
2(x)

If this fails, we conclude that the subsumption does not hold. This is equivalent
to a subtyping check:

[D−
0]t

+
0 6 [D−

2]t
+
2

where D−
0, t+0 are formed from D−

1, t+1 by replacing all variable occurrences
with ⊥ and >. Since [D−

0]t
+
0 6 ρ([D

−
1]t

+
1) for any ρ, if this check fails then the

subsumption cannot hold.
Otherwise, if this check succeeds, then the scheme automaton for [D−

1 u
D−
2]t

+
1 t t

+
2 must be the same as that for [D−

2]t
+
2 except for flow edges. After

subsume runs, the correspondence between states of both automata is stored
in the tables T+, T−, so we find the flow edges to be added to [D−

1 uD
−
2]t

+ t t+2
as those pairs (q−2,q+2) where:

(q−2,q−1) ∈ T
−

q−1 q
+
1

(q+1,q+2) ∈ T
+

If each of these new flow edges (q−2,q+2) is admissable, then [D−
1 uD

−
2]t

+
1 t t

+
2

and [D−
2]t

+
2 are equivalent, so the subsumption holds. We check admissability

using the algorithm in the next section.

8.4 Deciding admissability of flow edges
Both the subsumption algorithm above and the algorithm for simplifying
scheme automata in Section 7.3.2 require a decision procedure for subtyping

126 8.5. SUMMARY

function subsume+(q+1,q+2)
if (q+1,q+2) 6∈ T

+ then
T ← T ∪ {(q+1,q+2)}
if 〈b〉 ∈ H(q+1) then

if 〈b〉 6∈ H(q+2) then
fail

if 〈→〉 ∈ H(q+1) then
if 〈→〉 6∈ H(q+2) then

fail
subsume−(d(q+2),d(q

+
1))

subsume+(r(q+1), r(q
+
2))

if 〈L1〉 ∈ H(q+1) then
if 〈L2〉 6∈ H(q+2) for any L2 ⊆ L1 then

fail
subsume+(`(q+1), `(q

+
2)) for ` ∈ L2

Figure 8.2: First part of subsumption algorithm (positive case, dual case
subsume− elided)

problems of the form t− 6 t+, or equivalently (Proposition 76) an algorithm
for deciding whether a flow edge q− q+ is admissable.

The subtyping problems are represented as a pair of states q−,q+ of a
scheme automaton. We write q− 6 q+ to mean that the flow edge q− q+ is
admissable, or equivalently that t− 6 t+, where t−, t+ are the types represented
by q−,q+. Per Section 8.2.1 we assume the automaton to be in reduced form,
so Proposition 12 then tells us that q− 6 q+ if and only if there is a subtyping
relation in one of the components, that is, if one of the following conditions
obtains:

• Both H(q−) and H(q+) contain 〈b〉.

• Both H(q−) and H(q+) contain 〈→〉, and d(q+) 6 d(q−), r(q−) 6 r(q+).

• Both H(q−) and H(q+) contain a record constructor, that of H(q−) has
more fields, and `(q−) 6 `(q+) for common fields.

• q− q+ (that is, there is a flow edge between them and so they have a
variable in common).

Checking whether q− 6 q+ is a straightforward recursion testing the above
conditions. We memoise the recursion, both to increase performance on
repeated subproblems, and to ensure termination in case of recursive types.

Since Proposition 76 of Section 7.3.2 showed that q− 6 q+ iff a flow edge
q− q+ is admissable, we may use the table of flow edges itself as the
memoisation table, leading to the algorithm shown in Fig. 8.3.

8.5 Summary
This chapter was not especially long, and the algorithms it introduces are
not unusually complicated. Neither are they entirely novel: the algorithm
for deciding t− 6 t+ bears a strong resemblance to Pottier’s entailment
algorithm [Pot98b].

CHAPTER 8. DECIDING SUBSUMPTION 127

function admissable(q−,q+)
if q− q+ then

return TRUE
else

Insert flow edge q− q+

if 〈b〉 ∈ H(q−)∩H(q+) then
return TRUE

if 〈→〉 ∈ H(q−)∩H(q+) then
if admissable(d(q+),d(q−)), admissable(r(q−), r(q+)) then

return TRUE
if 〈L1〉 ∈ H(q−), 〈L2〉 ∈ H(q+), L1 ⊇ L2 then

if admissable(`(q−), `(q+)) for ` ∈ L2 then
return TRUE

Remove flow edge q− q+

return FALSE

Figure 8.3: Second part of subsumption algorithm: deciding flow edge ad-
missability

Yet they resolve the problem of subsumption between polymorphic type
schemes, a problem long considered intractable in previous formulations [TS96,
Pot98b]. The work that enabled this was not done in this chapter, but in Chap-
ter 3 when the lattice of types was built. In particular, the construction in
Chapter 3 is such that Proposition 12 holds, which is what ensures the algo-
rithms above are complete. Previous work defined types in a non-extensible
way, for which Proposition 12 fails, causing incompleteness when these algo-
rithms are used (see Section 10.3 for some further notes).

128 8.5. SUMMARY

9 Extensions

Structures are the weapons of the mathematician.

—N. Bourbaki

Until this point, the type system being developed has remained spartan.
Limiting the system to boolean, function and record types simplified the
formal development and the description of the type inference algorithms, but
real programming languages are more featureful.

This chapter demonstrates the generality of the system being developed by
showing how some other type system features (user defined types, mutability,
sums, etc.) fit into its framework. Little additional effort is required to
integrate these features into type inference: indeed, most of them have already
been implemented in the prototype compiler for MLsub. More speculative
extensions, whose integration with MLsub is less obvious, are discussed in
Section 11.1.

Recall from Chapter 3 (in particular, Section 3.2.3) that the lattice of types
is built as a sum of components Ci:

T =
∑
i

(Ci)
>
⊥

These components are all built from a small set of ingredients: constant
lattices, finite products, and the functors (−)op and (−)>. By combining these
in different ways, we can develop a surprising number of useful features.

9.1 User-defined types
Before introducing more complex types, we first see how to name the ones
that we already have, by introducing type definitions:

type id = int

There are two modes of use of these definitions:

• Transparent definitions, where the newly introduced name is equivalent
to its definition, so that ids and ints can be used interchangeably.

• Opaque definitions, where the newly introduced name is a fresh type,
incompatible with its definition.

130 9.1. USER-DEFINED TYPES

Abstract data types can be expressed neatly by treating their definition as
transparent inside the module defining them, and as opaque outside it.

Transparent definitions are easily implemented. In principle, they can be
expanded in a preprocessing phase and ignored afterwards. In practice, this
may cause an exponential increase in compile time as their definitions may be
much larger than their names.

This issue, however, is exactly the same as that faced by implementations
of, say, Standard ML or Haskell. The addition of subtyping does not make
this any more difficult, and the standard solutions (lazy expansion of type
aliases) apply. So, we do not discuss this issue further.

Opaque type definition cannot be preprocessed away. Instead, for each
opaque type definition, we introduce a new component to the definition of
the type lattice. For type definitions without parameters (like id above), this
new component is simply 1, giving such definitions the same status as type
variables or the type bool.

Types with parameters are not much more difficult. To define a parame-
terised type ListPair[S, T], representing immutable lists whose elements
are pairs of S and T, we simply add a component A×A to the definition
of types. In general, the component corresponding to a type definition is
a finite product of A and Aop, depending on whether the parameters are
co- or contra-variant. (In the example ListPair[S, T], both parameters are
covariant).

9.1.1 Variance and mutability
Most languages which support subtyping and user-defined types, from object-
oriented languages like Java to functional ones like OCaml, support invariant
parameters as well as co- and contra-variant ones. Invariant parameters are
neither co- nor contra-variant. If a type ty[T] is invariant, then ty[X] is a
subtype of ty[Y] only when X and Y are equal.

The classical examples of invariant parameters involve mutability. Suppose
we have a type MList[T] of mutable lists whose elements are of type T,
equipped with operations get and put to read and write elements of the list.
The type of get applied such a list mentions T only in its return type, and
is therefore covariant in T. However, the type of put applied to such a list
mentions T only in its argument type, and is contravariant in T. The type
MList[T] cannot therefore be said to be either co- or contra-variant in T.

Unlike co- and contra-variant parameters, invariant parameters cannot be
encoded using the small set of ingredients we have allowed ourselves. This
is not a simple omission: many parts of the system described in this thesis
assume that all fields of all type constructors are either co- or contra-variant.
For instance, the biunify algorithm produces a bisubstitution, acting differently
on positive and negative occurrences of variables, while implicitly assuming
that all occurrences of a variable are one or the other.

Rather than admit defeat here, I argue that invariance is a poor way to
describe the parameter of MList, which makes it gratuitously difficult to
typecheck quite reasonable pieces of code. Consider the following piece of
code in Java (where ArrayList<T> plays the role of MList[T]):

void disableAll(ArrayList<Component> comps) {
for (Component c : comps) {

c.setEnabled(false);
}

CHAPTER 9. EXTENSIONS 131

}

This function takes a list of Components (GUI controls) and disables them all.
It seems reasonable to pass to this function an ArrayList<Button>, but this
causes a type error. Due to invariance, ArrayList<Button> is not a subtype
of ArrayList<Component>. Indeed, it would be unsound to make it so, since
Checkboxes can be inserted into an ArrayList<Component>, but not into a
ArrayList<Button>.

However, it is perfectly safe to pass the list of buttons to disableAll,
which never inserts anything into its parameter list. To allow this usage in
Java, we need to explicitly quantify over subtypes, as follows:

void disableAll(ArrayList<? extends Component> comps) {
...

}

This works, but requires some fairly heavy machinery: bounded quantification
(the extends) and existential types (the ?). These annotations are not inferred,
and must be manually specified.

A simpler approach is to avoid the use of invariance entirely, and use
a technique used by Pottier, which he attributes to Cardelli [Pot98b]. We
add a second type parameter, giving the type MList[(S,T)] which has two
parameters, the contravariant S and the covariant T. The type schemes of the
get and put operations are:

get : ∀α.MList[(⊥,α)]→ int→ α

put : ∀α.MList[(α,>)]→ int→ α→ unit

The contravariant parameter appears in the type of put, describing the type of
elements that may be inserted, while the covariant parameter appears in the
type of get, describing the type of elements returned. The singleton function,
which creates a new one-element list, has this type scheme:

∀α.α→ MList[(α,α)]

Since all of the type parameters are either co- or contra-variant, this approach
is compatible with our type inference algorithm, which infers this type for
disableAll:

disableAll : MList[(⊥,Component)]→ unit

That is, disableAll requires a MList out of which you may take Components,
but into which you need only be able to put ⊥. The type MList[(Button,
Button)] is a subtype of this type, since ⊥ 6 Button 6 Component, so this is
as expressive as the version involving bounded quantification.

9.1.2 Type parameter notation
The trick of replacing each invariant type parameter with a pair of types
ensures that principal type inference is possible with mutable collections, and
gives useful types to functions like disableAll that use a mutable collection
covariantly. However, it is awkward to double the number of type parameters
in the program.

Happily, some mild syntactic sugar can smooth over this awkwardness.
We allow a single type parameter in the surface syntax, and expand it as
follows:

132 9.2. SUM TYPES

MList[t] 7→ MList[(t, t)]
MList[+t] 7→ MList[(0, t)]
MList[-t] 7→ MList[(t, 0)]

MList[-t1 +t2] 7→ MList[(t1, t2)]

The fourth case above is unusual, but necessary to assign a principal type for
certain functions. For instance, if the disableAll method were modified to
insert a Button into its argument, the inferred type of its argument would be
MList[Button,Component]: that is, a list into which one may put a Button,
but out of which one is only guaranteed to receive Components (Note that both
homogeneous lists of Buttons and heterogeneous lists of different types of
Component satisfy this specification).

The type 0 is a shorthand for either ⊥ or >, depending on whether it
appears in a positive type (where only ⊥ is allowed) or a negative one (the
reverse). So, the positive type

t+ = MList[+bool]→ MList[+bool]

is shorthand for

t+ = MList[(⊥,bool)]→ MList[(>,bool)]

Thus, the type of disableAll is displayed as follows:

disableAll : MList[+Component]→ unit

Superficially, this resembles the Java version using bounded quantification
and wildcards, and is useful in much the same ways. However, by being based
on simpler machinery (co- and contra-variance), this remains compatible with
the type inference algorithm: the type for disableAll above is inferred, and
no annotations are needed.

9.2 Sum types
So far, we have discussed product types (records) but not sums. Since sums
are dual to products, the lattice of sum types is a simple modification of the
lattice of record types. Record types were defined as follows:

(T >)L

The lattice T > is the lattice of types plus an extra top element, so a record
type is defined by a function mapping each possible label to either a type
or this extra element, which is equivalently a partial function from labels to
types. Since the extra element lies above everything else, a record types with
an absent label is a supertype of the same record type with the label present –
the usual depth subtyping rule.

To encode sum types, we use the same pattern but add an extra bottom
element instead:

(T⊥)L

These types are similarly partial functions from labels to types, for which we
adopt the following syntax (compare to { . . . }):

[`1 : τ1 | `2 : τ2 | . . . | `n : τn]

CHAPTER 9. EXTENSIONS 133

Since the extra element representing absent labels lies below everything else,
a sum type with an absent label is a subtype of the same sum type with the
label present, so e.g. [`1 : τ1] 6 [`1 : τ2 | `2 : τ3] whenever τ1 6 τ2.

The values of sum types are pairs of a label and a value ` v, and seman-
tically, the labels in a sum type represent possible cases. If more labels are
present, then more cases are possible and less information is known, making
the type a supertype. Sum types have a simple introduction form:

(Lab)
Γ ` e : τ

Γ ` ` e : [` : τ]

Compare this to (Proj), the elimination form for records. The elimination
form for sums, the match expression, is dually comparable to the introduction
form for records:

(Match)
Γ , x1 : τ1 ` e1 : τ . . . Γ , xn : τn ` en : τ

Γ ` match e with `1 x1 → e1, . . . `n xn → en : τ

Type inference is done in the same way as for the previously-introduced types.

9.2.1 Tagged records
The type definitions of many functional programming languages are in the
form of sums of products. While useful, this combination can sometimes
be slightly awkward to deal with, since the outer sum structure must be
eliminated before the inner product structure can be used. For instance,
consider this definition of a simple arithmetic expression type, written in
OCaml syntax:

type exp =
| Const of loc * int
| Var of loc * var
| Add of loc * exp * exp
| Sub of loc * exp * exp
| Mul of loc * exp * exp
| Div of loc * exp * exp

Each of these cases includes as its first field a source location. However,
extracting the location from an expression is a surprisingly verbose operation:

let loc_of e = match e with
| Const (loc, _) → loc
| Var (loc, _) → loc
| Add (loc, _, _) → loc
| Sub (loc, _, _) → loc
| Mul (loc, _, _) → loc
| Div (loc, _, _) → loc

Since the product is nested inside the sum, the sum must be eliminated using
match before the location can be projected out.

An alternative is possible. Instead of adding both record and sum types
to the lattice of types, we add a single sum-of-product construction, as the
composition of both: (

((T >)L)⊥
)L

134 9.2. SUM TYPES

Now, sum types must always be sums of records, of the general form:

[`1{`1,1 : τ1,1, . . . } | `2{`2,1 : τ2,1, . . . } | . . .]

The general introduction form has both a label for the entire value (indicating
which case of a sum type), as well as labelled fields, which we call a tagged
record:

` {`1 : e1, . . . }

The plain record type { . . . } becomes a shorthand for a sum mapping every
possible label to the same record:

[`1 : { . . . } | `2 : { . . . } | . . .]

Of course, an implementation should choose an optimised representation for
this common case where all or most labels map to the same record.

The advantage of this approach is that the subtyping order induced by the
definition above makes a sum-of-products a subtype of a simple product type
having the fields common to all cases. For example:

[`1 : {foo : int, bar : bool} | `2 : {foo : int, baz : int→ int}]

6

[`1 : {foo : int} | `2 : {foo : int}]

6

{foo : int}

This allows sums of records to be treated as plain records having the common
fields, and in particular allows loc_of above to be implemented as:

let loc_of e = e.loc

9.2.2 Row and presence variables
The simple match statement above is easy to typecheck, but well short of the
full-featured matching constructs available in real programming languages.
One important feature it lacks is a default case, allowing a wildcard case which
matches all unmentioned labels. The general syntax for such a match is:

match e with `1 x1 → e1, . . . `n xn → en, x∗ → e∗

When e evaluates to ` v, and ` 6= `i for any 1 6 i 6 n, then the result of the
match statement is the result of evaluating the default case e∗[v/x∗].

In languages like Standard ML, where all sum types must be predeclared
and labels can be part of only one sum, such default cases pose few difficulties
as they can simply be expanded to list the possible labels. However, when
sum types are not predeclared and instead inferred structurally, it is more
difficult to precisely type default cases.

For instance, consider this function:

f = λx. match x with `1 x1 → true, x∗ → x∗

Semantically, it makes sense to treat f as having any of the following types:

f : [`1 : >]→ bool

f : [`1 : >, `2 : bool]→ bool

f : [`1 : >, `2 : α]→ booltα

CHAPTER 9. EXTENSIONS 135

Assigning f a principal type which subsumes all of these is tricky. Below, we
present one solution, a slight variant of Rémy’s row variables [Rém94]. Instead
of defining a single algebra of types T , we simultaneously define two algebras,
T (types) and P (presences). This moves us from ordinary first-order algebra
to multi-kinded first-order algebra, but does not require deep changes to the
theory. (Moving to a higher-kinded setting would require deeper changes,
discussed briefly in Section 11.1.3). The algorithms previously presented
require almost no changes to cope with a new kind.

The original definition of types with sum types was:

T =
(
(T⊥)L

)>
⊥ + . . .

where the “. . . ” stands for the other components: functions, records, type
variables and so on. The change is to separate sum types into separate types
and presences:

T = (PL)>⊥ + . . .

P = T⊥ + Free(VP)

The difference is that as well as types, presences can be represented as presence
variables drawn from the set VP = {p1,p2, . . .}. This allows us to quantify over
whether a label is present in a sum type.

We write the bottom element of P as abs, leaving ⊥ to refer to the bottom
element of T . We leave the injection from T to P implicit. Thus, P contains
distinct elements abs, ⊥, >, p1, p1 t bool, and so on.

We quantify over presences (elements of P) with π. Note that quantifying
over all π is different from using p1: as per the construction of types in
Chapter 3, presences variables appear in the lattice directly as indeterminates.

We use a similar syntax as for plain sum types, writing:

[`1 : π1 | `2 : π2 | . . . | `n : πn]

Labels not listed are assumed to be assigned presence abs. With this setup,
we write new (Lab) and (Match) rules:

(Lab)
Γ ` e : τ

Γ ` ` e : [` : τ]

(MatchClosed)
Γ ` e1 : [` : τ] Γ , x : τ ` e2 : τ ′

Γ ` match e1 with ` x→ e2 : τ ′

(MatchOpen)

Γ ` e1 : [` : τ, (`i : τi for `i 6= `)]
Γ , x : τ ` e2 : τ ′

Γ , x : [` : abs, (`i : τi for `i 6= `)] ` e3 : τ ′

Γ ` match e1 with ` x→ e2 | x→ e3 : τ ′

Expressions that match several different labels can be expanded to a nest of
(MatchOpen) expressions followed by a single (MatchClosed). These
rules give expressive types to functions that perform matching:

λx.match x with ` x→ ` x+ 1 | x→ x

:

[` : int, (`i : pi for `i 6= `)]→ [` : int, (`i : pi for `i 6= `)]

This function takes a sum which may be `n for some integer n, and is polymor-
phic in the presence of other labels. That is, if given an [` : int, `2 : bool], it

136 9.3. COMPLEX FUNCTION TYPES

returns an [` : int, `2 : bool]. Labels other than ` are present in the result type
if they are present in the input.

This presentation differs somewhat from Rémy’s row and presence vari-
ables, by encoding the presence information using subtyping instead of using
higher-kinded polymorphism. Rémy’s presence variables are a pair of a type
constructor and a type, where the type represents the type associated to the
label, and the type constructor ranges over the identity (if the label is present),
or the constant abs (if absent).

Due to its use of subtyping, the system presented here can express some
types that Rémy’s presence variables cannot, for instance, a function that takes
two sum types and returns a sum containing label ` if either of the inputs did
(using the t operator on presence variables). On the other hand, due to the
use of higher-kinded presence variables, variants of Rémy’s system [Gar02]
can express some types that the current system cannot, for instance, a sum
type that may or may not contain a type at label `, but which if present must
be int.

9.3 Complex function types
The function types studied so far have arity 1, that is, they map a single
argument to a result. Such function types can be used to simulate multiple-
argument functions with currying (encoding a two-argument function as
t1 → (t2 → t3)), but by directly supporting complex arities we can gain
convenient support for named and optional arguments.

9.3.1 Multiple arguments
The simplest extension is to directly support multiple-argument functions.
This entails replacing the single component T op × T used for functions with
a component for each arity n (up to some finite maximum, to preserve the
finiteness condition):

Cn = (T op)n × T

The application and abstraction rules are almost unchanged, and inference
proceeds as before:

(Abs)
Γ , x1 : τ1, . . . , xn : τn ` e : τ

Γ ` λ(x1, . . . , xn).e : (τ1, . . . , τn)→ τ

(App)
Γ ` ef : (τ1, . . . , τn)→ τ Γ ` e1 : τ1 . . . Γ ` en : τn

Γ ` ef(e1, . . . , en) : τ

9.3.2 Named arguments
Named arguments are identified by a label, rather than by their position in
the list of arguments. This improves readability, since it does not require the
reader of some code to remember the order of arguments to each function.
Optional arguments are also identified by a label, but the function definition
contains a default value, and calls which omit this argument supply the
default value instead.

Consider a function definition mixing all three types of arguments, for
which we adopt this syntax:

fun f(a, b, ~x, ~y=42) → . . .

CHAPTER 9. EXTENSIONS 137

The syntax ~x is used to indicate a named parameter: a and b are positional
(unnamed), while x and y are named (with y having a default value).

The general case of these complex function types looks like:

(t−, . . . , ` : t−, . . . , ?` : t−)→ t+

That is, they have contravariant type parameters for each argument (positional,
mandatory named and optional named), and a covariant result. Picking
the right subtyping order for these types is a somewhat subjective exercise.
It seems clear that a type with a mandatory named argument should be a
subtype of the same type with the argument optional, but what should be
done with an unexpected named argument? It could be silently ignored or
flagged as a type error, and either choice would be sound.

I take the view that it should be an error, giving the following subtyping
relations:

(` : α)→ β 666> ()→ β

(` : α)→ β 6 (?` : α)→ β

()→ β 6 (?` : α)→ β

This can be encoded using the same ingredients that we used for record and
simple function types. We define a separate component Cn to describe the
complex function types with n positional arguments1:

Cn = (T op)n ×
(
(T op)>

)L
× (2L)op

Cn consists of three parts:

• n contravariant types, for the positional parameters

• Some number of labelled contravariant types, for the named parameters

• A set of labels, specifying which named parameters are mandatory

The subtyping ordering this imposes ensures that adding more named pa-
rameters produces a subtype, but specifying that more of them are required
produces a supertype. Therefore, adding a new optional parameter yields
a subtype, making an optional parameter required yields a supertype, but
adding a new mandatory parameter yields and unrelated type.

9.4 Effect systems
In most programming languages, whether evaluation of an expression causes
side-effects is not tracked statically. This means that the high degree of
assurance given by a static type system about the values produced by an
expression does not extend to the side effects it may cause. Higher-order
stateful functions such as memoisation operators do not have their inputs
statically checked for suitability (it is in general incorrect to cache the result of
a side-effecting procedure).

Effect systems remedy this, by extending the usual role of a type system to
include tracking of side effects. There is extensive literature on the design of
effect systems, varying wildly in the details of the sort of effects tracked. Our

1For n less than some arbitrary finite maximum.

138 9.4. EFFECT SYSTEMS

contribution to the area is not to design another such system, but merely to
point out that the machinery developed in this thesis for type inference with
subtyping can also be used to infer effects.

Usually, the effect tracked by an effect system for a piece of code is some
over-approximation of the effects it may actually perform, allowing code to
be marked with an effect E even if it only performs E conditionally, or not at
all. This leads to an effect-system analogue of subtyping called subeffecting,
involving a typing rule much like the standard subtyping rule that allows the
collection of allowed effects to be freely increased.

Some form of subeffecting is useful in particular to type conditional ex-
pressions. Both branches of an if-expression often perform different effects,
and subeffecting allows the entire expression to be annotated with the upper
bound of both effects.

Attempting inference of effect sets carries with it the usual troubles of
type inference and subtyping that have been the focus of this thesis. Once
polymorphism is added (say, to allow a map function which works on both
pure and side-effectful functions), the problem of effect inference is essentially
a special case of the type inference problems studied in this thesis. This is not
a new observation: Pottier’s type inference scheme [Pot98b] is used to infer
effects in Bauer and Pretnar’s language Eff [Pre14].

Therefore, inferring types with effects is a reasonably straightforward
extension of the current system. We add a new kind E of effects (just as a new
kind P of presences was added in Section 9.2.2), and change the definition of
function types from

T op × T

to
T op × E × T

Various simple effect systems can be described by a suitable choice of E .
Taking E = 2L gives the simplest effect system, where effects are described by
a set of labels describing actions a function may perform. More complex effect
systems are possible by e.g. defining effects to be a sum type which may refer
to T .

In general, the combination of subtyping, polymorphism and type infer-
ence available in MLsub makes experimenting with new type system features
unusually easy.

10 Related work

Such is the advantage of a well-made language, that its
simplest notations often become the source of the most
profound theories.

—Pierre-Simon Laplace

Much work on type inference with subtyping, starting with the early work
by Fuh and Mishra [FM90] and Mitchell [Mit91], infers constrained types. The
core idea is simple: infer types expression-by-expression following the same
pattern as Milner’s Algorithm W , but when a constraint arises (e.g. that a
function’s provided argument must be a subtype of what it accepts), attach
it to the inferred type rather than eliminating it with unification. Many type
system features can be integrated into this model, including lattice operations
and recursive types [AW93].

The result of this process is a constrained type, a pair of a ML-style type
expression and some set of associated subtyping constraints. Immediately, a
number of questions arise:

• How do we define the subtyping order? As well as the supported type
constructors (e.g. functions, records), should it have recursive types?
Should it form a lattice? Is the order decidable?

• How should polymorphism be handled?

• Can we simplify constrained types, reducing an unwieldy inferred set of
constraints into a shorter equivalent form?

• Can we solve entailment between constraint sets (whether one set of
constraints implies another), as needed to check an inferred constrained
type against a type signature?

The problem of entailment is superficially similar to simplification, but much
more difficult. For simplification, heuristics are quite useful: a failure to
optimally simplify a constrained type is not necessarily serious. Inexact
heuristics are much worse for entailment, since they lead to programs being
rejected if the compiler’s heuristics cannot see why a valid type signature
matches. Furthermore, simplification can choose which heuristics to apply,
while entailment must handle arbitrary constraint sets.

In the following sections, we discuss each of these points in turn.

140 10.1. THE SUBTYPING ORDER

10.1 The subtyping order
One influential answer to the first question is the subtyping order of Amadio
and Cardelli [AC93] whose types are defined as ground terms (i.e. without
free variables) over the following syntax:

t ::= ⊥ | > | α | t→ t | µα.t

The recursive types definable with the fixed-point operator µ are exactly the
regular trees, which are the possibly-infinite trees over the following syntax
having only finitely many distinct subtrees:

t ::= ⊥ | > | t→ t

These are equipped with a partial order 6 which is bounded by ⊥ and >,
where→ is covariant in the range and contravariant in the domain1.

Amadio and Cardelli give an algorithm for deciding subtyping between
ground types in this system, but their algorithm takes exponential time
if recursive types are nested in complex ways. Kozen et al. [KPS93] give
a polynomial-time algorithm, while Palsberg and Smith [PS96] proved it
equivalent to a system of constraints, and Palsberg and O’Keefe [PO95] proved
it equivalent to a certain flow analysis.

For a type system based on constrained types to be useful, it is necessary
to decide satisfiability of a set of constraints, since a type constrained by
unsatisfiable constraints is more properly reported as a type error. Deciding
whether a system of constraints (over the Amadio-Cardelli types or similar
systems) is satisfiable was shown to be doable in polynomial time by Eifrig,
Smith and Trifonov [EST95b] (see also Rehof’s work [Reh98]).

This subtyping order forms a lattice, albeit not a distributive one. Addi-
tionally, it has two important features: it possesses recursive types, and it is
non-structural.

10.1.1 Structural and non-structural subtyping
In some subtyping orders, the subtyping relation t1 6 t2 → t3 implies that
t1 itself is a function type. If this implication holds, and extends to every
parameterised type constructor (that is, subtyping relations hold only between
applications of the same type constructor, or between unparameterised types),
then the subtyping is said to be structural. (Structural subtyping is not to
be confused with “structural typing”. This unfortunate clash of names is
explained in the footnote on page 33).

In other words, systems with structural subtyping have nontrivial sub-
typing relationships only between base (unparameterised) types, allowing
int 6 real2, but not List[α] 6 Collection[α].

The advantage of structural subtyping is that type inference is made much
easier, since constraints like α 6 t2 → t3 which arise during e.g. function
applications can be eliminated by replacing all occurrences of α with β→ γ,

1The co/contravariant subtyping order for function types is one of the few points of general
agreement between subtyping systems, although sadly even that is not universal [Cas95].

2int 6 real is the standard example of a subtyping relation between basic types. However, it
is generally a mistake to have this relation in a programming language, since the usual semantics
of real (IEEE-754 floating-point arithmetic) are incompatible with integer arithmetic, disagreeing
on the value of 5/3, the validity of x+ 1 6= x, and the existence of infinity.

CHAPTER 10. RELATED WORK 141

for fresh β,γ. Type inference proceeds much as ML’s type inference, with
subtyping only involved at atomic types [FM90, Mit91].

However, structural subtyping does not allow the usual subtyping order
for records, which requires a record with more fields to be a subtype of one
with fewer. Thus, structural subtyping cannot express subtyping as it is used
in object-oriented programming, which relies on being able to pass objects
of a subclass (possibly with extra methods) where objects of a superclass are
required. Even the presence of least or greatest types makes the type system
non-structural, since ⊥ 6 t1 → t2 and yet ⊥ is not a function type.

Structural subtyping is however a good fit for other applications. Simonet’s
Flow Caml system [Sim03] is an extension of the OCaml type system which
uses structural subtyping to attach security labels tracking information flow
to types. Bauer and Pretnar’s language Eff [Pre14] is an ML-like language
which uses structural subtyping to attach effect information to types. Both of
these systems have a trivial subtyping relation for normal type constructors
(functions, records, tuples, etc.), having nontrivial subtyping only on the leaf
annotations (security levels for Flow Caml and effects for Eff).

10.1.2 Recursive types
Amadio and Cardelli’s system has equirecursive types, which are recursive types
which are implicitly equal to their unrollings. That is, µα.t and t[µα.t/α] are
equivalent types, and a term of one type may be used wherever a term of the
other is expected, with no syntactic marker for the unrolling.

This is to be compared with isorecursive types, as found in ML, Haskell
and other languages, which require explicit type declarations or rolling and
unrolling operations for every recursive type. That is, the types that we
write with µ are exactly equivalent to their unrollings: the typechecker rolls
and unrolls them as needed (equirecursive). The recursively-defined types
of ML and Haskell are merely isomorphic to their unrollings: an explicit
operation (usually disguised as a constructor application or a pattern-match)
must be used to convert between a type and its unrolling (isorecursive). See
Pierce [Pie02] for more discussion of the distinction.

As pointed out in Section 2.1.6, many formulations of non-structural sub-
typing (such as the one in this thesis) cannot have principal types without sup-
porting equirecursive types, since there are terms having many non-recursive
types whose principal types are recursive. For this reason, equirecursive types
are a more common feature of type systems with non-structural subtyping
than of type systems in general.

10.2 Polymorphism

The next question is how to integrate polymorphism with subtyping. For the
moment, we discuss parametric polymorphism, which allows functions to work
at multiple types by using a type variable to stand for an arbitrary type, and
requires that the function’s behaviour be the same at all types. This is to be
contrasted with ad-hoc polymorphism, discussed briefly below in Section 10.2.3,
which allows a function to have different behaviour at different types.

There are two distinct ways to view a polymorphic type like ∀α.t: in the
ML style, we view it as its set of instances, while in the System F style, we
view it as a function from types to types. In type systems without subtyping,

142 10.2. POLYMORPHISM

the distinction matters little, but it has profound effects in the presence of
subtyping (see Section 5.2.2).

10.2.1 ML-style polymorphism
The core ingredient in ML-style polymorphism is the subsumption relation,
which relates polymorphic type schemes which have the same instances. This
relation has been present since the beginnings of ML [DM82], but its extension
to subtyping was introduced by Trifonov and Smith [TS96].

Their subsumption relation was defined in the style of a simulation: one
type scheme subsumes another if for every instance of the second, there is a
more general instance of the first. Section 4.2 discusses this relation under
the name 6∀sim and proves it equivalent to the simpler definition of 6∀ used
throughout this thesis (Proposition 31). However, since Trifonov and Smith
treat type variables non-extensibly (by quantifying over ground types, see
Section 1.4.2), the proof of Proposition 31 does not go through in their system
and 6∀ and 6∀sim disagree.

Including type variables directly in the subtyping order is not a new idea.
Brandt and Henglein [BH98] do just this, in their coinductive construction of
a subtyping order. However, Brandt and Henglein emphasise the similarity of
their construction to the ground types of Amadio and Cardelli [AC93], and
the effect of including type variables directly on the subsumption relation
does not appear to be well appreciated in the literature. See Section 3.3 for
further discussion of this point.

10.2.2 System F-style polymorphism
Taking an alternative approach, polymorphic types may be considered as type-
level functions that must be applied. The canonical example of such a style
is System F, which was extended by Cardelli et. al. to System F<: [CMMS94]
which includes bounded quantifiers ∀α 6 t1.t2, which quantify over subtypes
of a given type t1.

There are several variants of System F<:. Curien and Ghelli’s System
F6 [CG90] is almost identical, differing only in a technicality of the equational
theory. F-bounded quantification [CCH+89] allows type variables to appear in
their own bounds, admitting a form of recursive types. Kernel F<: restricts the
subtyping order of F<:, producing a simpler system.

It is a remarkable result of Pierce [Pie92] that the subtyping relation of F<:

is undecidable, by reduction from the halting problem of two-counter Turing
machines. The simpler Kernel F<: system has decidable subtyping (see e.g.
Pierce [Pie02, 28.3–5]).

Full type inference is undecidable in these systems, but Section 11.1.2
discusses some techniques that have been used to integrate some System
F-style quantification into ML-style languages while maintaining good type
inference. Their integration with MLsub is left as future work.

10.2.3 Ad-hoc polymorphism
In most of the subtyping systems discussed so far that support lattice opera-
tions (including MLsub), the following equation holds:

(t1 t t ′1)→ (t2 u t ′2) = (t1 → t2)u (t ′1 → t ′2)

CHAPTER 10. RELATED WORK 143

That the type on the left is a subtype of that on the right is a consequence of
the subtyping rule for function types, but there are systems where the type on
the right is not a subtype of that on the left.

In a language supporting ad-hoc polymorphism by allowing e.g. the typecase
construct, functions can be written that inspect the type of their argument.
Such a function might check whether its argument was a t1, in which case
it returns a t2, or a t ′1, in which case it returns a t ′2. This function would be
of type (t1 → t2)u (t ′1 → t ′2), but would not be of type (t1 t t ′1)→ (t2 u t ′2)
since it never returns something which is both a t2 and a t ′2.

This makes type inference more difficult, since the compiler has fewer
convenient equations to work with, but allows more precise types. A no-
table line of recent work along these lines is the work on semantic subtyp-
ing [Cas05, HP03], which defines the subtyping relation as set inclusion
between denotations of types. Commonly, the denotation of a type is defined
simply as the set of values having that type, which leads to a circularity: the
subtyping relation is defined in terms of the set of values of a given type,
while due to the (Sub) rule this set of values is defined in terms of the sub-
typing relation. Excising this circularity is a tricky business, done using a
technical process called bootstrapping. Castagna and Frisch [CF05] give a good
introduction to the approach.

Castagna and Xu integrated semantic subtyping with parametric poly-
morphism [CX11], including a careful treatment of type variables. The same
authors along with Nguyễn and Abate worked on type inference [CNXA15],
which was recently extended by Castagna, Petrucciani and Nguyễn [CPN16]
to include typing polymorphic variants. However, the lack of a principality re-
sult for the system means that type inference may produce multiple solutions,
and inferring a type for a program in general involves backtracking through
them.

The set-theoretic interpretation has an implicit closed-world assumption,
requiring any two empty types to be related by the subtyping relation. This
gives a powerful subtyping relation, and the closed-world assumption allows
reasoning with negation types. This set-theoretic reasoning perfectly fits the
original application of processing XML queries [HP03], and gives expressive
types to programs involving typecase-like constructs. However, since the
closed-world assumption violates extensibility (Section 1.4), it is unclear how
to reconcile this with the open-world, ML-style approach of the present work.

Another system that interprets types set-theoretically is the Coppo-Dezani-
Venneri intersection type discipline [CDCV80], which includes the intersection
introduction rule:

Γ ` e : τ1 Γ ` e : τ2
Γ ` e : τ1 ∩ τ2

This rule allows two unrelated typing derivations for Γ ` e : τ1 and Γ ` e : τ2
to be combined into a single judgement. The principal types property holds:
intuitively, if there are two different types for a term they can be combined
with the above rule. The system also has a set-theoretic interpretation, thanks
again to the intersection introduction rule, since the set of values typeable at
type τ1 ∩ τ2 is exactly the intersection of the sets of values typeable at types
τ1 and τ2. The system does not have union types.

A remarkable property holds: a term of the untyped lambda calculus is
typeable under the intersection type discipline if and only if it has a normal
form. However, by the same result, type inference is undecidable [Roc88].

144 10.3. SIMPLIFICATION AND ENTAILMENT

10.3 Simplification and entailment
Naively implementing type inference with constrained types tends to produce
a large and uninformative set of constraints for any given program. In order
to make them more palatable, it is necessary to simplify the constraints to an
equivalent but shorter form.

Many useful techniques have been proposed to simplify constraints: replac-
ing variables bound only above or only below with their bounds, collapsing
cycles of subtyping constraints between variables, merging variables con-
strained in the same way, and removing “unreachable” constraints that do not
affect the result [FA96, FF96, Pot98a, Pot01, FFSA98, AWP97]. This last tech-
nique was improved to keep track of the polarity of the constraints, checking
positive and negative reachability separately, culminating in Eifrig, Smith and
Trifonov’s garbage collection algorithm [EST95a].

This work owes particular debt to Pottier’s seminal thesis [Pot98b], which
not only gives a thorough treatment of constrained types and their simplifica-
tion, but also introduces the mono-polarity invariant, showing how positive and
negative uses of type variables can be separated throughout inference. This
invariant was the inspiration for the biunification algorithm of Chapter 5.

10.3.1 Entailment
These simplification algorithms, while effective, are all heuristic in nature:
they simplify a constrained type scheme to an equivalent but smaller one, but
do not in general find the smallest equivalent scheme. The central issue is
that deciding whether two constrained type schemes are equivalent proved
problematic using non-structural types as previously proposed. In order
to decide whether two constrained types are equivalent, one must decide
whether one set of constraints implies another, a problem termed entailment.
This is the constrained-types version of deciding subsumption, as studied in
Chapter 8.

Most work on non-structural subtype entailment defines types along these
lines:

τ = ⊥ | bool | τ→ τ | >

With the usual subtyping order, these types form a lattice, but suffer the
extensibility issues outlined in Section 1.4, due to the treatment of type
variables as quantifying over ground types and the use of disjoint union to
combine lattices (giving the set-theoretic instead of lattice-theoretic coproduct).

These issues make deciding entailment a remarkably difficult problem.
While I recommend swapping the problem for an easier one (by defining
types extensibly, as in Chapter 3), it is worthwhile to revisit previous work
as many of the techniques developed there are directly applicable to the
extensible formulation. In particular, I believe that one of Pottier’s entailment
algorithms [Pot98b, Fig. 8.2 on p. 79], which he shows sound-but-incomplete
for the non-extensible definition of types, is in fact both sound and complete
when types are defined extensibly.

Ultimately, the problem of non-structural subtype entailment for types
defined non-extensibly (which I abbreviate to NSSE, following previous au-
thors) is still open, neither solved nor shown undecidable. There are positive
results in special cases: Henglein and Rehof [HR97] show that the problem
is solvable in linear time if the constraints do not include type constructors

CHAPTER 10. RELATED WORK 145

(only variables), and is NP-complete if the subtyping order is structural (see
Section 10.1.1). On the other hand, there are negative results in generalisa-
tions: Su et al. [SAN+02] show that the full first-order theory of NSSE is
undecidable. Explicitly, while NSSE amounts to deciding a ∀-sentence over the
non-extensible definition of types and subsumption amounts to a ∀∃-sentence,
Su et al. encode the Post correspondence problem in ∃∀∃∀∃∀ sentences over
the same structure.

Henglein and Rehof [HR98] show that NSSE is PSPACE-hard by a reduc-
tion from NFA universality (whether an NFA accepts all strings). While the
extensible formulation of types used in this thesis differs from that of NSSE,
Henglein and Rehof’s construction works in the current setting. Indeed, the
approach in Chapter 8 to deciding t− 6 t+ subtyping problems (Fig. 8.3) began
as an attempted converse to Henglein and Rehof’s result, and the algorithm
essentially checks NFA universality by converting to a DFA and checking DFA
universality3. Rehof’s thesis [Reh98] is an excellent resource for further detail
on NSSE and related problems.

A line of work by Niehren and Priesnitz [NP01] culminating in Priesnitz’s
thesis [Pri04] also uses automata, but in a different way. They introduce cap-set
automata, and show how NSSE can be characterised by word equations which
map to cap-set automata. This approach expressed many variants of NSSE in
a common framework and shed light on what made them difficult, but did
not resolve decidability.

3Making this formal is tricky, due to the encoding of record types, but the algorithm is exactly
DFA universality if no record types are used

146 10.3. SIMPLIFICATION AND ENTAILMENT

11 Conclusions and future work

I used to feel guilty in Cambridge that I spent all day
playing games, while I was supposed to be doing
mathematics.

—John Horton Conway

The goal of this work was to extend the Hindley-Milner type system with
subtyping, a goal shared by much previous work. However, previous attempts
have always had one or more of the following caveats: lack of decidable type
inference, lack of principal types, necessity of explicit constraints in types, or
lack of width subtyping. This work is the first attempt managing to avoid
these caveats, preserving the pleasant properties of the Hindley-Milner type
system, and even using the same typing rules (Chapter 4). The system has
been implemented, including most of the extensions described in Chapter 9.

The primary tool by which this was achieved was not advanced or compli-
cated algorithms, but attention to the minutiae of basic definitions. Thanks to
the careful definition of polar type terms, the algorithm for biunification in
Chapter 5 (and the version for automata in Chapter 7) are easy extensions of
classical unification algorithms, while the algorithms for subsumption (Chap-
ter 8) are straightforward thanks to the construction of the lattice of types in
Chapter 3. By contrast, using the (admittedly shorter) definition of types used
in previous work leads to a subsumption problem whose decidability has re-
mained open for decades, and which has several counter-intuitive behaviours
(see Section 1.4).

Generally, by choosing the most algebraically natural definitions rather
than the most syntactically concise, the pitfalls that dogged previous attempts
were avoided.

11.1 Future work

The classical Hindley-Milner type inference algorithm has formed the foun-
dation of many functional programming languages, and has been extended
with a huge variety of interesting language features. Indeed, one of its main
strengths is how robustly it has integrated new features.

There is much future work to do in determining how smoothly these
features integrate with the type system presented here, when biunificatation
replaces unification and subtyping is pervasive. Chapter 9 began collecting the

148 11.1. FUTURE WORK

most low-hanging of these fruit, and some interesting next steps are explained
below.

11.1.1 Advanced recursive types
MLsub supports recursive types though the µ operator (Section 5.1.1). To-
gether with records and sum types (Section 9.2), this suffices to encode the
basic algebraic datatypes found in all descendants of ML, such as this type of
nonempty binary trees (written in Haskell’s syntax):

data Tree a = Leaf a | Branch (Tree a) (Tree a)

Among other modern languages, Haskell supports non-regular type definitions
which cannot be expressed purely using µ, such as this type of perfect trees
(complete binary trees containing 2k values):

data PTree a = Leaves a | Cons (PTree (a, a))

Above, a PTree Int is defined not just in terms of itself, but in terms of
PTree (Int, Int), PTree ((Int,Int),(Int,Int)) and so on, a relationship
which cannot be captured by the µ operator.

Yet more interesting type definitions are possible. For instance, Haskell
also supports indexed types (or generalised algebraic data types), such as the
following type of simple arithmetic expressions:

data Exp a where
ConstI :: Int -> Exp Int
ConstB :: Bool -> Exp Bool
Add :: Exp Int -> Exp Int -> Exp Int
Eq :: Exp Int -> Exp Int -> Exp Bool

Here, the value constructors ConstI, ConstB, Add and Eq construct only the
type specified on the right. For instance, Exp Int is inhabited by ConstI n
and Add x y, but not by ConstB or Eq, while Exp String is not inhabited at
all.

All of the recursive types definable in Haskell are isorecursive, rather than
the equirecursive ones studied in this thesis (see Section 10.1.2 for more on the
distinction). While extending the equirecursive µ operator to allow nonregular
recursive types like PTree is a daunting task (and seems entirely impossible
within the current formalism for recursive types), adding isorecursive nonreg-
ular types in the style of Haskell is relatively straightforward, since it amounts
to adding opaque roll and unroll primitives for each type definition.

Indexed types/GADTs are another story. The type inference algorithms
of this work rely on a strict separation between positive and negative types,
which in turn relies on ensuring that each type parameter is either co- or
contra-variant. This separation means that type inference need only consider
subtyping constraints. The direction of subtyping constraints changes upon
descent into contravariant positions, but it never collapses to an equality
constraint. In Section 9.1.1, we see that this separation is not a limitation in
normal type definitions: indeed, strictly enforcing it allows us to infer more
precise types than systems that resort to invariant type parameters.

However, this trick does not work so neatly with GADTs. GADTs allow
one to define type-level equality witnesses, like so:

data Eq a b where
Refl :: Eq a a

CHAPTER 11. CONCLUSIONS AND FUTURE WORK 149

The type Eq τ1 τ2 is inhabited by Refl iff τ1 and τ2 are equal, and so
typechecking necessarily involves equality constraints between types. Equality
witnesses are so central to GADTs that, as Kiselyov shows [Kis10], most of
the power of GADTs is available in a system with only conventional algebraic
datatypes and equality witnesses as a primitive type.

Integrating the power of GADTs with the type system of this thesis is
challenging, due to the surprisingly complex interactions between GADTs and
subtyping. A useful survey of these subtleties was written by Scherer and
Rémy [SR13].

11.1.2 First-class polymorphism
Like the Hindley-Milner calculus, MLsub supports polymorphic definitions but
not polymorphic abstractions. That is, while a polymorphic identity function
id : ∀α.α → α may be bound using let and then used at types bool → bool
or int → int, there is no way to write a λ-expression abstracting over such
a function and using it in multiple incompatible ways. For instance, the
following program is well-typed in MLsub (and even in plain ML):

let i = λx. x in

if ((i i) true) then true else true

The identity function i is used both of the following types:

(bool→ bool)→ (bool→ bool)

(bool→ bool)

These are both subsumed by the typing scheme α→ α of i, so the program
typechecks. However, suppose we try to abstract over i:

λi. if ((i i) true) then true else true

MLsub infers a type for this (although plain ML gives an error), but the type
is not particularly useful:

(α→ ((bool→ bool)uα))→ bool

That is, the passed function must take an α, and return something which
is simultaneously an α and a bool → bool. Attempting to pass λx.x as the
argument to this function results in a type error.

The inferred type above does not consider the possibility that i may be
of polymorphic type. To correctly type this abstraction, we need to be able
to abstract over values of polymorphic type, passing i with a type scheme
∀α.α→ α instead of a monomorphic type.

There have been many proposals for integrating higher-rank types with
Hindley-Milner type inference, allowing functions which abstract over poly-
morphic arguments. The semi-explicit polymorphism of Garrigue and Rémy [GR97]
(now used in OCaml) is a particularly simple proposal, but requires a type
annotation everywhere a polymorphic type is introduced and a marker (which
need not specify the type) everywhere one is eliminated. In OCaml, some
ingenious syntactic punning means that these annotations are hidden in the
definitions of record types, but this trick is unavailable in a language like
MLsub with structural record types that need not be predeclared. Nonetheless,

150 11.1. FUTURE WORK

this proposal seems that it would integrate with MLsub with very little work,
albeit at a high syntactic overhead.

At the other end of the scale is MLF by Le Botlan and Rémy, which
requires remarkably few type annotations to type every term of System F,
but complicates the type system significantly by adding two new types of
quantifier and a form of subtyping. Unfortunately, it is not at all clear that
MLF could be used in the present setting without serious work, since the
subtyping order it defines is quite unrelated to that of this thesis.

Between these two extremes are a host of other proposals, varying in
the annotation burden they place on the programmer, the complexity they
add to the typing rules or the syntax of types, and the difficulty of imple-
mentation. Of particular note is the thread of proposals extending Haskell
with higher-rank types [JVWS07, VWPJ08]. Dunfield and Krishnaswami’s
paper [DK13] tackling higher-rank types using bidirectional typechecking is
also recommended, particularly for its excellent comparison of the various
different proposals.

11.1.3 Module systems and higher-kinded types
As well as abstracting over polymorphic functions, languages with higher-
kinded polymorphism allow the programmer to abstract over type constructors,
allowing e.g. the same algorithm to be used with either linked lists or arrays.
In the ML family, this is the role of the module system, which allows arbitrary
parameterisation of modules (collections of type and data definitions) by other
modules.

In the literature on module systems, there is a strong tradition of sepa-
rating the module language from the core language, and placing only minimal
requirements on the latter. The most important of these requirements are
the ability to check subsumption (Chapter 8) and support for both opaque
and transparent type definitions (Section 9.1), which are already satisfied by
MLsub. So, it seems that much of the literature on module systems should
apply to MLsub with little to no modification.

Some interesting recent work has focused on erasing the distinction be-
tween the core and module languages, allowing modules to be passed as
values without friction. Rossberg’s 1ML [Ros15] is an important contribution,
unifying modules and ordinary records. However, this line of research may
prove much more challenging to combine with the present work, since it does
not easily fit into the lattice-based formalisation used throughout.

Bibliography
[AB61] Smbat Abian and Arthur B Brown. A theorem on partially ordered

sets with applications to fixed point theorems. Canad. J. Math,
13(78-83):2, 1961.

[AC93] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types.
ACM Transactions on Programming Languages and Systems (TOPLAS),
15(4), 1993.

[AW93] Alexander Aiken and Edward L. Wimmers. Type inclusion con-
straints and type inference. In Proceedings of the Conference on
Functional Programming Languages and Computer Architecture, FPCA
’93, pages 31–41. ACM, 1993.

[AWP97] Alexander Aiken, Edward L Wimmers, and Jens Palsberg. Op-
timal representations of polymorphic types with subtyping. In
International Symposium on Theoretical Aspects of Computer Software,
pages 47–76. Springer, 1997.

[Bac02] Roland Backhouse. Galois connections and fixed point calculus.
In Algebraic and Coalgebraic Methods in the Mathematics of Program
Construction, pages 89–150. Springer, 2002.

[Bau12] Andrej Bauer. On the failure of fixed-point theorems for chain-
complete lattices in the effective topos. Theoretical Computer Science,
430:43–50, 2012.

[Bek84] Hans Bekič. Definable operations in general algebras, and the
theory of automata and flowcharts. In C.B. Jones, editor, Program-
ming Languages and Their Definition, volume 177 of Lecture Notes in
Computer Science, pages 30–55. Springer Berlin Heidelberg, 1984.

[BH98] Michael Brandt and Fritz Henglein. Coinductive axiomatization
of recursive type equality and subtyping. Fundamenta Informaticae,
33(4):309–338, 1998.

[BJ84] Hans Bekič and Cliff B. Jones. Programming Languages and Their
Definition: Selected Papers, volume 177 of LNCS. Springer Berlin
Heidelberg, 1984.

[Bof95] Maurice Boffa. Une condition impliquant toutes les iden-
tités rationnelles. RAIRO-Theoretical Informatics and Applications-
Informatique Théorique et Applications, 29(6):515–518, 1995.

[Cas95] Giuseppe Castagna. Covariance and contravariance: conflict with-
out a cause. ACM Transactions on Programming Languages and
Systems (TOPLAS), 17(3):431–447, 1995.

[Cas05] Giuseppe Castagna. Semantic subtyping: challenges, perspectives,
and open problems. In Italian Conference on Theoretical Computer
Science, pages 1–20. Springer, 2005.

152 BIBLIOGRAPHY

[CC00] Jan Cederquist and Thierry Coquand. Entailment relations and
distributive lattices. In Sam Buss, Petr Hajek, and Pavel Pudlak,
editors, Logic Colloquium ’98: proceedings of the Annual European
Summer Meeting of the Association for Symbolic Logic, volume 13 of
Lecture Notes in Logic, pages 110–123. AK Peters/Springer, 2000.

[CCH+89] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and
John C. Mitchell. F-bounded polymorphism for object-oriented
programming. In Proceedings of the Fourth International Conference
on Functional Programming Languages and Computer Architecture,
FPCA ’89, pages 273–280. ACM, 1989.

[CDCV80] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri.
Principal type schemes and λ-calculus semantics. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, pages
535–560, 1980.

[CF05] Giuseppe Castagna and Alain Frisch. A gentle introduction to
semantic subtyping. In Proceedings of the 7th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Pro-
gramming, PPDP ’05, pages 198–199. ACM, 2005.

[CG90] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsump-
tion. In Proceedings of the 15th Colloquium on Trees in Algebra and
Programming, pages 132–146. Springer Berlin Heidelberg, 1990.

[CMMS94] Luca Cardelli, Simone Martini, John C Mitchell, and Andre Sce-
drov. An extension of system F with subtyping. Information and
Computation, 109(1):4–56, 1994.

[CNXA15] Giuseppe Castagna, Kim Nguyễn, Zhiwu Xu, and Pietro Abate.
Polymorphic functions with set-theoretic types: Part 2: Local type
inference and type reconstruction. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 289–302. ACM, 2015.

[Con71] John Horton Conway. Regular Algebra and Finite Machines. Chap-
man and Hall, London, 1971.

[CPN16] Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyễn. Set-
theoretic types for polymorphic variants. In Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, pages 378–391. ACM, 2016.

[CX11] Giuseppe Castagna and Zhiwu Xu. Set-theoretic foundation of
parametric polymorphism and subtyping. In Proceedings of the 16th
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’11, pages 94–106. ACM, 2011.

[Dav55] Anne C. Davis. A characterization of complete lattices. Pacific J.
Math, 5:311–319, 1955.

[DG56] J. De Groot. Non-archimedean metrics in topology. Proceedings of
the American Mathematical Society, 7(5):948–953, 1956.

[DHP07] Brian A. Davey, Miroslav Haviar, and Hilary A. Priestley. Boolean
topological distributive lattices and canonical extensions. Applied
Categorical Structures, 15(3):225–241, 2007.

BIBLIOGRAPHY 153

[DK13] Joshua Dunfield and Neelakantan R. Krishnaswami. Complete
and easy bidirectional typechecking for higher-rank polymor-
phism. In Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’13, pages 429–442.
ACM, 2013.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for func-
tional programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’82, pages
207–212. ACM, 1982.

[DP02] Brian A. Davey and Hilary A. Priestley. Introduction to lattices and
order. Cambridge University Press, 2002.

[Esc03] Martín H Escardó. Joins in the frame of nuclei. Applied Categorical
Structures, 11(2):117–124, 2003.

[EST95a] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymor-
phic type inference for objects. In Proceedings of the Tenth Annual
Conference on Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’95, pages 169–184. ACM, 1995.

[EST95b] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference
for recursively constrained types and its application to OOP. Elec-
tronic Notes in Theoretical Computer Science, 1:132–153, 1995. MFPS
XI, Mathematical Foundations of Programming Semantics, 11th
Annual Conference.

[FA96] Manuel Fähndrich and Alex Aiken. Making set-constraint pro-
gram analyses scale. Technical report, University of California at
Berkeley, 1996.

[FF96] Cormac Flanagan and Matthias Felleisen. Modular and polymor-
phic set-based analysis: Theory and practice. Technical report,
Rice University, 1996.

[FFSA98] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander
Aiken. Partial online cycle elimination in inclusion constraint
graphs. In Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, PLDI ’98, pages
85–96. ACM, 1998.

[FM90] You-Chin Fuh and Prateek Mishra. Type inference with subtypes.
Theoretical Computer Science, 73(2):155–175, 1990.

[Fre92] Peter Freyd. Remarks on algebraically compact categories. In
Applications of Categories in Computer Science, pages 95–106. Cam-
bridge University Press, 1992.

[Gar02] Jacques Garrigue. Simple type inference for structural polymor-
phism. In The Ninth International Workshop on Foundations of Object-
Oriented Languages, 2002.

[GJ94] Mai Gehrke and Bjarni Jónsson. Bounded distributive lattices with
operators. Mathematica Japonica, 40(2):207–215, 1994.

154 BIBLIOGRAPHY

[GR97] Jacques Garrigue and Didier Rémy. Extending ML with semi-
explicit higher-order polymorphism. In International Symposium
on Theoretical Aspects of Computer Software, pages 20–46. Springer,
1997.

[Grä09] George Grätzer. Lattice theory: First concepts and distributive lattices.
Courier Corporation, 2009.

[HM95] My Hoang and John C. Mitchell. Lower bounds on type inference
with subtypes. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’95, pages
176–185. ACM, 1995.

[HP03] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed
XML processing language. ACM Trans. Internet Technol., 3(2):117–
148, May 2003.

[HR97] Fritz Henglein and Jakob Rehof. The complexity of subtype
entailment for simple types. In Logic in Computer Science, 1997.
LICS’97. Proceedings., 12th Annual IEEE Symposium on, pages 352–
361. IEEE, 1997.

[HR98] Fritz Henglein and Jakob Rehof. Constraint automata and the
complexity of recursive subtype entailment. In 25th International
Colloquium on Automata, Languages and Programming, ICALP ’98,
pages 616–627. Springer Berlin Heidelberg, 1998.

[INY04] Lucian Ilie, Gonzalo Navarro, and Sheng Yu. On NFA reductions.
In Juhani Karhumäki, Hermann Maurer, Gheorghe Păun, and
Grzegorz Rozenberg, editors, Theory Is Forever, volume 3113 of
Lecture Notes in Computer Science, pages 112–124. Springer Berlin
Heidelberg, 2004.

[Joh86] Peter T. Johnstone. Stone spaces. Cambridge University Press, 1986.

[JVWS07] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types.
Journal of Functional Programming, 17(01):1–82, 2007.

[Kis10] Oleg Kiselyov. GADTs. http://okmij.org/ftp/ML/
first-class-modules/#GADT, 2010.

[Koz90] Dexter Kozen. On Kleene algebras and closed semirings. In
Proceedings on Mathematical Foundations of Computer Science 1990,
MFCS ’90, pages 26–47. Springer-Verlag New York, Inc., 1990.

[KPS93] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Effi-
cient recursive subtyping. In Proceedings of the 20th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’93, pages 419–428. ACM, 1993.

[Kro91] Daniel Krob. Complete systems of B-rational identities. Theoretical
Computer Science, 89(2):207–343, 1991.

[KS12] Dexter Kozen and Alexandra Silva. Left-handed completeness. In
Wolfram Kahl and Timothy G. Griffin, editors, Proc. Conf. Relational
and Algebraic Methods in Computer Science (RAMiCS 2012), volume

http://okmij.org/ftp/ML/first-class-modules/#GADT
http://okmij.org/ftp/ML/first-class-modules/#GADT

BIBLIOGRAPHY 155

7560 of Lecture Notes in Computer Science, pages 162–178. Springer,
2012.

[LMM88] J-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited.
In Foundations of Logic and Functional Programming, pages 67–113.
Springer, 1988.

[Mar76] George Markowsky. Chain-complete posets and directed sets with
applications. Algebra universalis, 6(1):53–68, 1976.

[Mit91] John C Mitchell. Type inference with simple subtypes. Journal of
Functional Programming, 1(03):245–285, 1991.

[ML78] Saunders Mac Lane. Categories for the working mathematician.
Springer Science & Business Media, 1978.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification al-
gorithm. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(2):258–282, 1982.

[NP99] Joachim Niehren and Tim Priesnitz. Entailment of non-structural
subtype constraints. In P.S. Thiagarajan and Roland Yap, edi-
tors, Advances in Computing Science — ASIAN’99, volume 1742 of
Lecture Notes in Computer Science, pages 251–265. Springer Berlin
Heidelberg, 1999.

[NP01] Joachim Niehren and Tim Priesnitz. Non-structural subtype en-
tailment in automata theory. In Naoki Kobayashi and Benjamin C.
Pierce, editors, Theoretical Aspects of Computer Software, volume
2215 of Lecture Notes in Computer Science, pages 360–384. Springer
Berlin Heidelberg, 2001.

[Pie92] Benjamin C. Pierce. Bounded quantification is undecidable. In
Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’92, pages 305–315. ACM,
1992.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press,
2002.

[PO95] Jens Palsberg and Patrick O’Keefe. A type system equivalent to
flow analysis. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’95, pages
367–378. ACM, 1995.

[Pot98a] François Pottier. A framework for type inference with subtyping.
In Proceedings of the Third ACM SIGPLAN International Conference
on Functional Programming, ICFP ’98, pages 228–238. ACM, 1998.

[Pot98b] François Pottier. Type inference in the presence of subtyping: from
theory to practice. PhD thesis, Université Paris 7, 1998.

[Pot01] François Pottier. Simplifying subtyping constraints: a theory.
Information and Computation, 170(2):153–183, 2001.

[Pre14] Matija Pretnar. Inferring algebraic effects. Logical Methods in
Computer Science, 10(3), 2014.

156 BIBLIOGRAPHY

[Pri04] Tim Priesnitz. Subtype Satisfiability and Entailment. PhD thesis,
Saarland University, 2004.

[PS96] Jens Palsberg and Scott Smith. Constrained types and their ex-
pressiveness. ACM Trans. Program. Lang. Syst., 18(5):519–527, 1996.

[PT87] Robert Paige and Robert E Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing, 16(6):973–989, 1987.

[Red64] Valentin N. Redko. On defining relations for the algebra of regular
events. Ukrainskii Matematicheskii Zhurnal, 16:120–126, 1964.

[Reh98] Jakob Rehof. The complexity of simple subtyping systems. PhD thesis,
University of Copenhagen, 1998.

[Rém94] Didier Rémy. Type inference for records in natural extension of ml.
In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects
of Object-oriented Programming, pages 67–95. MIT Press, 1994.

[Roc88] Simona Ronchi Della Rocca. Principal type scheme and unifica-
tion for intersection type discipline. Theoretical Computer Science,
59(1):181–209, 1988.

[Ros15] Andreas Rossberg. 1ML — core and modules united (F-ing first-
class modules). In Proceedings of the 20th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 35–47. ACM,
2015.

[SAN+02] Zhendong Su, Alexander Aiken, Joachim Niehren, Tim Priesnitz,
and Ralf Treinen. The first-order theory of subtyping constraints.
In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’02, pages 203–216.
ACM, 2002.

[Sch12] Bernd S. W. Schröder. The fixed point property for ordered sets.
Arabian Journal of Mathematics, 1(4):529–547, 2012.

[Sim03] Vincent Simonet. Flow Caml in a nutshell. In Proceedings of the
first APPSEM-II workshop, pages 152–165, 2003.

[SR13] Gabriel Scherer and Didier Rémy. GADTs meet subtyping. In
Programming Languages and Systems: 22nd European Symposium on
Programming, ESOP 2013, pages 554–573. Springer Berlin Heidel-
berg, 2013.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its appli-
cations. Pacific journal of Mathematics, 5(2):285–309, 1955.

[TS96] Valery Trifonov and Scott Smith. Subtyping constrained types.
In Radhia Cousot and David A. Schmidt, editors, Static Analysis,
volume 1145 of Lecture Notes in Computer Science, pages 349–365.
Springer Berlin Heidelberg, 1996.

[VWPJ08] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones.
FPH: First-class polymorphism for Haskell. In Proceedings of the
13th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’08, pages 295–306. ACM, 2008.

BIBLIOGRAPHY 157

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach
to type soundness. Information and computation, 115(1):38–94, 1994.

[Win83] Glynn Winskel. A representation of completely distributive al-
gebraic lattices. Technical report, Carnegie Mellon University,
1983.

	Introduction
	Types and data flow
	Contributions
	Design principles for subtyping
	Extensibility
	Algebra before syntax

	Failures of extensibility
	Vacuous reasoning
	Closed-world polymorphism and free algebras

	Structure of the thesis

	Background
	Order theory
	Lattices
	Lattices and subtyping
	Suborders versus sublattices
	Distributive lattices
	Distributivity and subtyping
	Recursive types and subtyping
	Fixed, pre-fixed and post-fixed points
	Other fixed point results and Bekic's construction

	Semirings and Kleene algebra
	Axiomatising the regular languages
	Kleene algebra via pre-fixed points
	Complete and *-continuous Kleene algebras

	Category theory
	Categories of orders
	Concrete categories and free objects
	Aside: orders versus categories for subtyping

	Constructing types
	Simple types
	Algebras, initial and otherwise
	Subtyping
	Least and greatest types

	A (distributive) lattice of types
	Syntactic construction
	Comparing the lattices
	Components and coproducts

	Type variables
	Open versus closed-world type variables
	Constructing free algebras
	Properties of substitutions

	Recursive types
	Completion via coalgebra
	Completion via metrics
	Completion via orders

	Summary

	The type system
	Properties of the type system
	Instantiation
	Weakening
	Substitution
	Soundness

	Typing schemes and subsumption
	Equivalence of typing schemes

	Reformulated typing rules
	Example of generalisation
	Equivalence of original and reformulated rules

	Polarity and biunification
	Polar types
	Recursive types
	Polar typing schemes

	Unification and subtyping
	Bisubstitutions
	Parameterisation and typing
	The instances of a typing scheme
	Comparison with unification

	Solving constraints with bisubstitutions
	Atomic constraints
	Decomposing constraints
	The biunification algorithm

	Correctness of biunification
	Stability and idempotence
	Solving atomic constraints
	Solving multiple constraints
	Stability of biunification
	Biunification of unsatisfiable constraints
	Atomic subconstraints suffice
	Biunification of satisfiable constraints

	Principal type inference
	Principality
	Example

	Principal type inference
	Principality for functions
	Principality for booleans and records
	Principality for let-bindings

	Summary of the algorithm

	Representation of types
	Type automata
	Head constructors
	Constructing type automata
	Deconstructing automata

	Simplifying type automata
	Encoding types as regular languages
	Undoing the encoding
	Simplifying types as languages

	Simplifying typing schemes
	Scheme automata
	Simplifying scheme automata
	Converting scheme automata to type automata

	Biunification of automata
	Termination and complexity

	Deciding subsumption
	Deciding the example
	Deciding complex subtyping
	Reduced form and deterministic automata

	Subsumption algorithm
	Deciding admissability of flow edges
	Summary

	Extensions
	User-defined types
	Variance and mutability
	Type parameter notation

	Sum types
	Tagged records
	Row and presence variables

	Complex function types
	Multiple arguments
	Named arguments

	Effect systems

	Related work
	The subtyping order
	Structural and non-structural subtyping
	Recursive types

	Polymorphism
	ML-style polymorphism
	System F-style polymorphism
	Ad-hoc polymorphism

	Simplification and entailment
	Entailment

	Conclusions and future work
	Future work
	Advanced recursive types
	First-class polymorphism
	Module systems and higher-kinded types

	Bibliography

