
JUSTIFICATION BASED

EXPLANATION IN ONTOLOGIES

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2011

By

Matthew Horridge

School of Computer Science

Contents

Abstract 11

Declaration 12

Copyright 13

Acknowledgements 14

1 Introduction 15

1.1 Justification Based Explanation 16

1.2 The Rise to Prominence of Justifications 17

1.2.1 From Proofs to Justifications 18

1.2.2 Justification Based Explanation Today 19

1.2.3 Justifications in Auxiliary Services 20

1.2.4 Justifications in Other Fields 20

1.3 Topics Covered in this Thesis . 21

1.3.1 Computing Justifications 21

1.3.2 Justification Granularity 21

1.3.3 Understanding Justifications 22

1.4 Contributions of this Thesis . 22

1.5 Published Work . 23

2 Preliminaries 27

2.1 Basic Description Logics . 27

2.1.1 The ALC Description Logic 30

2.1.2 Highly Expressive Description Logics 31

2.1.3 The Syntax and Semantics of SHOIQ 33

2.1.4 Key Reasoning Tasks . 37

2

2.1.5 Structural Notions . 38

2.2 Reasoning . 40

2.3 Justifications . 45

2.3.1 The Number of Justifications for an Entailment 45

2.3.2 Root and Derived Unsatisfiable Classes 46

2.3.3 Justification Based Repair 47

2.4 Ontology Modularisation . 47

2.4.1 Modularisation and Justifications 48

2.4.2 Syntactic Locality Based Modules 49

3 Computing Justifications 51

3.1 Techniques for Computing Justifications 52

3.2 Black-Box Algorithms for Computing Single Justifications 54

3.2.1 Expansion Phase Optimisations 55

3.2.2 Contraction Phase Optimisations 58

3.3 Computing All Justifications

Using Model Based Diagnosis Techniques 60

3.3.1 The Relationship Between Model Based Diagnosis and Jus-

tification Based Explanation 61

3.3.2 A Hitting Set Tree Approach to Computing All Justifica-

tions for an Entailment . 61

3.3.3 Model Based Diagnosis Optimisations 63

3.3.4 Complexity Issues . 65

3.4 Computing Justifications Using Glass-Box Techniques 65

3.4.1 Tracing . 66

3.4.2 Extensions of Tracing to More Expressive Logics 68

3.4.3 Inexact Glass-Box Tracing 69

3.5 The Impact of Modularisation . 71

3.6 Existing Empirical Evaluations 72

3.7 Summary and Directions . 74

3.7.1 Aims and Objectives . 77

4 Justification Finding Algorithms 78

4.1 Algorithm Topology . 78

4.2 Computing All Justifications for O |= η 79

4.3 Computing A Single Justification for O |= η 82

3

4.3.1 Expansion Algorithms . 82

4.3.2 A Divide and Conquer Contraction Algorithm 85

4.4 Summary . 86

5 The BioPortal Corpus 87

5.1 Ontology Corpus . 87

5.1.1 Curation Procedure . 89

5.1.2 Ontologies With Non-Trivial Entailments 91

5.2 Summary . 92

6 Justification Finding Experiments 96

6.1 Finding All Justifications . 98

6.2 Finding Single Justifications . 104

6.3 Justifications For Inconsistent Ontologies 110

6.4 Discussion . 119

6.5 Conclusions . 121

7 Justification Granularity 123

7.1 Related Work . 128

7.1.1 Prior Approaches . 129

7.1.2 Other Notions of Redundancy and Minimality 134

7.1.3 Fine-grained Repair . 138

7.2 Intuitions and Desiderata . 138

8 Laconic and Precise Justifications 140

8.1 Superfluity and Weakness . 140

8.2 δ–The Structural Transformation 142

8.3 SHOIQ Syntactic Isomorphism 148

8.4 Laconic And Precise Justifications 149

8.5 A Discussion of Definition 11 . 149

8.6 Laconic Justifications Examples 150

8.7 Key Properties of Laconic Justifications 151

8.8 Discussion . 153

8.9 Conclusions . 154

9 Justification Masking 155

9.1 Types of Masking . 155

4

9.2 Summary on Masking Intuitions 157

9.3 Detecting Masking . 158

9.4 Masking Defined . 159

9.4.1 Parts and Their Weakenings 160

9.4.2 Masking Definitions . 161

9.5 Conclusions . 162

10 Laconic Justification Finding Algorithms 163

10.1 Detecting Laconic Justifications 163

10.1.1 The IsLaconic Algorithm 163

10.2 Preferred Laconic Justifications 166

10.3 Computing Preferred Laconic Justifications

Using δ+ . 171

10.3.1 An Algorithm for Computing a Finite Subset of δ+ 172

10.3.2 An Algorithm for Computing Preferred Laconic Justifica-

tions Based on δ+ . 172

10.3.3 Cross-Masking and Algorithm 10.3 174

10.4 An Alternative to δ+ : π . 175

10.5 The π Transformation . 177

10.6 Choices Regarding the π Transformation 179

10.6.1 Understanding versus Repair 180

10.6.2 Axiom Strength as a Guiding Principle 180

10.6.3 Choosing Between Understanding and Repair 181

10.6.4 The Relationship Between π and δ+ 182

10.7 Computing Preferred Laconic Justifications Using π 182

10.7.1 An Optimised isPreferredLaconicJustification Algorithm . . 184

10.8 Optimising π Laconic Justification Computation 185

10.8.1 Top Level Axiom Splitting and Reconstitution 186

10.8.2 Pruning via Modularity 190

10.8.3 Tautological Axiom Elimination 190

10.8.4 An Optimised ComputePreferredLaconicJustifications Algo-

rithm . 191

10.8.5 An Incremental ComputePreferredLaconicJustifications Al-

gorithm . 192

10.9 Conclusions . 193

5

11 Laconic Justification Finding Experiments 195

11.1 Detecting Laconic Justifications 195

11.2 Computing Preferred Laconic Justifications 201

11.3 The Laconic Justification Landscape 213

11.4 Discussion . 218

11.5 Conclusions . 219

12 Understanding Justifications 221

12.1 User Studies . 223

12.2 A Simple Complexity Model . 228

12.3 Model Validation . 231

12.3.1 Experiment Design: Using Error Proportion to Indicate

Difficulty . 232

12.3.2 Justification Corpus . 233

12.3.3 Experiment Setup . 234

12.3.4 The Experiments . 236

12.4 Dealing with Justification Superfluity 244

12.5 Discussion . 245

12.6 Conclusions . 246

13 Justification Oriented Proofs 248

13.1 From Justifications Towards Proofs 249

13.2 Justification Oriented Proofs . 249

13.3 Related Work . 250

13.4 Proof Generation Framework . 251

13.4.1 Justification Lemmatisation 252

13.4.2 Justification Oriented Proofs 253

13.5 The Use of Models to Select Proof Steps 254

13.6 An Algorithm for Generating Proofs 256

13.6.1 GenerateProof . 256

13.6.2 LemmatiseJustification . 257

13.6.3 ComputeJPlus . 258

13.7 The Feasibility of Computing Justification Oriented Proofs 260

13.8 Examples . 261

13.9 Discussion . 262

6

14 Conclusions 265

14.1 Thesis Overview . 265

14.2 Summary of Contributions . 265

14.3 Summary and Significance of Main Results 266

14.3.1 Evaluation of Justification Finding Algorithms 266

14.3.2 Laconic and Precise Justifications 268

14.3.3 Understanding Justifications 270

14.4 Outstanding Issues . 272

14.4.1 Dealing with Redundancy in Justifications 272

14.4.2 Presentation of Laconic Justifications 273

14.4.3 Further Optimisation of Algorithms for Computing Laconic

Justifications . 273

14.4.4 Iteration and Refinement of the Complexity Model 274

14.4.5 Evaluation of Justification Oriented Proofs 274

14.5 Future Work . 275

14.5.1 Dealing with Multiple Justifications 275

14.5.2 Justifications for Ontology Comprehension 276

14.5.3 Reasoner Benchmarking 277

14.5.4 Comparison of Different Corpora 277

Bibliography 278

Number of Words: 67,078

7

List of Tables

2.1 ALC concept constructors and examples 30

2.2 Sub-Term Position and Polarity 39

2.3 Tableau Rules for ALC Concept Satisfiability 41

2.4 Unfolding Rules for ALC Concept Satisfiability 45

4.1 Incremental Expansion Defining Axioms 85

5.1 BioPortal Corpus Ontologies . 93

6.1 Black-Box Find All Timeouts . 100

6.2 Additional Inconsistent Ontologies 111

6.3 Inconsistent Ontology Entailment Check Times 112

6.4 Inconsistent Ontology Results . 113

11.1 π-Based Timeouts . 205

11.2 Incremental π-Based Timeouts . 209

12.1 Justification Complexity Model 230

12.2 Pilot Study Items . 238

12.3 MSc Student Cohort Results . 240

13.1 Mean Times for Computing Justifications and Proofs 261

8

List of Figures

1.1 An example of justification presentation in Swoop 19

2.1 The Relationship Between the Number of Justifications and the

Size of an Ontology . 46

3.1 A Depiction of a Black-Box Expand-Contract Strategy 54

3.2 An Example of a Hitting Set Tree 63

4.1 Justification Finding Algorithm Topology 79

6.1 Percentile and Mean Times for Computing All Justifications . . . 99

6.2 The Mean Number of Justifications per Entailment 101

6.3 The Mean Number of Axioms per Justification 101

6.4 The Mean and Percentile Times for Finding One Justification with

a Selection Function . 107

6.5 The Mean and Percentile Times for Finding One Justification with

Glass-Box Tracing . 107

6.6 Mean Times to Find One Justification with An All-In-One Expan-

sion Strategy . 109

6.7 An Example of a Justification for an Inconsistent Ontology 118

7.1 An Example of Superfluity . 124

7.2 An Example of Internal Masking 125

7.3 An Example of External Masking 126

7.4 An Example of Shared Cores . 127

7.5 An example of Strike Out in Swoop 133

11.1 Experiment 4—IsLaconic Percentile Times Per Justification 198

11.2 Experiment 4—The Percentage of Non-Laconic Justifications Per

Ontology . 198

9

11.3 Experiment 4—The maximum and mean number of axioms con-

taining superfluous parts per Justification. 199

11.4 Experiment 4—The maximum and mean number of axioms con-

taining superfluous parts per split Justification. 199

11.5 Experiment 5—Mean times to compute regular justifications ver-

sus preferred laconic justifications using Algorithm 10.7 204

11.6 Experiment 5—Percentile times to compute preferred laconic jus-

tifications using Algorithm 10.7 204

11.7 Experiment 6—Mean times to compute regular justifications ver-

sus preferred laconic justifications using Algorithm 10.8 210

11.8 Experiment 6—Percentile times to compute preferred laconic jus-

tifications using Algorithm 10.8 210

11.9 Experiment 6—Mean time ratio between Algorithm 10.7 and Al-

gorithm 10.8 . 211

11.10Mean number of regular and preferred laconic justifications per

entailment . 215

11.11The Effect of Masking . 215

12.1 A justification for Person v ⊥ . 222

12.2 A justification for Newspaper(DailyMirror) 223

12.3 User Ranking versus Time . 226

12.4 Justification Corpus Complexity Distribution 235

12.5 Eye Tracker Heat Maps for EM3 & HM3 243

12.6 EM3 with and without strikeout 245

13.1 A schematic of a Justification Oriented Proof 250

13.2 An Algorithm for Generating Justification Oriented Proofs 257

13.3 A schematic of a justification oriented proof for the justification

shown in Figure 12.1 . 262

13.4 A schematic of a justification oriented proof for the justification

shown in Figure 12.2 . 263

10

Abstract

The Web Ontology Language, OWL, is the latest standard in logic based ontol-

ogy languages. It is built upon the foundations of highly expressive Description

Logics, which are fragments of First Order Logic. These logical foundations mean

that it is possible to compute what is entailed by an OWL ontology. The reasons

for entailments can range from fairly simple localised reasons through to highly

non-obvious reasons. In both cases, without tool support that provides explana-

tions for entailments, it can be very difficult or impossible to understand why an

entailment holds. In the OWL world, justifications, which are minimal entailing

subsets of ontologies, have emerged as the dominant form of explanation.

This thesis investigates justification based explanation techniques. The core of

the thesis is devoted to defining and analysing Laconic and Precise Justifications.

These are fine-grained justifications whose axioms do not contain any superfluous

parts. Optimised algorithms for computing these justifications are presented, and

an extensive empirical investigation shows that these algorithms perform well on

state of the art, large and expressive bio-medical ontologies. The investigation

also highlights the prevalence of superfluity in real ontologies, along with the re-

lated phenomena of justification masking. The practicality of computing Laconic

Justifications coupled with the prevalence of non-laconic justifications in the wild

indicates that Laconic and Precise justifications are likely to be useful in practice.

The work presented in this thesis should be of interest to researchers in the

area of knowledge representation and reasoning, and developers of reasoners and

ontology editors, who wish to incorporate explanation generation techniques into

their systems.

11

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

12

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available

from the Head of School of Computer Science (or the Vice-President).

13

Acknowledgements

First and foremost, I would like to thank my supervisors: Bijan Parsia and Uli

Sattler. I would never have completed a PhD without them and I could not have

asked for better supervisors.

I would like to thank Alan Rector for being my PhD advisor and for always

finding funding that enabled me to attend numerous conferences and workshops.

I would like to thank the members of the Bio-Health Informatics Group and In-

formation Management Group in Manchester, in particular Simon Harper, Ignazio

Palmisano and Thomas Schneider. Special thanks are due to Dmitry Tsarkov for

always showing a keen interest in my work and for the many technical discussions

that we had throughout my time as a PhD student.

Finally, I would like to thank my family and Simon for always being there for

me and putting up with me while I finished this thing.

14

Chapter 1

Introduction

An ontology is a machine processable artefact that captures the relationships

between concepts and objects in some domain of interest. In 2004 the Web

Ontology Language, OWL [HPSvH03], became a World Wide Web Consortium

Standard. Since then, it has become the most widely used ontology language,

being adopted all over the world by academia and industry alike. As well as being

extensively used in the field of computer science, OWL is used by many domain

experts in diverse areas such as bioinformatics, medicine and geography.

One of the key aspects of OWL is that it is built upon the foundations of a

Description Logic. Description logics [BCM+03] are a family of knowledge repre-

sentation languages which are typically decidable fragments of First Order Logic.

This means that each OWL ontology may be viewed as a set of Description Logic

axioms, or first order sentences, and is therefore a logical theory. This logical

foundation gives statements made in OWL a well defined, unambiguous meaning.

Moreover, it makes it possible to specify various automated reasoning tasks, and

to use “off the shelf” description logic reasoners such as FaCT++ [TH06], Her-

miT [MSH07], Pellet [SPG+07], Racer [HM01], CB [Kaz09] and CEL [BLS06a]

for computing relationships between the various concepts and objects that are

expressed in an ontology. With reasoning, knowledge that was implicit, but not

stated in the original ontology, can be made explicit—knowledge can be inferred.

A consequence of the fact that OWL corresponds to a highly expressive de-

scription logic is that unexpected and undesirable inferences (entailments), can

arise during the construction of an ontology. The reasons as to why an entailment

holds in an ontology can range from simple localised reasons through to highly

non-obvious reasons. In the case of very large ontologies such as the National

15

CHAPTER 1. INTRODUCTION 16

Cancer Institute Thesaurus [GFH+03], which contains over 80,000 axioms, or the

large medical ontology SNOMED [SC97], which contains over 500,000 axioms,

manually pinpointing the reasons for an entailment can be a wretched and error

prone task. Without automated explanation support it can be very difficult to

track down the axioms in an ontology that give rise to entailments. It is for this

reason that explanation is an important topic in this area.

Indeed, since OWL became a standard, there has been a large demand from

ontology developers for tools that can provide explanations for entailments. Some

common tasks that prompt a demand for explanation facilities are:

1. Understanding entailments—A user browsing an ontology notices an

entailment and opportunistically decides to obtain an explanation for the

entailment in order to find out what has been stated in the ontology that

causes the entailment to hold.

2. Debugging and repair of ontologies—A user is faced with an incoher-

ent or inconsistent ontology, or an ontology that contains some other kind

of undesirable entailment. They need to determine the causes of the entail-

ment in order to understand why it holds so that they can generate a repair

plan.

3. Ontology comprehension—A user is faced with an ontology that they

have not seen before. In order to get a better picture of the ontology they

use various metrics such as the number of entailments, the average number

of explanations for an entailment and so on. This helps them to build up

an image of how complex the ontology is in terms of expressivity. Is also

provides them with more information if they need to decide whether they

like the ontology or not.

1.1 Justification Based Explanation

In the world of OWL and Description Logics there has been a significant amount

of research devoted to the area of explanation and ontology debugging. In par-

ticular, research has focused on a specific type of explanation called justifica-

tions [BH95, SC03, Kal06, BPS07]. A justification for an entailment in an on-

tology is a minimal subset of the ontology that is sufficient for the entailment to

hold. The set of axioms corresponding to the justification is minimal in the sense

CHAPTER 1. INTRODUCTION 17

that if an axiom is removed from the set, the remaining axioms no longer support

the entailment. More precisely, given an ontology O and an entailment η such

that O |= η, J is a justification for η in O if J ⊆ O, J |= η, and for all J ′ (J
it is the case that J ′ 6|= η.

Justifications have turned out to be a very attractive form of explanation:

They are conceptually simple, they have a clear relationship with the ontol-

ogy from which they are derived, there are off-the-shelf algorithms for comput-

ing them, and there are simple presentation strategies which work well most

of the time. Since justifications came to prominence in the ontology browsing

and editing tool Swoop [KPH05], several other major open source and com-

mercial ontology editing environments such as Protégé-4 [KFNM04], The NeOn

Toolkit [JHQ+09], Top Braid Composer [Top09] and OWLSight [Gro09] have

also adopted them for explaining entailments in ontologies. In essence, over the

last few years, the use of justifications has advanced debugging and explana-

tion support for entailments in OWL ontologies from virtually nothing to being

respectable.

1.2 The Rise to Prominence of Justifications

Explanation has long been recognised as a key component in knowledge repre-

sentation systems [MPS98, BHGS01, Hor05, LBF+06]. One of the most promi-

nent early DL systems to feature an explanation component was the CLAS-

SIC [BBMR89] system, where explanation was recognised as being very impor-

tant for the usability of the system [MPS98]. In this early work, an explanation

was essentially regarded as a proof, or a fragment of a proof, which explained

how a reasoner proved that an entailment held in some ontology. In fact, there

was a general feeling that an explanation system had to be closely allied with

the reasoning system that proved entailments [McG96], and that proof based

explanations were essentially declarative views on the structural reasoning proce-

dures that were used at the time. This was a point of view that was maintained

when more expressive Description Logics, such as ALC [SSS91], which featured

sound and complete tableau-based reasoning procedures [BS01], started to come

to the fore. Indeed, the notion of proof-based explanations was defined for ALC
in [BFH00], extended and implemented in one form or another in [Kwo05] and

[LN04], and also relatively recently adapted to the DL-Lite [CLLR05] family of

CHAPTER 1. INTRODUCTION 18

Description Logics in [BCR08].

1.2.1 From Proofs to Justifications

While the ideas of proof based explanations in Description Logics are still around,

the years between 2003 and 2005 marked a turning point in explanation for De-

scription Logic and OWL based systems. Specifically, the fundamental idea of

what constituted an explanation completely changed. This paradigm shift was

centred around two seminal pieces of work: The first by Schlobach and Cor-

net [SC03] in 2003, and the second by Parsia, Kalyanpur et al. [PSK05] in 2005.

In [SC03], Schlobach and Cornet presented work on diagnosing and repairing

ontologies that contained unsatisfiable concepts. Their work, part of which turned

out to be closely related to early work by Baader and Hollunder [BH95], was mo-

tivated by the DICE ontology [dKAHC+99, dKBRJC08] which is a large Descrip-

tion Logic based ontology for intensive care. Most importantly, Schlobach and

Cornet introduced the notion of Minimal Unsatisfiable Preserving Sub-TBoxes

(MUPS). These are minimal subsets of an ontology that are sufficient for entail-

ing the unsatisfiability of a particular concept, and in essence are justifications

for unsatisfiable classes.

In 2004, the Web Ontology Language OWL became a W3C recommendation

(standard). However, people had already begun to build OWL ontologies before

this. First using early editors such as OilEd [BHGS01], which were originally built

for editing DAML+OIL [Hor02] ontologies—a precursor to OWL, and then using

early versions of Protégé-OWL and Swoop. During this time, despite earlier work

on proof based explanation, it became apparent that the tools and techniques for

debugging inconsistent ontologies, or ontologies containing unsatisfiable classes,

were non-existent. Ontology developers used trial and error to resolve problems,

essentially ripping out axioms from their ontologies until classes turned satisfiable

or the ontologies turned consistent. The only indications and debugging cues that

were available were error messages saying that an ontology was inconsistent, or

class names were painted in red to indicate that classes were unsatisfiable. It was

obvious to those in the area that some sort of automated debugging support was

desperately needed.

It was at this time that Parsia and Kalyanpur began to investigate tech-

niques for the debugging and repair of OWL ontologies. In [PSK05], and then

CHAPTER 1. INTRODUCTION 19

Figure 1.1: An example of justification presentation in Swoop

in subsequent publications [KPSH05, KPS05, KPSG06], they introduced vari-

ous important OWL ontology debugging techniques. Ultimately, Kalyanpur and

Parsia were responsible for seeing the value of justifications as explanation and

debugging devices and bringing justification based explanation to the masses in

Swoop [KPH05]. This work culminated in Kalyanpur’s PhD thesis [Kal06] which

brought the notions of justifications, root unsatisfiable classes1, and justification

based repair together and demonstrated the overwhelming benefit of justification-

based debugging support for repairing ontologies.

In the space of three years explanation had shifted from proof based ex-

planation to justification based explanation—gone were the inference rules and

steps that characterise proofs, along with the close tie to any particular proof

procedure—justifications had taken their place.

1.2.2 Justification Based Explanation Today

In years following both Schlobach’s and then Parsia and Kalyanpur’s work there

has been a huge interest in this area, and other researchers began to work on

methods and techniques for computing and working with justifications [LMPB06,

MLBP06, KK07, BPS07, BS08, KPHS07, Lam07]. Such was the demand for

explanation by people developing and working with ontologies, many of the major

ontology development environments began to offer justifications as a popular form

1A root unsatisfiable class is a concept name, in the signature of an ontology, whose unsatis-
fiability does not depend upon the unsatisfiability of some other concept name in the signature
of that ontology—see Definition 2 in Section 2.3.2 on Page 46

CHAPTER 1. INTRODUCTION 20

of explanation. Today, virtually all of the major open source OWL ontology

development tools, for example, Protégé-4 [KFNM04, HTR06], Swoop [KPH05]

(as shown in Figure 1.1), and The NeOn Toolkit [JHQ+09], along with some

commercial offerings such as Top Braid Composer [Top09] and OWLSight [Gro09]

all feature the ability to compute and display justifications.

While the primary use of justifications is still explanation, people are also

increasingly using them to get a feel of the “shape” of an ontology. In this case,

when people come across an arbitrary entailment, they request a justification for

the entailment so as to get a feel as to what kinds of axioms and constructs in

the ontology give rise to the entailment.

1.2.3 Justifications in Auxiliary Services

Justifications are also increasingly being used for purposes other than expla-

nation. For example, they are used for enriching ontologies [Sch05a], belief

base revision [HWKP06], scalable ABox reasoning [DFK+07], incremental rea-

soning [CHWK07], reasoner completeness testing [SCH10], meta-modelling sup-

port [GRV10], default reasoning [SdF+10] and elimination of redundant axioms

in ontologies [GW11]. There is plenty of evidence that they have utility within

the OWL and Description Logic communities beyond the starting point of expla-

nation.

1.2.4 Justifications in Other Fields

Finally, although Schlobach and Cornet were the first to introduce minimal en-

tailing sets of axioms as forms of explanation to the Description Logic community,

the same notion is also used in other communities. For example, minimal conflict

sets (MCSs) in the area of model based diagnosis [Rei87, HCK92] correspond to

justifications. Similarly, irreducible inconsistent systems (IISs) [Chi97] in the area

of linear programming also correspond to justifications. Lastly, the Propositional

Logic reasoning community use Minimal Unsatisfiable Sub-formulae (MUSes) for

explaining why a set of clauses is unsatisfiable [BS05].

In summary, justifications are a widely used form of explanation. They domi-

nate the current crop of tools and techniques for debugging and repairing ontolo-

gies, and they are widely used for purposes other than explanation.

CHAPTER 1. INTRODUCTION 21

1.3 Topics Covered in this Thesis

Despite the popularity of justifications as forms of explanation, there are several

unresolved issues with them. This thesis deals with three issues that are related

to each other and are outlined below. It should be noted that the related work

on each topic has been localised to the relevant chapters and the purpose of what

follows is to provide a flavour of what is to come.

1.3.1 Computing Justifications

The use of justifications in real applications depends on having practical algo-

rithms that perform well on realistic inputs. Indeed, much of the work presented

in this thesis, and the performance of tools that provide explanation support or

services which use justification finding under the hood, hinges on the ability to

compute justifications for entailments in real ontologies. The basic technique of

finding justifications for an entailment in a set of axioms is required over and

over again. Despite this, there is a lack of strong convincing evidence that shows

whether or not computing justifications for entailments in real ontologies is prac-

tical. Prior to the work presented here, testing has mainly focused on how one

optimisation performs over another and has typically been carried out on test-bed

ontologies with prototypical implementations. The work presented in Chapters

3–6 therefore focuses on computing justifications. It uses a large corpus of pub-

lished ontologies to thoroughly test robustly implemented justification finding

algorithms.

1.3.2 Justification Granularity

Justifications operate at the level of asserted axioms. That is, they are composed

of the statements that people write down in their ontologies. In many ontologies

axioms are built up of nested complex concepts and can be large with many parts.

This means that, as far as justifications are concerned, there can be parts of ax-

ioms that are superfluous for the entailment in question. These parts, superfluous

or otherwise, can cause various usability problems including problems associated

with understanding and problems associated with repair.

Justifications whose axioms do not contain any superfluous parts have been re-

ferred to as fine-grained justifications [LSPV08] and precise justifications [KPG06].

CHAPTER 1. INTRODUCTION 22

However, there is no definitive answer as to what a fine-grained or precise justi-

fication is. Indeed, there have been no thorough investigations into these kinds

of justifications, their properties and general methods of computing them. This

thesis therefore focuses on producing a formal definition of fine-grained justifi-

cations, methods of computing them, and an evaluation of these methods on a

large ontology corpus which reveals the fine-grained justification landscape.

1.3.3 Understanding Justifications

The last part of the thesis focuses on understanding justifications and looking

at mechanisms which can be used to make difficult justifications easier to un-

derstand. While the use of justifications is widespread, and most of the time

they seem to serve well as a form of explanation, there is anecdotal evidence to

suggest that some naturally occurring justifications can be difficult or impossi-

ble to understand. In essence, justifications are merely the premises of a proof

and, as such, do not articulate the sometimes non-obvious reasoning steps which

connect those premises with the conclusion. While it is seems unlikely that full

blown proofs are necessary, it does seem like it would be fruitful to explore the

issue of justification understanding and suggest mechanisms that could be used

to cope with difficult to understand justifications. This thesis therefore presents

several user studies that were carried out in order to investigate these issues, and

it takes a speculative look at potential mechanisms for coping with the problem

of justification understanding.

1.4 Contributions of this Thesis

In summary, justifications have become the dominant form of explanation in

OWL and in Description Logics. Therefore, the broad aims of this thesis are to

advance the state of the art in knowledge about computing justifications, intro-

duce definitions of fine-grained justifications and methods of computing them,

and to look at the explanatory power and understandability of justifications. In

doing this the thesis makes the following contributions:

1. It provides strong evidence in the form of a thorough empirical evaluation

which shows that computing all justifications for entailments in realistic

ontologies is practical.

CHAPTER 1. INTRODUCTION 23

2. It presents the first proper definition for fine-grained justifications and in-

troduces two new types of justifications: Laconic and Precise Justifications,

which avoid some of the problems associated with the level of granularity

of regular justifications.

3. It provides optimised algorithms for computing Laconic and Precise Jus-

tifications, and carries out a thorough evaluation which shows that it is

practical to compute all preferred Laconic Justifications for entailments in

realistic ontologies.

4. It provides strong evidence of need for Laconic and Precise Justifications in

the form of results which show that superfluity is common throughout real

ontologies, and highlights some of the issues with regular justifications due

to the fact that they do not pay attention to parts of axioms.

5. It examines the understandability of justifications and concludes that there

are naturally occurring justifications which are difficult or impossible for

many people, including those with a significant level of experience in OWL,

to understand.

6. It proposes a model for predicting the complexity of justifications and a

methodology for refining and evolving the model.

7. It proposes complexity model driven justification lemmatisation and justi-

fication oriented proofs as mechanisms for introducing helpful intermediate

inference steps into justifications that are difficult to understand.

1.5 Published Work

The work embodied in this thesis is supported by several workshop and conference

publications:

Chapters 3–6: Computing Justifications

• [KPHS07] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren

Sirin. Finding all justifications of OWL DL entailments. In Karl Aberer,

Key-Sun Choi, Natalya F. Noy, Guus Schreiber, and Riichiro Mizoguchi,

editors, The Semantic Web - 6th International Semantic Web Conference,

CHAPTER 1. INTRODUCTION 24

2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan,

Korea, November 11-15, 2007, volume 4825 of Lecture Notes in Computer

Science, pages 267–280. Springer, 2007

• [HPS09a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Computing

explanations for entailments in Description Logic based ontologies. In 16th

Automated Reasoning Workshop (ARW 2009), Liverpool, UK., 2009

• [HPS09b] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Explaining

inconsistencies in OWL ontologies. In Luis Godo and Andrea Pugliese,

editors, 3rd International Conference on Scalable Uncertainty Management

SUM 2009, September 28–30, 2009 Washington DC Area, USA, volume

5785 of Lecture Notes In Computer Science, pages 124–137. Springer, 2009

• [HPS11] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. The state of

biomedical ontologies. In BioOntologies 2011 Co-Located with ISMB 2011,

15th–16th July, Vienna Austria, 2011

Chapters 7–11: Laconic and Precise Justifications

• [HPS08b] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and

precise justifications in OWL. In Amit P. Sheth, Steffen Staab, Mike Dean,

Massimo Paolucci, Diana Maynard, Timothy W. Finin, and Krishnaprasad

Thirunarayan, editors, The Semantic Web – ISWC 2008, 7th International

Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-

30, 2008.ISWC 2008, volume 5318 of Lecture Notes In Computer Science,

pages 323–338. Springer, October 2008

• [HBPS08] Matthew Horridge, Johannes Bauer, Bijan Parsia, and Ulrike

Sattler. Understanding entailments in OWL. In Catherine Dolbear, Alan

Ruttenberg, and Ulrike Sattler, editors, Proceedings of the Fifth OWLED

Workshop on OWL: Experiences and Directions, collocated with the 7th In-

ternational Semantic Web Conference (ISWC-2008), Karlsruhe, Germany,

October 26-27, 2008, volume 432 of CEUR Workshop Proceedings. CEUR-

WS.org, October 2008

• [HPS10a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Justification

masking in OWL. In Grant Weddell, Volker Haarslev, and David Toman,

CHAPTER 1. INTRODUCTION 25

editors, Proceedings of the 23rd International Workshop on Description Log-

ics (DL 2010), Waterloo, Canada. May 4th–May 7th, 2010, 2010

Chapters 12–13: Understanding Justifications

• [HPS08a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Explanation

of OWL entailments in Protégé-4. In Christian Bizer and Anupam Joshi, ed-

itors, International Semantic Web Conference (Posters & Demos), volume

401 of CEUR Workshop Proceedings. CEUR-WS.org, October 2008

• [HPS09a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Computing

explanations for entailments in Description Logic based ontologies. In 16th

Automated Reasoning Workshop (ARW 2009), Liverpool, UK., 2009

• [HPS09d] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Lemmas

for justifications in OWL. In Bernardo Cuenca Grau, Ian Horrocks, Boris

Motik, and Ulrike Sattler, editors, Description Logics (DL 2009), volume

477 of CEUR Workshop Proceedings. CEUR-WS.org, July 2009

• [HPS09c] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. From justifi-

cations to proofs for entailments in OWL. In Rinke Hoekstra and Peter F.

Patel-Schneider, editors, Proceedings of the 5th International Workshop on

OWL: Experiences and Directions (OWLED 2009), Chantilly, VA, United

States, October 23-24, 2009, volume 529 of CEUR Workshop Proceedings.

CEUR-WS.org, 2009

• [HPS09c] Matthew Horridge and Bijan Parsia. From justifications towards

proofs for ontology engineering. In Fangzhen Lin, Ulrike Sattler, and Miroslaw

Truszczynski, editors, Principles of Knowledge Representation and Reason-

ing: Proceedings of the Twelfth International Conference, KR 2010, Toronto,

Ontario, Canada, May 9-13, 2010. AAAI Press, 2010

• [HPS10b] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Justification

oriented proofs in OWL. In Peter F. Patel-Schneider, Yue Pan, Pascal

Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Horrocks, and Birte Glimm,

editors, The Semantic Web - ISWC 2010 - 9th International Semantic Web

Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised

Selected Papers, Part I, volume 6496 of Lecture Notes In Computer Science,

pages 354–369. Springer, November 2010

CHAPTER 1. INTRODUCTION 26

• [HBPS11a] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike

Sattler. The cognitive complexity of OWL justifications. In Riccardo

Rosati, Sebastian Rudolph, and Michael Zakharyashev, editors, Proceed-

ings of the 24th International Workshop on Description Logics (DL2011),

Barcelona, Spain July 13–16, 2011, CEUR Workshop Proceedings. CEUR-

WS.org, July 2011

• [HBPS11b] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike

Sattler. The cognitive complexity of OWL justifications. In Christopher A.

Welty, Lora Aroyo, and Natalya F. Noy, editors, The Semantic Web -

ISWC 2011 - 10th International Semantic Web Conference, ISWC 2011,

Bonn, Germany, October 23-27, 2011, Lecture Notes In Computer Science.

Springer, 2011

Chapter 2

Preliminaries

This chapter introduces the nomenclature, key ideas and definitions that are

used in the following chapters. The work presented in this thesis focuses on jus-

tification based explanation techniques for entailments in ontologies written in

the SHOIQ [HS07] Description Logic. This is an expressive Description Logic

which is slightly more expressive than the SHOIN Description Logic that un-

derpins OWL, but not as expressive a SROIQ [HKS06] which underpins OWL

2 [MPSP09, CHM+08].

2.1 Basic Description Logics

Description Logics (DLs) are a family of logic based knowledge representation

languages [BCM+03]. Generally speaking, they are decidable fragments of First

Order Logic. Two features that distinguish them from First Order Logic are:

(1) There are usually practical decision procedures for key inference problems;

(2) They have their own special variable free syntax that is more concise than

First Order Logic syntax and is particularly geared towards providing high level

model primitives.

Concepts, Roles and Individuals

There are a large number of well studied DLs. Each of these is defined by the

modelling primitives that it admits. Whatever the full set of modelling primitives,

most DLs have the basic building blocks of concepts, roles and individuals :

• Concepts correspond to unary predicates in First Order Logic, and are

27

CHAPTER 2. PRELIMINARIES 28

used to describe classes of objects that share common properties and char-

acteristics. In OWL concepts are known as classes. Typical examples of

named concepts are Person, Father, Man and Woman. In this thesis, the

letters A and B, and X sometimes augmented with subscripts, are used to

denote concept names.

• Roles correspond to binary predicates in First Order Logic, and are used

to describe the relationships between objects. In OWL, roles are known

as properties. SHOIQ only supports binary roles, but some description

logics, for example DLR [CGL97], allow n-ary roles. Typical examples of

roles are hasChild, hasMother and hasParent. In this thesis the letters R and

S are used to denote roles.

• Individuals correspond to constants in First Order Logic, and are used to

represent single objects in the domain of interest. Examples of individuals

are Matthew, Manchester and TheUniversityOfManchester. Individuals are

said to be instances of classes. In this thesis, the lower case letters a, b and

o are used to denote individuals.

Complex Concepts

Description Logics allow complex concepts to be composed from other concepts.

This is done via the use of concept constructors. A given Description Logic sup-

ports a given set of concept constructors and is usually characterised by this

set. For example, the Description Logic ALC supports concept intersection (u),

concept union (t), concept negation (¬), existential quantification (∃) and uni-

versal quantification (∀). For example, the concept MotheruAirlinePilot describes

the individuals that are both instances of Mother and AirlinePilot. The concept

PrivatePilottAirlinePilot describes individuals that instances of PrivatePilot or Air-

linePilot (or both). The concept ¬Pilot describes the individuals that are instances

of the complement of Pilot i.e. not Pilot. The concept ∃hasSibling.AirlinePilot de-

scribes the individuals that have at least one hasSibling relationship to some in-

stance of the concept AirlinePilot. Finally, the concept ∀hasSibling.CommercialPilot

describes the individuals that either have no hasSibling relationships at all, or only

have hasSibling relationships to instances of CommercialPilot.

It is usually the case that, concepts can be nested to arbitrary levels, so

for example, the concept Person u (∃hasSister.(Pilot t Engineer)) describes the

CHAPTER 2. PRELIMINARIES 29

individuals that are instances of Person and have at least one hasSister relationship

to an individual that is either a Pilot or an Engineer (or both).

In this thesis, the letters C and D, possibly augmented with subscripts, are

used to denote possibly complex concepts.

Axioms

An axiom is a statement, that specifies how the concepts, roles and individuals in

the domain of interest relate to each other. At a high level, axioms are categorised

into TBox axioms, RBox axioms and ABox axioms.

• TBox axioms specify relationships between concepts, and are of the form

C v D, which is read as “C subclass of D”. They are known as General

Concept Inclusions (GCIs), concept subsumption axioms or subclass axioms

in OWL. For example, the axiom AirlinePilot v CommercialPilot states that

the concept AirlinePilot is a subconcept of CommercialPilot. That is, every

instance of AirlinePilot is also an instance of CommercialPilot. The axiom

AirlinePilot v ∃hasLicense.AirTransportPilotsLicense states that every in-

stance of AirlinePilot has an air transport pilot’s license. An abbreviation

for the pair of axioms C v D and D v C is C ≡ D, which reads as “C is

equivalent to D”.

• RBox axioms specify relationships between roles. The most basic RBox

axioms are of the formR v S, which reads as “R is a subrole of S”. They are

known as Role Inclusion Axioms, role subsumption axioms or sub-property

axioms in OWL. For example, the axiom hasSister v hasSibling states that

hasSister is a sub-role of hasSibling. That is, every pair of individuals in a

hasSister relationship is also in a hasSibling relationship.

• ABox axioms specify relationships between concepts and individuals, and

individuals and roles. The most basic ABox axioms are of the form C(a) and

R(a, b), which are known as concept assertions and role assertions respec-

tively. For example, AirlinePilot(John) states that the individual John is an

instance of the concept AirlinePilot. The ABox axiom hasSister(John, Mary)

states that John is related to Mary via the hasSister role.

The kinds of axioms available depend upon the description logic in question, but

most, if not all, Description Logics feature concept-subsumption axioms between

concept names (and possibly complex concepts).

CHAPTER 2. PRELIMINARIES 30

Constructor Syntax Example

Top concept >
Bottom concept ⊥
Complex concept negation ¬C ¬Human
Concept intersection C uD Mother u Pilot
Concept union C tD AirlinePilot t FighterPilot
Existential restriction ∃R.C ∃hasSibling.AirlinePilot
Universal restriction ∀R.C ∀hasSibling.FighterPilot

Table 2.1: ALC concept constructors and examples

2.1.1 The ALC Description Logic

As mentioned previously, a particular Description Logic is characterised by the

concept constructors, role constructors and types of axioms that it admits. One

of the first Description Logics to be studied in depth, and which is regarded as a

prototypical Description Logic, is ALC [SSS91].

ALC supports concept intersection (u), concept union (t), negation of com-

plex concepts (¬), existential restriction (∃) and universal restriction (∀). For a

concept name A, and a role name R, ALC concepts are defined as follows, where

C and D are themselves ALC concepts,

> | ⊥ | A | C uD | C tD | ¬C | ∃R.C | ∀R.C

The names and syntax of ALC concepts, along with examples are shown in Ta-

ble 2.1. ALC axioms are either concept subsumption axioms of the form C v D,

concept equivalence axioms of the form C ≡ D, where C and D are ALC con-

cepts, or individual assertions of the form C(a) or R(a, b), where C is an ALC
concept and a and b are individuals.

Two Description Logics that are slightly less expressive than ALC are ob-

tained by restricting the kinds of concept constructors allowed. The first, FL− is

obtained from ALC by restricting negation so that it can only appear in front of

concept names. The second, FL0 is obtained by further restricting FL− so that

existential quantification only ranges over >, i.e. ∃R.>.

Both FL− and FL0 can be thought of as being derived from the same based

of constructors as ALC. That is, both of these Description Logics contain the

universal restriction concept constructor (∀). This is mainly due to historical

reasons. When researchers began to design DLs for knowledge representation they

CHAPTER 2. PRELIMINARIES 31

were influenced by early frame-based systems [Min75]. The universal restriction

most closely corresponds to the intended semantics of slots and properties in

the record like frame structures of frame based systems. However, during the

last decade it was observed that many of the very large medical terminologies,

such as SNOMED [SC97], the GENE ontology [ABB+00], and GALEN [RNG93]

which is written in the GRAIL Description Logic [RBG+97], use existential (∃)
restrictions rather than universal restrictions. It was also observed that these

styles of ontologies did not feature the kinds of non-determinism introduced by

concept constructors such as concept-union (t). Out of these observations, the

EL Description Logic [Bra04] was designed. EL features concept intersection

and existential restrictions. This description logic is referred to as a lightweight

DL as key reasoning tasks can be performed in polynomial time with the size of

the input. Two extensions to EL are EL+ [BLS06b] and EL++ [BBL05], which

increase the expressivity of EL while preserving the polynomial runtime behaviour

of key reasoning tasks.

2.1.2 Highly Expressive Description Logics

By adding further modelling primitives (axiom types and complex concept con-

structors) to ALC, Description Logics of higher expressivity are obtained, leading

to the highly expressive Description Logic SHOIN , which underpins OWL 1,

the even more expressive Description Logic SROIQ, which underpins OWL 2,

and the Description Logic SHOIQ, which falls between SHOIN and SROIQ.

The names of Description Logics, which are drawn in a calligraphic font, give an

idea as to the concept and role constructors that they support. For example,

• Inverse Roles (I) — Inverse roles make it possible to refer to roles in both

directions. For example, the hasMother− refers to the inverse of hasMother.

If hasMother(Jean,Maggie), then hasMother−(Maggie, Jean).

• Role Hierarchy (H) — A role subsumption axiom specifies that one role

is a sub-role of another role. For example, hasSister v hasSibling specifies

that hasSister is a sub-role of hasSibling. If hasSister(John,Mary) then this

implies hasSibling(John,Mary).

• Transitive Roles (R+) — Transitive roles make it possible to describe

the situation where a chain along a given role implies that role itself. For

CHAPTER 2. PRELIMINARIES 32

example, if hasAncestor is transitive, then if hasAncestor(Gemma, Jean) and

hasAncestor(Jean, Maggie) then this implies hasAncestor(Gemma, Maggie).

• Number Restrictions (N) — With number restrictions it is possible to

count the number of role successors and predecessors for individuals. For

example ≥ 4hasSibling is a concept that describes the individuals that have

at least four hasSibling role successors. Similarly, ≤ 3hasSibling is a concept

describes the individuals that have at most three hasSibling role successors.

• Functional Roles (F) — A functional role states that for a given individ-

ual, a role can have no more than one value. For example, if an ABox con-

tains the assertions hasMother(Jean, Peggy) and hasMother(Jean, Margaret),

and the corresponding TBox contains > v ≤ 1hasMother, which states that

hasMother is functional, then it will be entailed that Peggy and Margaret

are the same individual.

• Nominals (O) — Nominals make it possible to construct singleton classes,

which are classes that only have one individual as an instance. For exam-

ple, {Airbus} is a class that only has one instance, namely Airbus. When

combined with concept union, it is possible to use nominals to enumerate

the members of a class. For example, { Airbus } t { Boeing } is a concept

with two instances and could be used to denote aircraft manufactures.

• Qualified Number Restrictions (Q) — Qualified number restrictions

are a more expressive form of number restrictions, which in contrast to

plain number restrictions (N) allow fillers of restrictions to be specified.

For example ≥ 4 hasSibling.Brother specifies the class of individuals that

have at least four hasSibling role successors to instances of Brother.

The letters which denote the various modelling primitives in a Description Logic

are combined with each other to form the name of the Description Logic in

question. For example, adding transitive roles to ALC gives ALC+, which is

abbreviated to S [Sat96]1. Adding role hierarchy and inverse roles to S gives

SHI [HST00]. Adding number restrictions and nominals to SHI results in

SHOIN , which underpins OWL 1. An useful extension to SHOIN is ob-

tained by replacing cardinality restrictions with qualified cardinality restrictions

to give SHOIQ [HS07]. Finally adding complex role inclusion axioms, and some

1The abbreviation to S comes from the field of modal logic.

CHAPTER 2. PRELIMINARIES 33

other features such as reflexive roles, to SHOIQ gives SROIQ, which underpins

OWL 2.

2.1.3 The Syntax and Semantics of SHOIQ
This thesis focuses on the highly expressive Description Logic SHOIQ, whose

syntax and semantics are presented below.

SHOIQ Syntax

Let NR be a set of role names. The set of SHOIQ roles is NR ∪{R− | R ∈ NR}.
For SHOIQ roles R and S, a SHOIQ role box consists of a finite set of role

inclusion axioms of the form R v S and role equivalence axioms of the form

R ≡ S (where R ≡ S is an abbreviation for R v S and S v R), and a finite set

of role assertions of the form trans(R), which asserts a role to be transitive. A

role hierarchy is a finite set of role inclusion axioms.

Next, it is necessary to introduce the notion of a simple and non-simple roles.

Again, full details may be found in [HS07], but intuitively, a role is non-simple

if it is implied by a transitive role (via the reflexive transitive closure of the role

hierarchy). For example, the axioms {trans(R), R v T, T v P−} make the roles

R, R−, T , T−, P− and P non-simple. Roles are that are not non-simple are

simple.

Let NC be a set of concept names, and NI be a set of individual names. The

set of SHOIQ concepts is the smallest set such that

• every concept name A ∈ NC , > and ⊥ are concepts

• every nominal name {o} for o ∈ NI is a concept

• if C and D are concepts, and R is a (possibly inverse) role, then C u D,

C tD, ¬C, ∀R.C, ∃R.C, are also concepts.

• if C is a concept, and R is a simple (possibly inverse) role, then ≥ nS.C

and ≤ nS.C are also concepts.

A SHOIQ ontology is a tuple O = 〈T ,A,R〉 where T is a TBox, R is an

RBox and A is an ABox. A SHOIQ TBox is a finite set of general concept

inclusion axioms (GCIs) of the form C v D, and general concept equivalence

axioms of the form C ≡ D where C and D are SHOIQ concepts and C ≡ D is

CHAPTER 2. PRELIMINARIES 34

an abbreviation for C v D and D v C. A SHOIQ RBox is as described above.

A SHOIQ ABox is a finite set of concept and role assertions of the form C(a)

and R(a, b) respectively, where C is a SHOIQ concept, R is role name in NR,

and a and b are individuals in NI .

Abbreviations

It should be noted that SHOIQ syntax contains several abbreviations, and OWL

itself contains a significant amount of syntactic sugar, which are given below:

Constructor(s) Abbreviation

disjoint(C,D) C v ¬D
domain(R,C) ∃R.> v C

range(R,C) > v ∀R.C
functional(R) > v ≤ 1R

inversefunctional(R) > v ≤ 1R−

symmetric(R) R ≡ R−

inverses(R, S) R ≡ S−

= nR.C ≥ nR.C u ≤ nR.C

{o1, . . . , on} {o1} t · · · t {on}

In addition, OWL permits the use of n-ary concept intersection, i.e. C1u· · ·u
Cn and n-ary concept union, i.e. C1 t · · · t Cn.

SHOIQ Semantics

The model-theoretic semantics of SHOIQ is specified using interpretations. An

interpretation explicates the relationship between syntax and semantics, and is

a binary tuple 〈∆I , ·I〉, where ∆I is a non-empty set of objects called the in-

terpretation domain, and ·I is a function called the interpretation function. The

interpretation function ·I maps each concept name A into a subset AI of ∆I ,

maps each role name R into a subset RI of ∆I ×∆I , and maps each individual

name a into an element aI of ∆I .

Given an interpretation I = 〈∆I , ·I〉, concepts C and D, and a role name R,

CHAPTER 2. PRELIMINARIES 35

the interpretation for SHOIQ concepts is defined defined as follows:

>I := ∆I

⊥I := ∅
(¬C)I := ∆I \ CI

(C uD)I := CI ∩DI
(C tD)I := CI ∪DI
(∃R.C)I := {x | ∃y.I〈x, y〉 ∈ RI ∧ y ∈ CI}
(∀R.C)I := {x | ∀y.I〈x, y〉 ∈ RI → y ∈ CI}

(≥ nR.C)I := {x | |{y.〈x, y〉 ∈ RI ∧ y ∈ CI}| ≥ n}
(≤ nR.C)I := {x | |{y.〈x, y〉 ∈ RI ∧ y ∈ CI}| ≤ n}

The interpretation function for SHOIQ roles is defined as

(R−)I := {〈y, x〉 | 〈x, y〉 ∈ RI}

An interpretation I satisfies a SHOIQ axiom (written I |= α for an arbitrary

axiom α) as follows:

I |= C v D if CI ⊆ DI

I |= R v S if RI ⊆ SI

I |= trans(R) if ∀x, y, z, 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI then 〈x, z〉 ∈ RI
I |= C(a) if aI ∈ CI
I |= R(a, b) if 〈aI , bI〉 ∈ RI

If an interpretation I satisfies an axiom α (I |= α) then I is known as a model

of α (I is said to be a model α). An interpretation I satisfies (is a model of) an

ontology, written I |= O, if I satisfies (is a model of) every axiom in O.

Entailment An axiom α is entailed by an ontology O, written O |= α (O
entails α), if I |= α for every model I of O. In particular, a concept C is

CHAPTER 2. PRELIMINARIES 36

subsumed by a concept D (D subsumes C), with respect to an ontology O, if

CI ⊆ DI in every model I of O. An individual a is an instance of a class C,

written C(a), with respect to O if aI ∈ CI for every model I of O. A set of

axioms S is entailed by an ontology O, written O |= S if O |= α for every α ∈ S.

An axiom α′ is entailed by another axiom α, written α |= α′ if I |= α′ for every

model I of α. An ontology does not entail an axiom α, written O 6|= α if there

exists a model I of O where I 6|= α. An ontology does not entail a set of axioms

S if there is an α ∈ S such that O 6|= α. An axiom α does not entail another

axiom α′ if there is a model I of α where I 6|= α′.

Satisfiability A concept C is unsatisfiable with respect to an ontology O if

CI = ∅ in every model I of O. In this case O |= C v ⊥. Conversely, a concept

C is satisfiable with respect to O, if there exists a model I of O where CI 6= ∅.

Consistency An ontology O is consistent if there exists a model I of O. An

ontology O is inconsistent if there is no model I of O (there is no interpretation I
of O that satisfies every axiom in O). In this case, O |= > v ⊥. An inconsistent

ontology entails everything. The effect of this is that, using standard classic

semantics, no meaningful conclusions can be drawn from an inconsistent ontology.

Axiom Strength and Deductive Closures

Using the notion of entailment, it is possible to talk about axiom strength and

the deductive closure of an ontology. It should be noted that these definitions are

quite general and are not specific to SHOIQ.

Axiom Strength An axiom α′ is said to be weaker than another axiom, α if

α |= α′ but α′ 6|= α. In this case, α is also said to be stronger than α′. For example,

A v ∃R.C |= A v ∃R.>, but A v ∃R.> 6|= A v ∃R.C, and so A v ∃R.> is

weaker than A v ∃R.C. The same notion is applicable to sets of axioms. A set

of axioms S ′ is weaker than a set of axioms S if S |= S ′, but S ′ 6|= S.

Deductive Closures Given an ontology, O, and a description logic L the

deductive closure of O, is written as O?L, where O?L = {α ∈ L | O |= α}. In other

words the deductive closure contains all well formed L-axioms that are entailed

CHAPTER 2. PRELIMINARIES 37

by the ontology O. When it is clear from the context, the subscript L is usually

dropped.

2.1.4 Key Reasoning Tasks

In the context of Description Logics, reasoning is the process used to determine

the entailments that follow from an ontology. In the DL world there are several,

so called, “standard” reasoning tasks which are described below.

Consistency Checking Given an ontology O as an input, is O consistent? i.e.

is there at least one model I of O.

Satisfiability Checking Given an ontology O and a class expression C, is C

satisfiable with respect to O (O 6|= C v ⊥)? i.e, is it the case that CI 6= ∅ in

some model I of O?

Subsumption Testing Given an ontology O and two class expressions C and

D, is it the case that C v D with respect to O (O |= C v D)? i.e., is it the case

that CI ⊆ DI in every model I of O?

Instance Checking Given an ontology O, a class expression C and an indi-

vidual a, is it the case that a is an instance of C with respect O (O |= C(a)).

i.e., is the case that aI ∈ CI for every model I of O?

Reduction to Consistency Checking Consistency checking can be regarded

as the main standard reasoning service. In practice, for logics such as SHOIQ,

where it is possible to have inconsistent ontologies, consistency checking is per-

formed before any other reasoning. Moreover, for SHOIQ ontologies, the three

other standard reasoning services are reducible to consistency checking: A con-

cept C is unsatisfiable with respect to O if and only if O∪{C(x)} is inconsistent

for some fresh individual name x; A concept C is subsumed by D (C v D) with

respect to O if and only if O ∪ {(C u ¬D)(x)} is inconsistent for some fresh

individual name x, and; An individual a is an instance of a concept C if and only

if O ∪ {¬C(a)} is inconsistent.

CHAPTER 2. PRELIMINARIES 38

2.1.5 Structural Notions

This thesis uses several standard syntactic and structural notions which are de-

fined below.

Signature The signature of a (complex) concept, axiom, or set of axioms is the

set of concept, role, and individual names appearing in the (complex) concept,

axiom, or set of axioms. signature(X) denotes the signature of X where X is either

a concept, axiom, or set of axioms. For example, consider the ontology O = {A v
∃R−.C,B v ∀S.D}. The signature of O (signature(O)) is {A,R,C,B, S,D}. It

should be noted that the signature of a concept, axiom or set of axioms does not

contain the concepts > or ⊥.

Subconcepts A concept C is a subconcept of D if C syntactically occurs in D.

For example, the concept ¬(A u ∃R.C), contains the subconcepts A u ∃R.C, A,

∃R.C and C.

Position A position is a finite sequence of integers written as i1.i2.in. The

empty position is written as ε. The position p of a concept, role, or individual in

an axiom α is written as α|p. Similarly, the position p of a subconcept, role, or

individual in a concept C is written as C|p. The positions of subconcepts, roles

and individuals in SHOIQ axioms or concepts is recursively defined in Table

2.2. For an example of positions involving complex concepts consider

α = A v ∃R.(C uD)

which contains the following positions α|1 = A, α|2 = ∃R.(C u D), α|2.1 = R,

α|2.2 = C uD, α|2.2.1 = C and α|2.2.2 = D. A substitution of one subconcept at

a position p with another concept C in an axiom α is written as α[C]p. Taking

the example above, α[>]2.2 = A v ∃R.>.

Polarity The polarity [Mur82] of a concept C at position p in an axiom or

concept is defined recursively in Table 2.2. Notice how the polarity of nested

subconcepts within negation and maximum cardinality restrictions “flips” from

the polarity immediately outside the negation or filler. For an example of polarity

consider

α = A v B u ¬(∃R.Ct ≤ nR.¬D)

CHAPTER 2. PRELIMINARIES 39

Table 2.2: Sub-Term Position and Polarity

Term Term Label Positions Polarity

C v D α α|1 = C polarity(α|1) = −
α|2 = D polarity(α|2) = +

C(a) α α|1 = C polarity(α|1) = +
α|2 = a

D u E or D t E C C|1 = D polarity(C1) = polarity(C)
C|2 = E polarity(C2) = polarity(C)

¬D C C|1 = D polarity(C1) = −polarity(C)

∃R.D or ∀R.D C C|1 = R
C|2 = D polarity(C|2) = polarity(C)

≥ nR.D C C|1 = n
C|2 = R
C|3 = D polarity(C|3) = polarity(C)

≤ nR.D C C|1 = n
C|2 = R
C|3 = D polarity(C|3) = −polarity(C)

{o} C C|1 = o

the polarity of some subconcept occurrences is

polarity(α|1 = A) = −
polarity(α|2.1 = B) = +

polarity(α|2.2.1 = (∃R.C t ≤ nR.¬D)) = −
polarity(α|2.2.1.2.3 = ¬D) = +

Structural Equality For any concepts C and D the concept C uD is struc-

turally equivalent to the concept DuC. In other words, the order of operands is

not important when it comes to structural equality. Similarly, the concept C tD
is structurally equivalent to the concept D tC. This means that A v B u ∃R.C
is considered to be a repetition of A v ∃R.C u B and vice-versa. This notion of

CHAPTER 2. PRELIMINARIES 40

structural equality is borrowed from the OWL 2 Web Ontology Language Struc-

tural Specification and Functional-Style Syntax [MPSP09].

2.2 Reasoning

As mentioned previously, reasoning is the procedure used to determine whether

or not an axiom is entailed by a set of axioms. Entailment checking in SHOIQ
(which can be reduced to ontology consistency checking) is decidable [HS07],

which means that an entailment checking procedure will terminate after a finite

amount of time with a “yes” or “no” answer.

Tableau Algorithms Tableau algorithms [BS01] are a common kind of algo-

rithm for reasoning in the area of Description Logics. Implementations of them

are found in many highly optimised OWL reasoners such as FaCT++ [TH06],

Pellet [SPG+07] and Racer [HM01]. In order to determine whether an input

ontology O = 〈T ,A,R〉 is consistent or not a tableau algorithm attempts to

build a (representation of a) model of O. If the algorithm succeeds in building a

model of O then it answers “yes” (consistent). If the algorithm fails to build a

model of O then it answers “no” (inconsistent). Since subsumption checking and

satisfiability checking can be reduced to consistency checking, to check whether

O |= C v D, a tableau reasoner will check whether O′ = O ∪ {(C u ¬D)(x0)},
where x0 is a fresh individual name, is consistent. If the reasoner finds O′ to be

inconsistent, then O |= C v D.

Given an input ontology O, the basic idea behind a tableau algorithm is to

produce a finite representation of a model (producing a series of partial repre-

sentations of the model along the way). The representation is a set of ABoxes,

written as {A1, . . . ,An}, where the assertions in each ABox represent constraints

on the associated model. For example, if a must be an instance of C in the model

then the representative ABox contains a concept assertion C(a). In ALC, and

other languages that have non-determinism built in, a set of ABoxes is gener-

ated by a tableau algorithm because each ABox represents a choice point in the

construction of a model. For example, given (C t D)(a), one class of models

exists where a is an instance of C, thus one ABox would contain the assertion

C(a), and another ABox would contain the assertion D(a) to represent a being

an instance of D in the other class of models. Ultimately, each generated ABox

CHAPTER 2. PRELIMINARIES 41

Table 2.3: Tableau Rules for ALC Concept Satisfiability

Rule Condition and Action

u-rule If (C uD)(x) ∈ A but C(x) 6∈ A and C(x) 6∈ A
then A′ ← A∪ {C(x), D(x)}

t-rule If (C tD)(x) ∈ A but C(x) 6∈ A or C(x) 6∈ A
then A′ ← A∪ {C(x)} and A′′ ← A ∪ {D(x)}

∃-rule If (∃R.C)(x) ∈ A but R(x, y) 6∈ A and C(y) 6∈ A for some y
then A′ ← A∪ {R(x, y), C(y)}

∀-rule If ∀R.C(x) ∈ A and R(x, y) ∈ A but C(y) 6∈ A then
then A′ ← A∪ {C(y)}

contains assertions that are derived by the recursive and exhaustive application

of a set of tableau rules. For any given language L, such as SHOIQ, there is a

set of tableau rules that is defined. Generally, there is one tableau rule per class

constructor, with each rule reflecting the semantics of the constructor. Notice

how each rule consists of a precondition and an action, where the action is only

applied if each precondition is met. The tableau rules for ALC [SSS91] are shown

in Table 2.3. For a set of ABoxes S, the application of a rule on an ABox A
results in the replacement of A with a new ABox A′, or the the replacement of A
with two new ABoxes A′ and A′′. In both cases, A′ and A′′ are supersets of A.

A Tableau Algorithm for ALC Concept Satisfiability In order to illustrate

the main ideas behind tableau algorithms, a tableau algorithm for ALC concept

satisfiability, i.e. satisfiability of concepts with respect to an empty TBox, is

presented below. Satisfiability with respect to a TBox is briefly discussed later.

In order to test the satisfiability of a concept C the ALC concept satisfiability

tableau algorithm begins by initialising a set of ABoxes S with a single ABox A
that contains a single assertion C(x). Next, the algorithm proceeds to expand

A and S by exhaustive application of the tableau rules shown in Table 2.3. The

tableau algorithm terminates when no more rules can be applied, or when all

ABoxes {A1, . . . ,An} ⊆ S contain a clash. For ALC, a clash is of the form

Ai = {. . . , A(x),¬A(x), . . . } or {. . . ,⊥(x)} for some individual x. Every ABox

Ai ∈ {A1, . . . ,An} contains at least one clash if and only if A is inconsistent.

As an example consider the concept (∃R.Bu∀R.(¬BtE)), which is satisfiable.

CHAPTER 2. PRELIMINARIES 42

The algorithm first initialises the set of ABoxes to

S =
{ A1 = {(∃R.B u ∀R.(¬B t E))(x)} }

Next, it applies the u-rule, since the initialised ABox contains a top-level con-

junction. This gives

S =
{ A1 = { (∃R.B u ∀R.(¬B t E))(x)

(∃R.B)(x)

(∀R.(¬B t E))(x) } }
Next, the ∃-rule is applied and A1 is extended so that

S =
{ A1 = { (∃R.B u ∀R.(¬B t E))(x)

(∃R.B)(x)

(∀R.(¬B t E))(x)

R(x, y)

B(y) } }
The ∀-rule is then applied to give

S =
{ A1 = { (∃R.B u ∀R.(¬B t E))(x)

(∃R.B)(x)

(∀R.(¬B t E))(x)

R(x, y)

B(y)

(¬B t E)(y) } }
Finally, the t-rule is applied. The non-determinism, or choice, aspect of this rule

causes A1 to be replaced with two ABoxes A2 and A3. Each reflecting the choice

CHAPTER 2. PRELIMINARIES 43

in that y can be an instance of ¬B or it can be an instance of E.

S =
{ A2 = { (∃R.B u ∀R.(¬B t E))(x)

(∃R.B)(x)

(∀R.(¬B t E))(x)

R(x, y)

B(y)

(¬B t E)(y)

(¬B)(y) }

A3 = { (∃R.B u ∀R.(¬B t E))(x)

(∃R.B)(x)

(∀R.(¬B t E))(x)

R(x, y)

B(y)

(¬B t E)(y) }
E(y)} }

At this stage no more rules can be applied to any of the ABoxes in S. The

algorithm checks the ABoxes to see if there is at least one of them that does not

contain a clash. In this case, the ABox A2 does contain a clash, but the ABox

A3 does not contain a clash. Therefore there is complete and clash free ABox

and the algorithm returns “true” i.e. it is possible for there to be a model of the

input concept where it is not interpreted as the empty set, so the input concept

is satisfiable.

Dealing with TBox Axioms The above tableau algorithm for ALC concept

satisfiability can be extended into an algorithm for testing satisfiability with re-

spect to a TBox T by adding extra tableau rules and, for cyclic TBoxes, blocking

conditions. In order to deal with concept inclusion axioms in a TBox, the two

rules shown in Table 2.4 need to be added. The first rule (v1-rule) is an “un-

folding” rule that performs lazy unfolding [Hor97] for concept inclusion axioms

of the form A v C (i.e. where A is a concept name). The second rule (v2-rule)

CHAPTER 2. PRELIMINARIES 44

deals with general concept inclusion axioms of the form C v D, where the sub-

class is a complex concept. It is not possible to perform unfolding on complex

concepts and so this rule adds the assertion (¬C t D)(x) for every individual

x in an ABox (which reflects the semantics of subsumption). In the presence

of a TBox that contains general concept inclusion axioms or cycles the tableau

algorithm, as it is, may not terminate. To see why this is the case, consider the

cyclic TBox T = {A v ∃R.A} (the TBox {> v ∃R.A would also suffice). To test

the satisfiability of A, the algorithm begins with

S =
{ A = {(A)(x)} }

Next, it applies the unfolding rule (v1-rule) to A(x) to give

S =
{ A = {(A)(x)

(∃R.A)(x)} }
This is followed by the ∃-rule to give

S =
{ A = {(A)(x)

(∃R.A)(x)

R(x, y)

A(y)} }
Notice that a fresh individual y has been generated, which is also an instance of

A. The three steps above get repeated for A(y), which generates another fresh

individual that is an instance of A and the process repeats for ever.

To get around the non-termination problem it is necessary to introduce the

notion of blocking. Intuitively, individuals in an ABox can become blocked so that

generating tableau rules (rules which introduce fresh individuals into an ABox)

do not apply to them. Restricting rule application in this way means that cycles

like the one above do not cause infinite rule application, and the termination

property of the algorithm is regained. In ALC, a form of blocking known as

subset blocking is used. First is necessary to introduce the notion of a blocked

individual: An individual y is blocked by an individual x (where x 6= y) in an

ABox A if {D | D(y) ∈ A} ⊆ {D | D(x) ∈ A}. Next, the generating ∃-rule

is modified to ensure that the rule is not applicable to an individual x if it is a

CHAPTER 2. PRELIMINARIES 45

Table 2.4: Unfolding Rules for ALC Concept Satisfiability

Rule Condition and Action

v1-rule If A(x) ∈ A and A v C ∈ T and C(x) 6∈ A
then A′ ← A∪ {C(x)}

v2-rule If C v D ∈ T and (¬C tD)(x) 6∈ A
then A′ ← A∪ {(¬C tD)(x)}

blocked individual.

Tableau Algorithms for More Expressive Logics Tableau algorithms for

more expressive logics can be obtained by adding extra tableau rules and replacing

simple subset blocking with more elaborate blocking strategies.

2.3 Justifications

A justification [Kal06, BH95, SC03] for an entailment in an ontology is a minimal

subset of the ontology that is sufficient for the entailment to hold. The justifica-

tion is a minimal subset in that the entailment in question does not follow from

any proper subset of the justification. More precisely,

Definition 1 (Justification). J is a justification for O |= η if J ⊆ O, J |= η,

and for all J ′ (J it is the case that J ′ 6|= η.

Justifications and their variants have also been known by other names. In

particular, MUPS [SC03] and MinAs [Sun09].

2.3.1 The Number of Justifications for an Entailment

In work by Baader et al. [BPS07] it was shown that, even for very inexpressive

ontology languages, the number of justifications for an entailment in an ontology

can be exponential in the size of the ontology. Consider the following ontology

O = {Ai−1 v Bi u Ci, Bi v Ai, Ci v Ai | 1 ≤ i ≤ n}

For all n ≥ 1, the size of O is linear in n. Now consider the justifications for

O |= A0 v An. There are 2n justifications for this entailment with respect to O.

CHAPTER 2. PRELIMINARIES 46

A0 v B1 u C1

B1 v A1

A1 v B2 u C2

B2 v A2 C2 v A2

C1 v A1

A1 v B2 u C2

B2 v A2 C2 v A2

Figure 2.1: The number of justifications can be exponential in the size of the
ontology. Each path through the tree above represents a justification for the
entailment A0 v A2 in the ontology O = {Ai−1 v Bi u Ci, Bi v Ai, Ci v
Ai | 1 ≤ i ≤ n} for n = 2. O grows linearly in the size of n, but the number of
justifications for Ai−1 v An is 2n

This is due to the fact that, as depicted in Figure 2.1, for each i(1 ≤ i ≤ n) there

is a binary choice of which axiom to include in a justification.

The above example uses explicit conjunction to illustrate how there can be an

exponential number of justifications for an entailment in an ontology. However,

the example works just as well without explicit conjunctions:

O = {Ai−1 v Bi, Ai−1 v Ci, Bi v Ai, Ci v Ai | 1 ≤ i ≤ n}

This illustrates the point that there can be an exponential number of justifications

in an ontology containing only subsumption between concept names that is built

from a weak ontology language such as RDF Schema (RDFS) [BG09].

2.3.2 Root and Derived Unsatisfiable Classes

In his thesis [Kal06], Kalyanpur introduced the notion of root unsatisfiable classes

and derived unsatisfiable classes. Intuitively, given an ontology O, whose signa-

ture contains unsatisfiable concept names, a root unsatisfiable class is a concept

name in the signature of O whose unsatisfiability does not depend on the unsatis-

fiability of any other concept name in the signature of O. A derived unsatisfiable

CHAPTER 2. PRELIMINARIES 47

class is a concept name in the signature of O whose unsatisfiability depends on

the unsatisfiability of some other concept in the signature of O. More precisely,

Definition 2 (Root/Derived Unsatisfiable Classes). Given an ontology O where

O |= A v ⊥, A is a derived unsatisfiable class if there exists some other

class B in the signature of O, where A 6= B, such that O |= B v ⊥ and there is

a justification JA with respect to O for O |= A v ⊥ and another justification JB
with respect to O for O |= B v ⊥ such that JA (JB. Any unsatisfiable concept

name in the signature of O which is not a derived unsatisfiable class is a root

unsatisfiable class.

2.3.3 Justification Based Repair

Given the set of all justifications {J1, . . . ,Jn} for an entailment η in an ontology

O it is possible to to use them to break η and repair O so thatO 6|= η. This is done

by choosing one axiom from each justification Ji ∈ {J1, . . . ,Jn} (1 ≤ i ≤ n) and

removing these axioms from O. Since each justification is a minimally entailing

set of axioms, removing these axioms from O must break the entailment. The

set of axioms R which is made up of one axiom from each justification is known

as a repair. Definition 3 makes the notion of a repair more precise.

Definition 3 (Repair). Given O |= η, the set of axioms R is a repair for η in O
if R ⊆ O, O \R 6|= η and there is no R′ (R such that O \R′ 6|= η.

The smallest set of axioms that is a repair is known as a cardinality minimal

repair. More precisely,

Definition 4 (Cardinality Minimal Repair). Given for O |= η, the set of axioms

R is a cardinality minimal repair if R is a repair for η in O and there is no other

repair R′ for η in O such that |R′| < |R|.

2.4 Ontology Modularisation

In recent years, there has been a significant amount of research effort spent on

studying ontology modularisation. Various notions of modularity have been de-

fined, and the properties of the modules that they give rise to have been inves-

tigated in depth. In the most general sense, a module M of an ontology O is

simply a well defined subset of O that has some desirable properties. Roughly

CHAPTER 2. PRELIMINARIES 48

speaking, there are two broad notions of modularity, syntactic based modularity

and semantic based modularity. Syntactic based approaches such as the one used

in the Protégé PROMPT tool suite [NM03], or the one used by Rector and Sei-

denberg to extract modules from SNOMED [SR06], only take into consideration

the shared signature between axioms in an ontology when extracting a module

from that ontology—they do not pay attention to the semantics of the language.

In general, their goal is to extract a small portion of an ontology that is useful

for some purpose. Purely syntactic approaches make no guarantee of producing

modules that preserve certain classes of entailments from original ontology. In

contrast, semantic based approaches [CHKS07, Sun09] pay attention to the se-

mantics of the language, and produce modules that preserve classes of entailments

that hold in the original ontology. For example, a subsumption-module [Sun09]

M for an ontology O and a concept name A is a subset of O which is guaranteed

to preserve all atomic subsumptions of the form A v B that hold with respect

to O for any concept name B in the signature of O. Similarly, a locality based

module [CHKS07] M⊆ O for some ontology O and signature Σ ⊆ signature(O)

is guaranteed to preserve all entailments α that can be built from entities in Σ

which hold in O.

2.4.1 Modularisation and Justifications

With regards to justification finding, the basic idea is that rather than computing

justifications with respect to some ontology O, justifications are computed with

respect to a module of O for some entailment η (or signature of η). The hope

is that M is “much” smaller than O, that it can be efficiently computed (in

polynomial time in the size of O) meaning it provides a smaller search space in

comparison to O, and that it also offers the possibility of a boost in entailment

checking performance.

Obviously, given O |= η and a module M ⊆ O for η (or the signature of η),

which is guaranteed to preserve η, i.e. M |= η, there are two possibilities: (1)

M contains at least one justification for η with respect to O; or (2) M contains

all justifications for η with respect to O. Most research has focused on the later

possibility, and their are various types of modules for various languages that are

guaranteed to contain all justifications for an entailment. For example, strong

subsumption modules [BS08] and their various implementations (e.g. reachability

based modules [Sun09], and bi-directional reachability-based modules [NBM09]),

CHAPTER 2. PRELIMINARIES 49

or syntactic locality based modules [CHKS07], which were shown to be deplet-

ing [SSZ09], meaning that they contain all justifications for a given entailment.

2.4.2 Syntactic Locality Based Modules

In this thesis syntactic locality based modules [CHKS07], which are based on

the notion of conservative extensions [GLW06], are used as an optimisation for

computing justifications. Given a SHOIQ ontology O, where O |= η, a syntactic

locality based module for the signature of η can be computed in polynomial

time, results in all entailments that can be built from the signature η (obviously

including η itself), and contains all justifications for η.

Syntactic locality based modules for SHOIQ are defined as follows, where it

is assumed that C tD is an abbreviation for ¬(¬C u¬D), ∀R.C an abbreviation

for ¬(∃R.¬C) and ≤ nR.C an abbreviation for ¬(≥ (n+ 1)R.C): Let Σ be a

signature. The following grammar recursively defines two sets of concepts C⊥Σ
and C>Σ for a signature Σ:

C⊥Σ ::= A⊥ | (¬C>) | (C u C⊥) | (∃R⊥.C) | (∃R.C⊥) | (≥ nR⊥.C) | (≥ nR.C⊥)

C>Σ ::= (¬C⊥) | (C>1 u C>2)

where A⊥ 6∈ Σ is a concept name, R is a role, C is a concept, C⊥ ∈ C⊥Σ , C>(i) ∈ C>Σ
for i = 1, 2, and R⊥ 6∈ Σ is a role. An axiom is syntactically local with respect to

Σ if it is one of the following forms: (1) R⊥ v R, or (2) trans(R), or (3) C⊥ v C,

or (4) C v C>. The set of all axioms that are syntactically local with respect

to Σ is denoted by s local(Σ). A SHOIQ ontology O is syntactically local with

respect to Σ if O ⊆ s local(Σ).

Intuitively, every concept in C⊥Σ becomes equivalent to ⊥, and every concept

in C>Σ becomes equivalent to >, if every concept name A⊥ 6∈ Σ is replaced with

⊥, and every role name R⊥ 6∈ Σ is replaced with the empty role. This means that

syntactically local axioms become tautologies after these replacements.

Syntactic locality based modules are then defined as follows: Let O be a

SHOIQ ontology, let O′ ⊆ O, and Σ a signature. Then O′ is a syntactic locality

based module for Σ if every axiom α ∈ O \ O′ is syntactically local with respect

to Σ ∪ signature(O′).
In work by Grau et al. [GHKS08] it was shown that there is always a unique

CHAPTER 2. PRELIMINARIES 50

minimal module for an ontology O and signature Σ. More details of how modu-

larisation is used as an optimisation in justification finding are given in the next

chapter.

Chapter 3

Computing Justifications

This chapter focuses on computing justifications for entailments in ontologies.

An implementation of a justification finding service is a key component in many

of the explanation and debugging tools that exist for ontology development en-

vironments such as Swoop [KPH05, Kal06], the RaDON plugin for the NeOn

Toolkit [JHQ+09], the explanation workbench for Protégé-4 [HPS08a], the ex-

planation facility in OWL Sight [Gro09], and the explanation view in TopBraid

Composer [Knu07]. Justification finding services are also increasingly being used

as auxiliary services in other applications for example in incremental reason-

ing [CHWK07], reasoning over very large ABoxes [DFK+07], belief base revi-

sion [HWKP06], meta-modelling support [GRV10], default reasoning [SdF+10]

and eliminating redundant axioms in ontologies [GW11]. In later chapters, black-

box algorithms for computing laconic justifications (Chapter 10) and Justification

Oriented Proofs (13) are presented, and these algorithms require subroutines for

computing justifications—hence they use justification finding services as auxiliary

services.

The overall aim of this chapter is to present a thorough investigation into

the practicalities of computing all justifications for entailments in published on-

tologies. In particular, ontologies which are representative of typical modelling

and are not tutorial or reasoner test-bed ontologies. This chapter also investi-

gates how black-box justification finding stacks up against glass-box justification

finding1, investigates the effect of various optimisations, and provides a detailed

picture on the “justification landscape” for real world ontologies.

1See Section 3.1 below for definitions of these terms.

51

CHAPTER 3. COMPUTING JUSTIFICATIONS 52

3.1 Techniques for Computing Justifications

In general, algorithms for computing justifications are described using two axes

of classification. The first, the single-all-axis is whether an algorithm computes a

single justification for an entailment or whether it computes all justifications for

an entailment. The second, the reasoner-coupling-axis is whether the algorithm

is a black-box algorithm or whether it is a glass-box algorithm.

The Single-All Axis: One Justification versus All Justifications Algo-

rithms In practice it is useful to distinguish between algorithms that compute

a single justification for an entailment, and algorithms that compute all justifica-

tions for an entailment. There are two basic reasons for this: (1) Algorithms for

computing all justifications tend to depend on algorithms for computing single

justifications as sub-routines. Indeed, in the empirical investigation that follows,

three single justification finding algorithm variants are used as sub-routines by

algorithm for computing all justifications. (2) In application scenarios, where

justifications are used as explanations for human users, rather than being used

for the purposes of automated repair, a single justification for an entailment can

be of enormous benefit for ontology debugging. Indeed, the availability of a single

justification can draw an ontology engineer’s attention to the source of a problem

with their ontology, and can be enough to allow them to understand the prob-

lem and perform a meaningful manual repair on their ontology. Being able to

compute a single justification for an entailment is therefore an important task.

The Reasoner-Coupling Axis: Black-Box versus Glass-Box Algorithms

As far as explanation generation is concerned, the basic distinction between glass-

box and black-box algorithms was introduced by Parsia [PSK05]. The categori-

sation is based entirely on the part played by reasoning during the computation

of justifications. In essence, justifications are computed as a direct consequence

of reasoning in glass-box algorithms, whereas they are not computed as a di-

rect consequence of reasoning in a black-box algorithm. In this sense, glass-box

algorithms are tightly interwoven with reasoning algorithms, whereas black-box

algorithms simply use reasoning to compute whether or not an entailment follows

from a set of axioms.

Coupled together, the two axes mean that there are three important combi-

nations of algorithms for computing all justifications for an entailment:

CHAPTER 3. COMPUTING JUSTIFICATIONS 53

• All-Black-Box with a Single-Black-Box Subroutine A black-box algo-

rithm for computing all justifications uses a black-box algorithm for comput-

ing a single justification as a sub-routine. Such algorithms [Jun04, KPS05,

Sch05b, FS05, Kal06, SH07, JHQ+09] are sometimes known as pure black-

box algorithms.

• All-Black-Box with a Single-Glass-Box Subroutine A black-box al-

gorithm for computing all justifications uses a glass-box algorithm for com-

puting single justifications as a sub-routine. Such algorithms [Kal06, KK07,

Sun09] are sometimes known as hybrid black-box glass-box algorithms.

• All-Glass-Box (with a Single-Glass-Box Subroutine) A glass-box al-

gorithm is used for computing all justifications. Such algorithms [SC03,

KPSH05, LMPB06, MLBP06, Lam07, LSPV08] are sometimes known as

pure glass-box algorithms. Note that in this case, the distinction along the

single-all axis is somewhat blurred.

It should be noted that, in this thesis, the term glass-box algorithm is also

used to describe a glass-box based algorithm that computes small sets of axioms,

which may be justifications or may be slightly larger than justifications.

An advantage of black-box algorithms is that they can be easily and robustly

implemented [Kal06]. This is because a black-box implementation simply relies

on the availability of a reasoner that implements a sound and complete reasoning

procedure for the logic in question. Black-box algorithms work for any monotonic

logic for which entailment checking is decidable. A perceived disadvantage of

black-box algorithms is that they can be inefficient and impractical due to a

potentially large search space [Stu08].

The perceived advantage of glass-box algorithms is that, at least for computing

single justifications, justifications get computed “quickly” and “for free” as part

of the reasoning process. A perceived disadvantage of glass-box algorithms is

that, in contrast to black-box algorithms, implementation is tricky, and adapting

an existing reasoner implementation so that it supports glass-box justification

finding is highly non-trivial [Kal06].

In what follows, algorithms for computing single justifications are first dis-

cussed, followed by a presentation of algorithms for computing all justifications.

CHAPTER 3. COMPUTING JUSTIFICATIONS 54

Expansion Contraction

Axiom
Axiom in justification
Selected axiom

Key:

Figure 3.1: A Depiction of a Black-Box Expand-Contract Strategy

3.2 Black-Box Algorithms for Computing Sin-

gle Justifications

The basic idea behind a black-box justification finding algorithm is to systemat-

ically test different subsets of an ontology in order to find one that corresponds

to a justification. As depicted in Figure 3.1, subsets of an ontology are typically

explored using an “expand-contract” strategy. In order to compute a justification

for O |= η, an initial, small, subset S of O (represented by circles with thick black

borders in Figure 3.1) is selected. The axioms in S are typically the axioms whose

signature has a non-empty intersection with the signature of η, or axioms that

“define”2 terms in the signature of η. A reasoner is then used to check if S |= η,

and if not, S is expanded by adding a few more axioms from O. This incremental

expansion phase continues until S is large enough so that it entails η. When this

happens, either S, or some subset of S, is guaranteed to be a justification for η.

At this point S is gradually contracted until it is a minimal set of axioms that

entails η i.e. a justification for η in O.

In some black-box algorithms the expand phase may be trivial, or “empty”,

where S is immediately expanded to all input axioms. In this situation it is the

contraction phase which “does all the work”. An example of such a strategy is

presented in Algorithm 3.1. In this algorithm a set of axioms S is initialised

(expanded) with all of the axioms in O so that S |= η. S is then pruned one

axiom at a time, so that for each α ∈ S, if S \ {α} |= η, then S = S \ {α}. This

process terminates when all axioms α ∈ S have been examined, at which point

2For example, the axiom A v B defines the class name A

CHAPTER 3. COMPUTING JUSTIFICATIONS 55

S corresponds to a justification for O |= η. It is easy to see that this simple

algorithm requires n = |O| entailment tests.

Algorithm 3.1 ComputeSingleJustification

ComputeSingleJustificationSimple(O, η)

1: S ← O
2: for each α ∈ S do
3: if S \ {α} |= η then
4: S = S \ {α}
5: end if
6: end for
7: return S

While the above algorithm might be effective for small ontologies, it is easy

to imagine that it would be impractical for moderately large ontologies that

contain a few hundred axioms or more. This is because the number of entailment

tests grows linearly with the number of axioms. Even for weak logics such as

EL, for which the complexity of entailment testing is polynomial in the size

of the input, entailment testing can be prohibitively time consuming. Indeed,

in [Sun09], Suntisrivaraporn showed that naive algorithms such as Algorithm 3.1

are impractical for large ontologies such as SNOMED. For this reason, there are

various optimisations that aim to prune the search space. These optimisations

essentially help to minimise the number of entailment tests required in both the

expansion and contraction phases, and aim to minimise the difference in size

between the expanded set of axioms and the final justification size.

3.2.1 Expansion Phase Optimisations

The main idea behind expansion phase optimisations is to quickly find a set of

entailing axioms, which is hopefully not much larger than the final justification.

In other words, the ultimate aim is to find a set of axioms that is a justification, or

a small superset of a justification, with a small number of entailment tests. There

are two main techniques for doing this: (1) Expansion by Selection Function, and

(2) Expansion by Modularisation.

CHAPTER 3. COMPUTING JUSTIFICATIONS 56

Incremental Expansion By Selection Function

Given an ontology O |= η, and a, possibly empty, set of axioms S ⊆ O, a selection

function, σ can be defined as follows (where P(O) is the Powerset of O):

σO,η : P(O)→ P(O)

Essentially, given some subset S ⊆ O, a selection function σ chooses another set

of axioms S ′ ⊆ O. It is usually the case that selection functions are monotonic,

that is, if S (O then S (S ′.
The above notion of a selection function is similar to the notion of a relevance

based selection function introduced by Ji et al. [JQH09]. The difference, is

that their selection function is parameterised by N, elements of which are used to

denote a “step” and ultimately a “degree of relevance” in the expansion phase. In

the selection function here, the steps are not explicit, but are simply a consequence

of the definition of the function.

As can be imagined, the design of a selection function can vary from one

implementation to another, and more importantly can be based on the logic in

question. The most basic selection functions simply select axiom sets based on the

signature of the axioms and entailment in the input [KPHS07, SQJH08, JQH09].

For example, given O |= η and S ⊆ O, such a selection function σ(S,O, η)

outputs

{α | signature(α) ∩ (signature(η) ∪ signature(S)) 6= ∅}

For example, consider

O = {A v B, B v C, B v D, A v ¬D, A v E} |= A v ⊥ .

In the first step, given the entailment of interest A v ⊥, a selection function

would choose every axiom with A in its signature and add this to S so that

S = {A v B, A v ¬D, A v E} .

Since S does not entail A v ⊥ the selection function would then choose further

axioms from O based on S to give

S ′ = {A v B, B v C, B v D, A v ¬D, A v E} .

CHAPTER 3. COMPUTING JUSTIFICATIONS 57

At this point S |= η and the algorithm would enter the contraction phase.

The main perceived problem with such simple selection functions is that they

quickly “blow up”. That is, for real ontologies, it only takes a few steps be-

fore the whole ontology is selected. To combat this problem, selection functions

that exploit particular logic fragments and the syntax of axioms have been de-

signed. For example, in [Sch05b, SHCvH07], a selection function for unfoldable

ALC is defined which directly mimics the lazy unfolding procedure [Hor97] that

used in reasoning algorithms for unfoldable knowledge bases [Neb90, Baa91]. In

[Hv06] the notion of concept relevance is introduced, which takes into consider-

ation the left and right hand sides of axioms of the form C v D, C ≡ D and

DisjointWith(C,D). A small amount of empirical work detailed in [Hv06] seems to

indicate that the concept relevance selection function is beneficial over the naive

selection function.

In essence, incremental expansion aims to find the entailment of interest in a

subset of an ontology that is hopefully much smaller than the ontology itself. The

benefit of doing this is that (1) Entailment tests are typically faster for smaller

sets of axioms; and (2) A smaller input to the contraction stage can result in

fewer entailment tests in that phase.

Expansion by Modularisation

As discussed in the preliminaries chapter, there are now various well defined no-

tions of entailment preserving modules for expressive Description Logics such as

SHOIQ. In terms of computing justifications there have been numerous publi-

cations which show that modularisation can significantly boost the performance

of justification finding algorithms [Sun08, BPS07, BS08, SQJH08, Nor01].

Computing a justification, or all justifications, with respect to a module M
of O rather than O can be a helpful optimisation because, in practice, semantic

based modularisation algorithms tend to compute modules for real ontologies

that are much smaller than the ontology itself. For example, on average, the

size of a strong subsumption module [BS08] in the medical ontology SNOMED is

around 53 axioms in comparison to the size of the ontology, which is over 380,000

axioms [BS08]. The benefits of computing justifications in a module M of an

ontology O (when M is much smaller than O) are therefore:

1. Entailment checking with respect toM can be much faster than entailment

checking with respect to the whole ontology. This is simply due to the

CHAPTER 3. COMPUTING JUSTIFICATIONS 58

reduction in size from the ontology to the module—the time required for

a reasoner to load and preprocess M is less than that for O. This can be

beneficial in both the expansion and contraction phases of a justification

finding algorithm.

2. The contraction phase has less work to do when pruning axioms from M
compared to O. This means less entailment tests are required to prune M
compared to O which boosts overall performance.

3. The module provides a “hard boundary” for sloppy or promiscuous selection

functions. As explained above, selection functions hopefully choose small

entailing subsets of O, however if a naive selection function is used, it could

result in a blow up of the axioms after just a few selection steps. Modules

can essentially contain this blow up and enable the contraction phase to

operate on a smaller subset of O than would otherwise be the case.

In summary, the ability to compute small, conservative extension like, modules

for entailments in ontologies, is attractive from the point of view of optimising

justification finding. The primary reason for this is due to the fact that for

real world large ontologies: (1) Modules can be computed quickly and efficiently.

Computing modules does not have a negative impact on the time take to compute

justifications; (2) Modules are generally much smaller than their corresponding

ontologies. This means that entailment checking performance can be significantly

boosted.

3.2.2 Contraction Phase Optimisations

Given a set of axioms S, where S |= η there are two important optimisations that

can help overcome the performance problems of the naive contraction strategy

presented in Algorithm 3.1.

Sliding Window

In [Kal06, KPHS07], Kalyanpur (et al.) use a “sliding window” technique. This

operates in a similar fashion to the simple strategy described in Algorithm 3.1,

except that instead of choosing one axiom α for removal in each step, a set of

axioms S ′′ ⊂ S is removed from S. The advantage here is that if S \S ′′ |= α then

n = |S ′′| axioms can be discarded, saving n− 1 entailment tests over the simple

CHAPTER 3. COMPUTING JUSTIFICATIONS 59

contraction strategy in Algorithm 3.1. The sliding window technique is also used

by Moodley [Moo10] for computing root justifications3. The advantage of the

sliding window technique is that it is extremely easy to implement. However,

although some empirical evidence suggests a window size of n = 10 provides

good performance [KPHS07], it is not clear if this is the best window size for

achieving optimal performance, or if the best window size varies depending on

ontology structure.

Divide and Conquer

An improvement over the sliding window technique described above, is provided

by a classic “divide and conquer” based strategy. Given and ontology O, where

O |= η, O is split into two halves, O1 and O2. If O1 is sufficient to entail η then

O2 is discarded and vice-versa. If neither O1 or O2 separately entail η then O1

is split into two halves and one of these halves is combined with O2 to see if η

is entailed by this half and O2. This process of halving and combining halves is

continues until a justification for η is obtained.

The divide and conquer strategy is a classic technique in computer science and

is widely used as the basis for searching, sorting and merging algorithms. In the

context of black-box justification finding, it was originally proposed by Junker

[Jun01, Jun04] as part of his QUICKXPLAIN algorithm. Junker’s work did not

feature any empirical evaluation of his algorithms. However, at least two empiri-

cal evaluations of the divide and conquer algorithm in the context of justification

finding were later carried out. First, Friedrich and Shchekotykhin [FS05] investi-

gated the benefits of this algorithm on a small collection of 8 ontologies, and then

Suntisrivaraporn carried out an empirical investigation on SNOMED [Sun09]. Fi-

nally, Shchekotykhin et al [SFJ08] carried out a comparison between the sliding

window strategy used by Kalyanpur et al. [KPHS07] and the dividing and conquer

strategy, and found that the divide and conquer strategy performed noticeably

better.

3Given an ontology O, a set of axioms S = {α1, α2, . . . , αn} such that O |= S and a set
J = {J | J is a justification for O |= αi where αi ∈ S} then J ∈ J is a root justification for S
with respect to O if there is no J ′ ∈ J such that J ′ (J . If J is not a root justification then
it is a derived justification [MMV10].

CHAPTER 3. COMPUTING JUSTIFICATIONS 60

3.3 Computing All Justifications

Using Model Based Diagnosis Techniques

The above techniques deal with black-box computation of single justifications for

entailments in ontologies. When formulating a repair plan for an entailment, or

attempting to understand an entailment, it is usually necessary to compute all

justifications for that entailment. This can be achieved using black-box techniques

for finding single justifications in combination with techniques that are borrowed

from the field of model based diagnosis [DH88, HCK92].

Model Based Diagnosis is the overarching name for the process of computing

diagnoses for a faulty system. Briefly, a diagnosis is a subset minimal set of

components from a faulty system, that if replaced would repair the system so

that it functions as intended. In this context the term diagnosis is taken from

the medical terminology, wherein it refers to both the process and the outcome

of identifying a disease or other medical problem from its symptoms. The term

model refers to the fact that a model is used to obtain the predicted behaviour of

of a system, which is then compared the observed behaviour of the system. Any

discrepancy between the predicted and observed behaviours indicates a fault in

the system. Model based diagnosis techniques have a wide variety of applications,

from diagnosing sets of faulty gates and connections in circuits [Gen84] through

to debugging spreadsheets [JE10].

The basic idea is that the manifestation of faults in a system is put down

to the bad interaction between different sets of components in that system. A

faulty set of components from a system is known as a conflict set if that set of

components exhibits a fault that is exhibited in the overall system. A conflict

set is a minimal conflict set if no proper subset of it is a conflict set. Given a

set of conflict sets for a system, a hitting set for these conflict sets contains at

least one component from each conflict set. A hitting set is a minimal hitting set

if no proper subset of it is a hitting set. In model based diagnosis, a minimal

hitting set is known as a diagnosis, and replacing the set of components which

corresponds to a diagnosis eradicates the fault from the system.

CHAPTER 3. COMPUTING JUSTIFICATIONS 61

3.3.1 The Relationship Between Model Based Diagnosis

and Justification Based Explanation

Given the above notions from the field of Model Based Diagnosis, it should be

clear that there is a direct parallel with the notions from justification based

explanation. Indeed, an ontology corresponds to a system, an entailment in the

ontology corresponds to a fault in the system, a justification corresponds to a

minimal conflict set, and a diagnosis corresponds to a minimal repair of the

ontology.

Since the field of Model Based Diagnosis concerns the study of algorithms

for computing diagnoses, and there is a direct relationship between diagnoses

and repairs for ontologies, the algorithms used in model based diagnosis may be

borrowed for the purposes of computing repairs for entailments in ontologies, and

in doing this, may be used for the purposes of computing all justifications for an

entailment in an ontology.

A particularly pertinent algorithm from the field of Model Based Diagnosis

is “Reiter’s Hitting Set Tree (HST) Algorithm” [Rei87, GSW89]. Given a faulty

system, Reiter’s algorithm computes all minimal diagnoses for the system. This

algorithm essentially constructs a finite tree whose nodes are labelled with min-

imal conflict sets (justifications), and whose edges are labelled with components

(axioms) from a system (ontology). In doing this the algorithm finds all minimal

hitting sets, which represent diagnoses for the conflict sets in the system. Given

the correspondence between conflict sets and justification, diagnoses and repairs,

it is possible to use Reiter’s algorithm to find all repairs, and in doing this find

all justifications for an entailment in an ontology (proof in [KPHS07]).

3.3.2 A Hitting Set Tree Approach to Computing All Jus-

tifications for an Entailment

The following example provides a high level illustration of how a Hitting Set Tree

can be used to compute all justifications for an entailment in some ontology. A

more formal description of the procedure will be given later in Algorithm 4.1 on

Page 81.

Before continuing, it is necessary to make the notion of a hitting set tree more

concrete. Given O |= η, a hitting set tree for η in O is a finite tree, an example of

which is shown in Figure 3.2, which consists of nodes labeled with justifications

CHAPTER 3. COMPUTING JUSTIFICATIONS 62

for O |= η and edges labelled with axioms contained in O. Each non-leaf node

v is connected to a successor node v′ via an edge labelled with an axiom α such

that α is in the label of v but not in the label of v′. The label of v′ may be the

empty set, in which case v′ must be a leaf node. Moreover, for any node v′′, the

set of axioms that label the path from v′′ to the root of the tree does not intersect

with the justification that labels v′′.

The construction of a hitting set tree may take place in a breadth first or

depth first manner. Which ever is used, the principles and rules governing the

generation and labelling of edges and nodes in the tree are the same: At any point,

when extending the tree from a node v, to a new node v′ the basic procedure is:

1. Choose an axiom α that is in the label of v but does not label an edge that

connects v to an existing successor node.

2. Set S to be the union of {α} and the set of axioms that label the edges that

form the path from v to the root of the tree. Remove S from O to give O′.

3. If O′ |= η then compute a justification J for η with respect to O′. If O′ 6|= η

then set J = ∅.

4. Create a fresh node v′ and set the label of v′ to be J .

5. Add the edge e = 〈v, v′〉 to the tree and label e with J .

6. Add the axioms in S back into O.

For a more concrete example consider the following ontology

O = {A v B

B v D

A v ∃R.C
∃R.> v D} |= A v D

which entails η = A v D. A hitting set tree for O |= A v D is shown in

Figure 3.2. Taking the root node, which is labelled with J1, the hitting set tree

was extended to the left hand side by removing A v B from O and computing

justification for O \ {A v B} |= A v D. In this case, the justification J2

was found. The left hand side successor node of the root node was therefore

labelled with J2 and its connecting edge labelled with A v B. Similarly, the

CHAPTER 3. COMPUTING JUSTIFICATIONS 63

Figure 3.2: An Example of a Hitting Set Tree

J1 = {A ! B, B ! D}

A ! B

A ! ∃R.C

{}

B ! D

{}

A ! ∃R.C

{} {}

J2 = {A ! ∃R.C,∃R.# ! D}

∃R." # D∃R." # D

J ′
2 = {A ! ∃R.C,∃R.# ! D}

bottom right hand successor to the node labelled with J ′2 and whose successor

edge is labelled with ∃R.> v D was generated by considering O \ S where

S = {B v D, ∃R.> v D} (∃R.> plus the label of the path to the root) and

noting that O \ S does not contain a justification for A v D. A fresh successor

node was therefore generated and labelled with the empty set, with the successor

edge label being set as ∃R.> v D.

When no more successor nodes can be generated the hitting set tree is com-

plete. At this point, all justifications for O |= η occur as labels of nodes in the

tree. Additionally, all minimal repairs (diagnoses) for O |= η are contained as

leaf-root paths in the tree.

3.3.3 Model Based Diagnosis Optimisations

The above description of a hitting set tree and illustrative example do not take

into consideration any optimisations. In order to achieve acceptable performance

it is necessary to consider two important optimisations: (1) Early Path Termina-

tion, and (2) Justification Reuse, which are detailed below:

Early path termination

In the unoptimised version of the algorithm a node can be extended with successor

edges provided there is an axiom in its label which does not already label one of the

CHAPTER 3. COMPUTING JUSTIFICATIONS 64

edges of its successors. Nodes that can be extended are referred to as open nodes.

Nodes which cannot be extended are referred to as closed nodes. Obviously, leaf

nodes cannot be extended so they are closed nodes. When optimisations come

into play, it can be the case that non-leaf nodes which would otherwise be labelled

with a non-empty set are marked as closed. In this case, the path from the closed

node to the root node is said to have been subject to early termination, and

its path to the root has been early terminated. Detecting conditions for and

enacting early termination is a key optimisation for the hitting set tree algorithm

and works as follows: If a hitting set tree T contains an open node v1, which has

a path P1 to the root of the tree, and there is some other open node v2 which has

a path P2 to the root of the tree, then if the label set of P1 is equal to the label

set of P2 then v2 may be marked as closed and need not be explored further. The

reason for this is that the descendent nodes of v2 would be labelled with exactly

the same justifications as the descendent nodes of v1. This is because the labels

(justifications) of v2 descendants are calculated with respect to some subset of

O\S2 and the labels of v1 descendants are calculated with respect to O\S1, where

S2 and S1 are the label sets of the paths to the root of v2 and v1 respectively

(which are the same). Hence, only one of P1 or P2 needs to be explored further

to find the remaining justifications.

Justification reuse

The second most important optimisation is justification reuse. In the unoptimised

hitting set tree construction algorithm, a justification is computed (with a call to

a black-box or glass-box subroutine) for each node v that is added to the tree.

The justification, which is used to label v, is computed with respect to O\S where

S is the set of labels on the path from v to the root. If the tree contains some

other node v′ which is labelled with a justification J , and S does not intersect

with J then J can be used to label the node v. The reason for this is that it

must be the case that J ⊆ O \ S (since J ⊆ O and S ∩ J = ∅), hence J could

be computed as a justification that could label v. Justification reuse can save a

lot of unnecessary calls to a subroutine for computing single justifications.

CHAPTER 3. COMPUTING JUSTIFICATIONS 65

3.3.4 Complexity Issues

One of the issues with computing all justifications for an entailment is that the size

of the hitting set tree can, in the worst case, be exponential in the size of the set

of justifications. This worst case scenario occurs when there are non-overlapping

justifications for an entailment. For example, consider the set of justifications{{α′1, α′′1}, . . . , {α′n, α′′n}}. The complete hitting set tree contains 2(n+1)−1 nodes,

with all paths from leaf to root being of length n. The basic intuition for this, is

that there is an exponential number of repairs for the ontology which contains the

justifications—adding a new justification doubles the number of repair options.

Since all possible repairs need to be taken into consideration when finding all

justifications, and all possible repairs are reflected in the structure of the hitting

set tree, the size of the tree is exponential in the number of justifications.

Despite this high worst case complexity, as will be seen later, it is possible

to compute large numbers of justifications for entailments in real ontologies. For

example, in one ontology, the maximum number of justifications tops 800 (see

Experiment 1 beginning on Page 98). These numbers are clearly much larger

than the number of justifications that would be possible to compute in the worst

case scenario, where the hitting set tree contains in the order of 2n nodes for

n justifications. The reason for this is that the complexity of the algorithm

depends upon the degree to which justifications overlap. The higher the overlap,

the more effective early path termination is. In some cases, for a given number

of justifications, overlap can lead to an exponential decrease in the number of

nodes in the hitting set tree. Fortunately, as will be seen later, it is typically

the case that, in real world ontologies either the number of justifications for an

entailment is small enough to allow all of them to be computed, or the number

of justifications is large, but they overlap enough such that all of them can be

computed.

3.4 Computing Justifications Using Glass-Box

Techniques

As mentioned previously, glass-box justification finding algorithms are charac-

terised by the fact that they are tightly interwoven with the actual reasoning

algorithms. They compute some, or all justifications, as part of reasoning. There

CHAPTER 3. COMPUTING JUSTIFICATIONS 66

have been numerous glass-box algorithms that have been developed for different

DLs. For example, Schlobach and Cornet’s work [SC03, SHCvH07] was con-

cerned with Unfoldable-ALC. Meyer et al. and then Lam et al. extended this

to ALC with general concept inclusions [LMPB06, MLBP06, LSPV08], Kalyan-

pur et. al provided an algorithm for the highly expressive DL SHOIN [Kal06],

and Suntisrivaraporn and Baader described a glass-box approach for EL and

EL+ + [BPS07, BS08]. All of these approaches are essentially based on what is

known as tracing. This is a process which involves tagging reasoning structures,

such as assertions in a tableau completion-ABox, with labels that ultimately

identify the original axioms in an input ontology that caused the production and

expansion of these structures.

In the context of the current breed of glass-box justification finding imple-

mentations, most them can be related back to some seminal work by Baader and

Hollunder [BH95]. In this work Baader and Hollunder were primarily concerned

with embedding Reiter’s default logic [Rei80] into ALCF knowledge bases, which

required the ability to compute minimally inconsistent, and maximally consistent

ABoxes. To do this, Baader and Hollunder extended the tableau based consis-

tency algorithm for ALC ABoxes, augmenting it with a “tracing” mechanism.

In essence, tracing adds monotone boolean formulae as labels to assertions in

completion ABoxes, which “pinpoint” the input axioms which caused their gen-

eration. For a given entailment the output is a pinpointing formula that can

be used to identify all justifications for that entailment. Before the description

of tracing is presented, it is worth noting that, in recent work [nal09, BP10],

Peñaloza and Baader have taken a more general approach to tracing, where they

provide a general specification of tableau reasoning algorithms, and then present

a description and analysis of tracing at this more general level rather than at the

level of a specific DL.

3.4.1 Tracing

Given an ALC ABox A, the ALC tableau algorithm for ABox consistency gen-

erates a set of completion ALC ABoxes {A1, . . . ,An}. Each of these com-

pletion ABoxes contains assertions that are derived by the recursive applica-

tion of the ALC tableau rules for ABox consistency [SSS91], initially on A
and then on each generated ABox Ai (See Section 2.2 on Page 40 for more

CHAPTER 3. COMPUTING JUSTIFICATIONS 67

details on Tableau Algorithms). The tracing aspect of the work begins by in-

troducing a propositional variable for each ABox assertion in the input ABox

A. Each assertion in the set of completion ABoxes, which is derived by the

tableau algorithm, is then labelled with a monotone boolean formula, which

represents how that assertion was derived. For example, given the ABox A =

{(CuD)(a)p}, where (CuD)(a) is labelled with the propositional variable p, the

ABox A1 = {(C uD)(a)p, C(a)p, D(a)p} is derived by application of the u-rule.

Notice how each of the derived assertions C(a)p and D(a)p is labelled p. In the

case where multiple assertions are used to derive an ABox assertion, a conjunc-

tion of proposition variables is used to label the derived assertion. For example,

given A = {(∃R.C)(a)p, (∀R.D)(a)q}, the ABox A1 = {(∃R.C)(a)p, (∀R.D)(a)q,

R(a, b)p, D(b)p∧q, . . . } is derived, where b is a fresh individual name. Here, both

R(a, b)p and (∀R.C)q are used to derive the assertion D(b)p∧q. Conversely, since

there may be more than one way to derive an assertion, disjunctions can be

present in the labelling formulae. For example, if A = {(CuD)(a)p, (CuE)(a)q}
then the assertion C(a)p∨q can be derived from the assertions labelled with p or

q, and so it gets the label p ∨ q.
When the tableau algorithm terminates, the labels on assertions in the set

of ABoxes {A1, . . . ,An} can be used to determine which assertions in original

ABox A are responsible for the inconsistency of A. For a given ABox Ai, the

labels result in what Baader and Hollunder call a clash formula—also known as a

pinpointing formula. This is obtained by taking each clash {A(a)p,¬A(a)q} ⊆ Ai
and conjoining the formulae of the positive and negative assertion to give p∧q. For

each completion ABox Ai, every such conjunction is combined into a disjunction,

which represent all of the clashes that completion ABox. Finally, each of these

Ai disjunctions is combined into one large conjunction that represents the final

clash formula for input ABox A.

Given the set of propositional variables Q that correspond to the assertions

in A′ ⊆ A, it holds that there is an assignment v on these variables, where

v : Q 7→ {true, false}, that makes the clash formula for A true if and only if A′
is inconsistent. Each minimal satisfying assignment v of Q for the corresponding

A′, where minimal means subset minimal with respect to the variables in Q that

are assigned the value true, identifies A′ as a subset minimal set of assertions that

is responsible for A being inconsistent [BH95]. In essence, the problem of finding

minimal sets of assertions that make A inconsistent is reduced to finding minimal

CHAPTER 3. COMPUTING JUSTIFICATIONS 68

assignments that make the clash formulae for A true.

Finally, Baader and Hollunder point out that the problem of finding mini-

mal valuations is an NP-Complete problem, and that if the clash formulae are

in conjunctive normal form (CNF) then this corresponds to the hitting set prob-

lem [GJ79]. If the clash formulae are in disjunctive normal form (DNF) then the

problem is in PTime, but transforming a monotone boolean formula into DNF

can result in an exponential blow in the size of the original formula.

3.4.2 Extensions of Tracing to More Expressive Logics

Although the work by Baader and Hollunder was not driven by the end need for

computing explanations per se, as can be seen, their so-called tracing technique,

does indeed compute justifications for entailments. In some way, all subsequent

work on glass-box justification finding, including work that does not directly

compute a clash formula, can be related back to their tracing technique. Indeed,

the basic principles of Baader and Hollunder’s tracing technique, can be used to

find just one justification, some justifications, or all justifications for an entail-

ment depending on whether or not the tableau algorithm is run until every ABox

Ai ∈ {A1, . . . ,An} is complete.

As mentioned previously, Schlobach and Cornet were the first to apply a glass-

box tracing technique to computing justifications. Rather than working with

ABoxes, their technique [SC03] was used with Unfoldable-ALC TBoxes, which

they chose over ALC with general concept inclusions in order to simplify the

presentation and computational properties of their algorithms. The next steps

came when the technique was expanded by Meyer et al. [MLBP06] to deal with

acyclic ALC with general concept inclusion axioms. This was later extended by

Lam et al. [Lam07, LPSV06] to work in the context of fine-grained justifications.

In all of the cases above, glass-box tracing is used to compute all justifications

for an entailment. However, in other work, notably work on more expressive DLs,

tracing has only been used for computing single justifications. To understand why

this is the case it is necessary to consider how tableau algorithms are implemented

in optimised reasoners. Recall that an ABox is complete if no more tableau

completion rules are applicable to it, and that this is different to the case where

no more rules are applied to an ABox because is closed i.e. contains at least

one clash. In the case where the tableau algorithm is run until every Ai is

complete, and every Ai contains all clashes, then tracing can be used to find

CHAPTER 3. COMPUTING JUSTIFICATIONS 69

all justifications for an entailment as described above. However, if the tableau

algorithm is only run until the first clash is found in each Ai (as is the case with

all practical and optimised reasoners), then the tracing technique will find some

justifications i.e. at least one, but it is not guaranteed to find all justifications for

the entailment in question. This is the case in [KPSH05, Kal06], where Kalyanpur

describes a glass-box tracing algorithm for the DL SHOIN , which can be used

to find a single justification. The tracing algorithm described in Kalyanpur’s

work also differs from Baader and Hollunder’s tracing algorithm in another way:

it labels assertions with sets of pointers to axioms rather than labelling them

with a monotone boolean formulae. Given a clash in each completion ABox

the algorithm unions the sets of pointers and then computes a justification from

these pointers. In work by Suntisrivaraporn [Sun08], Baader and Hollunder style

tracing is described for the lightweight Description Logic EL+. However, the

actual implementation that is described only uses glass-box techniques to compute

a single justification. The reason for this is that with the EL family of DLs

the primary concern is polynomial time reasoning, and the glass-box tracing

algorithm requires the entailment checking of monotone boolean formulae which

is an NP-Complete problem.

When glass-box tracing is only used for computing single justifications it can

be combined with model-based diagnosis techniques for computing all justifi-

cations. Kalyanpur et al. [Kal06], Kremen and Kouba [KK07], Suntisrivara-

porn [Sun09] all use this approach.

3.4.3 Inexact Glass-Box Tracing

In the glass-box tracing algorithm for computing a single justification, which is

described by Kalyanpur [Kal06], and the glass-box tracing described by Suntisri-

varaporn [Sun09], the set of axioms returned may be a superset of a justification.

In the case of the EL+ algorithm this is caused by the normalisation proce-

dure, which may normalise many axioms into a single axiom. In the case of

the SHOIN tableau algorithm the reason is slightly less straight forward. In

[Kal06] Kalyanpur attributes the problem of non-minimal returns by the tracing

algorithm to max-cardinality restrictions and the non-determinism of the ≤-rule.

He presents the following example to describe the problem: Consider the ontology

O which entails A v ⊥, which has as a justification the first three axioms and

CHAPTER 3. COMPUTING JUSTIFICATIONS 70

the last axiom in O

O = {A v ∃R.B
A v ∃R.(C u ¬B)

A v ∃R.(¬C u ¬B)

A v ∃R.C
A v ≤ 2R} |= A v ⊥

Now consider a completion ABox A which is the result of processing the first four

axioms. There are four R successors of some instance of A. When the tableau

algorithm comes to apply the ≤-rule it must merge some of these successors, since

any instance of A can have at most two successors. In this example no matter

which merge choice is made, all of the ABoxes that get generated from A contain

clashes (this is ensured by the choice of fillers). In SHOIN tracing, when two

individuals are merged, the labels also get merged. In this case, the result is a

superset of a justification for A v ⊥.

Although Kalyanpur claims the problem of non-minimal returns is due to max

cardinality restrictions, the real source of the problem simply lies in the ordering

of the application of tableau rules in a given context. Had the tableau algorithm

generated the first three successors of the instance of A due to the first three

axioms in O and then applied the ≤-rule, the problem of a non-minimal return

would not arise here. In essence the problem depends upon the way the tableau

algorithm “unpacks” subconcepts in axioms. The following example provides

an alternative, less subtle, demonstration of how non-minimal returns can arise.

Consider the ontology O′ which entails A v ⊥. The axioms have been labeled

with the names p and q.

O′ = {A v B u ∃R.(C u ¬C)p

B v ⊥q} |= A v ⊥

The tableau algorithm begins by creating a fresh completion ABox, A that con-

tains the assertion A(x), where x is a fresh individual. Next, it unfolds A and

adds the assertion (B u ∃R.(C u ¬C))(x)p to A. The algorithm then applies the

u-rule and adds to two further assertions B(x)p and (∃R.(C u¬C))(x)p. Finally,

the algorithm unfolds B and adds the assertion ⊥(x)q,p to A. Notice that ⊥(x)q,p

CHAPTER 3. COMPUTING JUSTIFICATIONS 71

is labelled with both q and p since p caused B to be added which caused the

unfolding. The glass-box algorithm then returns

S = {A v B u ∃R.(C u ¬C), B v ⊥}

which is a superset of a justification. In essence, the basic tableau tracing algo-

rithm operates on concepts in assertions at the top-level and does not “peer” into

subconcept in order to decide how to order rule application to ensure a minimal

solution.

Rather than modifying the tableau algorithm, the simplest way to deal with

this problem is to add a contraction stage after glass-box tracing which ensures

return are minimal and are indeed justifications. In essence, glass-box tracing can

be used as a highly optimised expansion stage that only requires one entailment

check.

3.5 The Impact of Modularisation

In this thesis, no matter whether black-box or glass-box algorithms are being

considered, or finding single justifications versus finding all justifications for an

entailment, modularity is always used as an optimisation when dealing with con-

sistent ontologies. As discussed in Section 2.4, for any input, O |= η a syntactic

locality based moduleM of O for the signature of η contains all justifications for

η with respect to O. Computing a module is therefore used as a pre-processing

step before computing any justifications for an entailment in the algorithms that

are presented in this thesis. The actual effects of modularity based optimisation

are not explicitly investigated in this thesis as there is already solid and con-

vincing evidence in [SQJH08] (for SHOIN ontologies) and in [Sun09] (for EL+

ontologies) that this kind of optimisation has a large positive impact on improv-

ing the performance of justification finding algorithms by an order of magnitude

or more. It is however worth noting that, the main reason for such dramatic

improvements, particularly in large ontologies of thousands of axioms or more,

is that a module M can be significantly smaller than O (for example hundreds

of axioms versus tens of thousands of axioms for the EL+ version of the NCI

ontology [SQJH08]). The benefits, as far as justification finding is concerned,

are that the search space for finding single justifications is dramatically reduced,

CHAPTER 3. COMPUTING JUSTIFICATIONS 72

which means that black-box algorithms perform much better, and entailment

checking performance is significantly boosted, which helps whether finding single

justifications or all justifications.

3.6 Existing Empirical Evaluations

Many of the previously discussed justification finding techniques have been pub-

lished along with evaluations in the form of empirical investigations. The ex-

periments which are undertaken as part of these empirical investigations can be

characterised by the ontologies used in them and their prototypical style of im-

plementation:

Experimental Corpora Typically, the collections of ontologies used in exper-

iments are of various styles, expressivities and sizes. The following categories

summarise the various styles of ontologies used in empirical work from the liter-

ature:

• Large well known medical ontologies—In particular EL based ontolo-

gies such as SNOMED, GALEN, DICE, the Gene Ontology or early (EL)

versions of the NCI ontology. These well known “prize ontologies” are used

because they fall into a size and expressivity fragment that is of interest to

particular groups and communities. Used in [SQJH08, Sun09].

• Small well known tutorial ontologies—for example Koala, Bike, Wine,

People+Pets, Chemical, Transport, Camera, which are typically used by

prototypical implementations for demonstrating proof of concept. Used in

[Kal06, MLBP06, KPHS07, SHCvH07, SFJ08].

• Auto-generated ontologies and doctored ontologies—DICE-A, KMn,

CONF etc. which have unsatisfiable classes deliberately introduced into

them in order to provide further test cases due to a lack of suitable real

world ontologies, or are used to investigate an optimisation along a partic-

ular dimension in a controlled way. Used in [SHCvH07, JQH09].

Prototypical Implementations The implementations used in many experi-

ments tend to be proof of concept implementations, which are perfectly sufficient

CHAPTER 3. COMPUTING JUSTIFICATIONS 73

for showing the effect of some optimisation, but do not necessarily reflect the per-

formance that could be achieved with a tuned and more robust implementation.

For example, the implementation of DION was a prototypical implementation

done in PROLOG. Similarly, in [SHCvH07] the Wellington reasoner [End00],

which supports ALC, was used for entailment checking in the experiments. Al-

though Wellington features several standard optimisations, it does not appear to

have been developed beyond prototype and is no longer available. It will later

be seen that good entailment checking performance is crucial to the success of

black-box algorithms, and use of state of the art reasoners today could paint

an entirely different, more representative, picture of what can be achieved in

justification finding. Similarly, in [SQJH08] the effect of modularisation as an

optimisation for computing justifications was investigated with an implementa-

tion based on KAON2 [MS06]. While the implementation more than sufficed for

showing how effective modularisation was as an optimisation, the use of KAON2

probably does not reflect the performance that can be obtained with modern

tableau reasoners on ontologies with rich TBoxes. After all, KAON2 was de-

signed as a highly optimised reasoner to be used on ontologies with very large

ABoxes and simple TBoxes.

In some cases, the prototypical implementations that were used for testing

were buggy. In particular, the implementation used to carry out the empirical

work detailed in [Kal06], which was also used in the ontology editor Swoop, was

buggy. Unfortunately, the bugs were rather critical and meant that in many cases

the implementation could never compute all justifications for an entailment. The

reason for this was due to an incorrectly coded termination condition in the hitting

set tree construction algorithm, which caused too early termination. In essence,

the termination condition was reversed so that paths which were subsets rather

than supersets of open paths in the hitting set tree were prematurely closed.

Finally, some implementations and methods do not seem to agree on results

and in some cases lead to inaccurate comparisons between techniques. For exam-

ple, in [KK07] Kremen and Kouba compare an incremental glass-box approach

with a pure black-box approach. However, their black-box implementation which

they use for comparison takes longer than fifteen minutes to compute all justifica-

tions for all unsatisfiable classes in the miniEconomy ontology, while the black-box

algorithm implementation presented in [KPHS07] can compute all justifications

for all unsatisfiable classes in this ontology in under ten seconds.

CHAPTER 3. COMPUTING JUSTIFICATIONS 74

In essence, most empirical work is performed on small collections of ontologies

that are chosen to show off the effect of specific optimisations and demonstrate

proof of concept. This is obviously a valid thing to do. However, many of the

experiments do not provide a true picture of how highly optimised and robustly

implemented justification finding techniques will perform on state of the art on-

tologies that are now widely available.

3.7 Summary and Directions

Overall, there is a need for empirical data that leads to well founded conclusions

on how optimised techniques for computing justifications behave on realistic on-

tologies. While the algorithms for computing all justifications for an entailment

have a high worst case complexity, little is know about how these algorithms

really behave in practice. Indeed, direct criticism [Stu08] has been levelled at au-

thors and implementors, which claims that finding justifications is not as feasible

as suggested by some researchers. In particular,

“Run-time performance is a major issue in the context of a prac-

tical application of debugging methods” [Stu08]

“Our experiments confirmed the common knowledge that black-

box approaches suffer from their computational complexity” [Stu08]

“Not surprisingly, the two debugging tools integrated in ontology

editors did not use black-box approaches. In summary, the way to

move forward is to further develop [glass-box] approaches for ontology

debugging...” [Stu08]

“A high number of very expensive tableau algorithm runs required

for black-box methods, as well as a lack of glass-box methods, together

with their poor reusability, has given rise to the idea of using incre-

mental techniques for axiom pinpointing” [KK07]

The issues and problems that lead to such accusations are due to the proto-

typical nature of proof of concept implementations and the kinds of corpora that

are used for testing, and also due to the following:

CHAPTER 3. COMPUTING JUSTIFICATIONS 75

Lack of Empirical Data for a Broad Corpus of Ontologies As explained

above, the ontologies used in justification finding experiments in the literature

have been primarily used for the purposed of testing optimisations and proof of

concept. Ontologies tend to be tutorial style ontologies, auto-generated ontolo-

gies, or a narrow collection of large medical ontologies, some of which have now

been significantly extended using more expressive concept and axiom construc-

tors. These kinds of ontologies do not fully represent the expressivity and kinds

of modelling style found in many published ontologies and therefore do not neces-

sarily give the best picture of what the justification landscape might be like and

what the performance of robustly implemented justification finding algorithms

might be like. A large independently defined ontology corpus that represents

real world state of the art ontology modelling and publishing would provide a

more conclusive demonstration of how justification finding algorithms perform in

practice.

Lack of Empirical Data for Inconsistent Ontologies Little is known about

the practicalities of computing justifications for inconsistent ontologies. This is

despite the fact justifications are important for repairing inconsistent ontologies,

and can be used as the basis for para-consistent reasoning [Pri02]. In fact, it is

easily arguable that justifications are vital for understanding why an ontology is

inconsistent. Many tools, both reasoners and editors, simply report “inconsis-

tent”, and it is left up to the user to determine where the problem lies. However,

unlike entailments in consistent ontologies, where there are structural and visual

cues such as unsatisfiable classes and class names painted in red, there are no

such cues that help people decide where to start searching for a problem in an

inconsistent ontology.

Inconsistency can be introduced into ontologies for a number of reasons. For

example, an ontology may become inconsistent after the addition of some axioms

during the editing process. While the last set of axioms that were added may

play a part in making the ontology inconsistent, it might actually be the case

that they were the correct axioms to add from a modelling point of view, but it

is the interplay of the newly added axioms with axioms already in the ontology

that triggers the inconsistency. Inconsistencies can also be the result of auto-

mated ontology construction techniques. For example, in [DFK+07], ontologies

are automatically constructed as an output from text mining, and it is possible

CHAPTER 3. COMPUTING JUSTIFICATIONS 76

for the resulting ontologies to be inconsistent.

There are a number of different ways of dealing with an inconsistent ontol-

ogy. Broadly speaking, either some form of para-consistent logic [Pri02] based

reasoning can be used to draw “meaningful” conclusions from the ontology, as

in [MHL07], or the ontology can be repaired so that it becomes consistent, thus

meaningful conclusions can be drawn from the repaired ontology using standard

semantics. The work presented in this thesis obviously focuses on this latter “re-

pair strategy”, with an assumed scenario that ontologies may become inconsistent

during their construction process, but not wanting to publish such ontologies,

their authors would repair the ontologies before publication.

Ultimately, computing justifications for inconsistent ontologies merits an in-

vestigation in its own right because inconsistent ontologies pose several problems

that affect the runtime performance of justification finding algorithms. The first

issue is that the notion of locality based modules break down completely when it

comes to inconsistent ontologies. This means that it is not possible to compute a

module for an inconsistent ontology and then perform justification finding with

respect to that module, which has ramifications for entailment checking perfor-

mance. The second issue, is that, without the presence of modularity entailment

checking must be performed on the whole input ontology. When the input is large

a selection function based incremental expansion subroutine might help improve

performance. However, selection functions rely on a seed signature for selecting

the initially small set of axioms. This seed signature is usually the signature

of the entailment in question, but for inconsistent ontologies no such entailment

or seed signature exists. This means that it is not possible to use an incremen-

tal expansion strategy to improve performance. With these challenges in mind,

an investigation on the practicalities of computing justifications for inconsistent

ontologies was carried out, the results of which are presented in Chapter 6.

Lack of Knowledge about Justification Metrics for Real Ontologies

What is the justification landscape of state of the art ontologies like in practice?

Little is known about how the size and number of justifications varies for modern

ontologies. This information is important because justification algorithms exhibit

worst case exponential performance in the number of justifications. However, it is

not clear if there are any ontologies in the wild where the number of justifications

are so high that not all justifications could be computed.

CHAPTER 3. COMPUTING JUSTIFICATIONS 77

Lack of Empirical Data Showing How Glass-Box Techniques Stack Up

Against Black-Box Techniques Finally, it is not particularly clear how well

glass-box and black-box techniques stack up against each other. A popular belief

has been that it was necessary to have explanation tightly integrated with a rea-

soner, i.e. glass-box based explanation, for reasons of efficiency [KK07, Stu08]—

a view which goes back to before the current phase of justification based re-

search [MBB95]. A lack of empirical data on a sizeable corpus of ontologies

makes it difficult to draw watertight conclusions here.

3.7.1 Aims and Objectives

The following chapters detail a thorough investigation into computing justifi-

cations for consistent and inconsistent ontologies. The main aim is to address

the points above and obtain strong evidence for the practicality of computing

justifications. This is especially important as justifications continue to be used

more and more as forms of explanation and as the basis for auxiliary services.

The investigation also establishes a picture of the justification landscape for real

ontologies and investigates how certain optimisations perform on these ontologies.

Chapter 4

Justification Finding Algorithms

This chapter presents the concrete details of the justification finding algorithms

that are used in the experiments that follow in later chapters. The main purpose

of this chapter is to highlight the salient features of the main algorithms, and

to provide a picture of how various subroutines, such as expand-contract sub-

routines, fit together to form complete algorithms for finding one justification, or

finding all justifications for an entailment.

4.1 Algorithm Topology

A schematic of how the various algorithms can be combined as subroutines is

presented in Figure 4.1. The main routine is ComputeAllJustifications (À) which

computes all justifications for an entailment η with respect to a set of axioms O,

and is listed in Algorithm 4.1. This algorithm contains the ComputeSingleJustifi-

cation (Á) subroutine which is used to compute single justifications for an input O
and η, and is listed in Algorithm 4.2. In the presentation here, the ComputeSin-

gleJustification algorithm has been generalised so that it is always regarded as

being an expand-contract algorithm. Therefore, it always calls the ExpandAxioms

(Â) subroutine followed by the ContractAxioms (Ã) subroutine.

In the empirical investigation which follows, the ExpandAxioms (Â) algorithm

has three different implementations (depicted by dashed lozenges in Figure 4.1).

The first is the “All in One” expansion algorithm, which is listed in Algorithm

4.3. The second is the “Incremental” expansion algorithm, which uses a selection

function to gradually expand axioms based on entailment and axiom signatures

and listed in Algorithm 4.5. The third is the “Tracing” expansion algorithm,

78

CHAPTER 4. JUSTIFICATION FINDING ALGORITHMS 79

ComputeAllJustifications

ComputeSingleJustification

ExpandAxioms

AllInOne Incremental Tracing

ContractAxioms

Divide &
Conquer

Sliding
Window

One by
One

➀

➁

➂

➃

Figure 4.1: Justification Finding Algorithm Topology

which uses glass-box tracing to expand the input axioms into a justification, or

slightly more than a justification, and is listed in Algorithm 4.4. In this thesis,

only one contraction algorithm is investigated for the ContractAxioms subroutine,

and this is the “divide and conquer” algorithm (as opposed to the “One by One”

or “Sliding Window” strategies), which is listed in Algorithm 4.6. As explained

in Section 3.2.2 on Page 59, there have been various experiments into the efficacy

of the divide and conquer approach over other approaches such as the sliding

window technique. In all cases divide and conquer contraction has been proved

to offer significant performance benefits over other approaches.

4.2 Computing All Justifications for O |= η

The listing shown in Algorithm 4.1 computes all justifications for an entailment

O |= η using a hitting set tree Thst . The tree is constructed in a breadth first

manner by using a queue Q in the standard way [RN10]. The queue manipu-

lation function Enqueue(v,Q) adds a node v to the tail of a queue Q, while the

function Dequeue(v,Q) removes a node v from the head of a queue Q. There are

CHAPTER 4. JUSTIFICATION FINDING ALGORITHMS 80

several functions that relate to the construction and inspection of Thst namely,

GetFreshNode(J) which creates a new tree node with a given label (justifica-

tion) J , GetFreshEdge(〈v, v′〉, α) which creates a new edge with a given label

(axiom) α, GetLabel(v) which gets the label (justification) of a node v, and

GetPathToRootLabelSet(v, Thst) which gets the set of edge labels on the path

from the node v to the root of Thst . Finally, the ComputeSingleJustification(S, η)

returns a justification for η with respect to S if S |= η or returns the empty set

if S 6|= η.

Algorithm 4.1 Walkthrough Algorithm 4.1 computes a hitting set tree in

a breadth-first manner as described in Chapter 3. It begins by extracting a

module for the entailment η in O (line 1), which is used to initialise a set Sworking

of “working axioms”. In the case where O is inconsistent, ComputeModule is

assumed to return O in its entirety. In lines 4–8 the algorithm computes a

single justification by calling the ComputeSingleJustification sub-routine, adds this

justification to the results set Xresult , and then initialises the root of the hitting

set tree Thst with a node vroot labelled with this justification. The root node is

then added to the queue Q to start the construction of the hitting set tree, which

takes place in lines 9–31. The queue Q is used to construct the tree breadth first

(in the usual way). A breadth first construction was chosen over a depth first

construction as it is closer to Reiter’s original algorithm, and allows the early

path termination optimisation to be more effective. During the construction of

the hitting set tree the algorithm attempts to reuse previously found justifications.

It does this in line 16, where the function GetNonIntersectingJustification attempts

to search for a justification that does not intersect the current path. If there are

no non-intersecting justifications that can be reused, then the algorithm calls

the ComputeSingleJustification subroutine to compute a fresh justification. As a

further optimisation, early path termination is employed. The algorithm checks

to see if the axioms that label the current path label some other path that has

already been explored. If this is the case then early termination is applied to the

current path.

Algorithm 4.1 Termination and Completeness Based on the fact that

there is a finite number of justifications, all of finite size, it is reasonably straight

forward to see that Algorithm 4.1 terminates and a proof is therefore not provided

CHAPTER 4. JUSTIFICATION FINDING ALGORITHMS 81

here. Similarly, as the algorithm is fairly standard (containing standard optimi-

sations), and constructs a hitting set which is known to contain all justifications

(see [Kal06] for details), so a proof of completeness is not provided here.

Algorithm 4.1 ComputeAllJustifications(O, η)

1: Sworking ← ComputeModule(O, signature(η))
2: Xexplored ← ∅
3: Xresult ← ∅
4: Jroot ← ComputeSingleJustification(Sworking , η)
5: Xresult ← Xresult ∪ {Jroot}
6: vroot ← GetFreshNode(Jroot)
7: Enqueue(vroot , Q)
8: SetRoot(Thst , vroot)
9: while Q is not empty do

10: vhead ← Dequeue(Q)
11: Jhead ← GetLabel(vhead)
12: for α ∈ Jhead do
13: Spath ← GetPathToRootLabelSet(vhead , Thst) ∪ {α}
14: if Spath 6∈ Xexplored then
15: Xexplored ← Xexplored ∪ {Spath}
16: J ′ ← GetNonIntersectingJustification(Spath , Xresult)
17: if J ′ = ∅ then
18: Sworking ← Sworking \ Spath

19: J ′ ← ComputeSingleJustification(Sworking , η)
20: Sworking ← Sworking ∪ Spath

21: end if
22: vfresh ← GetFreshNode(J ′)
23: e← GetFreshEdge(〈vfresh , vhead〉, α)
24: Thst ← Thst ∪ {e}
25: if J ′ 6= ∅ then
26: Xresult ← Xresult ∪ {J ′}
27: Enqueue(vfresh , Q)
28: end if
29: end if
30: end for
31: end while
32: return Xresult

CHAPTER 4. JUSTIFICATION FINDING ALGORITHMS 82

4.3 Computing A Single Justification for O |= η

Given O |= η, Algorithm 4.2 computes a justification for η with respect to O.

The algorithm begins with a simple optimisation in lines 1–3 where it checks to

see if the entailment is asserted into the input ontology O. If this is the case, the

algorithm returns the singleton set self justification. Thereafter, the algorithm

simply consists of an expand-contract procedure. The actual mechanics of the

expansion phase and contraction phase are delegated to the ExpandAxioms and

ContractAxioms subroutines respectively.

Algorithm 4.2 ComputeSingleJustification(O, η)

1: if η ∈ O then
2: return {η}
3: end if
4: S ← ExpandAxioms(O, η)
5: if S = ∅ then
6: return ∅
7: end if
8: J ← ContractAxioms(S, η)
9: return J

4.3.1 Expansion Algorithms

This thesis investigates three different expansion routines which are presented in

Algorithms 4.3, 4.4 and 4.5. They are “all in one” expansion, “glass-box tracing”

expansion and “incremental selection function” expansion algorithms respectively.

All algorithms begin by checking that the entailment holds in the input ontology

O which is supplied to them. If the entailment does not hold then they simply

return the empty set.

All In One Expansion If the entailment holds then Algorithm 4.3, which is

the “all in one” expansion routine, simply returns the complete input O.

Tracing Expansion Algorithm 4.4, which is the “glass-box tracing” routine

and is the second simplest algorithm in the presentation here, uses the initial en-

tailment check to run a trace and obtain the axioms that support the entailment.

It is assumed that the subroutine trace(O, η) returns these axioms, which due to

CHAPTER 4. JUSTIFICATION FINDING ALGORITHMS 83

Algorithm 4.3 ExpandAxioms(O, η)

1: if O 6|= η then
2: return ∅
3: else
4: return O
5: end if

the reasons explained in Section 3.4.3 on Page 69, may or may not be a justifica-

tion. In Pellet 2.2.2 tracing operates during an entailment check and calling the

equivalent of trace in Pellet returns the axioms used in the last check. It should

therefore be noted that the initial entailment check in line 1 (which is common

to all expansion algorithms) is what really computes the trace when Pellet 2.2.2

is used.

Algorithm 4.4 ExpandAxioms(O, η)

1: if O 6|= η then
2: return ∅
3: else
4: S ← trace(O, η)
5: return S
6: end if

Incremental Expansion Algorithm 4.5 is the most involved of all algorithms

as it uses a selection function to perform incremental expansion on axioms in the

input O.

As mentioned, the incremental expansion of axioms takes place in the expan-

sion loop in Algorithm 4.5. The basic strategy is to take into consideration the

signature of the entailment and the signature of any already expanded axioms,

and then to increase the set of expanded axioms by ensuring that all defining

terms for the signature are present in the expansion set S. The notion of defin-

ing axioms is made clear in Table 4.1, where for a concept, role or individual

name the forms of defining axioms are shown in the last column. The selection

function has one quirk which is not shown explicitly in Algorithm 4.5 but relates

to how the signature is extracted from a set of axioms (line 13 in Algorithm

4.5). The GetSignature subroutine in line 13 does not include the signature of

disjoint concept axioms in the returned set of names. The reason for this is

that the Web Ontology Language, OWL, features disjoint concept axioms and in

CHAPTER 4. JUSTIFICATION FINDING ALGORITHMS 84

Algorithm 4.5 ExpandAxioms(O, η)

1: if O 6|= η then
2: return ∅
3: else
4: S ← ∅
5: S ′ ← ∅
6: Σ← signature(η)
7: repeat
8: S ′ ← S
9: S ← S ∪ GetDefiningAxioms(Σ,O)

10: if S |= η then
11: return S
12: end if
13: Σ← GetSignature(S)
14: until S ′ = S
15: return O
16: end if

some camps the practice of using these axioms to make asserted sibling classes

pairwise disjoint [RDH+04] is advocated as part of the process of “ontology nor-

malisation” [Rec03]. As can be imagined, this can result in a huge blowup in the

number of axioms that are selected based on usage and shared signature. The

pairwise disjoint axioms pull in all sibling classes and, after two steps, pull in all

definitions for the sibling classes. Treating disjoint concept axioms in this special

way helps to ameliorate this situation, and while the effect of this optimisation

is not explicitly investigated in this thesis, casual experiments have shown that

it produces a positive effect in ontologies where this modelling style is present.

Soundness and Completeness of Expansion Algorithms The soundness

and completeness of the above expansions algorithms is obvious. For a given

input O and η all of the algorithms return a non-empty set of axioms S ⊆ O
such that S |= η if and only if O |= η and otherwise return the empty set. All

of the algorithms feature an initial entailment check to see if O |= η. If the

entailment does not hold then the empty set is returned. If the entailment does

hold then either some subset of O that entails η is returned (Algorithm 4.4 and

Algorithm 4.5) or the input O is returned (Algorithm 4.3, and Algorithm 4.5) if

no proper subset of O that entails η is found.

CHAPTER 4. JUSTIFICATION FINDING ALGORITHMS 85

Table 4.1: Incremental Expansion Function Defining Axioms. A is a concept
name, C is a (possibly complex) concept, R is a role name, S is a (possibly
inverse) role, and a and b are an individual names.

Entity Type Defining Axiom Forms

A Concept name A v C
C v A
A ≡ C

R Role name R v S
R ≡ S
trans(R)

a Individual name C(a)
R(a, b)

4.3.2 A Divide and Conquer Contraction Algorithm

Algorithm 4.6 ContractAxioms(O, η)

return ContractAxiomsRecursive(∅, O, η)

ContractAxiomsRecursive(Ssupport , Swhole , η)

1: if |Swhole | = 1 then
2: return Swhole

3: end if
4: SL, SR ← Split(Swhole)
5: if Ssupport ∪ SL |= η then
6: return ContractAxiomsRecursive(Ssupport , SL, η)
7: end if
8: if Ssupport ∪ SR |= η then
9: return ContractAxiomsRecursive(Ssupport , SR, η)

10: end if
11: S ′L ← ContractAxiomsRecursive(Ssupport ∪ SR, SL, η)
12: S ′R ← ContractAxiomsRecursive(Ssupport ∪ S ′L, SR, η)
13: return S ′L ∪ S ′R

For previously explained reasons the only contraction strategy that is consid-

ered in this thesis is a classic divide and conquer strategy. A recursive divide and

conquer contraction algorithm is presented in Algorithm 4.6. The algorithm takes

as an input a set of support axioms Ssupport , the set of axioms upon which a binary

chop will be performed Swhole , and the entailment η (where (Ssupport∪Swhole) |= η).

CHAPTER 4. JUSTIFICATION FINDING ALGORITHMS 86

First, the base case where Swhole contains one axiom is checked. Next, the algo-

rithm splits Swhole into two halves using the Split subroutine. Each half is checked

to see if it independently entails with the set of support axioms. If one of the

halves entails η then the other half is essentially thrown away (lines 5–10). If

justifications for η are spread across both halves then each half is divided and

search by a recursive call of the routine (lines 11–12) and the results are combined

and returned (line 13).

4.4 Summary

This chapter has presented the algorithms that are used for computing justifica-

tions. In the next chapter an ontology corpus is described which the algorithms

are then evaluated on.

Chapter 5

The BioPortal Corpus

In the next chapter an empirical evaluation of the previously presented algo-

rithms is described. This evaluation was performed on ontologies contained in

the NCBO BioPortal ontology repository [DLR08, NDG+09, NSW+09]. This

chapter describes the BioPortal, why it makes a good corpus, and how the on-

tologies in it were processed and whittled down to the particular corpus used in

the empirical evaluation.

5.1 Ontology Corpus

The number of published real world ontologies has grown significantly since com-

puting justifications for entailments in OWL ontologies was first investigated from

2003 onwards. In particular, the number of ontologies in the biomedical arena

has grown considerably. Many of these ontologies have been made available via

the NCBO BioPortal ontology repository [DLR08, NDG+09, NSW+09], which

is used for accessing and sharing “ontologies that are actively used in biomedical

communities” [DLR08]. At the time of writing, BioPortal provides access to the

imports closures of over 250 bio-medical ontologies in various formats, including

OWL and OBO [SAR+07] ontologies.

Not only is BioPortal useful for end users who want to share and use biomed-

ical ontologies, it is also useful for ontology tools developers as it provides a

corpus of ontologies that is attractive for the purposes of implementation testing.

The BioPortal corpus is attractive for several reasons; in particular, it provides

ontologies that:

• Vary greatly in size. Ontologies range from hundreds of axioms in size

87

CHAPTER 5. THE BIOPORTAL CORPUS 88

through to hundreds of thousands of axioms in size.

• Vary greatly in expressivity. The expressivity of the Description Logics used

to represent BioPortal ontologies ranges from light weight EL through to

highly expressive SHOIQ and SROIQ.

• Are real world ontologies. The ontologies in BioPortal are not tutorial or

reasoner test bed ontologies. They were designed and built by users (domain

experts) for application purposes. In this sense, they provide a window on

the state of the art in ontology engineering.

• Are developed by a wide range of groups and developers. They contain

a variety of modelling styles from simple taxonomies through to axioms

containing deeply nested complex concepts, and therefore offer a good per-

spective on the kinds of ontologies that people build.

• Are not “cherry picked” to show good performance of tools. Any biomedical

ontology developer can add their ontology to BioPortal.

One natural concern with a corpus based on BioPortal might be that all of the

ontologies come from the same domain. Specifically, it could be argued that this

restricts the pool of ontologies to ones with a distinctive modelling style, that

arises due to the subject matter being modelled, and widespread bio-ontology

community modelling principles and diktats. Indeed, there is a perception that

many bio-medical ontologies only require lightweight description logics, such as

EL, and are heavily influenced by modelling guidelines such as those dispensed by

the OBO Foundry [SAR+07]. However, as explained above, the BioPortal corpus

contains a wide variety of expressive and logically rich ontologies that belie these

perceptions. Moreover, while the BioPortal does contain some ontologies that

have been contributed by several well known communities, many of the ontologies

have been submitted by a wide range of authors that come from independent

communities, and eyeballing these ontologies reveals different modelling styles are

present throughout the corpus. Finally, to date, the BioPortal corpus provides

the most thorough test-bed for justification finding services, and far surpasses any

other collection of ontologies used for testing in this area. In essence, this point, in

combination with the itemised points above, must outweigh any concerns about

domain bias.

CHAPTER 5. THE BIOPORTAL CORPUS 89

5.1.1 Curation Procedure

The BioPortal ontology repository was accessed on the 12th March 2011 using

the BioPortal RESTful Service API. In total, 261 ontology documents (and their

imports closures) were listed as being available. Out of these, there were 125

OWL ontology documents, and 101 OBO ontology documents, giving a total of

226 “OWL compatible” ontology documents that could theoretically be parsed

into OWL ontologies.

Parsing and Checking

Each listed OWL compatible ontology document was downloaded and parsed by

the OWL API. OBO ontology documents were parsed according to the BNF given

by Horrocks and Golbreich in [GH07] described further in [GHH+07] and extended

by Mungall [Mun11]. Any imports statements were recursively dealt with by

downloading the document at the imports statement URL and parsing it into

the imports closure of the original BioPortal “root” ontology. Each axiom that

was parsed into the imports closure was labelled with the name of the ontology

document from where it originated. If an imported ontology document could not

be accessed (for whatever reason) the import was silently ignored.

Out of the 226 OWL compatible ontology documents that were listed by the

BioPortal API, 7 could not be downloaded due to HTTP 5001 errors, and 1 on-

tology could not be parsed due to syntax errors. This left a total of 218 OWL

and OBO ontology documents that could be downloaded parsed into OWL on-

tologies. After parsing, four of the ontologies were found to violate the OWL

2 global restrictions. In all cases, the violation was caused by the use of tran-

sitive (non-simple) properties in cardinality restrictions. These ontologies were

discarded and were not processed any further, which left 214 ontologies.

Pruning

As explained in the preliminaries chapter, this thesis concentrates on the Descrip-

tion Logic SHOIQ. There were five ontologies that contained a mixture of reflex-

ive role axioms, irreflexive role axioms, and role chain subsumption axioms, which

lie outside the expressivity of SHOIQ. Rather than completely discarding these

1An HTTP 500 error is an error code that indicated the web server encountered an internal
error that prevented it from fulfilling the client request.

CHAPTER 5. THE BIOPORTAL CORPUS 90

ontologies the non-SHOIQ axioms were removed from them as follows: Ontology

11 (cancer-research-and-management-acgt-master-ontology)—1 irreflexive prop-

erty axiom removed. Ontology 47 (oboe)—2 role chain axioms removed. Ontol-

ogy 48 (oboe-sbc)—2 role chain axioms removed. Ontology 61 (semanticscience-

integrated-ontology)—3 reflexive role axioms removed, 3 irreflexive role axioms

removed, 1 role chain axiom removed. Ontology 70 (uber-anatomy-ontology)—1

reflexive role axiom removed. The decision to repair and retain these ontologies,

as opposed to completely discarding them, was taken because the removal of non-

SHOIQ axioms from them was entirely deterministic. That is, an axiom was

removed if and only if it is a non-SHOIQ axiom—it was not necessary to choose

one repair/conversion plan over another and make an arbitrary choice that could

have affected the results of the experiments that follow in an arbitrary way. It

should be noted that this is in contrast to the repair of an ontology that vio-

lates the OWL 2 global restrictions, where there could be multiple reasons, and

therefore multiple alternative repair plans for that ontology.

Entailment Extraction

Three reasoners were used for entailment extraction: HermiT, JFaCT, which is a

Java port of FaCT++2, and Pellet. Each ontology was checked for consistency.

Five of the 214 ontologies were found to be inconsistent. Next, each consistent

ontology was classified and realised in order to extract entailments to be used

in the justification finding experiments. Entailed direct subsumptions between

named classes (i.e. axioms of the form A v B) were extracted, along with direct

class assertions between named individuals and named classes (i.e. axioms of

the form A(a)). It was decided that these kinds of entailments should be used

for testing purposes because they are the kinds of entailments that are exposed

through the user interfaces of tools such as Protégé-4 and other ontology browsers,

and are therefore the kinds of entailments that users of these tools typically seek

justifications for. The set of entailments for each ontology was then filtered so

that it only contained non-trivial entailments in accordance with Definition 5.

2JFaCT was used in place of FaCT++ because it was found that JFaCT could handle more
BioPortal ontologies than FaCT++. This was due to the reason that, at the time of writing,
JFaCT supports more datatypes than FaCT++ does and the BioPortal corpus contains several
ontologies whose signatures contain datatypes that cannot be handled by FaCT++. It is worth
noting that JFaCT and FaCT++ are comparable in terms of performance.

CHAPTER 5. THE BIOPORTAL CORPUS 91

Definition 5 (Non-Trivial Entailment). Given an ontology O, such that O |= α,

the entailment α in O is non-trivial if O \ {α} |= α

Intuitively, for an ontology O and an entailment α such that O |= α, α is a

non-trivial entailment in O either if α is not asserted in O (i.e. α 6∈ O) or, α is

asserted in O (i.e. α ∈ O) but O \ {α} |= α, i.e. O with α removed still entails

α. In total there were 72 ontologies with non-trivial entailments which accounts

for just over one third of the consistent OWL and OBO ontologies contained in

BioPortal.

Reasoner Performance

Due to practical considerations, a timeout of 30 minutes of CPU time was set

for each task of consistency checking, classification and realisation. There were

just three ontologies, for which consistency checking (and hence classification and

realisation) could not be completed within this time out. These were: GALEN,

the Foundational Model of Anatomy (FMA) [RJ03], and NCBI Organismal Clas-

sification. The version of GALEN contained within the BioPortal is one of the

extremely hard versions of the ontology that only the CB reasoner [Kaz09] is able

to deal with. Since CB is written in objective-camel and does not integrated with

the OWL API it was not used for testing. It is worth noting that, in the litera-

ture there are various published reasoning service experiments which successfully

use GALEN as a test case. However, these experiments typically use doctored

versions of GALEN, which are easy for reasoners such as FaCT++, Pellet and

HermiT to perform consistency checking on, and accounts for differences between

third party published results and the results obtained here.

5.1.2 Ontologies With Non-Trivial Entailments

The set of BioPortal ontologies that contained at least one non-trivial entailment

is shown in Table 5.1. For these ontologies, the average number of logical ax-

ioms (i.e. non-annotation axioms) per ontology was 10,645 (SD=31,333, Min=13,

Max=176,113). The average number of non-trivial entailments per ontology was

1,548 (SD=6,187, Min=1, Max=49,537). In terms of expressivity, as can be seen,

the expressivity of the BioPortal ontologies with non-trivial entailments ranges

from EL and EL + + through to SHOIQ and SROIQ, with various levels of

expressivity in between these two ends of the scale.

CHAPTER 5. THE BIOPORTAL CORPUS 92

5.2 Summary

In summary, the ontology corpus provided by the BioPortal exhibits varying

numbers of non-trivial entailments with a wide range of expressivities. It reflects

current modelling practices and the kinds of ontologies that people used in tools.

CHAPTER 5. THE BIOPORTAL CORPUS 93

T
ab

le
5.

1:
B

io
P

or
ta

l
C

or
pu

s
O

nt
ol

og
ie

s

Id
O

n
to

lo
gy

E
x
p
re

ss
iv

it
y

A
x
io

m
s

E
n
ta

il
m

en
ts

N
on

-T
ri

v
E
n
ts

.

1
ad

ve
rs

e-
ev

en
t-

on
to

lo
gy

SH
I

54
8

42
6

49
2

ad
ve

rs
e-

ev
en

t-
re

po
rt

in
g-

on
to

lo
gy

SH
OI
N

51
3

25
6

91
3

am
in

o-
ac

id
AL
CF

49
7

49
44

4
ba

si
c-

fo
rm

al
-o

nt
ol

og
y

AL
C

95
38

35
5

ba
si

c-
ve

rt
eb

ra
te

-a
na

to
m

y
SH
IF

38
8

11
6

33
6

bi
ol

og
ic

al
-i

m
ag

in
g-

m
et

ho
ds

EL
+

+
53

6
51

9
43

7
bi

op
ax

SH
IN

39
1

68
4

8
bi

ot
op

SR
I

68
0

35
7

35
7

9
bl

ee
di

ng
-h

is
to

ry
-p

he
no

ty
pe

AL
CI
F

19
25

61
5

87
10

br
uc

el
lo

si
s-

on
to

lo
gy

SH
OI

12
79

88
9

28
3

11
ca

nc
er

-r
es

ea
rc

h-
an

d-
m

an
ag

em
en

t-
ac

gt
-m

as
te

r-
on

to
lo

gy
SR
OI
Q

55
22

18
08

22
5

12
ca

rd
ia

c-
el

ec
tr

op
hy

si
ol

og
y-

on
to

lo
gy

SH
F

17
61

13
81

68
9

24
13

ce
ll-

be
ha

vi
or

-o
nt

ol
og

y
AL
UO

13
11

7
14

ce
ll-

ty
pe

AL
C

23
01

18
64

18
15

ce
re

al
-p

la
nt

-g
ro

ss
-a

na
to

m
y

EL
+

+
18

68
10

90
2

16
ch

em
ic

al
-i

nf
or

m
at

io
n-

on
to

lo
gy

SH
IN

75
2

73
46

70
16

17
co

gn
it

iv
e-

pa
ra

di
gm

-o
nt

ol
og

y
SH
OI
N

65
1

37
0

67
18

co
m

pu
te

r-
ba

se
d-

pa
ti

en
t-

re
co

rd
-o

nt
ol

og
y

SH
OI
N

14
80

47
2

34
8

19
co

ri
el

l-
ce

ll-
lin

e-
on

to
lo

gy
AL
CH
I

13
90

04
51

37
5

49
53

7
20

de
nd

ri
ti

c-
ce

ll
AL
C

31
3

14
5

47
21

de
rm

le
x-

th
e-

de
rm

at
ol

og
y-

le
xi

co
n

AL
UF

24
45

2
12

20
4

60
99

22
el

ec
tr

oc
ar

di
og

ra
ph

y-
on

to
lo

gy
AL
CI
F

10
28

86
6

47
23

ev
id

en
ce

-c
od

es
EL

+
+

32
1

31
5

11
2

24
ex

pe
ri

m
en

ta
l-

fa
ct

or
-o

nt
ol

og
y

SH
OI
F

70
94

48
35

20
00

CHAPTER 5. THE BIOPORTAL CORPUS 94

Id
O

n
to

lo
gy

E
x
p
re

ss
iv

it
y

A
x
io

m
s

E
n
ta

il
m

en
ts

N
on

-T
ri

v
E
n
ts

.

25
fa

m
ily

-h
ea

lt
h-

hi
st

or
y-

on
to

lo
gy

AL
CH
IF

11
03

32
5

14
4

26
ge

ne
-o

nt
ol

og
y-

ex
te

ns
io

n
EL

+
+

60
29

3
45

51
8

80
82

27
ge

ne
-r

eg
ul

at
io

n-
on

to
lo

gy
AL
CH
IQ

96
2

56
3

10
0

28
ge

ne
ra

l-
fo

rm
al

-o
nt

ol
og

y
SH
IQ

21
2

45
10

29
ge

os
pe

ci
es

-o
nt

ol
og

y
SH
OI
N

34
47

78
6

8
30

ho
st

-p
at

ho
ge

n-
in

te
ra

ct
io

ns
-o

nt
ol

og
y

SH
I

40
3

27
4

35
31

hu
m

an
-d

is
ea

se
EL

+
+

10
28

1
10

30
7

47
32

im
gt

-o
nt

ol
og

y
AL
CI
N

11
12

10
8

35
33

in
fe

ct
io

us
-d

is
ea

se
SH
OI

63
3

55
6

56
34

in
fo

rm
at

io
n-

ar
ti

fa
ct

-o
nt

ol
og

y
SH
OI
N

31
2

14
9

68
35

in
te

ra
ct

io
n-

ne
tw

or
k-

on
to

lo
gy

AL
C

10
34

97
7

35
36

in
te

rn
at

io
na

l-
cl

as
si

fic
at

io
n-

fo
r-

nu
rs

in
g-

pr
ac

ti
ce

SH
IF

12
95

8
38

60
22

30
37

in
te

rn
at

io
na

l-
cl

as
si

fic
at

io
n-

of
-e

xt
er

na
l-

ca
us

es
-o

f-
in

ju
ri

es
AL

13
61

2
44

58
22

25
38

in
te

rn
at

io
na

l-
cl

as
si

fic
at

io
n-

of
-f

un
ct

io
ni

ng
-d

is
ab

ili
ty

-a
nd

-h
ea

lt
h-

ic
f-

AL
UH
IF

13
91

3
39

30
24

11
39

lin
ki

ng
ki

n2
pe

p
SH
IF

30
7

2
40

lip
id

-o
nt

ol
og

y
AL
CH
IN

23
75

71
9

27
5

41
m

ah
co

-a
n-

m
hc

-o
nt

ol
og

y
AL
CI
Q

13
84

4
10

29
1

26
42

m
ge

d-
on

to
lo

gy
AL
EO
F

25
45

10
03

2
43

nc
i-

th
es

au
ru

s
SH

14
64

88
89

46
8

16
20

2
44

ne
om

ar
k-

or
al

-c
an

ce
r-

ce
nt

re
d-

on
to

lo
gy

AL
CH
Q

17
55

62
48

45
ne

ur
al

-e
le

ct
ro

m
ag

ne
ti

c-
on

to
lo

gi
es

SH
IQ

24
05

15
13

14
8

46
nm

r-
in

st
ru

m
en

t-
sp

ec
ifi

c-
co

m
po

ne
nt

-o
f-

m
et

ab
ol

om
ic

s-
in

ve
st

ig
at

io
ns

SH
59

9
47

7
36

47
ob

oe
SR
IQ

26
5

29
18

48
ob

oe
-s

bc
SR
IQ

10
96

45
9

10
8

49
on

to
lo

gy
-f

or
-b

io
m

ed
ic

al
-i

nv
es

ti
ga

ti
on

s
SH
OI
N

25
27

2
33

29
70

3
50

on
to

lo
gy

-f
or

-d
ru

g-
di

sc
ov

er
y-

in
ve

st
ig

at
io

ns
SH
OI
N

96
8

66
6

62

CHAPTER 5. THE BIOPORTAL CORPUS 95

Id
O

n
to

lo
gy

E
x
p
re

ss
iv

it
y

A
x
io

m
s

E
n
ta

il
m

en
ts

N
on

-T
ri

v
E
n
ts

.

51
on

to
lo

gy
-f

or
-g

en
er

al
-m

ed
ic

al
-s

ci
en

ce
AL
CO

21
3

14
7

54
52

on
to

lo
gy

-f
or

-g
en

et
ic

-i
nt

er
va

l
SH
IN

50
9

22
3

51
53

on
to

lo
gy

-o
f-

cl
in

ic
al

-r
es

ea
rc

h-
oc

re
-

AL
CH
OI
N

97
1

36
5

99
54

on
to

lo
gy

-o
f-

gl
uc

os
e-

m
et

ab
ol

is
m

-d
is

or
de

r
AL
C

31
95

17
5

35
55

on
to

lo
gy

-o
f-

m
ed

ic
al

ly
-r

el
at

ed
-s

oc
ia

l-
en

ti
ti

es
AL
CO

15
5

91
52

56
ph

ar
e

AL
CH
IF

45
9

22
8

34
57

pi
lo

t-
on

to
lo

gy
AL
CI
F

85
20

1
58

pl
an

t-
on

to
lo

gy
EL

+
+

21
07

13
25

2
59

pr
ot

ei
n-

on
to

lo
gy

AL
CF

69
1

68
28

60
pr

ot
ei

n-
on

to
lo

gy
-p

ro
-

S
26

85
4

26
08

9
46

82
61

se
m

an
ti

cs
ci

en
ce

-i
nt

eg
ra

te
d-

on
to

lo
gy

SR
IQ

14
92

92
2

55
62

se
qu

en
ce

-t
yp

es
-a

nd
-f

ea
tu

re
s

SH
I

23
98

18
30

24
4

63
sk

in
-p

hy
si

ol
og

y-
on

to
lo

gy
AL
ER
IF

+
67

8
35

7
40

64
sn

p-
on

to
lo

gy
SH
OI
N

10
37

3
24

09
56

6
65

so
ft

w
ar

e-
on

to
lo

gy
AL
CH
IN

20
80

72
7

33
2

66
sp

at
ia

l-
on

to
lo

gy
AL
EH
I+

23
4

16
5

12
0

67
su

bc
el

lu
la

r-
an

at
om

y-
on

to
lo

gy
-s

ao
-

SH
IN

29
35

82
0

59
68

te
rm

in
ol

og
y-

fo
r-

th
e-

de
sc

ri
pt

io
n-

of
-d

yn
am

ic
s

AL
CR
IQ

28
6

17
6

51
69

tr
an

sl
at

io
na

l-
m

ed
ic

in
e-

on
to

lo
gy

SH
IN

38
0

21
6

46
70

ub
er

-a
na

to
m

y-
on

to
lo

gy
EL

+
+

15
93

9
80

75
39

97
71

va
cc

in
e-

on
to

lo
gy

SH
OI
N

84
44

44
53

12
93

72
ve

rt
eb

ra
te

-a
na

to
m

y-
on

to
lo

gy
EL

+
+

30
7

18
8

6

Chapter 6

Justification Finding

Experiments

This chapter presents several experiments that were carried out on the BioPortal

corpus of ontologies. As stated previously, the main purpose of the experiments

was to investigate the practicability of computing justifications for entailments

in real world ontologies. The first experiment uses an implementation of Algo-

rithm 4.1 to compute all justifications for direct atomic subsumptions and class

assertions. The data obtained from this experiment is used to draw conclusions

about the practicality of computing all justifications using model based diagno-

sis techniques, as well as providing an insight into the justification landscape

of the set of BioPortal ontologies. Next, several experiments which investigate

the effects of selective expansion and glass-box expansion are presented. These

experiments are performed on random samples of entailments from the BioPor-

tal corpus. Finally, a sample of inconsistent ontologies that were found on the

world wide web and various mailing lists are used to examine the practicality of

computing justifications for inconsistent ontologies.

Choice of Reasoner All of the experiments were carried out using Pellet 2.2.2

backed by the OWL API [BVL03, HB09, HB11]. This API has support for

manipulating ontologies at the level of axioms, and so it is entirely suited for the

implementation of the justification finding algorithms that have been described

previously. The decision to focus on this reasoner was taken for the following

reasons:

1. Tableau tracing—The primary reason for using Pellet is that it is the

96

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 97

only mainstream reasoner which supports some form of tableau tracing.

This provides a level of uniformity across the entire set of experiments that

follow. In particular it makes it easy to compare black-box and glass-box

approaches.

2. Robustness of Dealing with BioPortal Ontologies—In the BioPortal

ontology processing and entailment extraction experiments described in the

previous chapter it was found that Pellet was the most robust reasoner in

terms of being able to deal with input syntax (in particular dealing with

with certain xsd:datatypes) perform consistency checking, classification and

entailment extraction on the BioPortal ontologies. Indeed, although Her-

miT and JFaCT performed very well, it was Pellet which had the fewest

number of failures for the combination of syntax and reasoner tasks.

3. Robustness and Conformance with the OWL API—Pellet conforms

rather well to the OWL API specification of reasoner interfaces. In partic-

ular, it provides robust and reliable support for setting timeouts for entail-

ment checking.

Finally, in addition to the above choice criteria, all three reasoners were more or

less “in the same ball-park” in terms of consistency checking, classification and

entailment extraction. It is therefore reasonably safe to assume that the results

which follow can be extrapolated to other reasoners such as HermiT, JFaCT,

FaCT++ and Racer.

Percentile Plots Many of the results that follow are presented as percentile

plots. These kinds of plots tend to illustrate the variation in some variable e.g.

time, better than a plot of the mean of that variable alone. This is because

they expose the extremes as well as painting a picture of the middle ground, and

therefore give some feeling for typical and worst case performance. In order to

understand how percentiles work, consider the problem of computing all justifica-

tions for a set of entailments in an ontology. The nth percentile for this problem

represents the time taken for some entailment in that set such that n percent of

entailments took the same time or less. The 50th percentile corresponds to the

median. When the number and size of justifications per entailment is displayed,

the ordering is reversed, so for example, the nth percentile represents the number

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 98

of justifications for some entailment such that n percent of entailments in the set

had same or more justifications.

Having introduced the overall test setup, each experiment is now described in

detail.

6.1 Finding All Justifications

Experiment 1 was carried out in order to determine the practicability of com-

puting all justifications for an entailment. The experiment primarily focuses on

the use of a hitting set tree for computing justifications and uses a black-box im-

plementation of the sub-routine for finding single justifications. As will be seen

later, the behaviour of glass-box find-one algorithms should allow the results to

be generalised to other find-one implementations.

Experiment 1: Black Box Find All

Experiment 1 Algorithm Implementation

Algorithm 4.1 and its subroutines: Algorithm 4.2, Algorithm 4.5 and Algorithm

4.6 were implemented in Java against the OWL API version 3.2.2.

Experiment 1 Test Data

The test data consisted of the 72 BioPortal ontologies that contained non-trivial

entailments. For each ontology, the set of all non-trivial direct subconcept (A v
B) and direct concept assertion (A(a)) entailments were extracted and paired up

with the ontology.

Experiment 1 Method

The experiments were performed on MacBook Pro with a 3.06 GHz Intel Core

2 Duo Processor. The Java Virtual Machine was allocated a maximum of 4 GB

of RAM. Pellet 2.2.2 was used as a backing reasoner for performing entailment

checks, with each entailment check consisting of a load, followed by a query to

ask whether or not the entailment held. The implementation of Algorithm 4.1

was used to compute all justifications for each non-trivial entailment for each

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 99

1	

10	

100	

1,000	

10,000	

100,000	

1,000,000	

Ti
m
e	

/	

(m

s)
	
 	

	
 P100	
 	
 	
 P99	
 	
 	
 P90	
 	
 	
 P75	
 	
 	
 P50	
 	

Figure 6.1: Percentile and Mean Times to Compute All Justifications Using Al-
gorithm 4.1 with Algorithm 4.2 (Expand-Contract Find One), Algorithm 4.5
(Expansion by Selection Function) and Algorithm 4.6 (Divide and Conquer) as
sub-routines. Mean times are shown in white outlines. The x-axis (Ontology) is
sorted by the 99th percentile (P99).

ontology. For each entailment, the CPU time for computing all justifications was

measured, along with the number and sizes of justifications. For the sake of prac-

ticalities, because some ontologies have huge numbers of non-trivial entailments

(e.g. 49,000+ entailments for the coriell-cell-line ontology), a soft time limit of

10 minutes was imposed on computing all justifications for any one entailment.

Additionally, an entailment test time limit of 5 minutes was placed on entailment

checking.

Experiment 1 Results

Figure 6.1 shows a percentile plot for time to compute all justifications. Note

that mean values for each ontology are shown as transparent bars with white

outlines. The x-axis, which shows Ontology Id, is ordered by the value of the

99th percentile. This percentile was chosen because it provides a good picture of

how the algorithm will perform in practice for the vast majority of entailments.

It also draws out the remaining 1 percent of outliers rather clearly.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 100

Table 6.1: Black-Box Find All Timeouts

Ont. Ents. Failed % Failed Computed Justs. Entailment Check
Number Size Time / (ms)

Mean Max Mean Max Mean SD Max

19 49537 16 0.03 40.6 65 15.7 23 1.1 0.4 3
36 2230 1 0.04 414.0 414 13.5 17 0.5 0.3 2
64 566 4 0.71 1284.5 1411 25.1 28 2.5 1.6 13
70 3997 188 4.70 448.5 1060 12.7 24 7.0 77.8 141,721
45 148 9 6.08 1.6 2 21.9 24 1,979.9 6,762.4 41,840
3 44 3 6.82 1271.3 1494 26.9 35 2.5 1.3 10
32 35 26 74.29 2.2 7 2.5 8 2,601.2 23,781.0 270,004

There were seven ontologies that contained one or more entailments for which

it was not possible to compute all justifications. These ontologies, along with the

total number of entailments and the number of failed entailments are shown in

Table 6.1. Table 6.1 also shows the mean/max number and size of justifications

per failed entailment and the mean entailment checking times per failed entail-

ment. In these seven ontologies there were three ontologies for which the failures

occurred over less than one percent of entailments tested, a further ontologies

where the failures occurred for less than 7 percent of entailments tested, and one

final ontology, where failures occurred for almost 75 percent of entailments tested.

In this last ontology all of the failures were due to entailment checking timeouts.

The failures relating to all of the other ontologies were due to timeouts during

construction of the hitting set tree, which became too large to search within a

period of 10 minutes.

Figure 6.2 and Figure 6.3 provide a picture of the justification landscape for

the BioPortal ontologies. Figure 6.2 shows the the mean number of justifications

per entailment per percentile. It should be noted that the percentiles are calcu-

lated from a reverse ordering of entailments based on justification size. That is,

the nth percentile contains n percent of entailments that have the largest number

of justifications. The x-axis in Figure 6.2 is ordered by the mean value of the

100th percentile (i.e. mean number of justifications per entailment). Figure 6.3

shows the mean number of axioms per justification per percentile along with the

maximum number of axioms per entailment. The percentiles are calculated from

a reverse ordering on justification size. For example, the nth percentile contains

n percent of justifications that have a mean size greater than the mean of that

percentile.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 101

1	

10	

100	

1000	

N
um

be
r	
 o

f	
 J
us
,fi

ca
,o

ns
	
 p
er
	
 E
nt
ai
lm

en
t	

Max	
 	
 Mean	
 P1	
 	
 	
 Mean	
 P10	
 	
 	
 Mean	
 P25	
 	
 	
 Mean	
 P50	
 	
 	
 Mean	
 P100	
 	

Figure 6.2: The Mean Number of Justifications per Entailment for Various Per-
centiles (Percentiles of the Entailments Sorted by the Number of Justifications
in Descending Order—e.g. P10 represents the top 10 percent of entailments with
the highest number of justifications per entailment.)

0	

5	

10	

15	

20	

25	

30	

35	

40	

N
um

ne
r	
 o

f	
 A
xi
om

s	
 p
er
	
 Ju

s0
fic
a0

on
	

Max	
 	
 Mean	
 P1	
 	
 	
 Mean	
 P10	
 	
 	
 Mean	
 P25	
 	
 	
 Mean	
 P50	
 	
 	
 Mean	
 P100	
 	

Figure 6.3: Mean Number of Axioms per Justification (Percentiles of Justifica-
tions Sorted by the Size of Justifications in Descending Order—e.g. P10 repre-
sents the top 10 percent of justifications with the largest size.)

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 102

Experiment 1 Analysis

The Practicalities of Computing All Justifications for An Entailment

Out of the 72 ontologies it was possible to compute all justifications for all direct

atomic subconcept and concept assertion entailments in 65 ontologies. There

were seven ontologies that contained some entailments for which not all justifica-

tions could be computed. These failures are discussed below, however, the results

from this experiment provide strong empirical evidence that it is largely practi-

cal to compute all justifications for these kinds of entailments in the BioPortal

ontologies. Although the results cannot be statistically generalised to ontologies

outside of the BioPortal corpus it is reasonable to assume that the results are

suggestive for other real world ontologies.

Reasons for Failures Seven of the 72 ontologies contained entailments for

which not all justifications could be computed. Broadly speaking there were two

reasons for this:

1. The justifications for each failed entailment were numerous and large in size.

This resulted in the size of the hitting set tree growing to a limit where it

was not possible to close all branches within 10 minutes. In particular, for

Ontology 36 the hitting set tree grew to over 3 million nodes, and for On-

tology 70 the hitting set tree grew to over 1.6 million nodes. This compares

to hitting set tree sizes in the tens of thousands for successful entailments.

2. Entailment checking performance was such that the number of entailment

checks, in combination with the time for each check, made it impossible to

construct the hitting set tree within 10 minutes. This was the case with On-

tology 45 and Ontology 32, both of which had average entailment checking

times that were three orders of magnitude higher than for other ontologies.

This problem was particularly endemic for Ontology 32, which suffered the

largest number of failures, and had the worst entailment checking perfor-

mance of all ontologies (M=2,601.2 ms, SD=23,781.0 ms, MAX=270,004

ms)

Leaving aside entailment checking performance problems, which can be regarded

as being out of the scope of control of this work, the number of justifications

that were computable for failed entailments was very high. For example, for

Ontology 3, which percentage-wise suffered the highest number of failures, the

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 103

implementation was still able to compute on average 1271 justifications per failed

entailment, with a maximum of 1494 justifications. With the exception of Ontol-

ogy 32, which had a very high percentage of failures, it is fair to say that over the

whole corpus, and within individual ontologies, the failure rate is low to very low,

thus indicating the robustness of the algorithms on real world ontologies. When

the algorithm does fail to find all justifications the number of found justifications

tends to be very large.

The Acceptability of Times for Computing All Justifications As can be

seen from Figure 6.1, the majority of ontologies contained entailments for which

all justifications could be computed within 1 second. For all but six ontologies,

the implementation of Algorithm 4.1 was able to compute all justifications for

99 percent of entailments within 10 seconds. Only two ontologies required longer

than one minute for computing all justifications for 99 percent of entailments in

these ontologies, with 90 percent of entailments in these ontologies falling below

the one minute mark. It is clear to see that there are some outlying entailments in

the corpus. In particular, Ontology 19 (the Coriell Cell Line Ontology) contains

the most significant outlier, with one percent of entailments in this ontology

requiring almost 150 seconds for computing all justifications. However, it appears

that the times are perfectly acceptable for the purposes of generating justifications

for debugging or repair in ontology development environments.

The Number of Justifications per Entailment As can be seen from Figure

6.2, the number of justifications per entailment varied over much of the BioPortal

corpus. There were just four ontologies which had on average one justification

per entailment. Even ontologies with low average numbers of justification per

entailment did exhibit some entailments with large numbers of justifications as

evidenced by the band of ontologies from 60 to 52 on the left hand side of Figure

6.2. On the right hand side of Figure 6.2, the band of ontologies from 14 through

to 70 represent ontologies with very large numbers of justifications per entail-

ment. For example, Ontology 70 had on average 25 justifications per entailment,

with 10 percent of entailments having over 177 justifications, and 50 percent of

entailments having over 48 justifications. This was closely followed by Ontology

28, which had on average 20 justifications per entailment, with 50 percent of en-

tailments having over 40 justifications. The maximum number of justifications

for any one entailment occurred in Ontology 36, which had 837 justifications for

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 104

one entailment. At this point it is worth noting that none of the empirical work

detailed in the literature uncovered ontologies with these large and very large

numbers of justifications per entailment.

The Size of Justifications Figure 6.3 shows the mean numbers of axioms per

justification per ontology. The ontologies are ordered by mean number of axioms

per justification. There is a clear band of ontologies to the left hand side of Fig-

ure 6.3 that only have, on average, one axiom per justification. Recall that each

entailment is a non-trivial entailment, which means that these justifications are

not simply “self” justifications. In general the mean values (100th percentile) for

each ontology are fairly low, with only 11 ontologies (shown on the right hand

side of Figure 6.3) having over 5 axioms per justification on average . However, as

witnessed by the 1st, 10th, 25th and 50th percentile columns in Figure 6.3, there

are in fact many ontologies with many entailments that have larger numbers of

axioms per justification. For example there are 10 ontologies where 50 percent of

justifications contained over 7 axioms, and 10 percent of justifications contained

10 to 16 axioms. At the top end of the scale, several ontologies contained justi-

fications with very large numbers of axioms. For example Ontologies 48, 50, 63,

18 and 41 contained justifications with 21, 23, 24, 25 and 37 axioms respectively.

Finally it should be noted that these larger justifications do not simply consist of

long chains of atomic subclass axioms. All in all, the number of justifications per

entailment, and the size of justifications points to considerable logical richness

being present in many ontologies in the BioPortal corpus.

6.2 Finding Single Justifications

Experiment 1 has shown that it is largely practical to compute all justifications

for entailments in real ontologies using model based diagnosis techniques. A key

feature of this technique is that while it is used for computing all justifications,

it makes use of a pluggable subroutine for computing single justifications. There-

fore, the experiments that follow centre around computing single justifications for

entailments and a comparison of the high level methods of doing this. Specifically,

the effectiveness of the expand stage is examined in the context of a black-box

expand-contact algorithm for finding a single justification. In essence Algorithm

4.2 is investigated with three different expansion routines: (1) Algorithm 4.5

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 105

(Expansion by Selection Function), (2) Algorithm 4.3 (All in One Expansion,

which essentially no expansion phase) and (3) Algorithm 4.4 (Glass-Box Tracing

based Expansion). The divide and conquer contraction subroutine was used for

all sub-experiments because both Frierich [FS05], Shchekotykhin [SFJ08] and

Suntisrivaraporn [Sun09] carried out experiments which clearly show the bene-

fits of using divide and conquer over other strategies such as the sliding window

technique [Kal06].

Experiment 2: Black Box Find One with Different Expan-

sion Techniques

Experiment 2 Algorithm Implementation

Algorithms 4.2, 4.6, 4.5, 4.3 and 4.4 were implemented in Java. Three sub-

experiments were run by pluging together the above algorithms in different com-

binations. First, Algorithms 4.2, 4.6, 4.5 (Expansion by Selection Function) were

combined and run on the test data. This was followed by the combination of

Algorithms 4.2, 4.6, 4.3 (All in One Expansion i.e. No incremental expansion)

and finally, the combination of Algorithms 4.2, 4.6, 4.4 (Glass-Box Tracing). En-

tailment checking was performed using Pellet 2.2.2, with each entailment check

consisting of load of the set of given axioms followed by a query to see if the

entailment holds.

Experiment 2 Test Data

For each ontology in the 72 BioPortal ontologies a random sample of 500 non-

trivial entailments (direct atomic concept inclusion axioms and direct atomic

concept assertion axioms) was drawn from the complete set of non-trivial entail-

ments.

Experiment 2 Method

For each combination of subroutines described above, Algorithm 4.1 (Find All)

was used to repeatedly make calls to Algorithm 4.2 so that multiple justifications

could be found for each entailment. A maximum of 50 justifications, and hence

50 calls to the find-one subroutine were made for each sampled non-trivial en-

tailment. In each call the CPU time to find a single justification was recorded.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 106

The experiments were performed on MacBook Pro with a 3.06 GHz Intel Core 2

Duo Processor. The Java Virtual Machine was allocated a maximum of 4 GB of

RAM.

Experiment 2 Results

Figures 6.4 and 6.5 show percentile and mean times for computing single justifica-

tions using black-box selection function (Algorithm 4.5) and glass-box (Algorithm

4.4) expansion respectively. It should be noted that, in both cases, the 99th per-

centile times are used to order the ontologies along the x-axis of each plot. Times

for black-box with all-in-one expansion, i.e. without incremental expansion, are

not shown explicitly. Instead, Figure 6.6 shows the percentage differences in

mean times between the mean values for selection function based incremental

expansion, and mean times for all-in-one non-incremental expansion.

In the cases where Algorithm 4.5 (expansion by selection function) and Al-

gorithm 4.4 (expansion by glass-box tracing) were used as sub-routines, all calls

made to Algorithm 4.2 to find a single justification succeeded for all tested entail-

ments in all ontologies except Ontology 32. Recall from Experiment 1 that this

ontology was problematic and incurred a 75 percent failure proportion for the set

of atomic class inclusion entailments. When Algorithm 4.3 (all-in-one expansion)

was used as a subroutine for Algorithm 4.2 several failures occurred for Ontology

49. Out of 1431 runs of Algorithm 4.2 there were 15 failures. However, all of

these failures were caused by stack overflow errors in Pellet.

Experiment 2 Analysis

Since Ontology 32 has proved to be somewhat of a pathological test ontology, in

that the main problems with Ontology 32 arise due to poor entailment checking

performance rather than inherent issues with justification finding algorithms, it is

omitted from the analysis that follows when discussing the practicalities of single

justification finding.

The Practicabilities of Finding Single Justifications As expected, the

algorithms for finding single justifications work well in practice. Reasoner bugs

aside, all three subroutine variants succeed in computing single justifications for

all runs of Algorithm 4.2 on all entailments in all ontologies. For the vast major-

ity of ontologies it was possible to compute single justification for all entailments

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 107

	
 1	
 	

	
 10	
 	

	
 100	
 	

	
 1,000	
 	

	
 10,000	
 	

	
 100,000	
 	

	
 1,000,000	
 	

Ti
m
e	

/	

(m

s)
	

	
 P100	
 	
 	
 P99	
 	
 	
 P90	
 	
 	
 P75	
 	
 	
 P50	
 	

Figure 6.4: The Mean and Percentile Times for Finding One Justification Using
Algorithm 4.2 (Expand-Contract) with Algorithm 4.5 (Expansion by Selection
Function) and Algorithm 4.6 (Divide and Conquer Contraction) as sub-routines.
Mean times are shown in a white outline.

	
 1	
 	

	
 10	
 	

	
 100	
 	

	
 1,000	
 	

	
 10,000	
 	

	
 100,000	
 	

	
 1,000,000	
 	

Ti
m
e	

/	

(m

s)
	

	
 P100	
 	
 	
 P99	
 	
 	
 P90	
 	
 	
 P75	
 	
 	
 P50	
 	

Figure 6.5: The Mean and Percentile Times for Finding One Justification Using
Algorithm 4.2 (Expand-Contract) with Algorithm 4.4 (Expansion by Glass Box
Tracing) and Algorithm 4.6 (Divide and Conquer Contraction) as sub-routines.
Mean times are shown in a white outline.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 108

well within the 1 second boundary. As can be seen by comparing Figure 6.4 with

Figure 6.5, over the whole BioPortal corpus, the glass-box expansion based algo-

rithm (Algorithm 4.4) performed slightly better than the black-box incremental

expansion based algorithm (Algorithm 4.5)—for the majority of ontologies the

mean times and 99th percentile times were only slightly less (typically tens of

milliseconds) for the glass-box based algorithm than they were for the black-box

based algorithm. Indeed, for most entailments in most ontologies there was not

an order of magnitude or more difference in time, with glass-box times on average

being 2.89 times less than black-box times (SD = 2.81). There were only three

ontologies (Ontology 64, Ontology 3, and Ontology 70) where the mean glass-

box times were around an order of magnitude less (21.47 times less, 10.59 times

less and 9.84 times less) than mean pure black-box times (mean times for the

black-box algorithm being 459.60 ms 514.03 ms and 139.49 ms per justification

respectively). Additionally, for the hardest 10 percent of entailments the glass-

box times were an order of magnitude less. For the black-box based algorithm

there was just one ontology, 45, where 25 percent of entailments took longer than

10 seconds, with the hardest 1 percent of entailments taking just over 120 sec-

onds. The glass-box algorithm fared much better for the hardest cases in this

ontology, with all runs taking less than 10 seconds. All in all this is perfectly

respectable performance for use in an ontology development environment and

for use as a subroutine when computing all justifications. It is fare to say that

the performance of optimised black-box single justification finding algorithms is

comparable with glass-box algorithms.

The Efficacy of Incremental Expansion The effect of incremental expan-

sion (through the use of a selection function) is depicted in Figure 6.6, which

shows the percentage difference in mean time due to not using the incremental

expansion selection function in Algorithm 4.5. As can be seen, there were 12

ontologies in the BioPortal corpus where the expansion function has a negative

impact on the performance of Algorithm 4.2. For the remaining 60 ontologies the

expansion function has a positive impact on performance to a lesser or greater

degree. For the vast majority of ontologies the increase in performance was neg-

ligible. However, for 4 of the ontologies, the performance of computing single

justifications was boosted between two and three times, for 2 ontologies between

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 109

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

Pe
rc
en

ta
ge
	
 In

cr
ea
se
	
 in
	
 M

ea
n	

Ti
m
e	

Figure 6.6: Mean Times to Compute Single Justifications Using Algorithm
(Expand-Contract Find One with Algorithm 4.3 (All In One Expansion) and
Algorithm 4.6 (Divide and Conquer) as sub-routines. Times are expressed as a
percentage of the mean times for computing single justifications using Algorithm
4.5 in place of Algorithm 4.3.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 110

6 and 7 times, and for one ontology almost 10 times. While the gains in perfor-

mance are not of orders of magnitude or more, they are modest improvements.

Moreover, since incremental expansion does not appear to have a massively neg-

ative effect, and the fact that it is relatively cheap to implement, suggest that it

is a worthwhile optimisation.

The Usefulness of Glass-Box Expansion As discussed above, in the experi-

ments here the glass-box expansion subroutine provided some benefits, namely an

order of magnitude improvement in time to compute single justifications for 1-10

percent of entailments in three ontologies. Closer inspection revealed that these

benefits were achieved because fewer entailment checks were required in both the

expansion phase (glass-box only requires one entailment check here) and in the

contraction phase, as the axioms returned from the expansion phase usually cor-

respond to the justification or a few axioms over the justification. If available,

glass-box expansion is a worthwhile optimisation that should be used. However,

the obvious disadvantage of glass-box tracing is that it does not work with rea-

soners that do not support it. Out of FaCT++, JFaCT, HermiT, Pellet and

Racer (the mainstream OWL reasoners), only Pellet supports glass-box tracing.

This perhaps due to the fact that the burden of augmenting an existing reasoner

with tracing is rather high—certainly substantially higher than the burden of

implementing a black-box justification finding algorithm. All things considered,

especially given the rather good performance of black-box algorithms, it is ques-

tionable as to whether the performance boosts that glass-box tracing provides

outweigh the cost of implementation.

6.3 Justifications For Inconsistent Ontologies

In what follows the feasibility of using Algorithm 4.1 to compute justifications

for inconsistent ontologies is investigated. Since inconsistent ontologies do not

have “key” entailments that can provide seed signatures it is not possible to use

the incremental expansion by selection function subroutine with them. Hence,

Algorithm 4.1 is only used with two different sets of sub-routines, namely Al-

gorithms 4.3 (No Incremental Expansion) and 4.6 (Divide and Conquer), and

Algorithms 4.4 (Glass-box Tracing Expansion) and 4.6 (Divide and Conquer).

The first combination of subroutines provides a pure black-box based approach,

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 111

Table 6.2: Additional Inconsistent Ontologies

Ontology Name Expressivity Axioms

F assignment ALCIQ 88
G boat ALCIF 22
H classes-as-values ALCO 13
I compara-grid-ontology ALCHIQ 409
J country SHOIQ 5921
K fish ALCH 49
L idbexport SHOIN 2417
M microdemo SHOIQ 1458
N pizza SHOIQ 179
O spectro ALCON 26612
P travel SHOIQ 6437
Q units ALCOIF 2254

while the second set of subroutines provides a hybrid glass-box based approach.

Experiment 3: Justifications For Inconsistent Ontologies

The following experiment investigates computing all justifications for the five

inconsistent ontologies that are contained in the BioPortal corpus plus twelve

inconsistent ontologies that are not contained in BioPortal. In general, people do

not publish inconsistent ontologies which makes them difficult to obtain for testing

purposes. In fact, it is rather surprising that BioPortal contains inconsistent

ontologies at all. It is possible that the authors of these ontologies did not use

a reasoner for consistency checking, or they used a tool chain which results in

lossy communication between editor and reasoner and inconsistencies did not get

flagged.1

Experiment 3 Algorithm Implementation

The algorithm implementation consisted of Algorithm 4.1 for finding all justi-

fications, which used Algorithm 4.2, Algorithm 4.3 (All-In-One Expansion) and

Algorithm 4.6 (Divide and Conquer Contraction) as subroutines. Pellet 2.2.2 was

used throughout as, in addition to supporting glass-box tracing, it was found to

be the most robust and best performing reasoner for checking consistency in the

BioPortal corpus. Each entailment check consisted of a load followed by a query

to see if the set of axioms loaded was consistent.

1Some early versions of Protégé-OWL (3.x) do not transmit certain types of axioms and
concept constructors which are not handled by the DIG [BMC03] language to the reasoner.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 112

Table 6.3: Inconsistent Ontology Entailment Check Times

Consistency Check Time
Ont. Name Load (ms) Query (ms) Total (ms)

A bioportal-metadata 193 479 672
B nifstd 4,332 807 5,139
C ont.-for-disease-genetic-inv. 270 159 429
D suggested-ont.-for-pharm. 1,697 460 2,157
E sysmo-jerm 163 194 357

F assignment 145 942 1,087
G boat 124 32 156
H classes-as-values 122 25 148
I compara-grid-ontology 162 63 226
J country 541 204 745
K fish 127 67 195
L idbexport 314 129 443
M microdemo 270 186 457
N pizza 143 94 238
O spectro 742 189 932
P travel 974 232 1,206
Q unit 271 83 354

Experiment 3 Test Data

The BioPortal contained five ontologies that were inconsistent. In addition twelve

external ontologies shown in Table 6.2, which were obtained from public mailing

lists, were used. As can be seen, these ontologies vary considerably in size and

expressivity. The complete set of inconsistent ontologies is listed in Table 6.3

which shows consistency checking times using Pellet 2.2.2 (broken down into load

and query times) for each ontology. Note that the ontologies have been labelled

with upper case letters to distinguish them from the set of 72 consistent ontologies.

Experiment 3 Method

The implementations of Algorithm 4.1 and each combination of subroutines was

run for each ontology listed in Table 6.3. Due to practical considerations a time

out of 30 minutes of CPU time was imposed on each run, and as many justi-

fications as possible were computed within this 30 minutes. The CPU time to

compute each justification was measured, along with the number of justifications

computed within 30 minutes of CPU time, and the CPU time required to find

all justifications if all were found. The experiments were performed on MacBook

Pro with a 3.06 GHz Intel Core 2 Duo Processor. The Java Virtual Machine was

allocated a maximum of 4 GB of RAM.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 113

Table 6.4: Inconsistent Ontology Results

Found All Found Mean Size Time All (ms) Time Single (ms)
Ont. BB GB BB GB BB GB BB GB BB GB

A 4 4 2 2 12 12 6,066 2,404 378 36
B 7 158 8.71 9.49 - - 200,229 4,144
C 115 122 17.09 17.16 - - 909 53
D 10 90 12.6 12.4 - - 105,917 1,529
E 4 4 366 366 9.81 9.81 166,959 65,902 405 8

F 1 1 8 9 - - 193,024 1,428
G 4 4 1 1 5 5 306 226 50 5
H 4 4 2 2 2 2 215 199 34 3
I 4 4 9 9 13.11 13.11 6,212 1,397 206 15
J 4 4 4 4 10.75 10.75 70,588 45,146 564 194
K 4 4 183 183 16.81 16.81 24,319 12,383 100 2
L 4 4 2 2 4.5 4.5 4,796 2,136 684 173
M 4 4 1 1 11 11 19,644 5,793 1,636 57
N 4 4 3 3 5.33 5.33 4,646 1,697 386 48
O 161 162 2.02 2.02 - - 725 136
P 4 4 4 4 3 3 12,664 9,868 602 228
Q 118 118 2 2 - - 215 40

Experiment 3 Results

Results are shown in Table 6.4, where GB stands for Glass-Box and BB stands

for Black-Box. Columns 2 and 3 use a tick to indicate that all justifications for

the inconsistency were found. Columns 4–7 show the number and mean size of

justifications computed in 30 minutes of CPU time. The right most four columns

show times to compute all justifications (if all were found) and the mean time to

compute a single justification.

Experiment 3 Analysis

The Practicality of Computing All Justifications As can be seen from

Table 6.4, there were 11 out of the 17 ontologies where all justifications for the

inconsistency could be computed within 30 minutes of CPU time and 6 ontolo-

gies where not all justifications could be computed within this time limit—this

result was the same for both black-box and glass-box algorithms. In most of these

cases all justifications were computed well within the 30 minute time boundary.

The failures are discussed below, however, for the successful ontologies the max-

imum time occurred for Ontology E, where there were 366 justifications for the

inconsistency, which required a time of just over 166 seconds for the black-box

implementation and 45 seconds for the glass-box implementation. This was fol-

lowed by Ontology-J, with 183 justifications and 70.6 seconds and 45.1 seconds for

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 114

black-box and glass-box respectively. All other ontologies for which all justifica-

tions could be computed had times that fell below 25 seconds. These results seem

perfectly acceptable for use in ontology development environments and auxiliary

services.

Over all, it is noticeable that the glass-box implementation performs better

than the black-box implementation (although the difference is not so huge that

it is orders of magnitude out). This is to be expected as the glass-box algorithm

has the advantage of reducing the search space for the contraction part of the

find-all algorithm, which means that on the whole the glass-box based algorithm

requires fewer time consuming entailment checks than is required by the black-box

algorithm. The difference in time between the glass-box and black-box algorithms

is not orders of magnitude, because the benefits of the glass-box algorithm only

come into play when actually computing single justifications, and most of the

time is spent constructing the hitting set trees with plenty of justification reuse

taking place during construction.

Reasons for Failure to Compute All Justifications There were 6 ontolo-

gies out of the corpus of 17 (3 from BioPortal and 3 external) where not all

justifications could be computed within 30 minutes of CPU time using either

black-box or glass-box algorithms. These ontologies can be divided into three

categories: Category-I—Ontologies where large numbers of justifications were

computed by both the black-box and glass-box implementations. Ontologies C,

O and Q fall into this category; Category-II—Ontologies where large numbers of

justifications were computed by the glass-box implementation, but comparatively

few by the black-box implementation. Ontologies B and D fall into this category;

and Category-III—Ontologies where few justifications could be computed by both

the glass-box and black-box implementations. Ontology F falls into this category.

Category-I is indicative of failure due to large numbers of justifications and

the sheer size of the hitting set tree. Indeed, for ontologies in this category the

hitting set tree sizes were as follows: Ontology-C = 1.3 million nodes, Ontology-

O = 2.35 million nodes, Ontology-Q = 2.38 million nodes. The fact that black-

box and glass-box implementations could compute similar or exactly numbers

of justifications tends to show that entailment checking performance is not the

dominant problem. Indeed, this is backed up by the consistency checking times

in Table 6.3.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 115

Category-II is indicative of failure of the glass-box algorithm due to large

numbers of justifications, and failure of the black-box algorithm due to entailment

checking performance issues. This is because the black-box algorithm typically

requires many more checks than the glass-box algorithm and if entailment check-

ing performance is in the order of thousands of milliseconds rather than tens or

hundreds of milliseconds the differences can add up. Again, this result is backed

up by the entailment checking times in Table 6.3 which shows entailment checking

times for ontologies B and D which are an order of magnitude more than other

ontologies (5,139 ms and 2,157 ms respectively).

Finally, Category-III is indicative of serious entailment checking performance

problems. There was only one ontology in this category, Ontology-F, but both the

black-box algorithm and the glass-box algorithm only found 1 justification and

timed out within 30 minutes of CPU time. Moreover, the time to find this single

justification was extremely large in the black-box case, at 193 seconds, and much

smaller in the glass-box case at 1.4 second. This difference is due to entailment

checking performance and the fact that glass-box justification finding requires

fewer entailment checks than black-box justification finding. Lastly, this ontology

exhibited an interesting phenomenon of entailment checking performance being

much poorer in subsets of the ontology when compared to the whole ontology.

The consistency check for the whole ontology took approximately 1 second, but

on average, entailment checking for the black-box algorithm took approximately

2 seconds. In cases like this, glass-box justification finding helps enormously,

hence the two order of magnitude difference between black-box and glass-box

performance overall.

The Practicality of Computing a Single Justification As can be seen from

Table 6.4, it was possible, and practical, to compute at least one justification for

every inconsistent ontology, for both the black-box and glass-box algorithm and

in cases where not all justifications could be computed. For most ontologies, the

time required to find one justification was around 1 second or less than a second

for both glass-box and black-box implementations. This is obviously acceptable

performance for on demand debugging in ontology development environments.

Three ontologies stand out for taking hundreds of seconds instead of hundreds

of milliseconds when operated on by the black-box implementation. These are

Ontology B, Ontology D and Ontology F. As described above, the evidence points

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 116

to problems with entailment checking performance, and as can be seen from Table

6.3, all three ontologies have consistency checking times that are much longer than

the other ontologies. Ontology F is a somewhat pathological case, as subsets of

it are harder to check than the whole ontology. Overall though, the good news

is that it is possible to compute a single justifications for all ontologies using

both the black-box and glass-box algorithms. Being able to compute just one

justification for an inconsistent ontology can be of enormous benefit to end users

as discussed below.

The Differences Between Black-Box and Glass-Box Algorithms For

computing single justifications, it is particularly clear that there is a marked dif-

ference between the runtime performance of the black-box algorithm compared to

the glass-box algorithm. In most cases there was an order of magnitude difference

between the algorithms in CPU time required to compute single justifications.

The difference was most pronounced for ontologies B, D, F and M, where the

black-box time was three orders of magnitude greater than the glass-box time.

This was due to entailment checking performance and the number of entailment

checks required by the glass-box implementation, which required fewer compared

to the black-box implementation. Obviously, it is preferable that a user wait 4

seconds for a justification rather than 200 seconds, but 200 seconds is still not

such a staggeringly long time—particularly when justifications can be so crucial

to the task of understanding why an ontology is inconsistent.

In terms of computing all justifications, the differences in CPU time be-

tween black-box and glass-box performance are less noticeable that those for

single justifications, even for ontologies where the differences in time for sin-

gle justifications were very high. The main reason for this is that compared

to the number of nodes in a hitting set tree there are comparatively few calls

to the ComputeSingleJustification subroutine. For example, in Ontology E there

are 113,779 nodes in the black-box hitting set tree but only 390 calls to the

ComputeSingleJustification subroutine, and out of these only 366 calls resulted in

justifications being computed and thus involved multiple entailment checks.

The differences that are striking between the black-box and glass-box imple-

mentations are the number of justifications that can be computed in the event

that not all justifications can be computed. In particular Ontology B and Ontol-

ogy D exhibited large differences in 7 verses 158, and 10 versus 90 justifications

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 117

respectively. Obviously, whether this makes a practical difference in being able to

repair the ontology, or being able to enact a high quality repair (from a modelling

point of view) is another matter.

The usefulness of justifications for inconsistent ontologies Despite the

fact that, in some cases, it is not feasible to compute all justifications for real

inconsistent ontologies, the ability to obtain just one or two justifications can lend

a vital insight into why an ontology is inconsistent, and can allow people to com-

mence manual incremental/interactive repairs. Some ontologies are inconsistent

due to highly non-obvious reasons, and it is arguable that without automated

explanation support, ontology authors would face a hopeless task of trying to

figure out the reasons for an ontology being inconsistent in order to arrive at a

manual repair. An example of a justification from the Country ontology is shown

in Figure 6.7. The ontology authors, who made a request for help in trying to

track down the reasons for the inconsistency, indicated that it was highly unlikely

that they would have discovered the reason, without considerable difficulty, using

manual debugging techniques.

Using justifications for inconsistent ontologies for repair Even though it

may not be possible in practice to compute all justifications for a given ontology,

with the availability of at least one justification, it is still possible to carry out

a manual interactive repair. For example, on closer inspection of the justifica-

tions for the travel ontology it was observed that many of them had the form

{R(a, l),> v ∀R.C}, where l is a data value not in the value space of C. In fact,

structural inspection revealed that there were over 550 of these kinds of justifi-

cations for the travel ontology and over 12000 for the Spectro ontology. In order

to test the hypothesis that even seeing a handful of justifications is helpful for

interactive debugging and can support repair, the travel ontology was modified

to produce a new version where all literals in property assertions were typed with

the appropriate data type. The new version of the ontology was still inconsistent,

but had just six justifications for it being inconsistent, which were computed in

12 seconds and 9 seconds by the black-box and glass-box implementations respec-

tively. Thus, even though it may not be possible to compute all justifications in

one go, being able to compute some justifications can provide enough insight in

order to understand the reasons for an ontology being inconsistent so that it is

possible to perform a manual repair.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 118

Figure 6.7: An small example justification from the large country ontology. The
individual ireland is entailed to be a PhysicalEntity (by axioms (1)(6)) and is
also entailed to be a PoliticalEntity (by axioms (7)-(11)), PhysicalEntity and
PoliticalEntity are disjoint with each other (axiom (12))

Island(ireland) (1)

Island v LandMass (2)

LandMass v GeographicalFeature u ∃hasCoastline.Coastline (3)

GeographicalFeature v NaturalPhysicalThing (4)

NaturalPhysicalThing v NaturalEntity (5)

NaturalEntity v PhysicalEntity (6)

landBoundaryOf(unitedKingdomIrelandBorder, ireland) (7)

landBoundaryOf v hasLandBoundary− (8)

∃hasLandBoundary.> v Country (9)

Country v AdministrativeDivision (10)

AdministrativeDivision v PoliticalEntity u ∃directPartOf.PoliticalDiv (11)

PoliticalEntity v ¬PhysicalEntity (12)

The Inconsistent Ontology Justification Landscape On the whole there

were large numbers of justifications per inconsistent ontology. Out of the 17

ontologies, there were just three for which there was one justification for the

each ontology being inconsistent—one with 8 axioms, one with 5 axioms and one

with 11 axioms. Out of the other ontologies which had many justifications and

for which all justifications could be computed, one had 183 justifications with

an average size of 16.81 axioms, and another 366 justifications with an average

size of 9.81 axioms. Overall, the average sizes were what could be considered to

be large, for example, there were ontologies with average sizes of 10.75 axioms,

13.11 axioms, 18.17 and 17.09 axioms. Only four ontologies had mean sizes less

than 5 axioms and none of these were ontologies from the BioPortal. The large

numbers of justifications per ontology and large sizes of justifications indicates

some degree of complexity and non-trivialness in the reasons for these ontologies

being inconsistent. It is therefore likely that without justifications it would be

very difficult to track down and understand the reasons for these ontologies being

inconsistent.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 119

6.4 Discussion

The detailed empirical investigation that has been carried out and presented in

this chapter provides strong evidence to conclude that computing all justifica-

tions for entailments ontologies in the BioPortal corpus of consistent ontologies is

practical. That is, in the vast majority of entailments in the majority of ontolo-

gies all justifications can be computed in under of 10 minutes of CPU time. This

result applies directly to black-box justification finding, but based on the results

obtained for glass-box single justification finding it can be extrapolated to glass-

box tracing based approaches. In essence, the justification finding algorithms

used in the empirical evaluation show good and robust runtime performance on

realistic inputs.

In terms of black-box versus glass-box justification finding, for consistent on-

tologies, the results show that although glass-box justification finding does boost

runtime performance, it is not typically boosted by orders of magnitude. Indeed,

in the presence of other optimisations, in particular modularisation, it appears

that glass-box tracing is only of incremental benefit in the vast majority of cases.

When the effort required to implement glass-box tracing, which is reported as

being highly non-trivial, is borne in mind, it is questionable as to whether it is a

worthwhile optimisation. In the future, more gain might be made by concentrat-

ing on boosting entailment performance, particularly in situations where a large

number of axioms are loaded into a reasoner but only a handful of them support

the entailment in question.

For inconsistent ontologies the picture seems to be slightly more pessimistic.

Although the test corpus used in the empirical investigation was smaller than

that for consistent ontologies, the evidence appears to show that the number

of justifications coupled with lack of optimisations such as modularisation and

incremental expansion makes it difficult to compute all numbers of justifications in

a good proportion of ontologies. This result applies to both the BioPortal portion

of the corpus and to externally gathered inconsistent ontologies. Nevertheless, the

provision of some justifications can be enormously beneficial to end users trying

to debug inconsistent ontologies, and in the drive to compute all justifications,

this aspect should not be forgotten.

When it comes to glass-box tracing for inconsistent ontologies, the difference in

performance between glass-box and black-box algorithms is dramatic. In terms of

finding single justifications there was at least an order of magnitude improvement

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 120

in CPU time required for most ontologies. The benefits of glass-box tracing

as an optimisation for computing single justifications in inconsistent ontologies,

particularly when faced with a lack of other optimisations such as modularity, are

clear to see. While the difference in time between black-box and glass-box was

not so pronounced when it came to computing all justifications, glass-box tracing

appears to be a worthwhile optimisation. The good performance of glass-box

tracing suggests that improvements could be made to the black-box algorithm.

One lesson that might be learnt from glass-box tracing is the lesson of how an

optimised reasoner goes about detecting that an ontology is inconsistent. This

information could then be fed into a carefully designed goal directed expansion

function for inconsistent ontologies.

For consistent and inconsistent ontologies there were ontologies that contained

entailments which had huge numbers of justifications, and justifications which

were large in size—upwards of 100, towards 1000 justifications per entailment were

found and justifications of 10, 20, 30 axioms in size were found. Ontologies with

huge numbers of justifications per entailment like this have not been documented

before and the data obtained as part of the experiments detailed here offer a new

and interesting picture on the justification landscape for real world ontologies.

Finally, one of the main outstanding issues is whether or not something can

be done in situations where at the moment it is not possible to compute all

justifications. The evidence shows that this situation will be encountered for some

entailments in real ontologies—more in the case of inconsistent ontologies than

consistent ontologies. Although entailment checking performance has some part

to play in a small number of cases, the main issue lies in the makeup of ontologies

and their justificatory structure. Lots of justifications with little overlap can

cause problems for the model based diagnosis techniques used in this thesis. In

this situation it is difficult to optimise out these problems as they start to butt up

against the intractability of the underlying algorithms. For a given entailment,

the only way forward would be to somehow break the hitting set tree down into

smaller portions, compute smaller numbers of justifications in each portion and

then combine these justifications to give the final result. However, it is difficult

to know how this can be done. One possibility would be to use some kind of

lemmatisation, where lemmas allow smaller sets of justifications to be computed

and combined together. However, the ability to generate these lemmas and ensure

completeness is obviously highly non-trivial.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 121

6.5 Conclusions

With regards to justifications for entailments in realistic consistent ontologies,

the large amount of empirical evidence gathered strongly suggests that:

• Finding all justifications for entailments is practical.

• Optimised and robustly implemented algorithms exhibit good performance

which is more than likely to be acceptable for use in ontology debugging

environments and applications which use justification finding as an auxiliary

service.

• For finding all justifications, the performance of optimised black-box al-

gorithms is comparable to the performance of hybrid glass-box algorithms

which use tableau tracing.

• While model based diagnosis techniques for computing all justifications fare

extremely well, they do have a high worst case complexity, and there are

examples of entailments in realistic consistent ontologies for which it is not

possible to compute all justifications. In these cases an incomplete solution,

which could still consist of hundreds of justifications, must be accepted.

• Black-box and glass-box algorithms for single justification finding are ex-

tremely robust. Assuming that entailment checking can be performed by a

backing reasoner, it is always possible to compute a single justification for

an entailment using both black-box and glass-box techniques on realistic

inputs.

• Glass-box algorithms can offer worthwhile optimisations when finding sin-

gle justifications, but for most realistic ontologies the performance gains

compared to optimised black-box reasoners appear to by less than an order

of magnitude of time.

• The number of justifications for entailments in realistic ontologies can be

very high, peaking at around 1000 justifications per entailment. The sizes

of justifications in these ontologies can be very large, peaking at around

40 axioms per justification. The majority of ontologies with non-trivial

entailments have multiple justifications per entailment with multiple axioms

per justification.

CHAPTER 6. JUSTIFICATION FINDING EXPERIMENTS 122

In terms of justifications for realistic inconsistent ontologies, the empirical evi-

dence strongly suggests that:

• It is always possible to compute a single justification for an inconsistent

ontology using both black-box and glass-box algorithms.

• For single justification finding, glass-box tracing can offer huge performance

increases of up to three orders of magnitude over pure black-box algorithms

when working with inconsistent ontologies.

• It is not always possible to compute all justifications for an inconsistent

ontology and this problem seems to be more prevalent than it does for

entailments in consistent ontologies. In these cases, the number and size

of justifications strongly suggest that it necessary to accept some degree of

incompleteness.

• Justifications are typically numerous, can be large in size and are non-

trivial.

Chapter 7

Justification Granularity

A key aspect of justifications is that they operate on the level of asserted axioms.

That is, the axioms in a justification directly correspond to axioms contained

in some ontology. When people write axioms in tools such as Protégé-4 they

typically write axioms that contain multiple nested class expressions. In part,

the rich array of class constructors provided by OWL permits and encourages

this, but even lightweight ontology languages, such as EL, or languages that

merely contain conjunction and disjunction such as HL, allow class expressions

to be nested to arbitrary depths. The upshot of this, is that justifications can

be rather coarse-grained explanation devices. In essence, justifications do not

identify parts of axioms responsible for an entailment. This has ramifications

for both entailment comprehension and repair. The main problems that are

encountered when working with justifications, where axioms are the basic unity

of currency, are outlined below.

Axioms in a Justification can contain superfluous parts While all ax-

ioms in a justification are required to support the entailment in question, it may

be the case that not all parts of axioms are required to support of the entail-

ment. That is, axioms may contain superfluous parts. Consider the justification

shown in Figure 7.1, which is a justification taken from the myGrid [WAH+07]

ontology for the entailment DataIdentifier v Identifier. This particular justifica-

tion contains several axioms with parts that are superfluous for the entailment,

which are shown in Figure 7.1 using strikethrough. As can be seen, the nested

existential restriction, ∃ isIdentityOf.Data, in the first axiom is superfluous for

the entailment. Similarly, the existential restrictions in the second and fourth

123

CHAPTER 7. JUSTIFICATION GRANULARITY 124

J = {DataIdentifier ≡ Metadata u (∃ encodes.(Identity u (∃ isIdentityOf.Data)))
Metadata ≡ Data u (∃ encodes.InformaticsModifierConcept)
Data v InformaticsPhysicalStructure

InformaticsPhysicalStructure ≡ PhysicalStructure u (∃ inDomain.InformaticsDomain)
Identifier ≡ PhysicalStructure u (∃ encodes.Identity)}

|= DataIdentifier v Identifier

Figure 7.1: An Example of Superfluity

axioms are also superfluous conjuncts as far as the entailment is concerned. In

addition to parts of concepts, there is another level of superfluity in the axioms

in J , namely the fact that several axioms are equivalent concept axioms (of

the form C ≡ D) but, in each case, only one direction of implication is needed

(i.e. C v D or D v C). For example, given the last axiom, it is simply suffi-

cient to know that PhysicalStructureu (∃ encodes.Identity) v Identifier rather than

Identifier v PhysicalStructure u (∃ encodes.Identity). Superfluous parts are prob-

lematic because they can distract a person from understanding a justification.

Without any highlighting, such as strikeout, it can be hard to separate out the

parts which are superfluous from the parts which matter for the entailment. With

equivalent concept axioms it can be difficult to know which way round to read

the axiom if only one direction is required but both directions are included. It

is easy to imagine that focusing a persons’s attention on the relevant parts of an

axioms in a justification can make it quicker and easier for them to understand

that justification.

A justification can mask multiple reasons for an entailment Within

a single justification there can be multiple ways in which the parts of axioms

combine together to produce the entailment in question. For example, con-

sider the justification shown in Figure 7.2, which is taken from the Sequence

Ontology (SO) [ELM+05, MBE11]. This is a justification for the entailment

EngForeignGene v EngineeredForeignRegion. Within this one justification there

are two distinct reasons as to why this entailment holds. Both reasons revolve

around EngineeredForeignRegion being a subclass of ∃ hasQuality.Engineered. As

indicated by underlining in Figure 7.2, the intermediate entailment EngForeignGene v
∃ hasQuality.Engineered can be derived from parts of the first axiom alone, or

CHAPTER 7. JUSTIFICATION GRANULARITY 125

J = {EngForeignGene ≡ EngineeredGene u ∃ hasQuality.Foreign u ∃ hasQuality.Engineered

EngineeredGene ≡ Gene u ∃ hasQuality.Engineered

Gene v BiologicalRegion

BiologicalRegion v Region

EngineeredForeignRegion ≡ Region u ∃ hasQuality.Engineered u ∃ hasQuality.Foreign}
|= EngForeignGene v EngineeredForeignRegion

Figure 7.2: An Example of Internal Masking

parts of the first and second axioms. This is due to the fact that first axiom en-

tails EngForeignGene v EngineeredGene by itself, while the second axiom entails

EngineeredGene v ∃hasQuality.Engineered. This thesis defines the phenomena of

a single justification containing multiple reasons for an entailment as internal

masking. The term “reason” will be made more precise later in the thesis, but

roughly speaking, a reason is a minimal way in which parts of axioms may com-

bine to produce an entailment. The presence of multiple reasons within a single

justification is indicative of superfluity, and as described above, such superfluity

can cause problems with understanding.

A justification can mask relevant axioms Consider the ontology O shown

in Figure 7.3, which is a subset of the Experimental Factor Ontology (EFO)

[MRBP08, MHA+10]. This ontology entails Emphysema v RespiratorySystemDis-

ease and contains exactly one justification for this entailment, namely J in

Figure 7.3. On closer inspection, the second axiom in O also plays some role

in this entailment. However, there is no justification for O |= Emphysema v
RespiratorySystemDisease that includes the second axiom: Emphysema v ∀ has-

DiseaseLocation . Lung. If the filler Lung is discarded from the first axiom to

weaken it to Emphysema v ∃hasDiseaseLocation.> then this combines with the

second axiom in O to result in J ′ in Figure 7.3, which does contain the “masked”

axiom Emphysema v ∀ hasDiseaseLocation.Lung. It is likely that people work-

ing with this ontology and looking at justifications for O |= Emphysema v
RespiratorySystemDisease would be completely unaware of this second “external”

reason. This thesis defines this phenomena as external masking.

CHAPTER 7. JUSTIFICATION GRANULARITY 126

O = {Emphysema v ∃ hasDiseaseLocation.Lung

Emphysema v ∀ hasDiseaseLocation.Lung

Lung v RespiratorySystemStructure

RespiratorySystemDisease ≡ ∃ hasDiseaseLocation.RespiratorySystemStructure}

J = {Emphysema v ∃ hasDiseaseLocation.Lung

Lung v RespiratorySystemStructure

RespiratorySystemDisease ≡ ∃ hasDiseaseLocation.RespiratorySystemStructure}
|= Emphysema v RespiratorySystemDisease

J ′ = {Emphysema v ∃ hasDiseaseLocation.>
Emphysema v ∀ hasDiseaseLocation.Lung

Lung v RespiratorySystemStructure

RespiratorySystemDisease ≡ ∃ hasDiseaseLocation.RespiratorySystemStructure}
|= Emphysema v RespiratorySystemDisease

Figure 7.3: An Example of External Masking

Multiple justifications can mask a shared core When considering parts of

axioms two or more justifications may share a common “core”. Figure 7.4 shows

an example of this phenomena. In this example, which is taken from the Inter-

national Classification of Nursing Practice (ICNP) ontology [BCH06], there are

two justifications J1 and J2 for the entailment ActualNegativeFamilyAttitude v
FamilyAttitude. As indicated by the underlining in Figure 7.4, when the su-

perfluous parts of axioms in J1 and J2 are ignored, J2 represents the same

reason for the entailment as J1. In other words they share the same “core”,

and are only distinguishable because different axioms are “decorated” with su-

perfluous parts. For example, the second axiom in J1 contains the conjunct

∃ hasPotentialityState.Actual, but the corresponding axiom in J2 does not contain

any superfluous parts. It is easy to see that highlighting shared cores across mul-

tiple justifications would make it much easier and quicker for a person to work

through these justifications. This thesis defines this phenomena as shared core

masking.

Justifications can result in over-repair Finally, a theme running through

all of the above examples, is the issue of repair. As described in Section 2.3.3 on

CHAPTER 7. JUSTIFICATION GRANULARITY 127

J1 = {ActualNegativeFamilyAttitude v ActualNegativeFamilyProcess

ActualNegativeFamilyProcess ≡ NegativeFamilyProcess u (∃ hasPotentialityState.Actual)

NegativeFamilyProcess v FamilyProcess

FamilyProcess ≡ Process u (∃ isPerformedBy.Family)

ActualNegativeFamilyAttitude v NegativeAttitude

NegativeAttitude v Attitude

FamilyAttitude ≡ Attitude u (∃ isPerformedBy.Family}
|= ActualNegativeFamilyAttitude v FamilyAttitude

J2 = {ActualNegativeFamilyAttitude v ActualNegativeFamilyProcess

ActualNegativeFamilyProcess v NegativeFamilyProcess

NegativeFamilyProcess ≡ FamilyProcess u (∃ hasAbsoluteJudgedState.NegativeJudgedState)

FamilyProcess ≡ Process u (∃ isPerformedBy.Family)

ActualNegativeFamilyAttitude v NegativeAttitude

NegativeAttitude ≡ Attitude u (∃ hasAbsoluteJudgedState.NegativeJudgedState)

FamilyAttitude ≡ Attitude u (∃ isPerformedBy.Family)}
|= ActualNegativeFamilyAttitude v FamilyAttitude

Figure 7.4: An Example of Shared Cores

Page 47, a simple repair that breaks some entailment is based on choosing exactly

one axiom from each justification for that entailment and removing these chosen

axioms from the associated ontology. With this style of repair, there are some

basic notions of minimality. Given a set of justifications J1, . . . ,Jn for O |= η, a

repair R ⊆ O (Definition 3, Page 47) can be minimal in the following senses:

• Justification Minimal For each Ji, |R ∩ Ji = 1|. In other words, R
contains one and only one axiom per justification. If R is justification

minimal then upon repair there are no axioms that are removed from O
that do not directly contribute to the repair.

• Cardinality Minimal A repair is cardinality minimal (Definition 4, Page

47), if there is no R′ ⊆ O such that |R′| < |R|. If R is cardinality minimal

then the fewest number of axioms is removed from O upon repair. In the

model diagnosis arena this corresponds to a diagnosis.

• Semantically Minimal Any given repair essentially removes some entail-

ments from an ontology, a semantically minimal repair removes the fewest

CHAPTER 7. JUSTIFICATION GRANULARITY 128

entailments from O, for some class of entailments such as atomic subsump-

tions.

However, these notions of minimality are rather basic, and it should be clear

that, when working with “regular” justifications and whole axioms, there is a

potential to “over repair” an ontology so that more entailments are lost than is

necessary. For example, removing the first axiom from J in Figure 7.2, would

break the entailment EngForeignGene v EngineeredForeignRegion, and it might

be minimal in the first two senses of minimality above, but it would also cause

the entailment EngForeignGene v hasQuality.Foreign to be lost, which might be

undesirable. Further more, with the effects of masking, not all reasons for an

entailment may be obvious, so if a desired repair involved “hacking” and rewrit-

ing axioms, the repair may not actually be successful. For example, return-

ing to Figure 7.2, if the first axiom in J was rewritten to EngForeignGene v
EngineeredGene u ∃ hasQuality.Foreign then the original entailment would still

hold. In essence, the effects of superfluity and masking can cause over-repair or

result in a failed repair. It is therefore desirable that any definition of fine-grained

justifications should result in justifications that make it easy to devise and enact

fine-grained repairs.

Summary In summary, this chapter addresses the above issues with fine-grained

justifications. The purpose of this chapter is to identify the desirable character-

istics of fine-grained justifications, propose proper definitions for these types of

justifications, and show how they can be computed for entailments in real ontolo-

gies.

7.1 Related Work

In what follows, approaches to defining and computing fine-grained justifications

are discussed. Work that directly relates to explanation of entailments in De-

scription Logics and OWL is first presented, and then more general, but related

techniques that are of interest are mentioned.

CHAPTER 7. JUSTIFICATION GRANULARITY 129

7.1.1 Prior Approaches

Axiom Splitting and Flattening In [KPG06], Kalyanpur et al. propose

definitions and present algorithms for computing “precise” justifications. Given

an ontology O |= η, they define a precise justification to be a justification for

η with respect to σ(O), where σ is a splitting function. Kalyanpur describes

the goal of the splitting function as to split a “TBox T into ‘smaller’ axioms to

obtain an equivalent TBox Ts that contains as many axioms as possible.”. The

splitting function is defined both for SHOIQ concepts, which are assumed to be

in negation normal form, and for SHOIQ axioms. A key part of the splitting

process is the introduction of fresh concept names, which are used in order to

split “axioms into smaller sizes”. For example (taken from [KPG06]), the axiom

A v ∃R.(C tD), is split into A v ∃R.X, X v C tD, C v X and D v X. The

last three axioms come from the splitting of the definition X ≡ CtD, which gets

introduced to flatten the nested disjunct in the filler of existential restriction in

the original axiom.

Another interesting aspect of the splitting function is the way that it generates

the cross-product of disjunctions. For example applying the splitting function to

(AuB)t (C uD) results in {(AtC), (AtD), (BtC), (BtD)}. Also, the fillers

of universal and existential restrictions get special treatment via a “Π operator”,

which “applies a set of concepts to a preceding restriction operator”, for example

splitting ∀R.(B u (C tD)) gives {∀R.B,∀R.(C tD).

Curiously, for a TBox T , the definition of the splitting function normalises all

GCIs in T of the form C v D into > v ¬C t D. It then applies the splitting

function for class expressions on the right hand side of these axioms to produce

TS. However, all of the examples given in the paper ignore this normalisation

step, for example, A v B u C is split into A v B and A v C rather than a

splitting of > v ¬A t (B u C).

Although not part of the formal definitions in [KPG06], Kalyanpur sketches

out some post-processing aspects and issues relating to usability. In particular,

given a set of precise justifications for an entailment, the introduced fresh names

in precise justifications can, and should, be eliminated for the purposes of pre-

sentation. Justifications with the fresh names removed are also referred to as

“precise justifications”.

In terms of splitting and flattening of axioms, the work by Baader et al.[BPS07]

CHAPTER 7. JUSTIFICATION GRANULARITY 130

pinpoints axioms for entailments in the description logic EL, and uses a normal-

isation procedure that produces flat small axioms. Although this normalisation

procedure is really part of the EL classification algorithm, and the work is not

concerned with fine-grained justifications, the basic idea could be used to indicate

the parts of axioms that are responsible for the entailment.

Syntax Relevance, Sub-Concepts and Generalisation In [SC03], Schlobach

and Cornet focus on computing justifications for unsatisfiable classes. They intro-

duce the idea of generalised terminologies, which they describe as terminologies

where some of the definitions have been generalised, and moreover, these gener-

alisations are syntactically related to the original axioms. Schlobach and Cornet

state that the notion of one definition being syntactically related to another defi-

nition needs to be specified for different knowledge representation languages and

different types of knowledge bases, but they use an abstract notion of two con-

cepts being syntactically related rel(C,C ′) to define syntactic generalisation of

concepts as follows: A concept C ′ is a syntactic generalisation of a concept C if

rel(C,C ′) and C v C ′ independent of a TBox. From this, they define a termi-

nology T ′ = {C1 v D′1, . . . , Cn v D′n} to be a generalised incoherence-preserving

terminology (GIT) of T = {C1 v D1, . . . , Cn v Dn} if each D′i is a syntactic

generalisation of Di (1 ≤ i ≤ n), and, every T ′′ = {C1 v D′′1 , . . . , Cn v D′′n},
where each D′′i is a syntactic generalisation of D′i, is coherent. They define a gen-

eralisation strategy for unfoldable ALC, where a concept C ′ is a generalisation of

C if C ′ occurs as a subconcept in the concept that is obtained by unfolding of the

axioms that define C, with polarity and quantifier depth preserved. Schlobach

and Cornet coin the name qualified sub-concepts to describe generalised concepts

of this type. These notions are best illustrated with an example. Consider the

CHAPTER 7. JUSTIFICATION GRANULARITY 131

example from [SC03], where

O = {A1 v ¬A u A2 u A3

A2 v A u A4

A3 v A4 u A5

A4 v ∀s.B u C
A5 v ∃s.¬B
A6 v A1 t ∃r.(A3 u ¬C u A4)

A7 v A4 u ∃s.¬B}

According to their definition some of the qualified sub-concepts of A1 are ¬A u
A u ∀s.B u C u ∃s.¬B (which is obtained from the unfolding of the definition

of A1), ¬A u A u ∀s.B (the conjunction of a subset of the conjuncts from the

unfolding of A1—all possible sets of conjuncts can be combined in this way to

produce qualified sub-concepts) and A u ∃s.> (the concepts > and ⊥ are in

the set of qualified sub-concepts of any concept). Given the set MIPS of O
(justifications for root unsatisfiable classes—see Section 2.3.2 on Page 46), the

following generalised terminologies can be obtained.

O′1 = {A1 v ¬A u A} (conjuncts from the unfolding of A1)

O′2 = {A3 v ∀s.B u ∃s.¬B} (conjuncts from the unfolding of A3)

O′3 = {A7 v ∀s.B u ∃s.¬B} (conjuncts from the unfolding of A7)

Fine-grained Tableau Tracing As seen in Chapter 3, various researchers have

used Baader and Hollunder’s tableau tracing technique for computing justifica-

tions. In all of these approaches, tracing occurs at the level of axioms. However,

in [LPSV06, Lam07, LSPV08], Lam extends the technique, and in addition to

keeping track of which axioms are used to expand a completion A-box, her tech-

nique also keeps track of the sub-concepts that are used in the expansion. Once

a clash is detected, the labels can be read off the assertions in the completion

ABox that contains the clash to reveal the parts of axioms that are responsible for

the clash. These labels can then be translated to what Lam calls a “fine-grained

justification”. Given the way that a tableau algorithm breaks down axioms, and

gradually processes sub-concepts, the obtained justifications are very similar to

Kalyanpur’s precise justifications. When it comes to relating the asserted axioms

CHAPTER 7. JUSTIFICATION GRANULARITY 132

to the parts of the axioms that are responsible for a clash the details are a little

sketchy. In particular, in common with Kalyanpur’s definitions, it is not com-

pletely clear how to get from axioms in negation normal form back to the axioms

in the original ontology.

Heuristic Based Techniques and Presentation The ontology editor Swoop

features the ability to “strike out” the irrelevant parts of axioms from a justifi-

cation. An example of strike out in action is shown in Figure 7.5. Although

Kalyanpur, the primary author of Swoop, proposed the definition of precise justi-

fications based on ontology splitting, as well as an algorithm to compute precise

justifications based on splitting, no implementation of the algorithm exists. In-

stead, Swoop uses a heuristic approach. The heuristic that is used, is to strike

out any name that only occurs in one position in the union of the entailment and

justification. For example, given a justification

J = {A v D u ∃R.C, ≥ 1R v B}

for A v B, the terms C and D would be struck out because they each only occur

in one position in J ∪{A v B}. An advantage of this technique is that it is very

efficient and easy to implement. The disadvantage of this technique is that it is

obviously incomplete. For example, given

J = A v B u ∃R.C u ∀R.C |= A v B

the technique would fail to eliminate the second and third conjuncts on the

right hand side of the axiom, because both R and C appear more than once

in J ∪ {A v B}. One of the motivations for fine-grained justifications is that

regular justifications are susceptible to the phenomena of masking. This thesis

roughly characterises masking as the situation where the number of reasons for

an entailment is not reflected by the number of justifications for that entailment.

Masking was introduced by Kalyanpur in [KPG06], where he refers to “parts

of axioms as being masked”, and provides a gist of masking using the following

example: Consider the ontology

O = {A t C v B u ∃R.D u E u ¬B
A v E u ∀R.¬D} |= A v ⊥

CHAPTER 7. JUSTIFICATION GRANULARITY 133

Figure 7.5: An example of Strike Out in Swoop

which entails that A is unsatisfiable. There is just one justification for the unsat-

isfiability of A, namely

J = {A t C v B u ∃R.D u E u ¬B}

However, Kalyanpur points out that “additional parts of axioms that could con-

tribute to the entailment are masked, e.g., the [the first and second axioms] can

be broken down into A v ∃R.D and A v ∀R.¬D which also entail the unsat-

isfiability of A, however, this condition cannot be captured [by justifications].”

Although Kalyanpur coined the term masking, he did not provide any proper

definitions of masking. He, also approached masking with a broad-brush view

and, as can be seen by the example he provided, only really identified what this

thesis now refers to as external masking.

Summary of Prior Approaches

A common aim of all previous approaches for computing fine-grained justifica-

tions is to determine the parts of axioms that are responsible for a particular

entailment. However, none of these approaches define exactly what they mean

by parts of axioms. Moreover, each approach is specific to a particular imple-

mentation technique and is defined in an operational sense. For example, Lam

essentially uses the mechanics of a tableau algorithm to identify parts of ax-

ioms. This means that it is generally unclear as to what exactly constitutes a

CHAPTER 7. JUSTIFICATION GRANULARITY 134

fine-grained justification. As a consequence, it is unclear as to whether any one

approach for computing fine-grained justifications would result in the same set of

fine-grained justifications for an entailment when compared to another approach.

While there are some arbitrary aspects of Kalyanpur’s precise justifications,

in particular, the choices made in defining the splitting function, and the work

by Baader is not about fine-grained justifications per se, the main ideas of using

some kind of normalisation and transformation that identifies sub-concepts are

worth investigating.

Finally, the ideas behind Schlobach and Cornet’s generalised TBoxes are inter-

esting. They identify (1) the importance of syntax, presumably for the purposes

of relating axioms in a GIT back to the axioms in the original terminology; (2)

the most general form of a terminology in terms of entailment and preservation

of incoherence, and (3) the idea of minimality with respect to the size of axioms

and the number of concept names that appear in a GIT.

7.1.2 Other Notions of Redundancy and Minimality

In some seminal work [Qui59, Qui55, Qui52] Quine introduced the notion of a

prime implicant of a formula, along with some other pertinent notions such as

redundancy. In this work Quine was concerned with the problem of reducing a

propositional formula to the shortest equivalent in a particular normal form, and

to do this he used prime implicants.

Prime Implicants

According to Quine [Qui59], a prime implicant of a formula Φ is a conjunction of

literals1 that logically implies Φ but ceases to when deprived of any one literal.

For example, consider the following formula, which is conjunctive normal form

(CNF),

ψ = (p ∨ ¬s) ∧ r ∧ (q ∨ t).

Two prime implicants of ψ (there are more) are

F1 = p ∧ r ∧ q and F2 = p ∧ r ∧ t
1Quine calls a conjunction of literals that does not have any repetitions a fundamental

formula

CHAPTER 7. JUSTIFICATION GRANULARITY 135

On the other hand, the formula

F3 = p ∧ q ∧ r ∧ t

is not a prime implicant of ψ, because although it entails ψ it is possible to drop

the conjunct q with the result still entailing ψ. Although Quine talks about a

single formula, it is of course possible to write a propositional theory into a single

formula, so it also makes sense to talk about the prime implicants of a theory. In

essence, the prime implicants of a formula Φ represent the weakest conjunctions

of literals that entail Φ.

Finally, Quine also specifies the notion of a formula (in Conjunctive Normal

Form) being unilaterally redundant if “it is equivalent to what remains of itself

on dropping some one occurrence of a literal”.

Prime Implicates

The dual notion of a prime implicant is a prime implicate. In propositional logic,

a prime implicate of a formula Φ is a disjunction of literals that is entailed by

Φ, but which is not entailed if deprived of any one literal. For example, consider

again the formula

ψ = (p ∨ ¬s) ∧ r ∧ (q ∨ t)

then two prime implicates of ψ are

F4 = r and F5 = q ∨ t

However,

F6 = q ∨ t ∨ r

is not a prime implicate, because although it is entailed by ψ, the literal r may

be dropped from F6 and the resulting formula is still entailed by ψ. In essence,

prime implicates of a formula Φ represent the strongest disjunctions of literals

that are entailed by Φ.

CHAPTER 7. JUSTIFICATION GRANULARITY 136

Prime Implicants and Prime Implicates for Description Logics

As seen above, prime implicants were originally defined for propositional logic,

however, in [Bie09], Bienvenu defines notions of prime implicates for the multi-

modal logic Kn [BvW06]2. Since ALC is a syntactic variant of Kn this also

provides a definition of prime implicates and prime implicants for ALC, and

in [Bie08], Bienvenu presents work on a prime implicate normal form for ALC
concepts. In her work, Bienvenu considers the properties of prime implicates

for propositional logic, such as syntactic form (conjunctions of literals and dis-

junctions of literals), and the complexity of checking the satisfiability of prime

implicates, and uses these qualities to select an appropriate definition for prime

implicates for formulae in Kn. Bienvenu uses well defined criteria to settle on a

definition for the notions of literals, clauses (disjunctions of literals) and terms

(conjunctions of literals) in Kn as being

L ::= A | ¬A | �F | ♦F
C ::= L | L ∨ L
T ::= L | T ∧ T
F ::= A | ¬A | F ∧ F | F ∨ F | �F | ♦F

and then uses this definition to define a clause Φ as prime implicate of a formula

ψ if ψ |= Φ, and for any formula Φ′, if Φ′ |= Φ then Φ |= Φ′. Intuitively, a prime

implicate in Kn is the weakest clause that entails a given formula, where a clause

has a specific structure and takes into consideration the modal operators in Kn.

Prime implicants are defined in the obvious way, as a strongest term (conjunction

of literals) that entails a given formula. Again, a term has a specific structure.

Prime implicants and fine-grained justifications

At first sight, the various notions of prime implicants and prime implicates, such

as redundancy, the notions of the weakest entailing formulae and the strongest

entailed formulae of a given formula, are appealing when considering fine-grained

justifications. This is due to the fact that, the notion of fine-grained justifications

2Bienvenu presents the work in the context of K1, and comments that the work is easily
generalisable to Kn

CHAPTER 7. JUSTIFICATION GRANULARITY 137

conjure up notions of redundancy and weakness. For example, given a justification

J1 = {A v C u ∃R.D, ∃R.> v B} |= A v B

the conjunct C is superfluous, and the existential restriction ∃R.D can be weak-

ened so that, overall, the first axiom is weakened to A v ∃R.> to give the

fine-grained justification,

J ′1 = {A v ∃R.>, ∃R.> v B}

However, it is not immediately clear how a fine-grained justification relates to a

prime implicant or a prime implicate. Given a justification J |= η and a fine-

grained justification J ′ where J |= J ′ and J ′ |= η (where J ′ is possibly weaker

than J but possibly stronger than η), syntax issues aside, it may be the case that

J ′ is a prime implicate of J , and J ′ is a prime implicant of η, but in general this

is obviously not the case. In the above example, syntax issues aside, J1 cannot

be regarded as a prime implicant of J ′1 since the conjunct B may be dropped

from the first axiom and the result will still entail J ′1.

In the context of fine-grained justifications, the notion of weakest entailing

formulae (or sets of formulae) also needs to be approached with some caution.

Consider the justification,

J2 = {A v ∃R.C u ∀R.C, ∃R.C v B} |= A v B

Intuitively, there are two fine-grained justifications for the entailment A v B,

namely,

J ′2 = {A v ∃R.C, ∃R.C v B}

and

J ′′2 = {A v ∃R.> u ∀R.C, ∃R.C v B}

It is obviously the case that J ′′2 is stronger than J ′2, but it would be undesirable

for either J ′2 to rule out J ′′2 from being a fine-grained justification for A v B, or

vice-versa.

Finally, the syntax of prime implicants and prime implicates, in propositional

logic and to some extent in Bienvenu’s work, is very prescribed. Issues of syntax

are obviously very important in both in the case of prime implicants/implicates

CHAPTER 7. JUSTIFICATION GRANULARITY 138

and in the case of fine-grained justifications, but it seems clear that the syntax

of prime implicates may be too far removed from the original axioms for them to

be used in driving a definition of fine-grained justifications.

Overall, prime implicants and prime implicates bring several useful notions to

the table, in particular, the notion of the weakest entailing formulae for a given

formula, which may be useful for defining fine-grained justifications.

7.1.3 Fine-grained Repair

Finally, as mentioned earlier, one of the motivations in the literature for fine-

grained justifications is fine-grained repair. In particular, the focus is on avoiding

over-repair, where more entailments are lost “than is necessary”. In the context of

Description Logics and OWL, both Lam and Kalyanpur have investigated editing

and removing parts of axioms in order to repair an ontology in a “minimal” way:

In [Lam07, LSPV08] Lam discusses “minimal repairs”, which are repairs that

consist of removing parts of axioms so as to “lose as few atomic subsumptions as

possible”. In [Kal06] Kalyanpur mentions an axiom rewrite module in his repair

tool, which is based on editing parts of axioms, to either strengthen or weaken

them in order to repair an ontology. The main idea is that, “the module suggests

a suitable rewrite of the axiom that preserves as much as information as possible

while eliminating unsatisfiability.”.

At the extreme end of the scale, Belief Revision [G9̈2] concerns the mod-

ification of a Belief Set (the deductive closure of a knowledge base, or Belief

Base), to either add new knowledge or revise existing knowledge while keeping

the knowledge base consistent. One of the key principles in this area is the notion

of minimal change, so the the amount of “information lost” in a belief change is

kept minimal [AGM85]. A more detailed comparison is beyond the scope of this

thesis, but as far as belief revision and ontologies are concerned, a very readable

discussion and presentation of the issues may be found in [LM05].

7.2 Intuitions and Desiderata

In summary, a general definition of fine-grained justifications is needed. Ideally,

such a definition would not be tied to a particular DL. This definition would

then permit the evaluation and comparison of algorithms for computing fine-

grained or “precise” justifications and, it would make it possible to investigate

CHAPTER 7. JUSTIFICATION GRANULARITY 139

the underlying problem in a thorough way. The overriding purpose of the next

chapter is to provide such a definition. To summarise, there appear to be several

desirable features that a definition for fine-grained justifications should satisfy.

In particular, it should help to identify:

• Axiom superfluity Each axiom in a fine-grained justification should not

contain superfluous parts (as in Figure 7.1). If the parts of an axiom in

a justification can be edited so that the axiom itself is weakened, but the

entailment in question still holds then the axiom contains superfluous parts.

• Justification masking Fine-grained justifications should make it possi-

ble to identify the different reasons for an entailment within a justification,

over a set of justifications, or over and ontology. It should be possible

to identify internally masked justifications (Figure 7.2), externally masked

justifications (Figure 7.3) and shared cores (Figure 7.4). As explained pre-

viously, the number of reasons (masked justifications) may be different to

the number of regular justifications.

• Minimal repairs One of the main motivations for fine-grained justifica-

tions is that “removing” parts, or sub-concepts, from axioms in an ontology

can result in a more minimal repair than a repair which involves removing

whole axioms from the self same ontology. Any definition should therefore

make it possible to identify the parts of axioms that can be removed to

enact a repair. In the context of this thesis, the notion of removing sub-

concepts (or sub-terms) from an axiom is taken to be the replacement of

sub-concepts, with either > or ⊥ depending on the position and polarity of

the sub-concept in question. The basic idea is to replace sub-concepts with

> if the sub-concept has a positive polarity, and ⊥ if the sub-concept has

a negative polarity.

In the next chapter these desiderata are taken forward into the definitions of two

types of fine-grained justification which this thesis call laconic justifications and

precise justifications.

Chapter 8

Laconic and Precise Justifications

In what follows a definition of fine-grained justifications is proposed. Two types of

fine-grained justification are defined: (1) laconic justifications, which intuitively

are justifications whose axioms do not contain any superfluous parts for the target

entailment; and (2) precise justifications, which intuitively are justifications that

identify the parts of axioms that could be edited in order to produce a repair.

Before these kinds of justifications are properly defined it is necessary to in-

troduce several conceptual and logical pieces of machinery. First, the notion of

a superfluous part of an axiom in the context in the context of a justification is

pinned down. Second, it is necessary to revisit Plaisted and Greenbaum’s struc-

tural transformation [PG86], which is used as a tool for flattening and pulling

axioms apart in the definition of laconic justifications. Third and finally, it is nec-

essary to define the notion of syntactic isomorphism for axioms, as syntax also

plays a part in the definition of laconic justifications. Once these pieces of ma-

chinery have been presented and discussed, laconic justifications are first defined,

and then this definition is used to arrive at a definition of precise justifications.

Much of what follows therefore focuses on laconic justifications.

8.1 Superfluity and Weakness

Laconic justifications centre around the notions of superfluity and weakness.

Roughly speaking, a justification J for an entailment η is laconic if: (1) J
does not contain any axioms that contain any sub-concept occurrences (i.e. sub-

concepts at specific positions) that are superfluous for η, and (2) J does not

contain any sub-concept occurrences that could be weakened while preserving η.

140

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 141

In the context of this thesis, superfluity and weakness are defined as follows:

Superfluity For a justification J for an entailment η, a subconcept in a pos-

itive position in some axiom in J is regarded as being superfluous if it can be

substituted for > without breaking η, and a subconcept in a negative position in

some axiom in J is superfluous if it can be substituted for ⊥ without breaking

η. For example, consider

O = {α1 : A v C uD
α2 : E t C v B} |= A v B

A justification for O |= A v B is J = {α1, α2}. In this justification the subcon-

cept D at α1|2.2 is superfluous as its polarity is positive, and if it is substituted

with >, so that α1 is replaced with α1[>]2.2 = A v C u >, then it is still the

case that J |= A v B. Similarly, the subconcept E at α2|1.1 is superfluous

as its polarity is negative, and if replaced with ⊥, so that α2 is replaced with

α2[⊥]1.1 = ⊥ t C v B, then it is still the case that J |= A v B. This thesis

defines D at α1|2.2 (or simply D in this case) to be >-Superfluous in J for η, and

E at α2|1.1 (or simply E in this case) to be ⊥-Superfluous in J for η. These two

notions of superfluity are made more precise by Definition 6.

Definition 6 (>⊥-superfluity). Given a justification J |= η, an axiom α ∈ J , an

occurrence of a subconcept α|p 6= > in α with positive polarity is >-Superfluous if

J \{α}∪{α[>]p} is a justification for η. Similarly, an occurrence of a subconcept

α|p 6= ⊥ in α with negative polarity is ⊥-Superfluous if J \ {α} ∪ {α[⊥]p} is a

justification for η.

It should be noted that, for a given justification for a given entailment, an

occurrence of a subconcept may be superfluous in one context, but not superfluous

in another context. This occurs when internal masking (Figure 7.2) is present

within a justification, and the justification contains two or more reasons as to

why it supports the target entailment.

Weakness For a justification J for an entailment η, if an occurrence of a

subconcept C in some axiom in J is not >⊥-superfluous, according to Definition

6, then it should be as weak as possible. That is, it should not be possible to

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 142

alter C, and in doing so, weaken the axiom that contains C without breaking η.

For example, consider

O = {α1 : A v ≥ 3R.C

α2 : ∃R.C v B} |= A v B

A justification for O |= A v B is J = {α1, α2}. While neither α1 or α2 contain

occurrences of superfluous concepts, the subconcept ≥ 3R.C at α1|2 can be weak-

ened to ≥ 1R.C, so that α1 is replaced with the weaker axiom A v ≥1R.C, and

it is still the case that J |= A v B. It should be noted that, in this context, what

constitutes a valid weakening is rather prescribed. The exact criteria, and the

reasons for them, will become clear when the definition of laconic justifications is

laid down later in the thesis.

>⊥-superfluity and Weakening Based Repair The above intuitions of su-

perfluity and weakness lean towards the idea of breaking an entailment (repair)

through the “elimination” and/or weakening of subconcepts, rather than the

elimination of whole axioms. The basic idea is that, given a justification J for

η, whose axioms do not contain any superfluous subconcepts, and whose axioms

contain subconcepts that are as weak as possible, the replacement or weakening

of any subconcept with either > or ⊥, depending on the polarity of the subcon-

cept, will break the entailment. Repair based on these ideas obviously offers the

possibility of a more fine-grained approach than traditional justification based

repair, and is described in more detail following the definitions of laconic and

precise justifications.

8.2 δ–The Structural Transformation

As hinted at above, one of the most important requirements is the ability to

identify the occurrence of a subconcept in some axiom—that is, the notion of

a subconcept with position. The definition of laconic justifications requires this,

and achieves it using a structure preserving transformation function δ, which re-

moves the nesting of subconcepts, and produces axioms that are “small” and

“flat”. The transformation δ, which is presented below, is essentially the struc-

tural transformation which was originally described in Plaisted and Greenbaum

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 143

[PG86], and also introduced in [NW01] and [BEL01]. Plaisted and Greenbaum’s

original transformation [PG86] essentially introduces fresh predicate names in

order to remove nesting in First Order Formulae. The idea of introducing fresh

names was first introduced by Tseitin [Tse68] as a method of avoiding the ex-

ponential blow up that can occur when transforming propositional formulae into

clausal normal form.

In terms of Description Logics, the transformation takes a set of axioms S,

and produces a different set of axioms S ′ = δ(S) that, while not equivalent to S
is equi-consistent and equi-satisfiable to S. That is, S ′ is consistent if and only

if S is consistent, and a concept C is satisfiable with respect to S ′ if and only if

it is satisfiable with respect to S. Moreover, any model I of δ(S) is also a model

of S, and any model of S can be extended into a model of δ(O) by appropriate

interpretation of the symbols that are in S ′ but not in S.

Rewrite rules that apply the transformation to a set of Description Logic

axioms are given in [MSH07], [MSH09] and [Mot06]. However, these rules first

rewrite general concept inclusion axioms of the form C v D into clausal form,

i.e. > v nnf(¬C tD), and then apply the transformation. The original trans-

formation as presented by Plaisted and Greenbaum did not do this, and the

transformation δ, presented below, is more in keeping with this original transfor-

mation.

In what follows a set of transformation rules that is used in the definition of

δ is presented. The set of rules is deterministic. For a given ontology O, the left

hand side of each transformation rule matches an axiom in O, and either replaces

it with an axiom or a set of axioms that is defined by the right hand side of the

rule.

Definition 7. [SHOIQ Rewrite Rules for the Structural Transformation δ]In

the rewrite rules below, AC, AD and ACi
are fresh concept names that are not

in the signature of O. The concepts C, D and Ci (1 ≤ i ≤ n) are either complex

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 144

concept expressions, concept names that are in the signature of O, > or ⊥

T1 C ≡ D {C v D, D v C}
R1 S ≡ R {S v R,R v S}
A1 C(a) {{a} v C}
A2 R(a, b) {{a} v ∃R.{b}}

G1 C v D {AC v AD, C v AC , AD v D}

P1 AD v C1 u · · · u Cn {AD v Ci | 1 ≤ i ≤ n,Ci 6= >}
P2 AD v C1 t · · · t Cn {ACi

v Ci | 1 ≤ i ≤ n} ∪ {AD v AC1 t · · · t ACn}
P3 AD v ¬C, C 6= ⊥ {AD v ¬AC , C v AC}
P4 AD v ∃R.C, C 6= > {AD v ∃R.AC , AC v C}
P5 AD v ∀R.C, C 6= > {AD v ∀R.AC , AC v C}
P6 AD v ≥ nR.C, C 6= > {AD v ≥ nR.AC , AC v C}
P7 AD v ≤ nR.C, C 6= ⊥ {AD v ≤ nR.AC , C v AC}

N1 C1 u · · · u Cn v AD {Ci v ACi
| 1 ≤ i ≤ n} ∪ {AC1 u · · · u ACn v AD}

N2 C1 t · · · t Cn v AD {Ci v AD | 1 ≤ i ≤ n,Ci 6= ⊥}
N3 ¬C v AD, C 6= > {¬AC v AD, AC v C}
N4 ∃R.C v AD, C 6= ⊥ {∃R.AC v AD, C v AC}
N5 ∀R.C v AD, C 6= ⊥ {∀R.AC v AD, C v AC}
N6 ≥ nR.C v AD, C 6= ⊥ {≥ nR.AC v AD, C v AC}
N7 ≤ nR.C v AD, C 6= > {≤ nR.AC v AD, AC v C}

Rule T1 rewrites concept equivalence axioms into general concept inclusion

axioms. Rule R1 rewrites role equivalence axioms into two role inclusion axioms.

For the sake of convenience, rules A1 and A2 rewrite ABox concept and role

assertions into TBox axioms using nominals. Rules G1, P1− P7 and N1− N7

rewrite general concept inclusion axioms into multiple axioms, flattening out

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 145

all nested concept expressions. They do this by introducing fresh names for

subconcepts and introducing “defining axioms” for these fresh names. Rules

P1− P7 deal with positive occurrences of subconcepts. If a fresh concept name

AC is introduced for the concept C which is in a positive position then the defining

axiom takes the form of AC v C. Rules N1− N7 deal with negative occurrences

of subconcepts. If a fresh concept name AC is introduced for the concept C which

is in a negative position then the defining axiom takes the form of C v AC .

It should be noted that the rewrite rules do not introduce fresh concept names

for nested positive occurrences > or nested negative occurrences of ⊥. This helps

to ensure termination. Additionally, direct use of > and ⊥ is considered to be

an instance of trivial superfluity (as opposed to the notion of superfluity defined

in Definition 6) which is obvious and not detrimental to repair, for example, if

J = {A v ∃R.>,∃R.> v B} |= A v B contains some kind of superfluity in

terms of the filler > for the ∃R.> restriction—however, it is obvious that this

filler is superfluous and that it cannot be replaced with > to repair the entailment

A v B. Finally, in comparison to the original structural transformation defined

in [PG86], the transformation presented here goes one step further and ensures

that nesting is removed from literal concepts such as ¬A. That is, it introduces

a name for the subconcept occurrence of A.

Definition 8. [The Structural Transformation δ for SHOIQ] For a given set of

SHOIQ axioms O, O′ = δ(O) is the result of exhaustively applying the rewrite

rules given in Definition 7.

The following two lemmas capture the fact that δ preserves consistency, sat-

isfiability and entailment.

Lemma 1. For an ontology O, any model Iδ of δ(O) is also a model of O, and

any model I of O can be extended into a model Iδ of δ(O) simply by interpreting

the additional vocabulary introduced as part of the transformation δ.

Proof. See the proof of Theorem 2 in [PG86].

Lemma 2. If J is a justification for O |= η, then there is a Jδ ⊆ δ(J) that is a

justification for δ(J) |= η.

Proof. It follows from Lemma 1 that δ(J) |= η. Hence, δ(J) must contain at

least one subset minimal set of axioms that entails η—that is, δ(J) contains at

least one justification for η with respect to δ(J).

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 146

Structural Transformation Example Since the rewrite rules for the struc-

tural transformation δ are rather complex, the following example illustrates how

it introduces fresh names for subconcepts and how these are used to remove

subconcept nesting. Consider,

S = {∃R.C v D u ≥ 2S.¬E}

applying the transformation to S gives:

δ(S) = {X0 v X1

∃R.X2 v X0

C v X2

X1 v X3

X1 v X4

X3 v D

X4 v ≥ 2S.X5

X5 v ¬X6

E v X6}

where names of the form Xi represent fresh concept names that are introduced in

order to remove concept nesting. The transformation begins with the introduction

of the “root axiom” X0 v X1, and the fresh concept names X0 and X1. In this

case X0 represents ∃R.C, and X1 represents D u ≥ 2S.¬E. Next, the rewrite

rules are recursively applied to these top level sub-concepts and so on, so that

deeper nesting is removed in the same way. As can be seen, subconcepts with

negative polarities are dealt with slightly differently to subconcepts with positive

polarities. For example, the ∃R.C subconcept on the left hand side of the original

GCI, which is implicitly negated, is flattened out with the name X0 and a defining

axiom ∃R.X2 v X0 is introduced (the introduced name appears on the right hand

side of the introduced defining axiom). An example of a positive renaming is the

introduction of the name X3 in order to remove the nesting of the D subconcept

on the right hand side of the GCI. In this case, the defining axiom X3 v D is

introduced (the introduced name appears on the left hand side of the defining

axiom).

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 147

δ-Transformation Axiom Forms Applying the structural transformation δ

to a set of axioms S results in a set of small flat axioms δ(S). Each axiom in

δ(S) is of one of the forms shown in Definition 9, where the symbols N∗, P∗,

and A represent concept names, R a SHOIQ role, o an individual name, and

n a positive integer. Each concept name Pc represents a positive occurrence of

some subconcept C in the original set of axioms, with an axiom of the form

Pc v C “defining” that occurrence. Each concept name Nc represents a negative

occurrence of some subconcept C in the original set of axioms, with each axiom

of the form C v Nc “defining” that occurrence.

Definition 9 (SHOIQ δ-transformation axiom forms). For a set S of SHOIQ
axioms, each axiom α ∈ δ(S) must be one of the forms, where the symbols N∗,

P∗, and A represent concept names, R a SHOIQ role, o an individual name,

and n a positive integer:

A1 N1 v P1

P1 Pc v P1 t · · · t Pn
P2 Pc v ¬N1

P3 Pc v {o}
P4 Pc v A

P5 Pc v ∃R.P1

P6 Pc v ∀R.P1

P7 Pc v ≥ nR.P1

P8 Pc v ≤ nR.N1

N1 N1 u · · · uNn v Nc

N2 ¬N1 v Nc

N3 {o} v Nc

N4 A v Nc

N5 ∃R.N1 v Nc

N6 ∀R.N1 v Nc

N7 ≥ nR.N1 v Nc

N8 ≤ nR.P1 v Nc

O1 trans(R)

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 148

8.3 SHOIQ Syntactic Isomorphism

The final piece of machinery that is needed for the definition of laconic justifica-

tions is syntactic isomorphism. Intuitively, an axiom α′ is syntactically isomor-

phic to another axiom α′′ if there is an injective renaming ρ of the signature,

with > and ⊥, of α′ so that ρ(α′) is structurally equal to α′′. For example,

α′ = A v ∃R.B is isomorphic to α′′ = F v ∃S.B, since A and R in α′ can be

renamed to F and S respectively, to make α′ structurally equal to α′′. Definition

10 captures what it means to be isomorphic for an axiom that occurs in the set of

axioms δ(S) where S is a set of SHOIQ axioms. Note that structural equality is

used as the ordering of conjuncts in a conjunction and disjuncts in a disjunction

is unimportant here.

Definition 10 (SHOIQ δ-Isomorphism). Two SHOIQ axioms, α′ and α′′ are

δ-isomorphic if α′ and α′′ are both of one of the forms given in Definition 9, and

there is a injective renaming of each N ′ ∈ signature(α′) ∪ {>,⊥} into a name

N ′′ ∈ signature(α′′) ∪ {>,⊥}.

When it is clear from the context (because the axioms being compared are

contained in the result of applying the δ-transformation to a set of axioms), the

prefix δ may be dropped, and the term isomorphism (resp. isomorphic) simply

used to mean δ-isomorphism (resp. δ-isomorphic).

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 149

8.4 Laconic And Precise Justifications

With a suitable structural transformation, δ, in hand, laconic justifications can

be defined. (Recall that O? is the deductive closure of O)

Definition 11. (Laconic Justification) Let O be an ontology such that O |= η,

J is a laconic justification for η over O if:

1. J is a justification for η in O?

2. For every Jδ (δ(J) it is the case that Jδ 6|= η

3. For each α ∈ δ(J) there is no α′ such that

(a) α |= α′ and α′ 6|= α (α′ is weaker than α)

(b) α′ is δ-isomorphic to α

(c) δ(J) \ {α} ∪ {α′} is a justification for η in (δ(O))?

Intuitively, a laconic justification is a justification whose axioms do not have

any superfluous parts (subconcepts) for the entailment in question, and, all of

the non-superfluous parts are as weak as possible while still being of the same

syntactic form.

Definition 12. (Precise Justification) Let O be an ontology such that O |= η.

Let J be a justification for O? |= η and let Jp = δ(J). Jp is precise with respect

to J if J is a laconic justification for O |= η.

As can be seen, a precise justification is a laconic justification where all parts

are exposed as axioms.

8.5 A Discussion of Definition 11

Use of Deductive Closures It is apparent from Definition 11(1) that the

laconic justifications for O |= η may be drawn from the deductive closure of

O. Therefore, unlike regular justifications, laconic justifications are not specific

to the asserted axioms in an ontology. This ensures that (1) it is possible to

consider weaker parts of axioms when discarding superfluous parts, and that (2)

it is possible to capture the phenomena of masking, which was discussed in the

introduction to this chapter and is described in more detail in Chapter 9.

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 150

Constrained Axiom Weakening Definition 11(3a) captures the notion of

subconcept weakening using isomorphism. It should be noted that in prior publi-

cation of this work (in [HPS08b]), this notion of isomorphic axiom weakening was

captured by explicitly introducing the notion of axiom length into the definition

of laconic justifications. With the more elegant tool of isomorphism axiom length

no longer required.

Justifications for Tautologies are Laconic It follows from Definition 11

that justifications for tautologies are laconic: By Definition 1, a justification for

a tautology is the empty set, which trivially satisfies Definition 11(1), Definition

11(2) and Definition 11(3).

8.6 Laconic Justifications Examples

Consider the following ontology

O = {A v B,

B v D,

A v B u C} |= A v D

There are two justifications for O |= A v D, J1 = {A v B,B v D} and

J2 = {B v D,A v B u C}. By Definition 11, J1 is a laconic justification since

δ(J1) = {X0 v X1,

A v X0,

X1 v B,

X2 v X3,

B v X2,

X3 v D}

which is a justification for η with respect to δ(J), moreover, none of these axioms

can be weakened further without resulting in J1 6|= A v D. Conversely, J2 is not

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 151

a laconic justification since

δ(J2) = {X0 v X1,

B v X0,

X1 v D

X2 v X3

A v X2

X2 v X3 uX4

X3 v B

X4 v C}

which is a superset of a justification for η is obtained, since X4 v C is not required

to entail η.

In essence, after applying the δ-transformation to a justification J for O |= η

the resulting set of axioms δ(J) must entail η, but it may or may not be a

justification for η with respect to itself. There are of course two options:

1. δ(J) is a justification for η—in this case, each axiom in δ(J) can be ex-

amined to make sure that it is as weak as possible, inline with the kinds of

weakenings permitted by Definition 11, while still entailing η.

2. δ(J) is not a justification for η—in this case, δ(J) must be a superset of

a justification for η, and the axioms in J must contain superfluous parts.

Hence J cannot be laconic.

8.7 Key Properties of Laconic Justifications

The following Theorems summarise key properties of laconic justifications:

Theorem 1 (Number of Laconic Justifications). Let S be a set of SHOIQ
axioms such that S |= η. There are an infinite number of laconic justifications

over S for S |= η.

Proof. It follows from Definition 11 that, given a laconic justification J |= η, any

positive polarity class expression C = α|p for some α ∈ J may be substituted

with C u >, so that J ′ = J \ {α} ∪ {α[C u >]p}, and the resulting justification

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 152

J ′ must be laconic. Since each substitution of this form produces an axiom that

is in the deductive closure of the original axiom, and there can be an infinite

number of such substitutions, it follows that there are an infinite number of

laconic justifications for a given entailment.

The proof of Theorem 1 uses “syntactic fluff” to show that there are an infinite

number of laconic justifications for an entailment. Another construction that

involves this kind of syntactic fluff is one based on the use of negation. Given a

laconic justification J , rather than substitute a positive polarity class expression

C in some α ∈ J with C u >, C can be substituted with ¬(¬C). The resulting

justification will still be laconic. This substitution can of course be performed ad

infinitum without the loss of laconicity.

A less trivial example, which illustrates that there can be an infinite number of

justifications for an entailment involves the use of number restrictions. Consider

an ontology O |= A v ⊥. It is possible to construct an infinite set of justifications

for the unsatisfiability of A of the form {A v ≥ nR.>, A v ≤ (n− 1)R.>} (1 <

n). All of these axioms are in the deductive closure of O.

Theorem 2. For a given justification J |= η, if J is laconic then it does not

contain any >⊥-superfluity.

Proof. Assume for the moment that J does contain a >⊥-superfluous subconcept

C = α|p for some α ∈ J . Since C is assumed to be superfluous, it must be the

case that C 6= > and C 6= ⊥ (Definition 6), and there must also be a “defining

axiom” for C in δ(J) (Definition 7 and Definition 8). If C really is superfluous,

it must be possible to substitute it with > or ⊥ (depending on its polarity) in

J and η must still be entailed by the result. Such a substitution amounts to

removing the defining axiom for the superfluous subconcept from δ(J). Hence,

if J contains superfluity, there must be some proper subset J ′ (δ(J) which

entails η, and δ(J) cannot be a subset minimal set that entails η, thus violating

Definition 11(3) meaning J cannot be laconic.

Theorem 3 (Laconic Repair). For a laconic justification J |= η, any axiom

α ∈ J , and any subconcept C = α|p where the polarity of C is positive and

C 6= >, α[>]p is weaker than α, and J \ {α} ∪ {α[>]p} 6|= η. Similarly, for any

subconcept D = α|p where the polarity of D is negative and D 6= ⊥, α[⊥]p is

weaker than α and J \ {α} ∪ {α[⊥]p} 6|= η.

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 153

Proof. It follows from Theorem 2 that J does not contain any >⊥-superfluity.

Therefore, it follows from Definition 6 that substituting C with >, or substituting

D with ⊥ must break the entailment η and result in a repair.

In essence, for a given justification J |= η, Theorem 3 shows that it is pos-

sible to use laconic and precise justifications to determine which subconcept oc-

currences in J can be selected for substitution with either > or ⊥ in order to

guarantee a repair.

8.8 Discussion

Before concluding this chapter it is worth mentioning two issues. The first relates

to how the definitions of laconic and precise justifications were arrived and how

syntax strongly influenced the final outcome. The second relates to dealing with

redundancy in justifications, which is subtly different from superfluity.

The Importance Of Syntax Before settling on the definition of laconic jus-

tifications presented in this thesis, various alternatives were considered. Initially,

there was an overwhelming draw towards a “clean and pure” definition that was

blind to syntax. Early iterations of the definition used axiom weakening but did

not identify syntax and certainly not occurrences of subconcepts in axioms. How-

ever, this proved unworkable. In particular, the definition admitted axioms that

could have complex “tautological junk” appended to subconcepts—weakening

alone was not powerful enough to prevent this. Later attempts included the

notion of axiom length to prevent axioms containing these additional tautolog-

ical parts. It then became apparent that considering the length of axioms in

there entirety was not enough. In the presence of self contradictions the defi-

nition collapsed. At this point the structural transformation became important

for identifying occurrences of subconcepts and the importance of syntax became

evident. As will be seen in the next chapter, syntax plays a crucial role when it

comes to justification masking.

Dealing with Redundancy The definition of laconic justifications (and hence

precise justifications) strikes a balance between practicality/implementability and

dealing with all forms of superfluity and redundancy. In particular, it is based on

the simple notion of >⊥-superfluity and the mechanisms of fine-grained repair

CHAPTER 8. LACONIC AND PRECISE JUSTIFICATIONS 154

that are associated with this notion. While the definition caters for this notion of

superfluity, it does not fully deal with the notion of redundancy as articulated by

Quine [Qui52], whereby a subconcept would be considered redundant if it could

be “cut out” of an axiom without loss of information (entailments). For example,

consider the following justification for A v B,

J = {A v ∃R.C t ≥ 1R.C, ∃R.C v B} |= A v B.

This justification is a laconic justification by Definition 11. Substituting any

positive occurrence of a subconcept with > will break the entailment. However,

it would also be possible to “cut out” one of the disjuncts, without losing any

information, and obtain an equivalent justification for the entailment. In this

sense, either ∃R.C or ≥ 1R.C is redundant.

The example of redundancy presented here is rather simple so as to illustrate

the issues between redundancy and superfluity, but as can be imagined, redun-

dancy in a justification could be the result of complex interaction between nested

parts of different axioms. Addressing this kind of redundancy is beyond the scope

of this thesis, but it presents an interesting and challenging issue which should

be investigated as part of future work

8.9 Conclusions

This chapter has presented laconic and precise justifications as a type of fine-

grained justification. The notion of >⊥-superfluity was introduced as a means

of characterising the problem space, and laconic justifications were introduced as

fine-grained justifications that do not contain any of this superfluity. In essence,

the axioms in laconic justifications do not contain any superfluous parts, and every

part is as weak as possible. Plaisted and Greenbaum’s structural transformation,

which sits outside of this work, plays a central role in the definition of laconic

and precise justifications and is used to identify each subconcept occurrence in

an axiom. Finally, the logic toolbox containing the Plaisted and Greenbaum’s

structural transformation and syntactic isomorphism, that was used to define

laconic and precise justifications is quite general and not specific to SHOIQ.

This should mean that it is possible to extend the definition to more expressive

logics in the future.

Chapter 9

Justification Masking

As discussed in Chapter 7, one of the main motivations for fine-grained justi-

fications is that regular justifications can mask further multiple reasons for an

entailment. Despite the fact that the basic intuitions behind masking are easy

to grasp, there have been no proper prior definitions or analysis of masking. In

what follows, the phenomena of masking is examined in more detail.

9.1 Types of Masking

This thesis defines four important types of masking: Internal Masking, Cross

Masking, External Masking and Shared Core Masking. The intuitions behind

these types of masking are explained below.

Internal Masking

Internal masking refers to the phenomena where there are multiple reasons within

a single justification as to why the entailment in question holds. An example of

internal masking is shown below.

O = {A v B u ¬B u C u ¬C} |= A v ⊥

There is a single regular justification for O |= A v ⊥, namely O itself. However,

within this justification there are, intuitively, two reasons as to why O |= A v ⊥,

the first being {A v B u ¬B} and the second being {A v C u ¬C}.

155

CHAPTER 9. JUSTIFICATION MASKING 156

Cross Masking

Intuitively, cross masking is present within a set of justifications for an entailment

when parts of axioms from one justification combine with parts of axioms from

another justification in the set to produce new reasons for the given entailment.

For example, consider the following ontology.

O = {A v B u ¬B u C
A v D u ¬D u ¬C} |= A v ⊥

There are two justifications for O |= A v ⊥, namely J1 = {A v B u ¬B u C}
and J2 = {A v Du¬Du¬C}. However, part of the axiom in J1, namely A v C

may combine with part of the axiom in J2, namely A v ¬C to produce a further

reason: J3 = {A v C,A v ¬C}.

External Masking

While internal masking and cross masking take place over a set of “regular”

justifications for an entailment, external masking involves parts of axioms from a

regular justification combining with parts of axioms from an ontology (intuitively

the axioms outside of the set of regular justifications) to produce further reasons

for the entailment in question. Consider the example below,

O = {A v B u ¬B u C
A v ¬C} |= A v ⊥

There is just one justification for O |= A v ⊥, however, although A v ¬C
intuitively plays a part in the unsatisfiability of A it will never appear in a jus-

tification for O |= A v ⊥. When O is taken into consideration, there are two

salient reasons for A v ⊥, the first being {A v B u ¬B} and the second being

{A v C,A v ¬C}

Shared Core Masking

Finally, two justifications share a core if after stripping away the superfluous

parts of axioms in each justification the justifications are essentially structurally

CHAPTER 9. JUSTIFICATION MASKING 157

equal. Consider the example below,

O = {A v B u ¬B u C
A v B u ¬B} |= A v ⊥

There are two justifications for O |= η, J1 = {A v B u ¬B uC} and J2 = {A v
B u¬B}. However, J1 can be reduced to the laconic justification {A v B u¬B}
(since C is irrelevant for the entailment), which is structurally equal to J2. With

regular justifications, it appears that there are more reasons for the entailment,

when in fact each justification boils down to the same reason.

Masking Due to Weakening

The above intuitions have been illustrated using simple propositional examples.

However, it is important to realise that masking is not just concerned with

Boolean parts of axioms. Weakest parts of axioms must also be taken into con-

sideration. For example, consider

O = {A v ≥ 2R.C

A v ≥ 1R.D

C v ¬D} |= A v ≥ 2R

There is one regular justification for O |= A v ≥ 2R namely, J1 = {A v
≥ 2R.C}. However, there are intuitively two reasons for this entailment. The

first is described by the justification obtained as a weakening of J1, and is

J2 = {A v ≥ 2R}. The second is obtained by weakening the first axiom in O and

combining it with the second and third axioms in O to give {A v ≥ 1R.C,A v
≥ 1R.D,C v ¬D}.

Of course, masking due to weakening can occur in internal masking, cross

masking, external masking and shared cores.

9.2 Summary on Masking Intuitions

As can be seen from the above examples, the basic idea is that when the weakest

parts of axioms in a justification, set of justifications or an ontology are taken into

CHAPTER 9. JUSTIFICATION MASKING 158

consideration, there can be multiple reasons for an entailment that are otherwise

not exposed with regular justifications. These reasons take the form of laconic

justifications—justifications whose axioms do not contain any superfluous parts

and whose parts are as weak as possible. With internal masking, cross masking

and external masking, there are more laconic justifications (by some measure)

than there are regular justifications. With shared cores there are fewer laconic

justifications (by some measure) than there are regular justifications.

9.3 Detecting Masking

Given the above link between masking, weakest parts of axioms and laconic jus-

tifications, it may seem fruitful to use laconic justifications as a mechanism for

detecting masking. Specifically, it may seem like a good idea to count laconic

justifications for the entailment in question. However, this is a flawed intuition

and several problems prevent laconic justification counting being used directly as

a masking detection mechanism. The problems are outlined below.

The Promiscuity of the Deductive Closure

The first problem is that, in general, there can be an infinite number of laconic

justifications for a given entailment (Theorem 1). The notion of counting the

number of laconic justifications over a set of axioms and comparing this to the

number of regular justifications over the same set of axioms is therefore useless

when it comes to detecting and defining masking. Even if the logic used did

not result in an infinite number of laconic justifications, the effects of splitting

and syntactic equivalence could result in miscounting. For example, consider

J1 = {A v B u C,B u C v D}, where J1 is in itself laconic, however another

justification J2 = {A v B,A v C,B u C v D} can be obtained, which is

also laconic. Clearly, masking is not present in J1, but there are more laconic

justifications than there are regular justifications.

Preferred Laconic Justifications

Another approach might be to count the number of preferred laconic justifica-

tions,1 which are a finite subset of laconic justifications that are made up of

1Preferred laconic justifications are discussed in more detail in Chapter 10

CHAPTER 9. JUSTIFICATION MASKING 159

axioms which come from a filter on the deductive closure of a set of axioms. Un-

fortunately, this idea is sensitive to the definition of the filter. Different filters,

for different applications, may give different answers and false positives. While a

particular filter could be verified to behave correctly and perhaps be used as an

optimisation for detecting masking in an implementation, this mechanism is not

appropriate for defining masking.

Preservation of Positional Information

Another problem is that structural information is not directly preserved with

laconic justifications. Consider J = {α : A v B u (C u B)} as a justification

for A v B. Masking is present within this justification. If B@1 = α|2.1 denotes

the first occurrence of B, and B@2 = α|2.2.2 denotes the second occurrence of

B then A is a subclass of B because of two reasons: A v B@1 and A v B@2.

However, this positional information is lost in all laconic justifications for A v B.

In essence, syntax of asserted axioms is crucial when it comes to masking.

Splitting is Not Enough

While syntax is very important when considering masking, it does not suffice

to consider syntax alone. The example of masking due to weakening shows that

simply splitting a set of axioms S into their constituent parts, using the structural

transformation δ(S), and then examining the justifications for the entailment with

respect δ(S) is not enough to capture this notion of masking. Weakenings of the

split axioms must be considered in any mechanism that is used to detect masking.

9.4 Masking Defined

With the above intuitions and desiderata in mind the notion of masking can be

made more concrete. In the spirit of laconic justifications, the basic idea is to pull

apart the axioms in a justification, set of justifications and an ontology, compute

constrained weakenings of these parts (inline with the definition of laconic justi-

fications), and then to check for the presence and number of laconic justifications

within the set of regular justifications for an entailment with respect to these

parts and their weakenings.

CHAPTER 9. JUSTIFICATION MASKING 160

9.4.1 Parts and Their Weakenings

First, it is necessary define a function δ+(S), which maps a set of axioms S to a

set of axioms composed from the union of δ(S) with the constrained weakenings

of axioms in δ(S). The weakenings of axioms are constrained in accordance with

Definition 11(3). For an axiom α ∈ δ(S), a weakening α′ of α is contained in

δ+(S) only if α′ is of the same form as α—i.e. α′ is δ-isomorphic to α.

Definition 13 (δ+). For a set of SHOIQ axioms, S,

δ+(S) := δ(S) ∪ {α | ∃α′ ∈ δ(S) s.t.

α′ |= α and

α 6|= α′ and

α′ is isomorphic to α}

Lemma 3 (δ+justificatory finiteness). For a finite set of axioms S, the set of

justifications for an entailment in δ+(S) is finite.

Proof. δ+(S) is composed of the set of axioms in δ(S), which is finite, plus a

possibly infinite set of axioms taken from the deductive closure of each axiom in

δ(S). For a SHOIQ axiom α, every axiom α′ in δ(α) must be one of the following

forms presented in Definition 9 (Page 147). Disregarding axioms in δ(S) of form

P8 (Pc v ≤ nR.N1) and N7 (≥ nR.N1 v Nc), the remaining set of axioms in

δ+(α) is finite since the set of weakenings (in accordance with the definition of

δ+) of α′ is finite. For axiom forms P8 and N7, α′ is of the form: Xi v ≤ nR.Xj,

in which case there is an infinite number of weakenings of α′ in δ+(α) since

A v≤ (n+ 1)R.C is weaker than A v≤ nR.C for any n ≥ 0. If justifications are

made up solely of the axioms of the form corresponding to the first set then the

set of justifications is clearly finite. If justifications contain axioms of the second

form Xi v ≤nR.Xj then there is a finite upper bound m for n, where there are

no justifications containing an axiom of the from Xi v ≤ kR.Xj for some k > m.

This is because, for values of k, where k is equal to the maximum number in ≤
restrictions in the closure of S, or more, Xi v ≤ kR.Xj is too weak to participate

in a justification, and this follows as a straight forward consequence of SHOIQ’s

model theory.

Next, a function which filters out laconic justifications for an entailment from

a set of all justifications for the entailment is defined in Definition 14.

CHAPTER 9. JUSTIFICATION MASKING 161

Definition 14 (Laconic Filtering). For a set of axioms S |= η, laconic(S, η) is

the set of justifications for S |= η that are laconic over S.

It should be noted that because of Lemma 3, the set of justifications laconic(S, η)

is finite.

9.4.2 Masking Definitions

With the definition of δ+ and the definition of laconic filtering in hand, the various

types of masking can now be defined.

Definition 15 (Internal Masking). For a justification J for O |= η, internal

masking is present within J if

∣∣laconic(δ+(J), η)
∣∣ > 1

Theorem 4. Internal masking is not present within a laconic justification.

Proof. Assume that J is a laconic justification for η and that internal masking is

present within J . This means that there either must be (i) at least two laconic

justifications for δ+(J) |= η, i.e. there exists some J1,J2 (δ+(J) where J1 6= J2

and are both laconic. However, since J itself is laconic this violates condition 2

of Definition 11, or (ii) there is an isomorphic weakening of one or more axioms

in δ(J) that yields δ(J)′. However since J is laconic this violates conditions 3a

and 3b of Definition 11.

Let O |= η and J1, . . . ,Jn be the set of all justifications for O |= η. Cross

masking and External masking are then defined as follows:

Definition 16 (Cross Masking). For two justifications Ji and Jj, cross masking

is present within Ji and Jj if

∣∣laconic
(
δ+(Ji ∪ Jj), η

)∣∣ > (∣∣laconic
(
δ+(Ji), η

)∣∣+
∣∣laconic

(
δ+(Jj), η

)∣∣)
Definition 17 (External Masking). External masking is present if

∣∣laconic(δ+(O), η)
∣∣ > ∣∣laconic(δ+(

i=n⋃
i=1

Ji), η)
∣∣

CHAPTER 9. JUSTIFICATION MASKING 162

Definition 18 (Shared Cores). Two justifications Ji and Jj for O |= η, share

a core if there is a justification J ′i ∈ laconic(δ+(Ji), η) and a justification J ′j ∈
laconic(δ+(Jj), η) and a renaming ρ of terms not in O such that ρ(J ′i) = J ′j .

9.5 Conclusions

This chapter has presented issues related to detecting and defining justification

masking. Four specific types of masking have been introduced and defined: Inter-

nal masking, Cross-masking, External masking, and Shared-Core masking. This

is a somewhat more detailed breakdown of masking as identified in the literature,

where only external masking was informally identified.

In summary, masking is a phenomena that results in the number of justifica-

tions for an entailment not reflecting the number of reasons for an entailment.

The above definitions of masking basically identify the parts of axioms in a jus-

tification, over a set of justifications or over an ontology, weaken these parts and

then look for the number of laconic justifications that are present in the set of

justifications over the axioms that represent these weakened parts. As seen, syn-

tax is crucial when it comes to masking. This is because it directly depends

upon what has been written down into axioms. In addition to paying homage

to syntax it is also necessary to consider semantics, and in particular the effect

of weakening parts of axioms, as this makes it possible to capture masking due

to weakening of cardinality restrictions in SHOIQ. Finally, masking was one of

the motivations for fine-grained justifications and, as will be seen later, masking

is a natural phenomenon that occurs in realistic ontologies.

Chapter 10

Laconic Justification Finding

Algorithms

With the definitions of laconic justifications and the various types of masking in

hand, it is now possible to focus on detecting and computing laconic justifica-

tions for an entailments in ontologies. In what follows, a decision procedure for

determining if a SHOIQ justification is laconic is presented. Next, the focus is

shifted from detecting to finding laconic justifications. The notion of preferred

laconic justifications is introduced and algorithms for computing these kinds of

justifications are presented.

10.1 Detecting Laconic Justifications

Algorithm 10.1 is a decision procedure for determining whether or not a SHOIQ
justification is laconic. The decision procedure answers “yes” if a justification

J |= η is laconic for η, and answers “no” if J is not laconic for η. The algorithm

has one sub-routine, ComputeDelta, which, given a set of axioms, computes the

δ-transformation of the set of axioms.

10.1.1 The IsLaconic Algorithm

The algorithm works by first deriving the set of axioms Sδ by applying the δ-

transformation to the input justification J . If Sδ is not a justification for η

with respect to itself then the input justification J must not be laconic, and the

algorithm returns false. This corresponds to Definition 11(3). Next, each axiom

163

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 164

α ∈ Sδ is examined. If α is an axiom that has a cardinality restriction on the left

or right hand side, then a weaker version α′ of α is obtained by either increasing

or decreasing the cardinality, depending on the type of cardinality restriction and

its polarity, by one. If α′ can be substituted for α in Sδ with the resulting set still

entailing η then J must not have been laconic and the algorithm returns false,

otherwise J must be laconic and the algorithm returns true.

It is noticeable that Algorithm 10.1 does not check to see if axioms, whose left

hand sides or right hand sides are not cardinality restrictions, can be weakened

while preserving η. For example, given an axiom of the form A v ∃R.B, the

algorithm does not check to see if this axiom can be weakened to A v ∃R.> while

preserving the entailment. Neither does the algorithm check to see if the fillers

of cardinality restrictions could be weakened to > or ⊥ depending on polarity.

The reason for this is that the transformation δ exposes the fillers of cardinality

restrictions and other types of restrictions as extra axioms. If these fillers are

superfluous, because they could be weakened in J , then δ(J) would not be a

justification for η, and the algorithm would return false at line 4.

Lemma 4 (Algorithm 10.1 Termination). For an input justification J and an

entailment η, where J |= η, Algorithm 10.1 terminates.

Proof. In the worst case, the algorithm requires a single pass over the axioms in

Sδ, with a maximum of two entailment checks per axiom. Given that J is finite,

δ(J) is also finite. Hence, Algorithm 10.1 terminates on input J and η.

Lemma 5 (Algorithm 10.1 Soundness and Completeness). For an input justifi-

cation J and an entailment η, where J |= η, Algorithm 10.1 returns true if and

only if J is laconic for η, and returns false if and only if J is not laconic for η.

Proof. According to Lemma 4, the algorithm terminates and so it must return

either true or false. If J is empty (η must be a tautology), J is trivially laconic.

In this case, Sδ(J) is the empty set, and the loop between lines 2 and 30 never

gets executed, hence the algorithm returns true. If J is not empty then either

J is laconic or J is not laconic. If J is not laconic then, by definition, either:

(1) It is the case that there must be some proper subset of δ(J) that entails η.

In this case, in lines 3–5, the algorithm will find some axiom α ∈ δ(J) such that

δ(J)\{α} |= η and it will return false. (2) It is the case that there is some axiom

α ∈ δ(J) that can be weakened to α′ in accordance with Definition 11(3), so

that δ(J) \ {α} ∪ {α′} is a justification for η. In this case, α must be of one of

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 165

Algorithm 10.1 IsLaconic(J , η)

Require: J |= η
1: Sδ ← ComputeDelta(J)
2: for α ∈ Sδ do
3: if Sδ \ {α} |= η then
4: return false
5: end if
6: if α is of the form A v ≥ nR.B then
7: α′ ← A v ≥ (n− 1)R.B
8: if (Sδ \ {α}) ∪ {α′} |= η then
9: return false

10: end if
11: end if
12: if α is of the form ≥ nR.B v A then
13: α′ ← ≥ (n+ 1)R.B v A
14: if (Sδ \ {α}) ∪ {α′} |= η then
15: return false
16: end if
17: end if
18: if α is of the form A v ≤ nR.B then
19: α′ ← A v ≤ (n+ 1)R.B
20: if (Sδ \ {α}) ∪ {α′} |= η then
21: return false
22: end if
23: end if
24: if α is of the form ≤ nR.B v A then
25: α′ ← ≤ (n− 1)R.B v A
26: if (Sδ \ {α}) ∪ {α′} |= η then
27: return false
28: end if
29: end if
30: end for
31: return true

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 166

the following forms, A v ≥ nR.B, ≥ nR.B v A, A v ≤ nR.B or ≤ nR.B v A.

All of these forms are examined in lines 6–29, and if an axiom of one of these

forms can be weakened by altering the cardinality by unity (n − 1 or n + 1 as

appropriate) so that the entailment still holds then the algorithm returns false.

If J is laconic, then none of the subset checks (lines 3–5) or weakening checks

(lines 6–29) results in the η still holding and the point of execution arrives at line

31 and returns true.

10.2 Preferred Laconic Justifications

Since regular justifications are subsets of ontologies, there is a finite number of

them for any given entailment in any given ontology. However, as is evidenced by

Theorem 1, the same is not true of laconic justifications. For any given entailment

there can be an infinite number of laconic justifications. The question of which

laconic justifications should be computed for a given entailment therefore arises.

Going back to the original motivation for laconic justifications, there are two

main ideas related to understanding and repair that suggest an answer to this

question, and ultimately lead to the notion of preferred laconic justifications.

In essence, for a given ontology and entailment, the set of preferred laconic

justifications should make it easy to understand how parts of axioms in that

ontology give rise to the entailment, and also make it easy to devise a repair

plan based on parts of axioms (that are exposed by precise justifications). In

particular, the set of preferred laconic justifications should be:

• Finite—It should be possible to compute and examine each justification in

the set of preferred laconic justifications. This is essential for the purposes

of devising an automated repair, and to some extent is necessary for the

purposes of understanding.

• Syntactically relevant—the axioms in preferred laconic justifications should

somehow be syntactically related to the axioms in the ontology whose de-

ductive closure they are drawn from. For example, consider the ontology

O = {C ≡ D u ¬D u E,
A v B}

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 167

laconic justifications for O |= C v ⊥ include (amongst others)

J1 = {C v D u ¬D}

and

J2 = {C v D,C v ¬D}

It is noticeable that both of these justifications are somewhat structurally or

syntactically related to the asserted axioms in O and both would be accept-

able forms of preferred laconic justification for this entailment. However,

there are other laconic justifications such as

J3 = {C v B u ¬B}

that are not structurally related to axioms in O. Despite the fact that J3 is

a laconic justification for C v ⊥, it is arguable that justifications of this ilk,

that could be considered to be syntactically irrelevant or “incidental”, are

not of general interest to an ontology modeller who is trying to understand

the reasons for an entailment. Hence, syntactic relevance is essential for

usability and understanding.

• Reason complete—the set of preferred laconic justifications for an entail-

ment should reflect all of the reasons, in terms of the parts of axioms from

the original ontology in which the entailment holds. This idea is directly re-

lated to the notion of masking. Recall that, intuitively, masking arises when

the number of regular justifications does not reflect the number of reasons

for an entailment over a justification, set of justifications or an ontology.

The notion of reasons for an entailment can be made more precise in that

for an ontology O and entailment η, the set of reasons for O |= η is given

by the set of justifications laconic(δ+(O), η), where laconic filters out the

justifications that are laconic (see Definition 14 on Page 161). Taking into

consideration the various types of masking ensures that all of the reasons

for an entailment are captured.

In essence, each reason should have a “corresponding” laconic justification,

that summarises the reasons and makes it possible to determine the original

“source” axioms that are responsible for the reason. The notion of a “cor-

responding” laconic justification will be pinned down later in this thesis,

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 168

but for now it suffices to consider the following example: Given,

O = {A v B u ∃R.C
∃R.> v B} |= A v B

there is one regular justification for O |= A v B,

J = {A v B u ∃R.C}

However, by Definition 17, external masking is present over O for O |=
A v B, and this is reflected by the fact that there are intuitively two

reasons for O |= A v B—computing justifications over δ+(O) reveals a set

of justifications in which there are two laconic justifications that represent

the two reasons, i.e.

J1 = {A v X1

X1 v X2

X2 v X5

X5 v B}

and

J2 = {A v X1

X1 v X2

X2 v X4

X4 v ∃R.>
∃R.> v X6

X6 v X7

X7 v B}

Intuitively, these two “reason representing” justifications correspond to

J ′1 = {A v B}

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 169

and

J ′2 = {A v ∃R.>,∃R.> v B}

respectively. J ′1 and J ′2 reveal the laconic sources of the reasons, and the

axioms in J ′1 and J ′2 can be traced back to axioms in O to reveal the sources

of the reasons in O.

• Repair complete—It should be possible to repair an ontology from the

set of preferred laconic justifications. This desirable feature is tied to the

notion of being reason complete. If there is a preferred laconic justification

that corresponds to each reason for an entailment, where reason is as defined

above, this makes it possible to determine source axioms for each part in a

preferred laconic justification and hence makes it possible to devise a repair.

The above criteria, in particular, the notion of reason completeness, suggest

the use of δ+ for obtaining the preferred laconic justifications for an entailment.

Indeed δ+ is rather attractive in this regard: for an ontology O |= η, there is

a finite subset of δ+(O) that contains all the justifications for η hence, the set

of justifications with respect to this set is finite, δ+ is based on the structural

transformation, which preserves the structure of axioms in O, and finally, δ+

contains all justifications that represent the reasons for O |= η.

Another attractive feature of δ+ axioms is that, because δ+ is a structure

preserving transformation, it is possible to unfold axioms in a δ+ justification J
to give a justification J ′ which obviously contains axioms that are syntactically

close to axioms in O. As an example consider the following ontology

O = {A v ∃R.C u ∀R.C
B ≡ ∃R.>} |= A v B

Intuitively, a preferred laconic justification for O |= A v B is:

J = {A v ∃R.>,∃R.> v B}

where the first axiom is derived from the first axiom in O and the second axiom

is derived from the second axiom in O. Intuitively, J is a preferred laconic

justification, and this tallies with the fact that it corresponds to a reason for

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 170

O |= η. Applying the δ+ transformation to O gives:

δ+(O) = {A v X1

X1 v X3

X3 v ∃R.X2

X3 v ∃R.>
X2 v C

B v X7

X7 v X8

X8 v ∃R.>
> v X4

∃R.X4 v X5

X5 v X6

X6 v B}

From which, two justifications for δ+(O) |= A v B can be obtained as:

J1 = {A v X1

X1 v X3

X3 v ∃R.X2

> v X4

∃R.X4 v X5

X5 v X6

X6 v B}

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 171

and

J2 = {A v X1

X1 v X3

X3 v ∃R.>
> v X4

∃R.X4 v X5

X5 v X6

X6 v B}

Note that J2 is a weaker form of J1, as J2 contains the same axioms as J1 with

the exception of X3 v ∃R.>, which a weakening of X3 v ∃R.X2. Both J1 and

J2 can be unfolded to give:

J ′1 = {A v ∃R.X2,∃R.> v B}

and

J ′2 = {A v ∃R.>, ∃R.> v B}

respectively. In this case, J ′1 is not laconic, and J ′2 is laconic. Hence, J ′2 cor-

responds to a preferred laconic justification. Notice that the first axiom in J ′2
is syntactically similar to the first axiom in O and the second axiom in J ′2 is

syntactically similar to the second axiom in O, as desired.

10.3 Computing Preferred Laconic Justifications

Using δ+

Based on the above ideas, it is possible to derive an algorithm for comput-

ing preferred laconic justifications that is based the use of δ+ and the unfold-

ing/replacement technique. For O |= η, the basic strategy for computing pre-

ferred laconic justifications is to (1) compute the regular justifications for η with

respect to δ+(O), (2) Process the set of justifications by unfolding fresh concept

names that were introduced as part of the δ+ transformation, and (3) pick out the

justifications that are laconic, which correspond to preferred laconic justifications.

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 172

10.3.1 An Algorithm for Computing a Finite Subset of δ+

An algorithm for computing a finite subset of δ+(O) is presented in Algorithm

10.2. Given a (finite) set of axioms O as an input, this algorithm first computes

δ(O), which it adds to the result set, and then proceeds to compute weaker forms

of axioms in δ(O). A basic optimisation, whereby axioms are only examined and

weakened if they are of the forms that can be weakened to axioms that are non-

tautological axioms is employed. For example, A v ∃R.B can be weakened to the

non-tautological axiom A v ∃R.>, where as ∃R.B v A cannot be weakened (in a

δ-isomorphic compliant fashion) without weakening it to the tautological axiom

∃R.⊥ v A, which would never appear in a justification. Algorithm 10.2 requires

one sub-routine, GetCardinalityBound which is not defined, but provides an upper

bound on the numbers that can appear in cardinality restrictions, and corresponds

to the maximum number that appears in cardinality restrictions in an ontology.

As explained in Section 9.4.1 this upper bound is provided by SHOIQ’s model

theory and ensures a finite subset of δ+(O) containing all justifications can be

computed.

Lemma 6 (Algorithm 10.2 Termination). For a finite input O, Algorithm 10.2

terminates and computes all axioms in δ+(O) that could appear in a justification

for an entailment with respect to δ+(O) that holds in O.

Proof. Given that O is finite, it follows that δ(O) is finite and the set of axioms

O′ (line 1) is finite. The algorithm requires a single pass over the finite set of

axioms O′. In lines 3–41 the algorithm generates weaker sets of axioms based on

the of O′. For each axiom, in O′ either no axioms are generated, or, a finite set

of axioms is generated. The generated sets are either obviously finite, or they are

finite since GetCardinalityBound (lines 20 and 28) returns a finite positive integer,

which means the loops that increment k are terminate. Hence, the algorithm

must terminate.

10.3.2 An Algorithm for Computing Preferred Laconic

Justifications Based on δ+

Algorithm 10.3 is an algorithm for computing preferred laconic justifications us-

ing the δ+ transformation. It requires four sub-routines: ComputeDeltaPlus, as

defined in Algorithm 10.2; ComputeJustifications, which computes regular justifi-

cations for S |= η—any algorithm for computing regular justifications described

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 173

Algorithm 10.2 ComputeDeltaPlus(O)

1: O′ ← ComputeDelta(O)
2: S ← O′
3: for α ∈ O′ do
4: if α is of the form A v ∃R.B then
5: S ← S ∪ {A v ∃R.>}
6: end if
7: if α is of the form ∀R.B v A then
8: S ← S ∪ {∀R.⊥ v A}
9: end if

10: if α is of the form A v ≥ nR.B then
11: k ← n
12: while k > 0 do
13: S ← S ∪ {A v ≥ kR.B}
14: S ← S ∪ {A v ≥ kR.>}
15: k ← k − 1
16: end while
17: end if
18: if α is of the form ≥ nR.B v A then
19: k ← n
20: m← GetCardinalityBound(O)
21: while k ≤ m do
22: S ← S ∪ {≥ kR.B v A}
23: k ← k + 1
24: end while
25: end if
26: if α is of the form A v ≤ nR.B then
27: k ← n
28: m← GetCardinalityBound(O)
29: while k ≤ m do
30: S ← S ∪ {A v ≥ kR.B}
31: k ← k + 1
32: end while
33: end if
34: if α is of the form ≤ nR.B v A then
35: k ← n
36: while k > 0 do
37: S ← S ∪ {≤ kR.B v A}
38: k ← k − 1
39: end while
40: end if
41: end for
42: return S

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 174

in Chapter 3 can be used; UnfoldFreshNames, which given a set of axioms S and

a signature Σ, unfolds occurrences of names in S which are not in Σ; and, finally,

IsLaconic, which was previously defined in Algorithm 10.1.

Lemma 7 (Algorithm 10.3 Termination). For a finite input O and η such that

O |= η, Algorithm 10.3 terminates.

Proof. The algorithm depends on four sub-routines: ComputeDeltaPlus, which

according to Lemma 6, terminates for a finite input O; ComputeJustifications,

which is assumed to terminate for a finite input O; IsLaconic, which according

to Lemma 4, terminates for an input of J and η such that J |= η; and finally,

UnfoldFreshNames, which is not defined, but can safely be assumed to terminate

as each fresh name represents an individual occurrence of a sub-concept in a

justification, and the definition of a fresh name is therefore acyclic. Beyond the

sub-routines, since ComputeJustifications returns a finite set of justifications for

O′ |= η, the loop which filters out laconic justifications (lines 4–9) must therefore

terminate. Hence the algorithm terminates.

Algorithm 10.3 ComputePreferredLaconicJustifications(O, η)

Require: O |= η
O′ ← ComputeDeltaPlus(O)
S ← ComputeJustifications(O′, η)
S ′ ← ∅
for J ∈ S do

J ′ ← UnfoldFreshNames(J , signature(O))
if IsLaconic(J ′, η) then

S ′ ← S ′ ∪ {J ′}
end if

end for
return S ′

10.3.3 Cross-Masking and Algorithm 10.3

In the presence of cross-masking, Algorithm 10.3 may suffer from unsatisfactory

performance. This is due to an exponential blowup that can occur in the number

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 175

of reasons in the presence of cross-masking. As an illustrative example, consider:

O = {A v B1 u · · · uBn u C1

...

A v B1 u · · · uBn u Cm
B1 u · · · uBn v B} |= A v B

As n grows linearly, the number of justifications for δ+(O) |= A v B grows

as mn i.e. exponentially. This is in contrast with number of justifications for

O |= A v B, which stays constant with n and grows linearly with m. In terms of

computing justifications, this can be problematic, even for small values of n (and

m), since, in the worst case, the size of the hitting set tree that must be explored

grows exponentially with the number of justifications. Where as it is practical

to compute all justifications respect to O for large values of n and m, the same

cannot be said for computing all justification with respect to δ+(O).

10.4 An Alternative to δ+ : π

For the purposes of computing preferred laconic justifications it is not necessary

to expose every reason explicitly. Therefore, it is possible to use an optimisation

which “bypasses” δ+(O), and ultimately prevents the “explosion” of that results

from computing justifications with respect to δ+(O). The optimisation involves

computing justifications with respect to a representative of the deductive closure

of an ontology. For an ontology O, the representative, π(O), contains weaker and

shorter axioms that are syntactically close to axioms in O. The basic idea is that

axioms in π(O) are generated by the systematic elimination and weakening of

parts of axioms in O. Hence π(O) contains axioms that could appear in preferred

laconic justifications for some entailment in O. This idea is best illustrated with

an example, consider:

O = {A v ∃R.(C uD) (α1)

E t ∃R.C v B} (α2)

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 176

The axioms in O can be weakened in a stepwise manner to give

π(O) = {A v ∃R.(C uD) (α1)

 A v ∃R.C (α1.1 from α1)

 A v ∃R.D (α1.2 from α1)

 A v ∃R.> (α1.3 from α1.1 or α1.2)

E t ∃R.C v B (α2)

 E v B (α2.1 from α2)

 ∃R.C v B} (α2.2 from α2)

where α1.1, α1.2 and α1.3 are weakened forms of A v ∃R.(C u D), and α2.1 and

α2.2 are weakened forms of E t ∃R.C v B. In this example, O |= A v B, which

has a justification with respect to O of

J = {A v ∃R.(C uD), E t ∃R.C v B}

has the following justifications with respect to π(O):

J1 = {A v ∃R.(C uD), ∃R.C v B}

and

J2 = {A v ∃R.C, ∃R.C v B}

In this case J1 is not laconic and J2 is laconic for O |= A v B. Moreover, J2

corresponds to a preferred laconic justification, as it is the laconic justification

that would be obtained by computing justifications with respect to δ+(O) followed

by unfolding. Indeed, the axioms in π(O) are the axioms that would be obtained

after unfolding subsets of δ+(O), and replacing any remaining fresh names with

> or ⊥ depending on their polarity.

The major benefit of computing justifications with respect to π(O) rather than

δ+(O), is that not all reasons due to cross masking are explicitly exposed and,

in the end, the π(O) contains the laconic justifications that would get computed

using the δ+ based unfolding and replacement technique described in Section

10.3.2.

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 177

10.5 The π Transformation

Definition 19 makes the notion of the π transformation of a set of axioms more

concrete, and presents an inductive definition for the function π for SHOIQ on-

tologies. Three weakening functions are used: σ, which weakens axioms; τ , which

weakens class expressions that have a positive polarity; and β, which weakens class

expressions that have a negative polarity. In positive polarity class expressions

τ systematically replaces direct subconcepts with >, while in negative polarity

class expressions β replaces direct subconcepts with ⊥.

Definition 19 (π(O)). For a set of axioms O let π(O) = O ∪ {α′ | α′ ∈
σ(α) where α ∈ O}. The mappings σ(α), τ(C) and β(C) are defined inductively

as follows, where n′ represents the maximum number in cardinality restrictions

in O. The mapping σ weakens axioms by splitting them apart when appropriate

and by weakening positive occurrences of sub-concepts with the τ mapping, and

negative occurrences of sub-concepts with the β mapping.

σ(C ≡ D) := σ(C v D) ∪ σ(D v C)

σ(R ≡ S) := {R v S, S v R}
σ(C(a)) := {C ′(a) | C ′ ∈ τ(C)}

σ(R(a, b)) := σ({a} v ∃R.{b}) ∪ {R(a, b)}
σ(C v D) := {C ′ v D′ | C ′ ∈ β(C), D′ ∈ τ(D)}

σ(α) := {α} for any other axiom

For positive occurrences of concepts τ weakens each nested sub-concept, and finally

weakens the concept itself to >

τ(C1 u · · · u Cn) := {C ′1 u · · · u C ′n | C ′i ∈ τ(Ci), 1 ≤ i ≤ n}
τ(C1 t · · · t Cn) := {C ′1 t · · · t C ′n | C ′i ∈ τ(Ci), 1 ≤ i ≤ n}

τ(¬C) := {¬C ′ | C ′ ∈ β(C)} ∪ {>}
τ(∃R.C) := {∃R.C ′ | C ′ ∈ τ(C)} ∪ {>}
τ(∀R.C) := {∀R.C ′ | C ′ ∈ τ(C)} ∪ {>}

τ(≥ nR.C) := {≥ mR.C ′ | C ′ ∈ τ(C), n ≤ m ≤ n′} ∪ {>}
τ(≤ nR.C) := {≤ mR.C ′ | C ′ ∈ β(C), 0 ≤ m ≤ n} ∪ {>}

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 178

τ(A) := {>, A}
τ({o}) := {>, {o}}

For negative occurrences of concepts β weakens each nested sub-concept, and fi-

nally weakens the concept itself to ⊥

β(C1 u · · · u Cn) := {C ′1 u · · · u C ′n | C ′i ∈ β(Ci), 1 ≤ i ≤ n}
β(C1 t · · · t Cn) := {C ′1 t · · · t C ′n | C ′i ∈ β(Ci), 1 ≤ i ≤ n}

β(¬C) := {¬C ′ | C ′ ∈ τ(C)} ∪ {⊥}
β(∃R.C) := {∃R.C ′ | C ′ ∈ β(C)} ∪ {⊥}
β(∀R.C) := {∀R.C ′ | C ′ ∈ β(C)} ∪ {⊥}

β(≥ nR.C) := {≥ mR.C ′ | C ′ ∈ β(C), n ≤ m ≤ n′} ∪ {⊥}
β(≤ nR.C) := {≤ mR.C ′ | C ′ ∈ τ(C), 0 ≤ m ≤ n} ∪ {⊥}

β({o}) := {⊥, {o}}
β(A) := {⊥, A}

In the algorithms that are presented later, the function ComputePi(O) com-

putes the axioms that appear in π(O) of O in accordance with Definition 19.

For some of the later algorithms it is necessary to trace each axiom that appears

in ComputeOPi(O) back to the set of axioms in O from which it was derived.

The ComputePi(O) function therefore labels each axiom with an index set whose

elements point to axioms in O. For example, given

O = {A v ∃R.C,A v ∃R.D}

the ComputePi(O) function generates

π(O) = {A v ∃R.C{1}
A v ∃R.D{2}
A v ∃R.>{1,2}
. . .

. . . }

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 179

The dots represent other tautological axioms, for example A v >1,2, that are not

of any particular interest. Notice that the third axiom in π(O) can be derived

from both the first and second axioms in O. Moreover, in any “ weakening step”,

the labels from one axiom get propagated down to its weaker axioms.

10.6 Choices Regarding the π Transformation

For any ontology O |= η, it is important to consider the laconic justifications

that are contained in π(O). This because it is necessary to decide whether all of

these justifications, or some subset of them are preferred laconic justifications for

O |= η. The following examples illustrate how π(O) can contain preferred and

non-preferred laconic justifications for an entailment. Consider

O = {A v G u ∃R.(C uD), ∃R.C u ∃R.D v B} |= A v B

which means that,

π(O) ⊃ {A v G u ∃R.(C uD)

A v ∃R.(C uD)

A v ∃R.C
A v ∃R.D
∃R.C u ∃R.D v B}

There are multiple justifications for π(O) |= A v B, and out of these, there are

two laconic justifications:

J1 = {A v ∃R.(C uD), ∃R.C u ∃R.D v B}

and

J2 = {A v ∃R.C, A v ∃R.B, ∃R.C u ∃R.D v B}

It is conceivable that either of these justifications could be preferred laconic jus-

tifications for O |= A v B. After all, they both are syntactically related to the

axioms in O, and they both reflect the single reason for O |= A v B.1 In the

1Recall that a reason for O |= η is an occurrence of a justification in δ+(O) for η that is
laconic

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 180

case of J1 two axioms represent the reason, while in the case of J2 three axioms

represent the reason. However, it is arguable that J1 and J2 should not both

be preferred laconic justifications, since from the usability standpoint, presenting

both of them to a person may lead that person to assume there is more than

one reason for O |= A v B, when (in this case) there is not. Therefore, as this

example demonstrates, it can be necessary to select a subset of justifications that

are laconic in π(O) as preferred laconic justifications.

10.6.1 Understanding versus Repair

In order to decide whether a subset of π(O) laconic justifications is a set of pre-

ferred laconic justifications, it is informative to consider how preferred laconic

justifications will ultimately be used. In other words, the application in ques-

tion may determine the outcome. Returning to the question of whether J1 or

J2 is a preferred laconic justification in the example above, for the purposes of

understanding (of how parts of axioms in O entail η) J1 is probably preferable

to J2. This is because J1 is structurally closer to O—the nested conjunction is

preserved with J1, while it is absent in J2. However, for the purposes of repair,

J2 is probably preferable to J1. This is because some of the axioms in J2 are

smaller (and weaker) than the axioms in J1, and they are therefore conducive

to indicating potential repairs in a more direct way that the axioms in J1. For

example, J2 indicates that either A v ∃R.C or A v ∃R.D could be removed,

or weakened, in order to break O |= A v B. It is easy to trace either of these

axioms back to axioms in O in order to figure out how the asserted axioms in O
can be manipulated to enact the repair.

In essence, π justifications which contain axioms that are structurally closer

to asserted axioms are preferred for the purposes of understanding, while π jus-

tifications that contain weaker and shorter axioms are preferred for the purposes

of repair.

10.6.2 Axiom Strength as a Guiding Principle

In the example above, it is noticeable that, while J1 and J2 are laconic, some

of the axioms in J2 are weaker than the axioms in J1, and in fact, J2 as a

whole is weaker than J1. The fact that J2 appears in the set of π(O) laconic

justifications is, in some respect, a side effect of the way π(O) is constructed.

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 181

Nevertheless, depending on the application and use of laconic justifications, as

the above example demonstrates, this side effect can be useful. On the surface, it

may appear that given two π(O) laconic justifications Ja and Jb, where Ja |= Jb
and π(Ja) ⊃ π(Jb), a general “rule of thumb” is that Ja should be preferred

for understanding and Jb should be preferred for repair. However, this rule of

thumb breaks down when when an ontology contains axioms that entail other

axioms. Consider the previous ontology augmented with two axioms that are

weaker forms of the first axiom, so that:

O = {A v G u ∃R.(C uD)

A v ∃R.C
A v ∃R.D
∃R.C u ∃R.D v B} |= A v B

In this case, π(O) is as before, and J1 and J2 from the previous example are

still the only two justifications for π(O) |= η that are laconic justifications. For

the purposes of repair, it is arguable that J2 alone suffices, since it is easy to

trace the axioms in J2 directly back to the second and third axioms in O and

also indirectly back to the first axiom in O. However, this time, in contrast to

the previous example, for the purposes of understanding, both J1 and J2 can be

considered to be preferred laconic justifications, as J1 derives from the first and

fourth axioms in O while J2 derives from the second, third and fourth axioms in

O. There are two reasons as to why O |= A v B and these are reflected in J1 and

J2. Hence, for the purposes of understanding, π(O) laconic justifications which

are weaker forms of other π(O) laconic justifications cannot simply be marked as

non-preferred laconic justifications and discarded.

10.6.3 Choosing Between Understanding and Repair

In summary, when it comes to using laconic justifications for understanding,

given a set of π(O) laconic justifications for O |= η, it is necessary to consider

how these justifications relate back to axioms in O and ultimately consider how

these justifications relate to the reasons for O |= η. When it comes to repair, it

suffices to consider the weakest π(O) justifications that are laconic.

The remainder of this chapter considers laconic justifications from the point

of view of understanding. This choice was made for two reasons: (1) The bulk

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 182

of this thesis is focused on using justifications as explanations for understanding

why entailments hold; and (2) From a computational point of view, selecting

laconic justifications for understanding is more challenging than selecting laconic

justification for repair. Hence, if in practice it is feasible to compute laconic

justifications for understanding, then it ought to be feasible to select laconic

justifications for repair.

10.6.4 The Relationship Between π and δ+

The π transformation parallels the δ+ transformation in that given an ontology

O, for each axiom α ∈ π(O) there is some subset of δ+(O) that can be unfolded

and manipulated into α. This is fairly easy to see from the way the rewrite rules

in Definition 13 and the transformation function in Definition 19 are specified.

Hence, π(O) contains all “reason representing” justifications for any entailment

η in O and can be used for computing preferred laconic justifications for under-

standing.

10.7 Computing Preferred Laconic Justifications

Using π

Algorithm 10.4 is an algorithm for computing preferred laconic justifications

based on π. The algorithm requires four sub-routines: (1) ComputePi, which,

as described above, for an input O generates a set of labelled axioms contained

in π(O); (2) ComputeJustifications, which given O and η computes the regular

justifications for O |= η; (3) isLaconic which determines whether a justification is

a laconic justification for a given entailment, and is described in Algorithm 10.1;

and finally, (4) isPreferredLaconic, which determines if a justification J for an

entailment η is a preferred laconic justification with respect to an ontology O.

The algorithm proceeds as follows: Given an ontology O and an entailment η

such that O |= η, the algorithm first uses the sub-routine ComputePi to compute

π(O) for O. Next, it computes justifications for η with respect to π(O), and out

of these filters out the justifications that are laconic (lines 4–8), placing them in

the set L. The algorithm then uses the isPreferredLaconicJustification sub-routine

to filter out the set of preferred laconic justifications from L, which it returns as

set R (lines 10–15).

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 183

Lemma 8 (Algorithm 10.4 Termination). For an input ontology O and entail-

ment η such that O |= η Algorithm 10.4 terminates.

Proof. Assuming that all sub-routines terminate for their respective inputs, which

are all finite, it is easy to see that Algorithm 10.4 terminates, as it contains two

two loops (lines 4–8 and 10–15) which iterate over finite sets. The sets are finite

because π(O) is finite (as O is finite), and the ComputeJustifications sub-routine

therefore returns a finite set of justifications which it places into the set S.

Algorithm 10.4 ComputePreferredLaconicJustifications(O, η)

Require: O |= η
1: Oπ ← ComputePi(O)
2: S ← ComputeJustifications(Oπ, η)
3: L← ∅
4: for J ∈ S do
5: if isLaconic(J , η) then
6: L← L ∪ {J}
7: end if
8: end for
9: R← ∅

10: for J ∈ L do
11: if isPreferredLaconicJustification(J , η, O) then
12: R← R ∪ {J}
13: end if
14: end for
15: return R

The isPreferredLaconicJustification sub-routine in Algorithm 10.4 is pluggable.

Different implementations could be used to compute different sets of preferred

laconic justifications for different purposes (understanding or repair for example).

Inline with the above discussion on preferred laconic justifications, Algorithm

10.5 can be used to determine if a justification is preferred for the purposes of

understanding how the parts of axioms in an ontology support an entailment.

In essence, the algorithm determines whether or not a laconic justification for

O |= η corresponds with a reason, i.e. a justification for δ+(O) |= η. If this is

the case then the algorithm returns true, otherwise, it returns false. Algorithm

10.5 proceeds in the obvious way, by first computing δ+ of the input ontology

O. It then makes calls to a sub-routine GetNextJustification, which is assumed

to incrementally compute justifications for an entailment in a set of axioms (Sδ

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 184

and η in this case). For each justification that is found, it is unfolded using the

UnfoldFreshNames sub-routine. If this unfolded justification, J ′′ is equal to the

input justification J then J corresponds to a reason for O |= η and the algorithm

returns true i.e. J is a preferred laconic justification. If, after examining all of

the δ+ justifications, J is not a preferred laconic justification, then the algorithm

returns false.

Algorithm 10.5 isPreferredLaconicJustification(J , η, O)

Require: J , η and O such that O |= η and J is a laconic justification η over O.
1: O′ ← GetSourceAxioms(J)
2: Sδ ← ComputeDeltaPlus(O′)
3: repeat
4: J ′ ← GetNextJustification(Sδ, η)
5: J ′′ ← UnfoldFreshNames(J ′, signature(O))
6: if J ′′ = J then
7: return true
8: end if
9: until J ′ = ∅

10: return false

10.7.1 An Optimised isPreferredLaconicJustification Algorithm

As can be seen from Algorithm 10.5, for every input J , η and O, it uses the

strategy of incrementally computing justifications for δ+(O) |= η. The algorithm

terminates early when it finds a justification in δ+(O) which verifies that J is a

preferred laconic justification. Therefore, in the case of preferred laconic justifi-

cations, it might not be necessary to compute all justifications for δ+(O) |= η.

However, this δ+ based test is still an expensive test. Fortunately, there is a

much cheaper test that can be used to avoid this expensive test in many cases.

The cheaper test requires access to all laconic justifications in π(O), and so the

modification to Algorithm 10.5 requires an extra parameter to carry this infor-

mation. Algorithm 10.6 is an adaptation of Algorithm 10.5 that includes this

extra parameter along with the cheap test, which is contained in lines 2–12. For

an input of J and L, the cheap test works by trying to find a laconic justification

in L that might rule out J from being a preferred laconic justification. It does

this by checking whether J contains axioms that are weaker π(O) derivatives of

some other laconic justification J ′ (lines 4–6). If this is the case, it is necessary

to perform the more expensive test on J and the algorithm continues as before.

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 185

Algorithm 10.6 isPreferredLaconicJustification(J , η, O, L)

Require: J , η, O and L where O |= η, J is a laconic justification η over O, L is
a set of laconic justifications for η over O where J ∈ L.

1: pref← true
2: for J ′ ∈ L do
3: if J ′ 6= J then
4: J ′+ ← ComputePi(J ′)
5: J+ ← ComputePi(J)
6: if J+ ⊂ J ′+ then
7: pref← false
8: end if
9: end if

10: end for
11: if pref = true then
12: return true
13: else
14: O′ ← GetSourceAxioms(J)
15: Sδ ← ComputeDeltaPlus(O′)
16: repeat
17: J ′ ← GetNextJustification(Sδ, η)
18: J ′′ ← UnfoldFreshNames(J ′, signature(O))
19: if J ′′ = J then
20: return true
21: end if
22: until J ′ = ∅
23: return false
24: end if

If the algorithm fails to find such a J ′, then J must be a preferred laconic justifi-

cation and the algorithm terminates early (line 12) returning true, and avoiding

the more expensive test.

10.8 Optimising π Laconic Justification Compu-

tation

Algorithm 10.4 may be seen as an improvement over Algorithm 10.3. In particu-

lar, it avoids the exponential blowup that is induced by cross-masking. However,

some optimisations to this algorithm are still necessary. This section details

several optimisations that are related to the computation of π(O), which are

contained in Algorithm 10.7.

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 186

10.8.1 Top Level Axiom Splitting and Reconstitution

One of the main problems with the unoptimised algorithm and use of π(O) is that

there can be a far larger number of justifications for π(O) |= η in comparison to

O |= η. The following example illustrates the reason as to why there can be an

increase in justifications. Consider,

O = {A v B u C1 u · · · u Cn} |= A v B

where it is assumed that the Ci (1 ≤ i ≤ n) conjuncts play no part in entailing

A v B. In this case, π(O) contains in the order of 2n axioms, as each possible

subset of conjuncts (and their weaker variants) is taken into consideration. While

there is one justification for A v B in O there are 2n justifications for A v B

in π(O). For small values of n, which is typically the case for real ontologies,

the exponential aspect does not directly represent a problem regarding the size

of π(O). However, there can be a signification increase in the number of justi-

fications for A v B in π(O) when compared to O, even for small values of n.

Indeed, consider the slightly more concrete and realistic axiom patterns in

O = {A v ∃R.C u ∃R.D, ∃R.> v B} |= A v B

which essentially represents a class expression A consisting of a set of existential

restrictions, and a domain axiom which states that the the domain of R is B.

There is just one justification for A v B with respect to O. However, π(O)

contains

A v ∃R.C u ∃R.D
A v ∃R.C u ∃R.>
A v ∃R.> u ∃R.D
A v ∃R.>
A v ∃R.C
A v ∃R.D
∃R.> v B

which contains six justifications for A v B, just one of which is a preferred

laconic justification according to the previously developed arguments. Given

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 187

the exponential nature of the hitting set tree based algorithms for computing all

justifications, the large increase in the number of justifications can have obviously

have a negative effect. At best, the computation of justifications with respect to

π(O) takes (much) longer than it does when computing justifications with respect

to O, and at worst, it can be impractical to compute all π(O) justifications in

situations where it is practical to compute all justifications with respect to O.

In essence a blow up in the number of axioms in π(O) can arise due to the

combinatorial explosion of subconcept weakening. An effective optimisation that

ameliorates this problem is the top level splitting of subclass axioms. Given an

axiom of the form

C1 t · · · t Cn v D1 u · · · uDm

it is possible to transform it into an equivalent set of n×m subclass axioms

{Ci v Dj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

This can dramatically reduce the number of axioms in π(O). For example, in

the case where Ci and Dj (1 ≤ i ≤ n, 1 ≤ j ≤ m) are class names, π(O) is

of the order of 2n+m axioms in size, where as π(Osplit) is of the order of n ×m
axioms in size (disregarding tautological axioms). When Ci and Cj are complex

class expressions, the size of π(Osplit) depends upon the degree and complexity

of nesting of the class expressions, however, for realistic ontologies, where class

expression nesting is not particularly deep and complex, the difference between

|π(O)| and |π(Osplit)| is obviously significant for moderately large n and m.

This splitting technique can be used in combination with the labelling of

axioms in π(O) as an optimisation for computing laconic justifications. The

following example illustrates how the technique works. Consider the ontology,

O = {A v E u ∃R.C{1}, E u ∃R.> v B{2}} |= A v B

where the axioms have been labelled with indices. Computing π(O) of O gives

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 188

(disregarding tautological axioms)

π(O) = {A v E u ∃R.C{1}
A v ∃R.C{1}
A v ∃R.>{1}
A v E u ∃R.>{1}
A v E{1}

E u ∃R.> v B{2}}

which contains four justifications for A v B (two of which are laconic, and one

of which is preferred laconic) in comparison to one justification in O for the same

entailment. Now, splitting O, and propagating indices gives

Osplit = {A v E{1}, A v ∃R.C{1}, A v ∃R.>{1},∃R.> v B{2}} |= A v B

and computing π(Osplit) gives (disregarding tautological axioms)

O+
split = {A v E{1}

A v ∃R.C{1}
A v ∃R.>{1}
E u ∃R.> v B{2}}

which contains two justifications, one of which is laconic:

J = {A v E{1}, A v ∃R.>{1}, E u ∃R.> v B{2}}

The index sets can now be used to merge subclass axioms that have exactly the

same sources. In this case, the axioms that have an index set of {1}, which gives

J ′ = {A v E u ∃R.>{1}, E u ∃R.> v B{2}}

which corresponds to a preferred laconic justification.

As can be seen, given O |= η there are two major advantages to using and

computing justifications with respect to π(Osplit) instead of π(O): (1) The size

of π(Osplit) can be less than the size of π(O). In fact, the size of π(Osplit) can be

exponentially smaller than the size of π(O); (2) The number of justifications for

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 189

π(Osplit) |= η can be exponentially smaller than the number of justifications for

π(O) |= η. Even in cases where the exponential aspect of the size of π(O) does

not dominate, the reduction in the number of justifications that can be achieved

when using π(Osplit) can have a significant effect when it comes to computing all

justifications.

When dealing with axioms that have multiple sources, it is necessary to take

more care so as not to inadvertently discard preferred laconic justifications. Con-

sider the ontology

O = {A v B u C{1}, A v B{2}, A v C{3}} |= A v B u C

Splitting O gives,

Osplit = {A v B{1,2}, A v C{1,3}}

as axiom 1 gets split into axioms that are the same as axiom 2 and axiom 3.

Which means that, disregarding tautological axioms,

O+
split = {A v B{1,2}, A v C{1,3}}

which gives one justification that is laconic, namely J = {A v B{1,2}, A v C{1,3}}.
Now, although the indices that label axioms in J indicate there are two subclass

axioms that share the same source axiom, it does not suffice to simply merge

these two axioms to yield J ′ = {A v BuC}. Doing this would cause a preferred

laconic justification, J ′′ = {A v B, A v C} to be discarded. This situation

arises when in a justification two or more axioms share the same source axiom,

and so can be reconstituted, but also share other source axioms. To deal with

this, the reconstitution process must generate a set of justifications from the

original axioms with the reconstituted axioms. In the above example, the set

S = {A v B u C{1}, A v B{1,2}, A v C{1,3}} is generated, with the axioms

that have multiple sources being left intact. Next justifications for A v B are

computed with respect to S. This gives J1 = {A v B{1,2}, A v C{1,3}} and

J2 = {A v B u C{1,2,3}}. The justifications J1 and J2 can then be examined to

see if J1 really is a preferred laconic justification.

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 190

10.8.2 Pruning via Modularity

As was seen in Chapter 3, the use of modularity techniques, specifically syntactic

locality based modules, can provide a significant optimisation when it comes to

computing justifications. For an ontology O, where O |= η, and the size of a

module M ⊆ O is much smaller than O, modularisation can obviously be used

to obtain a reduction in the size of π(O).

10.8.3 Tautological Axiom Elimination

For simplicity, Definition 19 was given inductively on the structure of SHOIQ
axioms and concepts. The result of this is that for a given ontology O, π(O) may

contain many syntactically detectable tautological axioms that would never ap-

pear in any justification for any entailment. For example, given A v ∃R.Cu∀R.C,

amongst other axioms π(O) contains A v ∀R.>, ⊥ v ∃R.C u∀R.C, and A v >.

On the surface, these tautological axioms, may appear harmless. However, large

numbers of such axioms can have an impact on black-box justifications finding.

There are two main reasons: (1) The axioms bulk up the input for entailment

testing. Although reasoners usually employ a suite of syntactic inspection optimi-

sations to detect axioms that are obviously tautological and thus avoid performing

expensive tableau tests in many cases, a large number of tautological π(O) ax-

ioms can increase loading and preprocessing times. Since black-box justification

finding can involve significant numbers of entailment tests, the cumulative effect

can be significant; (2) Tautological π(O) axioms unnecessarily increase the search

space in black-box algorithms for computing single justifications. Since the tau-

tological axioms in π(O) are syntactically related to each other, and share the

same signature with non-tautological axioms, they can increase the number of

steps in the expansion phases and contraction phases of black-box justification

finding algorithms. This obviously increases the number of entailment tests that

are required.

Finally, unnecessary generation of tautological π(O) axioms can be very ex-

pensive. Consider the axiom A v B1 t · · · t Bn, where Bi (1 ≤ i ≤ n) is a class

name. According to Definition 19, π(O) contains one axiom for each element of

the power set of {B1, . . . , Bn}. However, each Bi is a class name, and can only be

weakened to >, which means that 2n tautological axioms wastefully are produced.

Therefore, an optimisation is not to compute weakened axioms for axioms of the

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 191

form A1 u · · · u An v B1 t · · · tBm for 1 ≤ n,m

In summary, being cautious about computing and eliminating tautological

axioms when computing π(O) can have worthwhile positive effects.

10.8.4 An Optimised ComputePreferredLaconicJustifications Al-

gorithm

Algorithm 10.7 is an optimised version of Algorithm 10.4 for computing preferred

laconic justifications. It contains each of the optimisations discussed above and

includes the optimised isPreferredLaconicJustification algorithm that was presented

in Algorithm 10.6. Aside from this, the algorithm requires three sub-routines that

were not used in Algorithm 10.4: (1) ComputeModule, which computes a syntactic

locality based module for a set of axioms and a signature; (2) ComputeSplitPi,

which takes a set of axioms as an input, labels them, splits subclass axioms,

propagating the labels to the split axioms, as described above, and then computes

π(O) from these split axioms; (3) ReconstituteSplitAxioms, which takes a set of

labelled, split π(O) axioms as an input and reconstitutes them as described above.

Algorithm 10.7 ComputePreferredLaconicJustifications(O, η)

Require: O |= η
1: Ση ← signature(η)
2: M← ComputeModule(O, Ση)
3: O+ ← ComputeSplitPi(M)
4: SJ ← ComputeJustifications(O+, η)
5: L← ∅
6: for J ∈ SJ do
7: if isLaconic(J , η) then
8: SR ← ReconstituteSplitAxioms(J)
9: L← L ∪ SR

10: end if
11: end for
12: R← ∅
13: for J ∈ L do
14: if isPreferredLaconicJustification(J , η, O, L) then
15: R← R ∪ {J}
16: end if
17: end for
18: return R

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 192

10.8.5 An Incremental ComputePreferredLaconicJustifications Al-

gorithm

It will later be seen that Algorithm 10.7 performs well for entailments in many of

the BioPortal ontologies. However, there are some ontologies where computing

π(O) of a module for an entailment signature can be expensive. Algorithm 10.8

offers an incremental approach to computing π(O) and finding laconic justifica-

tions.

Given an ontology O and an entailment η where O |= η, the basic strategy is

to loop, repeatedly computing justifications for η with respect O ∪ π(S), where

S is the (initially empty) set of justifications found in the previous loop. The

loop continues until no new justifications are found. In each step after the first

round of computing justifications, if new justifications are found, they may be

externally masked justifications.

The algorithm is best illustrated with an example. Consider the ontology

O = {A v B u ¬B u C,
A v ¬C,
A v D} |= A v ⊥

Notice that external masking occurs in O for the entailment A v ⊥, and that

there is just one regular justifications for this entailment (which is the singleton

set containing the first axiom). In the first loop the algorithm computes the set

of justifications

S1 = {{A v B u ¬B u C}}

In the second loop justifications are computed with respect to O∪π(S1), namely2

O ∪ π(S1) = {A v B u ¬B u C,
A v B

A v ¬B
A v C

A v ¬C,
A v D} |= A v ⊥

2Note that top level splitting has been used above to make the example simpler.

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 193

This gives a new set of justifications

S2 = {{A v B u ¬B u C}
{A v B,A v ¬B}
{A v C,A v ¬C}}

Since S1 6= S2, the algorithm continues looping, and computes the set of justifi-

cations S3 for η with respect to O∪π(S2). In this case, it finds that S3 = S2 and

therefore stops looping. It extracts the set of preferred laconic justifications from

S3, which are

J1 = {A v B u ¬B u C}

and

J2 = {A v C,A v ¬C}

returns these and terminates.

10.9 Conclusions

This chapter has presented a decision procedure for deciding whether a justifi-

cation is laconic or not, and several algorithms and accompanying optimisations

for computing preferred laconic justifications. While the algorithm for the de-

cision procedure more or less falls out of the definition of laconic and precise

justifications, the same cannot be said about an algorithm for computing laconic

justifications. First, it was necessary to introduce the notion of preferred laconic

justifications, which are based on capturing all of the reasons as to why an entail-

ment holds, and then it was necessary to design an optimised algorithm which

necessitated bypassing the obvious algorithmic design of computing justifications

with respect to axioms resulting from applying the structural transformation. In

essence, preferred laconic justification get computed with respect to a filter (π)

on the deductive closure of an ontology, which contains axioms that are step-

wise weakenings of the source axioms. The filter and parallels the structural

transformation and contains all reason representing justifications.

CHAPTER 10. LACONIC JUSTIFICATION FINDING ALGORITHMS 194

Algorithm 10.8 ComputePreferredLaconicJustifications(O, η)

Require: O |= η
1: Ση ← signature(η)
2: M← ComputeModule(O, Ση)
3: S ← ∅
4: S ′ ← ∅
5: repeat
6: S = S ′

7: W ← O ∪ ComputeSplitOPlus(S)
8: S ′ ← ComputeJustifications(W ,η)
9: until S ′ = S

10: L← ∅
11: for J ∈ SJ do
12: if isLaconic(J , η) then
13: SR ← ReconstituteSplitAxioms(J)
14: L← L ∪ SR
15: end if
16: end for
17: R← ∅
18: for J ∈ L do
19: if isPreferredLaconicJustification(J , η, O, L) then
20: R← R ∪ {J}
21: end if
22: end for
23: return R

Chapter 11

Laconic Justification Finding

Experiments

This chapter presents a series of experiments that aim to investigate the practical-

ity of detecting and computing preferred laconic justifications using the previously

presented algorithms. Because Algorithm 10.1 (IsLaconic) is used as a subrou-

tine in other algorithms it is first evaluated in isolation. Next, two algorithms

for computing preferred laconic justification are evaluated and compared: Algo-

rithm 10.7, which is the optimised π based algorithm that uses top level splitting,

and Algorithm 10.8, which is the optimised incremental π based algorithm that

uses top level splitting. In all of the experiments the BioPortal corpus that was

described in Chapter 5 was used for testing.

11.1 Detecting Laconic Justifications

Experiment 4 presents an evaluation of Algorithm 10.1 which detects whether

or not a justification is laconic. In addition to gaining information about how

the algorithm performs on real justifications in real world ontologies, namely the

BioPortal ontologies, this experiment also enabled data about the prevalence of

laconic and non-laconic regular justifications “in the wild” to be collected.

195

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 196

Experiment 4: Algorithm 10.1, IsLaconic, Empirical Evalu-

ation

Experiment 4 Algorithm Implementation

Algorithm 10.1, including the sub-routine ComputeDelta, was implemented in

Java. The sub-routine was implemented according to the rewrite rules presented

in Definition 7. The implementation of the algorithm deviated slightly from

that presented in listing 10.1. Specifically, the early termination aspect of the

algorithm was not implemented. That is, the actual implementation of algorithm

examines every axiom in Sδ without terminating and returning false as soon as

it finds an axiom that is superfluous, or that could be weakened. The reason for

this was to enable descriptive statistics to be collected about the occurrences of

superfluity in naturally occurring justifications in the BioPortal corpus.

Experiment 4 Test Data

Justifications collected from the output of Experiment 1 were collected and used

as an input to the implementation of Algorithm 10.1. This provided a total

of 468,819 justifications for 93,975 entailments in 72 ontologies. In addition to

this, a pilot experiment indicated that a high number of BioPortal justifications

were non-laconic because they contained one or more axioms of the form C ≡ D

where only one direction of the implication (i.e. C v D or D v C but not

C ≡ D) was required. In order to gain a picture of the prevalence of superflu-

ous sub-concepts alone, each input justification J that contained one or more

equivalent concept axioms was split to yield a set of axioms, and then another

justification J ′ contained in the split set of axioms was computed and tested.

For example J = {A v B,C ≡ B} |= A v B was split to give the set of axioms

S = {A v B,B v C,C v B}, from which J ′ = {A v B,B v C} is obtained.

These justifications that were the result of splitting were also used as an input to

the implementation of Algorithm 10.1, and provided an additional 389,038 justi-

fications for 93,975 entailments in the set of BioPortal ontologies, thus providing

857,857 real justifications in total.

Experiment 4 Method

The test data were used as input to Algorithm 10.1. For each justification, J ,

the CPU time required for the implementation of Algorithm 10.1 to return true

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 197

(laconic) or false (not laconic) was recorded. The number of laconic versus the

number of non-laconic justifications was recorded, and, for each justification, the

number of axioms containing superfluous parts was also recorded. The experiment

run was conducted using the Pellet 2.2.2 reasoner, which was accessed via the

OWL API. The experiments were performed on MacBook Pro with a 3.06 GHz

Intel Core 2 Duo Processor. The Java Virtual Machine was allocated a maximum

of 4 GB of RAM.

Experiment 4 Results

Figure 11.1 shows the percentile times for checking whether a justification is

laconic or not, along with mean time per justification. Mean times are shown as

white outlines. Across all ontologies, the mean time per justification was 328 ms

with a standard deviation = 339 ms. Ontologies are ordered along the x-axis by

the 99th percentile time.

Figure 11.2 shows the percentage of non-laconic justifications per ontology.

The ontologies are ordered along the x-axis by the percentage of non-laconic

split justifications. The light coloured bars show the non-split justifications (as

found in the ontology) and the dark coloured bars show percentages of split

justifications. Out of the 468,819 justifications 387,713 (82.7%) were not laconic.

Out of the 389,038 split justifications 239,290 (61.5%) were not laconic. There

were just three ontologies (Ontologies 31, 44 and 59) all of whose justifications

were laconic.

Finally, Figure 11.3 shows the mean number of axioms per non-split justifica-

tion that are non-laconic i.e. the mean number of axioms that contain superfluous

parts. Figure 11.4 shows the mean number of axioms per split justification that

are non-laconic. In both figures the white coloured/empty bars represent the

mean over all justifications in the associated ontology. In total, for the non-split

axioms, there were 36 ontologies where the average number of non-laconic ax-

ioms per justification was greater than 1. For the split justifications, there were

17 ontologies where the average number of non-laconic axioms per justification

was greater than 1.

Experiment 4 Analysis

Algorithm Performance Figure 11.1 indicates that the implementation of

Algorithm 10.1 gives acceptable runtime performance—average case performance

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 198

1	

10	

100	

1,000	

10,000	

100,000	

1,000,000	

Ti
m
e	

pe

r	
 J
us
+fi

ca
+o

n	

/	

(m

s)
	

P100	
 P99	
 P90	
 P75	
 P50	

Figure 11.1: Experiment 4—IsLaconic Percentile Times Per Justification

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Pe
rc
en

ta
ge
	
 o
f	
 J
us
/fi

ca
/o

ns
	
 th

at
	
 a
re
	
 N
on

-­‐L
ac
on

ic
	

Non-­‐Split	
 Split	

Figure 11.2: Experiment 4—The Percentage of Non-Laconic Justifications Per
Ontology

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 199

0	

2	

4	

6	

8	

10	

12	

M
ea
n	

N
um

be
r	
 o

f	
 N
on

-­‐L
ac
on

ic
	
 A
xi
om

s	
 p
er
	
 Ju

s6
fic
a6

on
	

Max	
 	
 P1	
 	
 P10	
 	
 P25	
 	
 P50	
 	
 P100	

Figure 11.3: Experiment 4—The maximum and mean number of axioms con-
taining superfluous parts per Justification. Means of percentiles are given. Pn
represents the top n percent of justifications.

0	

2	

4	

6	

8	

10	

12	

M
ea
n	

N
um

be
r	
 o

f	
 N
on

-­‐L
ac
on

ic
	
 A
xi
om

s	
 p
er
	
 Ju

s6
fic
a6

on
	

Max	
 	
 P1	
 	
 P10	
 	
 P25	
 	
 P50	
 	
 P100	

Figure 11.4: Experiment 4—The maximum and mean number of axioms contain-
ing superfluous parts per Split Justification. Means of percentiles are given. Pn
represents the top n percent of justifications.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 200

being in the order of hundreds of milliseconds rather than tens of seconds or hun-

dreds of seconds. For most ontologies, 99 percent of justifications could be checked

within 1,000 ms. Only Ontology 3 and Ontology 32 stand out as having an av-

erage runtime of over 1000 milliseconds. Ontology 3 is the amino-acid ontology,

which has large justifications (an average of 25 axioms in size) with large axioms

which results in δ(J) being large (on average 138 axioms in size). Ontology 32

is the imgt-ontology [GiL99], which Pellet (and FaCT++ and HermiT) struggles

to perform entailment checking on in comparison to other ontologies. The high

times here are due to high entailment checking times. The final ontology that

stands out is Ontology 70, the uber-anatomy-ontology, which has a maximum

laconic check time of 353,000 milliseconds. This is due to a combination of δ(J)

size, which peaked at 162 axioms, and entailment checking performance which

mounts up when checking this many axioms. However, in this particular ontol-

ogy, cases like this are rare. Indeed 99 percent of the justifications can be checked

well within 2,000 ms and 90 percent within 600 ms. In summary, the runtime

performance of the implementation of Algorithm 10.1 seems to be acceptable to

good for the purposes of checking real justifications in real ontologies. It must

also be borne in mind that the implementation that was tested did not feature

early termination as described in the listing of Algorithm 10.1 and so performance

of the optimised algorithm is likely to be better than the tested implementation.

The Prevalence of Superfluity Figure 11.2 shows the percentage of justifica-

tions (per ontology) that are non-laconic. The first thing to notice is that justifica-

tions that are non-laconic are prevalent throughout the BioPortal corpus—over 50

percent of the non-split justifications in 59 of the 72 ontologies were non-laconic.

Only three ontologies, 31 (47 justifications), 44 (48 justifications) and 59 (56 jus-

tifications) contained justifications all of which were laconic. As expected, there

is a reduction in the prevalence of superfluity when concept equivalence axioms

are split apart. Seven of the ontologies that contained laconic justifications do

not contained any laconic justifications after splitting. This indicates that the

superfluity in the non-split justifications was due purely to equivalent concept

axioms where only one direction of the implication was needed. However, even

with split axioms, it is still the case that over 50 percent of the justifications in

29 of the 72 ontologies are non-laconic, and out of the 72 ontologies there are still

61 ontologies that contain non-laconic split justifications.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 201

Figure 11.3 shows the mean number of axioms in non-laconic non-split justifi-

cations with superfluous parts (the number of axioms that contribute to a justifi-

cation being non-laconic), and Figure 11.4 shows the mean number of axioms in

non-laconic split justifications by ontology. In many ontologies, the superfluity in

non-laconic justifications, is confined to just one axiom (32 ontologies), however

there are a significant number of ontologies where this is not the case. For exam-

ple, Ontologies 3, 18, 36, 49 70 and 71 contain non-laconic justifications that have

large numbers of non-laconic axioms in them. In particular, for Ontology 36, 50

percent of justifications have an average of just below 7 non-laconic axioms each,

and 10 percent have an average of around 8.25, which a maximum of 12 axioms.

After splitting, the average number of non-laconic axioms per justification drops

somewhat—only 22 ontologies as opposed to 40 ontologies have more than one

non-laconic axiom, but numbers are still high for the afore mentioned ontologies.

The Chances of Encountering a Non-Laconic Justification In summary,

the chances of encountering a non-laconic justification for an entailment in the

BioPortal corpus is rather high at 82.7%. The degree of and spread of superfluous

parts over the axioms in a non-laconic justification varies quite a lot by ontology.

This probably reflects the fact that different styles of modelling are present in

different ontologies, and to some extent the degree of superfluity is influenced by

modelling style.

11.2 Computing Preferred Laconic Justifications

In order to determine whether it is practical to compute preferred laconic justifi-

cations for entailments in real ontologies, the two optimised π based algorithms

(Algorithm 10.7 and Algorithm 10.8) were implemented and tested. The details

are presented in Experiment 5 and Experiment 6 and are described below.

Experiment 5: Algorithm 10.7 Empirical Evaluation

Experiment 5 Algorithm Implementation

Algorithm 10.7, the optimised algorithm for computing preferred laconic justifi-

cations using π, and its sub-routines, were implemented in Java.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 202

Experiment 5 Test Data

The test data were a set of pairs. Each pair was an ontology from the set of

BioPortal ontologies listed in Table 5.1, and a filtered set of the non-trivial direct

atomic subsumptions and non-trivial direct class assertions that held in the ontol-

ogy. The entailments sets were filtered by only including entailments for which it

was possible to compute all regular justifications in Experiment 1. Further more,

for reasons of practicalities, each entailment set was limited to 2000 entailments

which were drawn from the full set using random sampling. This meant that

the entailment sets of ontologies 16 (chemical information ontology), 19 (coriell

cell line ontology), 21 (dermlex the dermatology lexicon), 26 (gene ontology ex-

tension), 36 (internaltional classification for nursing practice), 37 (international

causes of external injuries), 38 (international classification of functioning dis-

ability and health icf), 43 (nci thesaurus), 60 (protein ontology) and 70 (uber

anatomy ontology) had their entailment sets reduced to 2000 entailments. A ran-

dom sample size of 2000 was chosen as, in all cases, it allowed conclusions to be

generalised to the full set of non-trivial entailments with a margin of error of less

than five percent (approximately 2%).

Experiment 5 Method

The implementation of Algorithm 10.7 was used to compute all preferred laconic

justifications for each ontology/entailment pair in the input data. A time out

of 10 minutes was imposed on computing all justifications, and a time out of

5 minutes was imposed on any one entailment check. The experiment run was

conducted using the Pellet 2.2.2 reasoner, which was accessed via the OWL API.

The experiments were performed on MacBook Pro with a 3.06 GHz Intel Core 2

Duo Processor. The Java Virtual Machine was allocated a maximum of 4 GB of

RAM. For each entailment, the CPU time required to compute all regular justifi-

cations, and the CPU time required to compute all preferred laconic justifications

was recorded.

Experiment 5 Results

Figure 11.5 shows the mean CPU time per entailment for computing all regular

justifications (black bars) and the mean CPU time per entailment for comput-

ing all preferred laconic justifications (light coloured bars). The ontologies on

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 203

the x-axis are ordered by mean CPU time required to compute all justifications.

There were three ontologies for which Algorithm 10.7 failed to terminate within

10 minutes for any entailments. These were Ontology 43 (nci thesaurus), Ontol-

ogy 45 (neural electro magnetic ontology), and Ontology 53 (ontology of clinical

research), which appear on the right hand side as empty columns in Figure 11.5.

Figure 11.6 shows the percentile times for computing all preferred laconic justifi-

cations in milliseconds.

Setting aside the three ontologies for which the implementation of Algorithm

10.7 failed to terminate, the mean time for computing preferred laconic justifica-

tions per entailment per ontology was 2,203 ms (SD=7,557 ms, Max=54,648 ms).

This compares to a mean time for computing regular justifications per entailment

per ontology of 668 ms (SD=2,151 ms, Max=13,036 ms).

Besides the three ontologies for which no preferred laconic justifications could

be computed for any entailments, there were seven ontologies that contained some

entailments for which not all laconic justifications could be computed. These

ontologies and entailments are listed in Table 11.1, which shows the number of

failures compared to the total number of entailments, and the average number

of π(O) justifications that were computed. The last column shows the number

of entailments where not all preferred laconic justifications could be computed

because entailment checking timed out. For example, in ontology 32, there were

35 failures, and all of these were due to entailment checking timeouts. Similarly,

in Ontology 43 there were 2000 entailments and 2000 timeouts.

Experiment 5 Analysis

Overall, the performance of Algorithm 10.7 was good enough to be able to com-

pute preferred laconic justifications for entailments in 69 out of the 72 ontologies.

In 3 of the 72 ontologies there was, what can be best described as, catastrophic

failure of the algorithm to compute any preferred laconic justifications for any

entailments. This catastrophic failure is discussed below. For the remainder of

the ontologies there were a handful of entailments for which not all preferred

laconic justifications could be computed, but by and large, it was practical to

compute all preferred laconic justifications for most entailments in the BioPortal

ontologies using Algorithm 10.7.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 204

1	

10	

100	

1,000	

10,000	

100,000	

M
ea
n	

Ti
m
e	

pe

r	
 E
nt
ai
lm

en
t	
 /
	
 (m

s)
	

Regular	
 Laconic	

Figure 11.5: Experiment 5—Mean times to compute regular justifications versus
preferred laconic justifications using Algorithm 10.7

1	

10	

100	

1,000	

10,000	

100,000	

1,000,000	

Ti
m
e	

/	

(m

s)
	

P100	
 P99	
 P90	
 P75	
 P50	

Figure 11.6: Experiment 5—Percentile times to compute preferred laconic jus-
tifications using Algorithm 10.7 (π based with top-level splitting). Ontologies
(x-axis) are ordered by P99.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 205

Table 11.1: π-Based Timeouts

Mean Number of π(O) Entailment
Ontology Failures Justifications Computed Check Timeouts

2 1/91 152.0 0
18 5/345 276.6 0
19 1/2000 152.0 0
21 1/2000 0.0 1
32 35/36 0.0 35
36 3/2000 406.6 0
43 2000/2000 0.0 2000
45 139/139 0.0 139
49 7/703 578.1 0
53 99/99 0.0 99
64 5/547 25.0 3
70 8/2000 282.6 2

Reasons for Failures The reasons for the failure of Algorithm 10.7 to com-

pute all preferred laconic justifications for an entailment can be boiled down into

three main categories: (1) Failure due to large numbers of π(O) justifications

for an input O |= η; (2) Failure due to a (catastrophic) degradation in entail-

ment checking performance when checking entailments with respect to π(O) in

comparison to O; and (3) A combination of (1) and (2). In the first case, the

number of justifications for π(O) |= η can be (much) larger, and less overlapping

(resulting in a blow up in the size of the hitting set tree) than the justifications

O |= η. This means that where it is possible to compute all justifications for η

with respect to O it is not possible to compute all justifications for η with respect

to π(O). Another factor that comes into play is the degradation of entailment

checking performance when checking entailments with respect to π(O) rather

than O. Degradation occurs because π(O) is larger (up to orders of magnitude

larger) than O and, π(O) typically contains more general concept inclusion ax-

ioms than O. In combination, these two factors affect being able to compute

all preferred laconic justifications. A mix of behaviour due to (1) and (3) was

exhibited for all of the ontologies that did not fail catastrophically, with Ontol-

ogy 7 being dominated by (1), and Ontology 64 being dominated by (2). For

the ontologies that contained a handful of entailments for which not all preferred

laconic justifications could be computed the number of π(O) justifications that

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 206

could be computed (of which some are preferred laconic justifications) tended to

be large. This implies that “all is not lost” even though not all preferred laconic

justifications could be computed.

Reasons for Catastrophic Failures There were three ontologies where the

implementation of Algorithm 10.7 failed to compute any preferred laconic justifi-

cations for any entailments. These ontologies were Ontology 43 (nci thesaurus),

Ontology 45 (neural electro magnetic ontology), and Ontology 53 (ontology of

clinical research). For Ontology 43 and Ontology 53 the failures were due to the

size of π(O) when compared to the size of O. Both of these ontologies contain

axioms that have long and deeply nested class expressions. For example Ontology

53, contains the axiom

HumanStudy ≡ OrganismalStudy

u (∃entityDirectlyObserved.(OCRE400076

t (OCRE400033 u ∃hasElements.OCRE400076)

t ∃partOf.OCRE400076))

t (∃entityRecruitedOrSelected.(OCRE400076

t (OCRE400033 u ∃hasElements.OCRE400076)

t ∃partOf.OCRE400076))

t (∃entitySubjectToInterventionOrExposure.(OCRE400076

t (OCRE400033 u ∃hasElements.OCRE400076)

t ∃partOf.OCRE400076))

which results in a massive blowup of π(O) for this ontology. Indeed, for this one

axiom α, the size of π({α}) is over 47,000 axioms. The upshot of this explosion

is that entailment checking performance degrades to the point where it makes in

impractical to compute justifications with respect to π(O) and hence it becomes

impractical to compute preferred laconic justifications for any entailment in the

whole ontology.

General Runtime Performance For the ontologies and entailments for which

it was possible to compute all preferred laconic justifications the runtime perfor-

mance of Algorithm 10.7 was arguably good and perfectly acceptable for use in

a debugging and explanation service in an ontology development environment.

Indeed, for most ontologies (65/69) the average time required to compute all pre-

ferred laconic justifications per entailment was less than 10 seconds, with 68/69

ontologies requiring less than 30 seconds on average and all 69 ontologies requir-

ing less than 60 seconds on average. The percentile plot shown in Figure 11.6

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 207

gives a clearer picture as to the distribution of times—in particular the worst case

times at the top end of the scale. While Ontology 28, has the largest average

time per entailment, 75 percent of entailments actually fall below 1 second, with

only 10 percent of entailments having times greater than 200 seconds. Looking at

worst case times, only nine ontologies required greater than 100 seconds, and for

seven of these, less than 1 percent of entailments per ontology required over this

time. For all 69 ontologies, preferred laconic justifications could be computed for

75 percent of entailments in less than 60 seconds.

In Comparison to Computing Regular Justifications Out of the 72 on-

tologies, there were 18 ontologies where, on average, it took less time for comput-

ing preferred laconic justifications than it did to compute regular justifications.

At this point, it is worth noting that in all of these 18 cases, the times for comput-

ing preferred laconic justifications were the same order of magnitude as the times

for computing regular justifications. The main reason as to why it was quicker to

compute preferred laconic justifications was due to the fact the there were fewer

preferred laconic justifications in π(O) that there were regular justifications in O,

and this was due to the effect of shared-core masking. Fewer justifications results

in a smaller hitting set tree and better performance in computing all justifications.

There were 6 ontologies (Ontologies 8, 20, 27, 28, 40 and 48) where, on average,

it took at least one order of magnitude more of time to compute preferred laconic

justifications than it did to compute regular justifications. There main reasons

for this is that for any one of these ontologies O the number of justifications

contained in π(O) is larger than the number of justifications contained in O
(even though the number of preferred laconic justification might not be larger

than the number of regular justifications for a given entailment). For example,

in the case of Ontology 28, which had the largest time difference between time

to compute regular and laconic justifications, the mean number of justifications

per entailment in O was 4.56. However, the mean number of justifications per

entailment with respect to π(O) was 83.33 (compared with a mean number of

preferred laconic justification per entailment of 12.56). In essence, for certain

ontologies such as ones with deep subconcept nesting, the number of π(O) can be

much larger than the number of regular justifications or the number of preferred

laconic justifications as π(O) contains weakened justifications that lie between

the regular justifications and preferred laconic justifications.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 208

Based on the timing results from Experiment 6 it is clear that either the Algo-

rithm can handle all (or most) entailments in an ontology, or it fails in spectacular

fashion and cannot handle any entailments in an ontology. For ontologies where

most or all entailments could be handled the timing results are encouraging. For

most of these ontologies 99 percent of entailments can be handled in under one

minute, and entailments in the other ontologies well within 10 minutes. This kind

of performance is perfectly acceptable for the tasks of ontology debugging and

repair. For the ontologies where the Algorithm failed to process any entailments,

the incremental π based algorithm offers some hope of handling these ontologies

and their entailments and this is borne out by the empirical evidence obtained in

Experiment 6 below.

Experiment 6: Algorithm 10.8 Empirical Evaluation

Experiment 6 Algorithm Implementation

Algorithm 10.8, the optimised incremental algorithm for computing preferred

laconic justifications based on π, and its sub-routines, were implemented in Java.

Experiment 6 Test Data

The test data were exactly the same as the test data used in Experiment 5.

Experiment 6 Method

The implementation of Algorithm 10.8 (computation of preferred laconic justifi-

cations through the incremental computation of π(O)) was used to compute all

preferred laconic justifications for each entailment in each ontology/entailment

set pair in the input data. A time out of 10 minutes was imposed on computing

all justifications, and a time out of 5 minutes was imposed on any one entailment

check. The experiment run was conducted using the Pellet 2.2.2 reasoner, which

was accessed via the OWL API. The experiments were performed on MacBook

Pro with a 3.06 GHz Intel Core 2 Duo Processor. The Java Virtual Machine

was allocated a maximum of 4 GB of RAM. For each entailment, the CPU time

required to compute all regular justifications, and the CPU time required to com-

pute all preferred laconic justifications was recorded. Additionally, the number

of regular and preferred laconic justifications per entailment was recorded.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 209

Table 11.2: Incremental π-Based Timeouts

Mean Number of π(O) Entailment
Ontology Failures Justifications Computed Check Timeouts

2 1/91 152.0 0
18 5/345 276.6 0
19 1/2000 152.0 0
32 30/36 0.0 30
36 3/2000 406.6 0
43 50/2000 0.0 2
45 6/139 0.0 0
49 9/703 578.1 0
53 3/99 0.0 0
64 5/547 25.0 3
70 8/2000 282.6 0

Experiment 6 Results

Figure 11.7 shows the mean CPU time in milliseconds for computing regular justi-

fications and preferred laconic justifications per entailment per ontology. With the

exception of Ontology 32, where there were failures for 30 out of 36 entailments,

it was possible to compute preferred laconic justifications for most entailments

in each of the 72 ontologies. Table 11.2 summarises the ontologies where failures

occurred.

Figure 11.8 shows the percentile times for computing all justifications using the

incremental π based algorithm. The ontologies are ordered by the 99th percentile

times along the x-axis.

In order to draw out the differences between the incremental algorithm and

non-incremental algorithm Figure 11.9 shows the ratio between the times for

computing preferred laconic justifications using Algorithm 10.7 and using 10.8.

For example, on average, Ontology 29 takes nearly two times as long to compute

all preferred laconic justifications for an entailment using Algorithm 10.8 than it

does using Algorithm 10.7. Since Ontology 32, 43 and 53 incurred catastrophic

failures with Algorithm 10.7 they appear as empty bars on the right hand side.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 210

1	

10	

100	

1,000	

10,000	

100,000	

M
ea
n	

Ti
m
e	

pe

r	
 E
nt
ai
lm

en
t	
 /
	
 (m

s)
	

Laconic	
 Regular	

Figure 11.7: Experiment 6—Mean times to compute regular justifications versus
preferred laconic justifications using Algorithm 10.8

1	

10	

100	

1,000	

10,000	

100,000	

1,000,000	

Ti
m
e	

/	

(m

s)
	

	
 P100	
 	
 	
 P99	
 	
 	
 P90	
 	
 	
 P75	
 	
 	
 P50	
 	

Figure 11.8: Experiment 6—Percentile times to compute preferred laconic jus-
tifications using Algorithm 10.8 (Incremental π based with top-level splitting).
Ontologies (x-axis) are ordered by P99.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 211

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

In
cr
em

en
ta
l	
 I
nc
re
as
e	

Fa
ct
or
	

Figure 11.9: Experiment 6—Mean time ratio between Algorithm 10.7 and Algo-
rithm 10.8

Experiment 6 Analysis

Overall Runtime Performance As with the previous algorithm, there are

some failures to compute all preferred laconic justifications for some entailments,

but there are no catastrophic failures this time. These failures and the robustness

of the Algorithm 10.8 in comparison to 10.7 are discussed below. However, looking

at Figure 11.7 and Figure 10.8 the overall performance of Algorithm 10.8 seems

to be pretty good. For most ontologies the mean time was below 10 seconds and

for all ontologies the mean time fell below 60 seconds. Looking at Figure 11.8, the

worst case times and extremes can be seen. There are some entailments which

require close to the 10 minute time out to compute all justifications (shown the

right hand side of Figure 11.8), however as can be seen these fall between the 99th

and 100th percentiles and thus represent the hardest 1 percent of entailments.

In all but one ontology all justifications for 90 percent of entailments can be

computed in less than 100 seconds, and for Ontology 28 where this is not the case,

90 percent of entailments can be fully dealt with within 200 seconds. Runtime

performance of the algorithm is rather good, and is indicative that it could be

used in practice in an ontology browsing and debugging environment.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 212

In Comparison to Computing Regular Justifications As can be seen from

11.7, which shows the mean times for computing regular justifications compared

to computing preferred laconic justifications using Algorithm 10.8, on average the

time to compute laconic justifications is always greater. This is to be expected,

since the Algorithm 10.8 requires at least two iterations of computing regular

justifications over some set of axioms (the first being the ontology). Interestingly,

the mean time for computing laconic justifications was not necessarily double

the mean time for computing regular justifications on an ontology by ontology

basis. The reason for this was due to the way that π performs top-level splitting,

and in combination with shared core masking, the result is that, in some cases,

entailment checking is faster in π(O) than it is in O. As a concrete example

consider

O = {A ≡ B u C,A ≡ B u E, . . . } |= A v B .

In π(O), the entailment of interest A v B is exposed directly due to top level

splitting of axioms inO. The optimised justification finding algorithm (Algorithm

4.1) will determine that the entailment holds without having to load and query

the reasoner. If O (or the module for O) is several hundred axioms then the

effect can become more pronounced. Additionally, in this example, shared core

masking is present and A v B is the only preferred laconic justification, which

also means runtime performance of Algorithm 10.8 is boosted over and above the

performance of the regular justification finding algorithms with respect to O.

The Performance of Algorithm 10.8 Compared with Algorithm 10.7

For entailments where it was possible to compute all preferred laconic justifica-

tions for both Algorithm 10.8 and Algorithm 10.7 the performance difference as

a ratio between the mean times is summarised in Figure 11.9. As can be seen,

there were no ontologies where there was over an order of magnitude difference in

terms of time, although ontologies 15 and 59 come close at ratios of around 8.5.

For most other ontologies the ratio fell below 2, and for all but four ontologies the

ratio fell below 5. As explained above, the positive difference is to be expected,

with times increasing over the base case of Algorithm 10.7 as the number of iter-

ations increases (which occurs when external masking is present) and entailment

checking is harder due to π(O) being larger than O.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 213

The Robustness of Algorithm 10.8 compared with Algorithm 10.7 There

were ten ontologies that contained several entailments for which it was not pos-

sible to compute all preferred laconic justifications using Algorithm 10.8. All 10

ontologies are ontologies which incurred failures with Algorithm 10.7—ontology-

wise no new failures were introduced by use of Algorithm 10.8. At the level of

entailments, many of the failed entailments (in ontologies 2, 18, 19, 36, 64, 70)

were exactly the same as the failed entailments in Experiment 5, and was the

algorithm failing due to the large numbers of justifications in π(O) compared

with the number of justifications in O. Ontology 49 was the one ontology where

there were two more failures with the incremental algorithm than there were with

Algorithm 10.7, and these were due to the extra iterations in computing justifi-

cations that are required with the incremental algorithm—increasing the timeout

from 10 minutes to 20 would get rid of most of these failures.

For Ontology 43, Ontology 45 and Ontology 53, the incremental algorithm

does noticeably better than Algorithm 10.7, which failed to compute any pre-

ferred laconic justifications in these ontologies. Indeed, the incremental algorithm

managed to compute all preferred laconic justifications for 1950/2000, 133/139

and 96/99 entailments in these ontologies respectively. This is obviously a huge

improvement over the non-incremental algorithm. The reason for the improve-

ment is that, as explained previously these ontologies contain axioms constructed

from deeply nested complex concepts which has the effect of blowing up π(O)

and ruining entailment checking performance. With the incremental approach

these axioms are only touched and brought into the subset of axioms from O
that undergo the π transformation if parts of them appear in preferred laconic

justifications. Since most of the sampled entailments in these ontologies have

justifications that do not involved these highly nested complex concepts, the in-

cremental algorithm performs better and does not fail in a catastrophic way.

11.3 The Laconic Justification Landscape

Figure 11.10 shows the mean number of regular and preferred laconic justifica-

tions per entailment per ontology. The ontologies along the x-axis are sorted

by the ratio of the mean number of preferred laconic justifications to the mean

number of regular justifications. There are 45 ontologies that, on average, have

fewer laconic justifications than regular justifications per entailment. There are 8

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 214

ontologies that, on average, have more laconic justifications per entailment than

regular justifications. In terms of masking, there were 9 ontologies that exhibited

internal masking, 23 ontologies that exhibited external masking, and 53 ontologies

exhibited shared core masking.

Figure 11.11 shows a bubble plot that depicts entailments where the number

of regular justifications does not equal the number of preferred laconic justifica-

tions, and so gives some idea of masking over the whole BioPortal corpus. The

x-axis shows the number of regular justifications and the y-axis shows the number

of preferred laconic justifications. The size of the bubbles reflect the number of

entailments with a particular ratio of regular to preferred laconic justifications.

For example, the large bubble in the lower left corner represents entailments

which have two regular justifications but only one preferred laconic justification,

of which there are 5,447 entailments. The diagonal line which passes through

centre of the graph from the lower left corner to the top right corner represents

cases where the number of regular justifications is equal to the number of pre-

ferred laconic justifications. These instances are not shown on the graph. Bubbles

which fall below this line represent entailments which definitely exhibit shared

core masking, and bubbles which fall above the line represent entailments which

definitely exhibit internal or external masking. Of course, entailments may ex-

hibit shared core and internal or external masking is such ways that the number

of regular and laconic justifications are equal, but these entailments are not rep-

resented on Figure 11.11.

Occurrences of Masking As can be seen from Figure 11.11 the phenomena of

masking, be it internal, external or shared core masking is prevalent throughout

the ontologies in the BioPortal corpus. Most of the ontologies (53 in total) exhibit

shared core masking. This can be seen by looking from left to right in Figure

11.11, where the left most ontologies contain entailments with the highest ratio of

regular to laconic justifications indicating a high degree of shared core masking.

On the flip side of things, 9 ontologies exhibited external masking. The most

extreme examples are shown from the right most column inwards in Figure 11.11,

with Ontology 28 containing more preferred laconic justifications, on average,

than regular justifications.

The bubble plot in Figure 11.11 shows where the vast majority of masking

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 215

0	

5	

10	

15	

20	

25	

M
ea
n	

N
um

be
r	
 o

f	
 J
us
/fi

ca
/o

ns
	
 p
er
	
 E
nt
ai
lm

en
t	

Regular	
 Laconic	

Figure 11.10: Mean number of regular and preferred laconic justifications per
entailment

!"

!#"

!##"

!$###"

!" !#" !##" !###"

!
"#

$%
&'(

)'*
+,
(-

.,
'/"

01
2,
+1

(-
0'

!"#$%&'()'3%4"5+&'/"012,+1(-0'

Figure 11.11: The Effect of Masking

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 216

cases lie1—shared core masking dominates, with plenty of entailment that have

between 2 and 10 regular justifications but between 1 and 5 laconic justifications.

However, there are also plenty of examples of external masking, with some of

them being quite extreme. For example, the small bubbles that occur in the

upper middle of Figure 11.11 represent entailments that have around 14-18 regular

justifications but around 400 and 500 hundred laconic justifications. Even more

extreme, the bubbles which lie on the y-axis represent entailments which have

1 regular justification but multiple laconic justifications. One of these extreme

examples occurs in the NCI ontology which is discussed below.

An Example of Masking in the NCI Ontology The National Cancer In-

stitute (NCI) Ontology is a huge ontology that contains around 146,000 logical

axioms and has around 16,202 non-trivial entailments. Most of the justifications

for these entailments are single axiom justifications (Mean size = 1, SD = 0.07,

Max = 7) of the form A ≡ BuC for the entailment A v B where C is a complex

concept. An example of such a justification is:

J1 = {ImmatureGastricTeratoma ≡GastricTeratoma

u ImmatureExtragonadalTeratoma

u MalignantGastricGermCellNeoplasm}

which is a single justification for the entailment ImmatureGastricTeratoma v
GastricTeratoma. At first sight, given that this is the only regular justification in

this large ontology, the entailment does not look particularly non-trivial. How-

ever, the entailment has 4 preferred laconic justifications. The first is the en-

tailment itself, which is obtained a weaker form of the regular justification after

cutting out superfluous parts, i.e.

J ′1 = {ImmatureGastricTeratoma v GastricTeratoma}

In this case, the superfluity is not so distracting that it makes the entailment hard

to understand. However, there are three other externally masked justification in

the ontology. The first, J ′2, is 5 axioms in size and consists of a GCI that provide

sufficient conditions for being a GastricTeratoma and two paths of subsumption

axioms that traverse the class hierarchy.

1It should be noted that Figure 11.11 is a log-log plot and any bubbles which lie at a distance
from the diagonal centre line represent fairly large differences.

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 217

J ′2 = {ImmatureGastricTeratoma v ImmatureExtragonadalTeratoma uMalignantGastricGermCellNeoplasm

ImmatureExtragonadalTeratoma v ImmatureTeratoma

ImmatureTeratoma v Teratoma

MalignantGastricGermCellNeoplasm v GastricGermCellNeoplasm

GastricGermCellNeoplasm u Teratoma v GastricTeratoma}

Two more externally masked justifications for this entailment are shown be-

low as J ′3 and J ′4. Both justifications involved multiple definitions in the form

of general concept inclusions (they are asserted into the ontology as equiva-

lent concept axioms), and universal restrictions—they are non-trivial. More-

over, the justifications are of a reasonable size whose axioms are spread out

over the ontology. It is doubtful that a person browsing or editing the ontol-

ogy would realise that any of these extra axioms play a part in the entailment

ImmatureGastricTeratoma v GastricTeratoma when confronted with the one and

only regular justification, or indeed when simply manually browsing the ontology

is a tool such as Protégé-4.

J ′3 = {ImmatureGastricTeratoma v ImmatureExtragonadalTeratoma uMalignantGastricGermCellNeoplasm

ImmatureExtragonadalTeratoma v ImmatureTeratoma

ImmatureTeratoma v Teratoma

MalignantGastricGermCellNeoplasm v MalignantExtragonadalGermCellTumor uMalignantGastricNeoplasm u ∀hasSite.Stomach

MalignantExtragonadalGermCellTumor v ExtragonadalGermCellNeoplasm

MalignantGastricNeoplasm v GastricNeoplasm

ExtragonadalGermCellNeoplasm u GastricNeoplasm u ∀hasSite.Stomach v GastricGermCellNeoplasm

GastricGermCellNeoplasm u Teratoma v GastricTeratoma}

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 218

J ′4 = {ImmatureGastricTeratoma v ImmatureExtragonadalTeratoma uMalignantGastricGermCellNeoplasm

MalignantGastricGermCellNeoplasm v MalignantGastricNeoplasm u (∀hasSite.Stomach)

MalignantGastricNeoplasm v GastricNeoplasm

ImmatureExtragonadalTeratoma v ImmatureTeratoma uMalignantExtragonadalNonSeminomatousGermCellTumor

ImmatureTeratoma v Teratoma

MalignantExtragonadalNonSeminomatousGermCellTumor v MalignantExtragonadalGermCellTumor

MalignantExtragonadalGermCellTumor v ExtragonadalGermCellNeoplasm

GastricGermCellNeoplasm u Teratoma v GastricTeratoma

ExtragonadalGermCellNeoplasm u GastricNeoplasm u ∀hasSite.Stomach v GastricGermCellNeoplasm}

Without the guidance of laconic justifications, not only would users of a tools

be unaware of these reasons, which means that they do not fully understand

the ontology, they might fail to repair the ontology if they hack at the axiom

in the one and only regular justification and simply remove the GastricTeratoma

conjunct for example.

As can be seen, external masking can be rather surprising when it arises in

real, and especially large, ontologies. At first glance an ontology can look like it

will only result in trivial inferences, but laconic justifications can peal back the

superficial top layer and reveal the logical richness under the hood.

11.4 Discussion

Two important results emerge from the empirical evaluation detailed in this chap-

ter. The first is that the phenomena of superfluity, internal masking, external

masking and shared cores are prevalent in the BioPortal corpus. This indicates

that the work is not aiming at a few isolated cases, and is likely to be of value

to users who build and browse ontologies. The second is that it is largely prac-

tical to compute preferred laconic justifications for entailments in the BioPortal

corpus ontologies. Without any further work on optimisations of the algorithms

it is likely that the existing algorithms could be used in ontology development

environments today.

Incremental versus Non-Incremental With regards to computing preferred

laconic justifications, there were failures to compute all justifications for some

entailments, and for the first algorithm (Algorithm 10.7) that was tested there

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 219

were some catastrophic failures where no preferred laconic justifications could

be computed for any entailments. However, the testing of the second algorithm

(Algorithm 10.8) showed that it was possible to solve the problem of catastrophic

failures by introducing an incremental approach that guards against blowups that

the first algorithm is susceptible to, and confines failures to single entailments.

Overall, in terms of performance there are benefits and trade offs between using

Algorithm 10.7, the non-incremental algorithm, and Algorithm 10.8. The main

benefit of using the incremental algorithm is that it is more robust in the face of

ontologies which contain axioms that are built from highly nested complex con-

cepts. In particular, it helps neutralise the effect of axioms that have absolutely

nothing to do with an entailment making it impossible to compute justifications

for that entailment. However, there is a price for this robustness in terms of time

as the incremental algorithm requires multiple rounds of justification computa-

tion where as the non-incremental algorithm does not. As part of future work,

it would be worth investigating the use of heuristics for choosing between the

two algorithms based on input. It is possible that something rather simple would

suffice, as the main influence in choice appears to be the degree of concept nesting

in axioms.

11.5 Conclusions

The empirical results presented in this chapter provide strong evidence which

indicates that:

• It is practical to detect whether or not realistic justifications are laconic.

• It is practical to compute all preferred laconic justifications for entailments

in realistic ontologies. For 90% of direct atomic subsumptions and direct

concept assertions type entailments in 71 out of 72 ontologies it was possible

to compute all preferred laconic justifications within 60 seconds.

• There are entailments in realistic ontologies for which it is not possible to

compute all preferred laconic justifications, but these are not particularly

widespread—on average they account for less than 1.5% of entailments in

11 out of 72 ontologies.

• Superfluity and masking are widely exhibited in realistic ontologies. Out of

the 72 BioPortal ontologies 53 exhibited masking, with 9 exhibiting internal

CHAPTER 11. LACONIC JUSTIFICATION FINDING EXPERIMENTS 220

masking, 23 external masking and 53 shared-core masking. Over 82 percent

of justifications from non-trivial entailments contained superfluity in their

axioms.

Chapter 12

Understanding Justifications

As explained in Chapter 1, over the last few years justifications have become

the dominant form of explanation in OWL ontology development environments

and related tools. The main alternative to justifications as a form of explanation

are proofs. Indeed, in some camps, proofs are regarded as the only real form

of explanation [McG96, BFH00, Kwo05]. However, in comparison to full blown

proofs, justifications are conceptually simple structures that have a direct bearing

on what has been asserted or stated in an ontology. This means that, in order to

understand how a justification works, it is not necessary to learn a proof calculus

or a specific set of deduction rules—justifications do not require any additional

knowledge beyond the semantics of the language. In essence, the conceptual

simplicity of justifications, coupled with the fact that it is practical to compute

them (Chapter 6) makes them a very attractive form of explanation.

However, despite this, casual observation of users working with justifications

can reveal that there are naturally occurring justifications that people find diffi-

cult or impossible to understand. Indeed, when the justifications shown in Figure

12.1 and Figure 12.2, both from real ontologies, were presented to people, some of

them had trouble trying to understand how each justification supports its entail-

ment. Some people actually questioned whether the justification shown in Figure

12.1 was a justification at all.

In the case of the justification shown in Figure 12.1, which is a justification

for Person v ⊥, spotting that the justification entails > v Movie is key to under-

standing how the justification works. Since everything is entailed to be a Movie,

and Person is disjoint with Movie, Person is disjoint with >, hence Person is un-

satisfiable. People who fail to realise that J1 |= > v Movie also generally fail to

221

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 222

J1 = {Person v ¬Movie

RRated v CatMovie

CatMovie v Movie

RRated ≡ (∃hasScript.ThrillerScript) t (∀hasViolenceLevel.High)

Domain(hasViolenceLevel, Movie)}

Figure 12.1: A justification for Person v ⊥

understand how the justification gives rise to the entailment.

Similarly, the justification shown in Figure 12.2, is also difficult for people

to understand. There are fifteen axioms of many different types, and it is far

from obvious how these axioms interplay with each other to result in the en-

tailment Tabloid(DailyMirror). When a person works through this justification,

they have to spot intermediate entailments, for example, WhiteVanMan(Mick)

and Person(Mick), in order to arrive at the conclusion Tabloid(DailyMirror).

A commonality between the two points detailed above is that subsets of a

justification can result in entailments that can be viewed as “steps” or “interme-

diate entailments”. When trying to understand justifications it is necessary for

people to spot and understand these intermediate entailments. The number of

significant intermediate entailments, and for any given intermediate entailment,

the number and types of axioms and concept expressions that give rise to the

entailment, play an important part in dictating how difficult the justification is

to understand.

Based on the fact that some naturally occurring justifications seem difficult

to understand, this chapter investigates the understandability of justifications as

forms of explanations. While there have been several user studies in the area of

debugging [Lam07, KPSH05] and ontology engineering anti-patterns [RCVB09],

there have not been any formal user studies that investigate the cognitive com-

plexity of justifications. In what follows, the details of several user studies are

presented, which show that there are naturally occurring justifications that can

be very difficult to understand. Based on the results of these studies a simple

complexity model which captures some of the aspects of justifications that make

them difficult to understand is presented, and a methodology for iteration and

refinement of the model is proposed. The next chapter provides an example of

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 223

J2 = {InverseProperties(hasPet, isPetOf)

isPetOf(Rex,Mick)

Domain(hasPet, Person)

Male(Mick)

reads(Mick,DailyMirror)

drives(Mick,Q123ABC)

Van(Q123ABC)

Van v Vehicle

WhiteThing(Q123ABC)

Driver ≡ Person u ∃drives.Vehicle

Driver v Adult

Man ≡ Adult uMale u Person

WhiteVanMan ≡ Man u ∃drives.(Van uWhiteThing)

WhiteVanMan v ∀reads.Tabloid

Tabloid v Newspaper}

Figure 12.2: A justification for Newspaper(DailyMirror)

how such a model can be used, in particular for the purposes of justification lem-

matisation and justification oriented proofs, which are presented as mechanisms

and structures that go beyond justifications, and which can be used to guide a

person through a justification to reach the entailment that it supports.

12.1 User Studies

The initial motivation for this work was based on anecdotal evidence: the observa-

tion of people in OWL tutorials who were trying to understand justifications, and

various posts on mailing lists by people asking for help in understanding justifica-

tions. In order to gain a more concrete feeling of what makes naturally occurring

justifications difficult to understand, an exploratory user study was carried out.

In the study, a cross section of people who work with OWL and ontologies were

presented with a series of justifications and asked to explain why each justifica-

tion resulted in the target entailment. The exploratory study is described below

in Experiment 7. The principle goal was to gain qualitative data that could be

used to bootstrap the construction of a justification complexity model. As well

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 224

as characterising problematic features of justifications, a complexity model can

be useful for application purposes such as spotting when an ontology might be

difficult to maintain, deciding when to offer extra assistance to users trying to

understand justifications, or for estimating where extra steps could be inserted

into a justification in order to make it easier to understand.

Experiment 7: An Exploratory Study

Experiment 7 Participants

The study comprised 12 volunteers who were staff and students from the School of

Computer Science at the University of Manchester. The participants’ experience

with OWL ranged from less than 6 months to over 4 years. Some participants only

had experience in browsing ontologies, while other participants had developed

OWL tools. All participants were either confident or very confident that given

a rendering of an OWL axiom they could explain the meaning of the axiom to

another person.

Experiment 7 Materials

A corpus of justifications for entailments found in published OWL ontologies was

collected1. The entailments were either unsatisfiable class entailments (A v ⊥)

or subsumption entailments between named concepts (A v B). A subset of

the corpus which speculatively seemed difficult for people to understand was

selected (trivial justifications such as {A v B u C} as a justification for A v B

were discarded). The subset of justifications was then expanded, using various

substitution lemmas on the “difficult to understand” justifications, in order to

provide a spectrum of justifications ranging from difficult to easy to understand.

In total this provided a pool of 100 justifications which were used in the study.

Obfuscation In a series of dry runs, a biasing effect was noticed where domain

experts in biology appeared to quickly understand the reason behind a fairly

difficult justification obtained from the TAMBIS ontology [BGB+99]. However,

1This exploratory study was carried out before the BioPortal became a mainstream repos-
itory for publishing ontologies. Indeed, BioPortal records indicate that it contained just 6
ontologies at the time of this experiment and none of these were the ontologies listed in Table
5.1 which contained non-trivial entailments. The corpus for this experiment was therefore found
elsewhere.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 225

after some discussion, it transpired that rather than “understanding the logic” the

participant had simply used the names of classes as a cue, which coincidentally

enabled them to pinpoint the reason for the unsatisfiable class. Therefore, for

the real study, all justifications were sanitised/obfuscated by replacing the names

of classes and properties in the signature of the justification with meaningless

concept identifiers. Cn was used for concept names (where n represents a non-

negative integer), and propα (where α represents a letter A-Z) was used for roles.

Experiment 7 Method

A random selection of justifications was presented to each participant in a jus-

tification browser as an ordered/indented list of axioms. The ordering and in-

dentation of axioms was generated automatically based on the signatures on the

left and right hand side of general concept inclusion axioms. In some cases the

ordering algorithm produces a less than desirable solution, therefore, the brows-

ing tool allowed both the ordering and indentation of axioms to be modified at

the wish of the participant. Finally, the tool allowed participants to switch be-

tween two different styles of syntax—the description logic style syntax, which is

typically favoured by people with a logic background, and the Manchester OWL

Syntax [HDG+06, HPS08c], which is the syntax used in Protégé-4, OWLSight

and Topbraid composer.

For each justification, the time taken for the participant to claim that they

had understood (or had not understood) the justification was recorded. The

“think-aloud protocol” [Lew82] was used in order for the study facilitator to de-

termine whether or not the participant had, in fact, understood the justification.

The participant’s ranking on how easy or difficult the justification was to un-

derstand, was recorded using a six point Likert scale: {‘Very easy’=1, ‘Easy’=2,

‘Neither easy or difficult’=3, ‘Difficult’=4, ‘Very difficult’=5, ‘Impossible’=6}. A

participant was free to stop the study at any time, and they were free to carry

on ranking justifications for as long as they were comfortable doing so.

It should be noted that, at this stage, since it was not clear what features

make justifications difficult understand, it was deemed better to get as many

qualitative opinions and rankings on a wide range of justifications rather than

show the same small number of justifications to every participant.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 226

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

'" #" (" $")" %"

!
"#

$
%&
'$
()
*
+
',
%

-'$.%/0*1"*2%

Figure 12.3: User Ranking versus Time

Experiment 7 Results

The total number of rankings was 227 (an average of 18.9 rankings per partici-

pant). Figure 12.3 shows a plot of ranking versus time (in seconds). Each point

represents a single ranking. A rank of 1 corresponds to “very easy to understand”,

and a rank of 6 corresponds to “impossible to understand”.

Out of the 227 rankings, 69 (30%) corresponded to being “difficult to under-

stand” through to “impossible to understand” (35 rankings, (15%) corresponded

to being “impossible” to understand). Interestingly, all of the “impossible to

understand” rankings were rankings of unmodified, naturally occurring, justifica-

tions.

It was common for participants who could not understand a particular jus-

tification to ask the question, “Is this explanation correct?”, thereby implying

that they doubted the ability of the system to generate sound justifications. The

initial appearance of a justification seemed important. Some people greeted cer-

tain justifications with shock and comments such as, “I’ll never understand that”.

In some cases these expressions of immediate defeat proved correct and in other

cases proved incorrect as people worked through these justifications to finally

claim that they understood them.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 227

Experiment 7 Analysis

Spread of Rankings As can be seen from Figure 12.3 there was a good spread

of rankings over the justifications that received them. At both ends of the scale

there were rankings for “very easy to understand” and “impossible to under-

stand”. Moreover, all participants bar one ranked one or more justifications as

being impossible to understand. This one outlier participant did rank some justi-

fications as being “very difficult to understand”. Overall, there were a significant

number of “difficult” to “impossible” to understand justifications, which points

to the fact that justification understanding is a real problem.

Ranking versus Time Excluding ranking 6 (“impossible to understand”) the

general trend indicates that when participants took longer to understand a jus-

tification they perceived it to be more difficult to understand. It is noticeable

that, in many cases the time spent trying to understand justifications that were

deemed impossible to understand (ranking 6), is less than the time spent try-

ing to understand very difficult justifications. This indicates that participants

gave up trying to understand a justification very soon, perhaps because it simply

seemed too complicated, or, after some effort they thought that they would never

understand the justification.

The Number of Inference Steps When people work through justifications

they typically perform obvious syntactic transformations, and recognise simple

patterns, to reach intermediate conclusions. For example, consider the following

justification:

J = {1: A v B, 2: A v ∃R.A, 3: D ≡ ∃R.B} |= A v D.

A person might work through this justification as follows: They spot that ax-

ioms 1 and 2 entail A v ∃R.B, and then realise that this result, in conjunction

with axiom 3 entails A v D (the entailment). Note how the user must spot a

suitable intermediate inference step (A v ∃R.B), understand how it arises, and

understand the part it plays in the whole justification. The think-aloud protocol

revealed that participants only saw some steps as being important. For example,

people are not phased by large sets of simple axioms such as a long chain of con-

cept subsumption axioms which they spot without working through each step in

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 228

detail. As an illustration, consider the justification

J = {A v B, B v C, C v D,D v E, A v ¬E}

which entails A v ⊥, participants would not verbalise every step such as A v C,

but they would verbalise A v E and A v ¬E. Justifications whose intermediate

inference steps arise due to the interaction between many different types of axioms

or concept expressions are hard to understand would cause people to verbalise

more steps. Ultimately, justifications that contain a lot of information are difficult

to understand. In particular, the number of different types of axioms and concept

expressions that the justification contains seems to play an important part.

Patterns of Axioms Justifications that contain unfamiliar patterns of axioms

are difficult to understand. Consider the following ontology, O = {α1 : A ≡ ∀R.C,
α2 : domain(R,A), α3 : E v F}, which is derived from a real ontology2 and was

presented to some of the study participants as part of a larger justification. This

ontology entails E v A. The reason for this is that Axioms 1 and 2 entail > v A.

During the study, it was observed that many of the participants (including partic-

ipants with many years of experience with OWL, and even reasoner developers)

did not realise, or neglected to see, that A ≡ ∀R.C, coupled with domain(R,A),

entails > v A. Many of the participants had not encountered this “pattern of

axioms” before. They therefore had difficulty in realising what these axioms en-

tail, and their significance in the context of the complete justification. There are,

of course, other patterns of axioms that occur in justifications that people find

difficult to spot or understand.

12.2 A Simple Complexity Model

The data obtained from the user study provided an insight into how people read

and tackle justifications, and why they find certain justifications difficult to un-

derstand. These insights, along with other basic intuitions, were used to develop

a complexity model for predicting how complex a justification is to understand.

Table 12.1 describes the model, wherein J is the justification in question, η is

2This example was taken from an ontology about movies, which was originally posted to the
Protege-OWL mailing list and is the example shown in Figure 12.1. There are ontologies in the
BioPortal corpus which contain similar patterns of axioms.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 229

the focal entailment, and each value is multiplied by its weight and then summed

with the rest. The final value is a complexity score for the justification. Broadly

speaking, there are two types of components: (1) Structural components, such as

C1, which require a syntactic analysis of a justification, and (2) Semantic com-

ponents, such as C4, which require entailment checking to reveal non-obvious

phenomena.

Components C1 and C2 count the number of different kinds of axiom types

and class expression types as defined in the OWL 2 Structural Specification.4 The

more diverse the basic logical vocabulary is, the less likely that simple pattern

matching will work and the more “sorts of things” the user must track.

Component C3 detects the presence of universal restrictions where trivial sat-

isfaction can be used to infer subsumption. Generally, people are often surprised

to learn that if 〈x, y〉 6∈ RI for all y ∈ ∆I , then x ∈ (∀R.C)I . This was observed

repeatedly in the exploratory study.

Components C4 and C5 detect the presence of synonyms of > and ⊥ in the

signature of a justification where these synonyms are not explicitly introduced via

subsumption or equivalence axioms. In the exploratory study, participants failed

to spot synonyms of > in particular.

Component C6 detects the presence of a domain axiom that is not paired with

an (entailed) existential restriction along the property whose domain is restricted.

This typically goes against peoples’ expectations of how domain axioms work, and

usually indicates some kind of non-obvious reasoning by cases. For example, given

the two axioms ∃R.> v C and ∀R.D v C, the domain axiom is used to make a

statement about objects that have R successors, while the second axiom makes a

statement about those objects that do not have any R successors to imply that C

is equivalent to >. This is different from the typical pattern of usage, for example

where A v ∃R.C and ∃R.> v B entails A v B.

Component C7 measures maximum modal depth of sub-concepts in J , which

tend to generate multiple distinct but interacting propositional contexts.

Component C8 examines the signature difference from entailment to justifi-

cation. This can indicate confusing redundancy in the entailment, or synonyms

of >, that may not be obvious, in the justification. Both cases are surprising to

people looking at such justifications.

Components C9 and C10 determine if there is a difference between the type

4http://www.w3.org/TR/owl2-syntax/

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 230

Table 12.1: Justification Complexity Model

Name Base value Weight

C1 AxiomTypes Number of axiom types in J & η. 100

C2 ClassConstructors Number of constructors in J & η. 10

C3 UniversalImplication If an α ∈ J is of the form ∀R.C v
D or D ≡ ∀R.C then 50 else 0.

1

C4 SynonymOfThing If J |= > v A for some A ∈
Signature(J) and> v A 6∈ J and
> v A 6= η then 50 else 0.

1

C5 SynonymOfNothing If J |= A v ⊥ for some A ∈
Signature(J) andA v ⊥ 6∈ J and
A v ⊥ 6= η then 50 else 0.

1

C6 Domain&NoExistential If Domain(R,C) ∈ J and J 6|=
E v ∃R.D for some class expres-
sions E and D then 50 else 0.

1

C7 ModalDepth The maximum modal depth of all
class expressions in J .

50

C8 SignatureDifference The number of distinct terms in
Signature(η) not in Signature(J).

50

C9 AxiomTypeDiff If the axiom type of η is not the
set of axiom types of J then 50
else 0

1

C10 ClassConstructorDiff The number of class constructors
in η not in the set of constructors
of J .

1

C11 LaconicGCICount The number of General Concept
Inclusion axioms in a preferred la-
conic version of J

100

C12 AxiomPathLength The number of maximal length
expression paths3 in J plus the
number of axioms in J which are
not in some maximal length path
of J

10

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 231

of, and types of class expressions in, the axiom representing the entailment of

interest and the types of axioms and class expressions that appear in the justifi-

cation. Any difference can indicate an extra reasoning step to be performed by a

person looking at the justification.

Component C11 examines the number of subclass axioms that have a complex

left hand side in a preferred laconic version of the justification. Complex class

expressions on the left hand side of subclass axioms in a laconic justification

indicate that the conclusions of several intermediate reasoning steps may interact.

Component C12 examines the number of obvious syntactic subsumption paths

through a justification. In the exploratory study, participants found it very easy

to quickly read chains of subsumption axioms, for example, {A v B,B v C,D v
D,D v E} to entail A v E. This complexity component essentially increases

the complexity when these kinds of paths are lacking.

Model Tuning As can be seen, the model contains weights for various com-

ponents. In should be noted that these are not definitive. They were determined

by rough and ready empirical twiddling, without a strong theoretical or spe-

cific experimental backing. They correspond to observations made during the

exploratory study of sufficient reasons for difficulty. The tuning was based on

an iterative process: An initial set of weights was chosen based on the relative

difficulty of complexity causing phenomena that were observed in the exploratory

study. Based on these weights, the complexities for justifications from the pool

used in the exploratory study were computed and then used to rank these jus-

tifications. Pairs of justifications were then eyeballed and the weights adjusted,

if necessary, to alter the complexity scores and shift the position of justifications

in the ranking. This process was repeated until what seemed to be a reasonable

ordering on the justifications was achieved.

12.3 Model Validation

In what follows a series of model validation experiments are detailed. Before the

experiments are described, it is worth noting that the experimental procedure

used differs from that used in Experiment 7. The reason for this is that although

the think-aloud protocol used in that experiment was robust and it worked very

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 232

well, it was very resource intensive—it required a facilitator to sit with a partici-

pant throughout the whole experiment. This obviously prohibits the experiment

being carried out remotely over the web for example, and limits the amount of

data that can be collected over time. In order to remedy this, it was decided

to design an experimental protocol that could be carried out without the need

for one-to-one facilitation. To this end the experimental design is based on the

methodology described by Newstead et al. in [NBH+06].

12.3.1 Experiment Design: Using Error Proportion to In-

dicate Difficulty

In [NBH+06] Newstead developed a model for predicting the difficult of logical

reasoning problems used in the Graduate Record Examination (GRE)5. The basic

approach followed by Newstead was to use error proportion and problem solving

time as an indicator for the difficulty of a problem. That is, if a large proportion

of participants give the incorrect answer to a question then that question contains

features which make it difficult for the people to answer. Conversely, if a large

proportion of participants give the correct answer to a question then that question

is easy for the population to understand and answer.

In Newstead’s experiments the questions, which are based on GRE questions,

consist of scenarios with multiple choice questions based on those scenarios. Each

question has one right answer and four wrong answers. It is therefore straight

forward to assess whether or not a participant made an error in answering a

question, and the notion of a participant making an error is therefore directly

applicable to the kinds of questions that are asked in a GRE test. In terms

of justifications, the notion of questions and errors is not so clear cut. Ideally,

given a justification and a participant, an error is made if the participant fails to

understand that justification. However, asking the question, “Do you understand

this justification?” is undesirable. This is due to the qualitative nature of the

question, which means that it can produce error proportions that do not reflect

the true situation. This was evidenced in the exploratory study, where several

participants claimed to have, or thought that they had, understood a justification

but in actual fact they had not. In Experiment 7 these incidents were caught by

use of the think-aloud protocol, but with a web-based, mass participant setup it is

5The Graduate Record Examination is a standardised test for admission into US universities
and collages.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 233

not possible to do verification like this. It was therefore necessary to approach the

understanding justification task from a slightly different point of view. Instead

of presenting a justification/entailment pair and asking a participant to try and

understand the justification, it was decided to present a set of axioms/candidate

pair and ask the participant to determine whether of not the candidate is entailed

by the set of axioms. If the set of axioms is a justification, and the candidate

entailment is the target entailment of that justification, then an error is made

if the participant answers that the candidate is not entailed. While this setup

differs from the standard justification situation, wherein the person looking at

the justification knows it is a justification, it is still thought to be a reasonable

proxy for the real task, and it provides a metric, in error proportion, that should

relate well to justification complexity.

12.3.2 Justification Corpus

In order to thoroughly test the model it was decided to cast the net wide and

randomly sample justifications from a selection of ontology corpora. Several well

known ontology repositories were used: The Stanford BioPortal repository de-

scribed in Chapter 5, the Dumontier Lab ontology collection6 [MBB+01] (15

ontologies plus imports closure), the OBO XP collection7 (17 ontologies plus im-

ports closure) and the TONES repository8 (36 ontologies plus imports closure).

To be selected, an ontology had to (1) contain non-trivial entailments (Defini-

tion 5), (2) be downloadable and loadable by the OWL API (3) processable by

FaCT++.

Although the selected ontologies cannot be said to generate a truly represen-

tative sample of justifications from the full space of possible justifications, they

are diverse enough to put stress on many parts of the model. Moreover, most of

these ontologies are actively developed and used and hence provide justifications

that a significant class of users encounter.

For each ontology, the class hierarchy was computed, from which direct sub-

sumptions between class names were extracted. For each direct subsumption, as

many justifications as possible in the space of 10 minutes were computed—this

typically meant that all justifications were computed, as timeouts were rare. This

6http://dumontierlab.com/?page=ontologies
7http://www.berkeleybop.org/ontologies/
8http://owl.cs.manchester.ac.uk/repository/

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 234

resulted in a pool of over 64,800 justifications.9

While large the pool of justifications is large in size, its actual logical di-

versity is considerably smaller. This is because many justifications, for dif-

ferent entailments, were of exactly the same “shape”. For example, consider

J1 = {A v B,B v C} |= A v C and J2 = {F v E,E v G} |= F v G. As can

be seen, there is an injective renaming from J1 to J2, and J1 is therefore isomor-

phic with J2. If a person can understand J1 then, with allowances for variations

in name length, they should be able to understand J2. The initial large pool was

therefore reduced to a smaller pool of 11,600 non-isomorphic justifications.

12.3.3 Experiment Setup

Items In the experiments that follow each experiment consists of a series of

test items (questions from a participant point of view). A test item consists of a

set of axioms, one following axiom, and a question, “Do these axioms entail the

following axiom?”. A participant response is one of five possible answers: “Yes”

(it is entailed), “Yes, but not sure”, “Not Sure”, “No, but not sure”, “No” (it is

not entailed).

Item Construction For each experiment detailed below, test items were con-

structed from the pool of 11,600 non-isomorphic justifications. First, in order to

reduce variance due primarily to size, justifications whose size was less than 4

axioms and greater than 10 axioms were discarded. This left 3199 (28%) justi-

fications in the pool. In particular, this excluded large justifications that might

require a lot of reading time, cause fatigue problems, and intimidate participants,

and excluded very small justifications that tended to be trivial. Happily, it turns

out that these bounds reflect the bounds of the mean sizes per ontology in the

BioPortal corpus. One upshot of this size-based pruning is that nearly 40% of all

justifications have no representative in the pruned set (see Figure 12.5). However,

an inspection revealed that most of these were trivial single axiom justifications

of the form {A ≡ B} |= A v B or {A ≡ (B u C)} |= A v B, etc.

For each justification in the pool of the remaining 3199 non-isomorphic justifi-

cations, the complexity of the justification was computed according to the model

9It should be noted that this pool of justifications is considerably smaller than the pool
obtained from the BioPortal in Chapter 3. The reason for this is that FaCT++ could not
process some of the ontologies due to it not supporting certain datatypes—no attempt to repair
any of the ontologies was made.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 235

Figure 12.4: Justification Corpus Complexity Distribution

0	
 4	
 14
0	
 12

47
	

11
65
	

55
5	

75
	

9	
 4	
 0	
 0	
 0	
 6	

63
4	

48
22
	

52
82
	

40
60
	

11
8	

15
2	

12
	

0	
 0	
 36
7	

28
	
 58
6	

17
90
	

25
76
	

28
23
	

28
09
	

55
3	

61
	

5	
 9	

21
47
1	

16
86
	

50
47
	

74
15
	

94
56
	
 10
72
5	

78
00
	

10
95
	

10
2	

6	
 12
	

0	

5000	

10000	

15000	

20000	

25000	

0	
 -­‐	
 200	
 200	
 -­‐	
 400	
 400	
 -­‐	
 600	
 600	
 -­‐	
 800	
 800	
 -­‐	
 1000	
 1000	
 -­‐	
 1200	
 1200	
 -­‐	
 1400	
 1400	
 -­‐	
 1600	
 1600	
 -­‐	
 1800	
 1800	
 -­‐	
 2000	
 2000	
 -­‐	
 2200	

N
um

be
r	
 o

f	
 J
us
,fi

ca
,o

ns
	
 in
	
 In

te
rv
al
	

Complexity	
 Interval	

Size	
 4	
 -­‐	
 10	
 Non-­‐Isomorphic	
 Size	
 4	
 -­‐	
 10	
 Main	
 Pool	
 Non-­‐Isomorphic	
 Main	
 Pool	

presented in Table 12.1, and then the justification was assigned to a complexity

bin. A total of 11 bins were constructed over the range of complexity (from 0

to 2200), each with a complexity interval of 200. Next all bins which had zero

non-isomorphic justifications of size 4-10 were discarded. This left 9 bins parti-

tioning a complexity range of 200-1800. Figure 12.4 shows the overall picture of

the initial state of the corpus and the effect of the reduction.

The final stage of item construction was justification obfuscation. All non-

logical terms were replaced with generated symbols. Thus, there was no possi-

bility of using domain knowledge to understand these justifications. The names

were all uniform, syntactically distinguishable so that concept names appeared

to be different to property names, and quite short. The entailment was the same

for all items (i.e., C1 v C2).

Item Selection A key issue when designing user studies is to keep the length

of the study to a minimum. This helps to ensure that participant fatigue does not

set in during the study which means that participants are less likely to give up

early or guess at answers simply to end the study as soon as possible. Based on the

length of time that people spent examining justifications in the exploratory study

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 236

it was decided to limit the number of items to 6 and to focus on a “easy/hard”

divide of the lowest three non-empty bins (200-800) and the highest three non-

empty bins (1200-1800).

Choosing justifications like this, from either end of the spectrum, has some

consequences. In particular, a lot of the justifications, both with and without

isomorphic reduction, lie in the middle of the spectrum, and these justifications

are not sampled from. However, there were two good reasons for ignoring these

middle ground justifications: (1) It is not clear how granular or sensitive the

model is, and whether a difference in score of around 400 between two justifica-

tions J1 and J2 would really mean J1 is significantly easier to understand than

J2; and (2) Error proportion is being used to distinguish easy from difficult to

understand justifications. However, it is not clear whether the variance in partici-

pant error proportion would be low enough to produce a meaningful difference for

justifications that are separated by relatively small model scores. While choosing

justifications from each end of the spectrum limits the claims than can be made

about model performance over the entire corpus, it does strengthen negative re-

sults in that if the model cannot distinguish the two poles, where the largest

effect is expected to be, then either the model has failed or error proportions are

not a reliable marker for difficulty.

Item Makeup: Justifications versus Non-Justifications From a partici-

pant point of view, an item may or may not represent a justification. However,

in the actual experiments which follow, every item was in fact a justification—

there were no non-entailing sets of axioms that were presented. The reasons for

this choice were: (1) It maximises the number of real justifications examined; (2)

Justification understanding is the actual task at hand, and it is not clear how

much non-entailment checking would distort things and whether or not it would

be much harder than checking for entailment; and (3) It is unclear how to inter-

pret error rates for non-entailments in light of the model—the model predicts the

difficulty of justifications, not non-entailing sets of axioms.

12.3.4 The Experiments

Given the basic structure of an experiment, in terms of items and setup, each

experiment is now presented in detail. Three experiments were carried out: (1)

A Pilot Study, which aimed to test whether error proportion is a satisfactory

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 237

predictor of difficulty, and to verify the experimental setup; (2) A repeat of the

pilot study with volunteers from a pool of MSc students; and (3) A followup

experiment to check and explain outcomes from the second experiment.

Experiment 8: Pilot Study

Experiment 8 Participants

Seven members of the School of Computer Science at the University of Manch-

ester. Participants were either Academic, Research Staff, or PhD Students, with

over 2 years of experience with ontologies and justifications.

Experiment 8 Materials and procedures:

The study was performed using an in house, web based survey tool. The tool

tracks times between all clicks on the page and thus records the time to make

each decision.

The participants were given a series of test items consisting of 3 practice items,

followed by 1 easy item (E1 of complexity 300) and then four additional items,

2 ranked easy (E2 and E3 of complexities 544 and 690, resp.) and 2 ranked

hard (H1 and H2 of complexities 1220 and 1406), which were randomly ordered

for each participant. The easy items were drawn from bins 200-800, and the

hard items from bins 1200-1800. The expected time to complete the study was

a maximum of 30 minutes, including the orientation, practice items, and brief

demographic questionnaire (taken after all items were completed).

Experiment 8 Results:

Errors and times are given in Table 12.2. Since all of the items were in fact

justifications, participant responses were recoded to success or failure as follows:

Success = (“Yes” | “Yes, but not sure”) and Failure = (“Not sure” | “No, Not

sure” | “No”). Error proportions were analysed using a Cochran Q Test [Coc50]10,

which takes into consideration the pairing of successes and failures for a given

participant. Times were analysed using two tailed paired sample t-tests.

10A Cochran Q Test [Coc50] is a non-parametric test of whether k treatments, with success
or failure outcomes, have identical effects. It is essentially a McNemar [McN47] test which is
applied to three or more groups.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 238

Table 12.2: Pilot Study Items

Item Failures Mean Time (ms) Time S.D. (ms)
E1 0 65,839 39,370
E2 1 120,926 65,950
E3 2 142,126 61,771
H1 6 204,257 54,796
H2 6 102,774 88,728

An initial Cochran Q Test across all items revealed a strong significant differ-

ence in error proportions between all items [Q(4) = 16.00, p = 0.003]. Further

analysis using Cochran’s Q Test on pairs of items revealed strong statistically sig-

nificant differences in error proportion between: E1/H1 [Q(1) = 6.00, p = 0.014],

E1/H2 [Q(1) = 6.00, p = 0.014] E2/H2 [Q(1) = 5, p = 0.025] and E3/H2

[Q(1) = 5.00, p = 0.025]. The differences in the remaining pairs, while not ex-

hibiting differences above p = 0.05, were quite close to significance, i.e., E2/H1

[Q(1) = 3.57, p = 0.059] and E3/H1 [Q(1) = 2.667, p = 0.10].

An analysis of times using paired sample t-tests revealed that time spent

understanding a particular item is not a good predictor of complexity. While

there were significant differences in the times for E1/H1 [p = 0.00016], E2/H1

[p = 0.025], and E3/H1 [p = 0.023], there were no significant differences in the

times for E1/H2 [p = 0.15], E2/H2 [p = 0.34] and E3/H2 [p = 0.11].

Experiment 8 Summary

In summary, these significant differences in error proportions were encouraging

and provided an indication that error proportions and the experimental setup

were performing as expected. That is, high model scores indicate difficult justifi-

cations which cause people to make errors in the experiment, and low model scores

indicate easy justifications on which people do not make errors. With regards to

times, the result of there being no significant differences between easy and hard

justifications was anticipated. As in the exploratory study people gave up very

quickly for justifications that they felt they could not understand. In essence,

time is not a good indicator of difficulty. Finally, it is worth noting that all

participants, including participants with a background in OWL and Description

Logics made errors on the predicted hard justifications.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 239

The pilot study proved successful in showing that error proportions can be

used to distinguish between easy and hard justifications. The basic protocol was

therefore taken forward and the experiment was repeated on a volunteers from a

class of MSc students.

Experiment 9: MSc Student Cohort

Experiment 9 Participants

14 volunteers from a Computer Science MSc course on OWL ontology modelling.

Participants were given chocolate in return for their participation. Each par-

ticipant had minimal exposure to OWL (or logic) before the MSc course, but

had, over the 5 week duration of the course, constructed and manipulated several

ontologies, and received an overview of the basics of OWL and reasoning, etc.

However, they did not receive any specific training on justifications.

Experiment 9 Materials

The study was performed according to the protocol used in the pilot study, but a

new set of items was used. Since the mean time taken by pilot study participants

to complete the survey was 13.65 minutes, with a standard deviation of 4.87 min-

utes, an additional hard justification was added to the test items. Furthermore,

all of the items with easy justifications ranked easy were drawn from the highest

easy complexity bin (bin 600-800). Results from the pilot study indicated that

the lower ranking easy items were found to be quite easy and an inspection of

their bins indicated that another draw would result in a similar set of justifi-

cations. It was therefore decided to draw an extra justification from the third

bin (600-800) which is much larger, more logically diverse, and is therefore more

challenging for the model. The series consisted of 3 practice items followed by 6

additional items, 3 easy items (EM1, EM2 and EM3 of complexities: 654, 703,

and 675), and 3 hard items (HM1, HM2 and HM3 of complexities: 1380, 1395,

and 1406).

Experiment 9 Method

The items were randomly ordered for each participant. Again, the expectation

of the time to complete the study was a maximum of 30 minutes, including

orientation, practice items and brief demographic questionnaire.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 240

Table 12.3: MSc Student Cohort Results

Item Failures Mean Time (ms) Time S.D. (ms)
EM1 6 103,454 68,247
EM2 6 162,928 87,696
EM3 10 133,665 77,652
HM1 12 246,835 220,921
HM2 13 100,357 46,897
HM3 6 157,208 61,437

Experiment 9 Results

Errors and times are presented in Table 12.3. The recoding of answers into success

of failure is the same as in the pilot study. An analysis with Cochran’s Q Test

across all items reveals a significant difference in error proportion over all items

[Q(5) = 15.095, p = 0.0045].

A pairwise analysis between easy and hard items reveals that there are signif-

icant and, highly significant, differences in errors between EM1/HM1 [Q(1) =

4.50, p = 0.034], EM1/HM2 [Q(1) = 7.00, p = 0.008], EM2/HM1 [Q(1) =

4.50, p = 0.034], EM2/HM2 [Q(1) = 5.44, p = 0.02], and EM3/HM2 [Q(1) =

5.44, p = 0.02].

However, there were no significant differences between EM1/HM3 [Q(1) =

0.00, p = 1.00], EM2/HM3 [Q(1) = 0.00, p = 1.00], EM3/HM3 [Q(1) = 2.00,

p = 0.16] and EM3/HM1 [Q(1) = 0.67, p = 0.41].

Experiment 9 Summary

In line with the results from the pilot study, an analysis of times using a paired

samples t-test revealed significant differences between some easy and hard items,

with those easy times being significantly less than the hard times EM1/HM1

[p = 0.023], EM2/HM2 [p = 0.016] and EM3/HM1 [p = 0.025]. However,

for other pairs of easy and hard items, times were not significantly different:

EM1/HM1 [p = 0.43], EM2/HM1 [p = 0.11] and EM3/HM2 [p = 0.10].

Again, time is not a reliable predictor of model complexity.

With regards to the nonsignificant differences between certain easy and hard

items, there are two items which stand out: An easy item EM3 and a hard item

HM3. The easy item cause more errors than would be expected by the model

score, and the hard item vice-versa.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 241

For item EM3, a plausible explanation for this is that a certain pattern of

superfluous axiom parts in the item, which were not recognisable by the model,

made it harder than the model predicted. That is, that the model was wrong.

For item HM3 the explanation is a little different. Justifications similar to

the justification in HM3 have been observed to stymie experienced modellers

in the field. Furthermore, it involves deriving a synonym for >, which was not

a move this cohort had experience with, but from the think-aloud protocol in

exploratory study is known to cause problems. A plausible explanation for the

fact that the MSc students answered “Yes” is that a misleading pattern of axioms

in the first and last axioms were present in item HM3. The high “success” rate

was therefore due to an error in reasoning, that is, a failure in understanding

rather than a failure in the model—the MSc students got the answer right but

for the wrong reasons.

In order to determine the plausibility of the above conjectures a follow up

experiment was conducted, with the goal of observing the conjectured behaviours

in situ. Although this experiment cannot explain exactly what happened in

Experiment 9, it can verify that the conjectured behaviour occurs in practice.

Experiment 10: Anomaly Investigation with Think-Aloud

Experiment 10 Participants

Two CS Research Associates and one CS PhD student none of whom had taken

part in the pilot study. All participants were very experienced with OWL.

Experiment 10 Materials

Items and protocol were exactly the same as Experiment 9

Experiment 10 Procedure

The same as 9 with the addition of the think-aloud protocol. An eye tracker was

used throughout the experiment which also had the facility to record sound and

the movements of the mouse pointer over the screen.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 242

Experiment 10 Results

Figure 12.5 shows an eye tracker heat map for the most extreme case of distraction

in item EM3. Think-aloud revealed that all participants were initially fixated on

trying to figure out what role the ∃ prop1.C6 conjunct in the third axiom played

in the justification. All of them were distracted by this superfluous conjunct

and struggled with the justification to begin with. However, in the end, unlike

the MSc students, all participants gave the correct answer and no errors were

made. In the case of HM3, think-aloud revealed that none of the participants

understood how the entailment followed from the set of axioms. However, two of

them responded correctly and stated that the entailment did hold.

Experiment 10 Summary

With regards to EM3, think-aloud revealed that all participants were distracted

by the superfluous axiom parts in item EM3. As can be seen, hot spots lie over

the superfluous parts of axioms. While all of the participants did answer correctly

in the end and, (as predicted by the model there were no failures) the superfluous

parts did have a negative impact on the reading of the justification—all of them

struggled with it at first. It is conceivable that these distracting parts had more

of a negative impact on the MSc students, who were not as experienced and

not confident enough to read through them and come to the conclusion that the

entailment did indeed hold.

With regards to HM3, as conjectured, the patterns formed by the start and

end axioms in the item set seemed to mislead participants. In particular, when

disregarding quantifiers, the start axiom C1 v ∀ prop1.C3 and the end axiom

C2 v ∃ prop1.C3 t . . . look very similar. One participant spotted this similar-

ity and claimed that the entailment held as a result. The focus on these start

and end axioms is evident from Figure 12.5, where hot spots occur over the final

axiom and the first axiom, with relatively little activity in the axioms in the mid-

dle of the justification. This tallies with research on item ordering [Pot74], which

confirms that people pay more attention to items at the beginning and ends of

lists.

In summary, the eye tracking and think-aloud experiment findings align with

explanations for the anomalies in Experiment 9. That is, superfluity in justifi-

cations is distracting and caused people to struggle with EM3, and people got

HM3 right for the wrong reasons.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 243

Figure 12.5: Eye Tracker Heat Maps for EM3 & HM3

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 244

12.4 Dealing with Justification Superfluity

Perhaps the biggest issue with the current model is that it does not deal at

all with superfluity in axioms in justifications. That is, it does not penalise a

justification for having axioms that contain, potentially distracting, superfluous

parts—parts that do not matter as far as the entailment is concerned. Unfor-

tunately, without a deeper investigation, it is unclear how to rectify this in the

model. Although it is possible to identify the superfluous parts of axioms using

Laconic and Precise Justifications, throwing a naive superfluity component into

the model would quite easily destroy it. This is because there can be justifica-

tions with plenty of superfluous parts that are trivial to understand. For example

consider J = {A v BuC} |= A v B, where C is along and complex class expres-

sion, and yet there can be justifications with seemingly little superfluity (as in the

case of EM3) which causes complete distraction when trying to understand an

entailment. Ultimately, what seems to be important is the location and shape of

superfluity, but deciding upon what “shapes” of superfluity count as non-trivial

needs to be investigated as part of future work.

One important point to consider, is that it might be possible to deal with

the problems associated with superfluity by presentation techniques alone. It

should be clear that the model does not pay any attention to how justifications

are presented. For example, it is obvious that the ordering (and possibly the in-

dentation) of axioms is important. It can make a big difference to the readability

of justifications and how easy or difficult they are to understand, yet the model

does not take into consideration how axioms will be ordered when a justification

is presented to users. In the case of superfluity, it is conceivable that strikeout

could be used to cross out the superfluous parts of axioms and this would dis-

pel any problems associated with distracting superfluity. Figure 12.6 shows the

helpful effect of strikeout on EM3. As can be seen, it immediately indicates

that the problematic conjunct, ∃ prop1.C6, in the third axiom should be ignored.

While strikeout seems promising, and has been observed to be very appealing

to users, further experiments should be carried out to investigate the effects of

superfluity and presentation techniques that might ameliorate the problems and

issues surrounding superfluity and understanding.

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 245

EM3

C1 v C3

C3 v C4

C4 ≡ C5 u (∃ prop1.C6)

C5 ≡ C7 u (∃ prop2.C8)

C1 v ∃ prop1.C9

C9 v C10

C2 ≡ C7 u (∃ prop1.C10)

EM3

C1 v C3

C3 v C4

C4 ≡ C5 u (∃ prop1.C6)

C5 ≡ C7 u (∃ prop2.C8)

C1 v ∃ prop1.C9

C9 v C10

C2 ≡ C7 u (∃ prop1.C10)

Figure 12.6: EM3 with and without strikeout

12.5 Discussion

This chapter has presented an investigation into the complexity of understanding

justifications. A basic model has been presented which can be used to predict

how easy or difficult it is for a person to understand a justification. Three key

contributions of this work are: (1) It has shown that there are naturally occurring

justifications that people with a range of backgrounds, including people who are

very experienced in OWL, can find it difficult or impossible to understand; (2) It

has shown that there are justifications that people can understand. This includes

people with little or no training in OWL; and (3) It has presented a methodology

and protocol that can be used to refine a justification complexity model. The

main advantages of this experimental protocol is that minimal study facilitator

intervention is required. This means that, over time, it should be possible to

collect rich and varied data fairly cheaply and from geographically distributed

participants. In addition to this, given a justification corpus and population of

interest, the main experiment is easily repeatable with minimal resources and

setup. Care must be taken in interpreting results and, in particular, the protocol

is weak on “too hard” justifications as it cannot distinguish a model mislabeling

from people failing for the wrong reason. However, this is arguably a feature

of similar experiments, such as Newstead’s [NBH+06], and is a problem that is

somewhat difficult to eliminate without using a more resource intensive protocol

such as think-aloud.

Overall, while there is obviously more work to be done with regards to model

refinement and evolution, as a first approximation the cognitive complexity model

that was presented in this thesis fared reasonably well. In most cases, there was

a significant difference in error proportion between model ranked easy and hard

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 246

justifications. In the cases where error proportions revealed no difference better

than chance alone, further small scale followup studies in the form of a more

expensive talk-aloud study was used to gain an insight into the problems. These

inspections highlighted an area for model improvement, namely in the area of

superfluity. Unfortunately, without a deeper investigation, it is unclear how to

rectify this in the model, whether the model needs rectifying at all, or whether

presentation techniques alone can deal with the problems associated with super-

fluity. What is encouraging, is that superfluity was cited as causing problems with

understanding. The experiments presented in this chapter have provided some

preliminary indication that this is indeed a real problem in naturally occurring

justifications, and that further investigation in this area is probably interesting

and worthwhile.

Finally, it is worth noting that there has been a significant amount of work

on predicting the complexity of understanding and the ease of maintainability

of software. In particular, seminal work by McCabe [McC76], which devised a

complexity metric known as cyclomatic complexity was based on the control flow

paths through software. McCabe’s work was followed by a plethora of other work,

for example in [Hal77] Halstead uses various syntactic measures such as program

vocabulary and program length to calculate volume and difficult of understanding

of a program. In [Wey88] Weyuker provides a set of standard properties that

software complexity measures should be attuned to. Some of the inspiration and

ideas for the properties of the complexity model presented here were drawn from

this work.

12.6 Conclusions

• There are naturally occurring justifications that are very difficult or impos-

sible for a wide range of people to understand. This includes people who

are very experienced with OWL.

• Justifications that contain non-obvious intermediate steps are difficult to

understand. In particular, non-explicit synonyms of>, trivial satisfaction of

universal restrictions, and unfamiliar patterns of axioms all cause problems

with justification understanding.

• A model which performs a syntactic inspection on the number of axiom and

CHAPTER 12. UNDERSTANDING JUSTIFICATIONS 247

concept constructor types, in combination with spotting semantic phenom-

ena such as synonyms of > and ⊥, trivial satisfaction, can predict much

better than chance alone whether or not a justifications is easy or difficult

to understand.

• Error proportions can be used to test for the difficulty of justifications.

They provide a reasonably accurate first pass at confirming model predic-

tions, and do not require high levels of facilitator interaction with study

participants. When anomalies arise, they can be followed up by more de-

tailed think-aloud investigations.

• The issue of how superfluity affects understanding is non-trivial and needs

to be investigated further.

Chapter 13

Justification Oriented Proofs

As evidenced by the results of the previous chapter, there are naturally occurring

justifications that can be very difficult or impossible for people to understand.

This includes people who have a significant amount of experience in OWL. Diffi-

cult to understand justifications typically contain non-obvious intermediate infer-

ence steps that need to be arrived at and brought together by the person reading

the justification in order for them to understand how the justification supports

the target entailment. In essence, the axioms in justifications are akin to the

premises of a proof, and the entailment the conclusion, where it is left up to the

reader of the justification to decide how to get from premises to conclusion. When

people fail, or find it difficult, to spot intermediate entailments, conclusions or

steps they can fail to understand why a justification supports the entailment in

question, and hence fail to understand why the entailment holds in their ontol-

ogy. This chapter proposes some ideas dealing with this issue. Specifically, it

presents a conceptual framework for introducing helpful intermediate inference

steps, called lemmas, into justifications. These lemmas, which are themselves

explained by justifications, can be stitched together into a structure that this

thesis calls a justification oriented proof. Part of the novelty of the framework is

that complexity models, such as the one presented in the previous chapter, are

used to choose these steps. While the work presented in this chapter is somewhat

speculative in nature, it does provide a starting point and some leads for dealing

with issues of justification understanding.

248

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 249

13.1 From Justifications Towards Proofs

The notion of “intermediate steps” that could guide a person through under-

standing a justification, raises the question of whether full blown proofs, such as

natural deduction style proofs with inference rules, should be used for explain-

ing entailments in OWL ontologies. One of the typical claims about natural

deduction is that it mimics human reasoning—that is, it has a strong cogni-

tive adequacy [Str92]. However, there is ongoing debate in the field of cognitive

psychology about how human reasoning actually works. Some camps favour a

“logic” or rule based account [Rip94], while others favour a “model” based ac-

count [JLB91]—even for simple cases of natural language based deduction, it is

unclear which account is correct. It is therefore impossible to say whether or not

natural deduction and similar proof systems mimic human reasoning. What is

clear, is that representations that have a strong cognitive adequacy are not nec-

essarily useable [Str92]. Hence, even if natural deduction has a strong cognitive

adequacy, there is no guarantee that it is usable as a form of explanation for

entailments in ontologies.

Ultimately, natural deduction style proofs are not necessarily the best form of

explanation. Given the popularity of justifications in terms of tools support, the

fact they are being widely and successfully used as a form of explanation (in stark

contrast to any proof based explanation systems) indicates that a complete move

to full blown proofs would be unwise. What is arguably needed, is something

that lies between justifications and proofs. Given the popularity and conceptual

simplicity of justifications, the work presented in this thesis uses them as building

blocks for structures that begin to look like proofs, but are independent of any

calculus or deduction rules. In essence, intermediate steps are introduced into a

justification, which are themselves explained with justifications. This results in

a directed acyclic proof graph of the form shown in Figure 13.1, and is called a

justification oriented proof.

13.2 Justification Oriented Proofs

The main idea behind a justification oriented proof is depicted in Figure 13.1.

The numbered lozenges represent axioms, with the leftmost lozenge, labelled η,

representing the entailment of interest. The white lozenges labelled with “1” –

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 250

7

8

1
2

3
4
5

6η

Key:

= Axiom in original justification

= Justification entailment
= Lemma (not in original justification)

Figure 13.1: A schematic of a Justification Oriented Proof

“6” represent exactly the axioms that appear in the original justification J for the

entailment (and are therefore in the ontology as asserted axioms). Grey shaded

lozenges represent lemmas that are entailed by J but are not in J as asserted

axioms. For a given node, its direct predecessors constitute a justification for that

node. This produces a weakly connected directed acyclic graph, with one sink

node that represents the entailment of interest and a source node for each axiom in

the justification. Hence, in the example shown in Figure 13.1, J = {1, 2, 3, 4, 5, 6}
is a justification for η with respect to the ontology that entails η. Axiom 7 is a

lemma for axioms 1, 2 and 3 (conversely, axioms 1, 2 and 3 are a justification

for axiom 7). Axiom 8 is a lemma for axioms 3, 4 and 5 (conversely axioms 3, 4

and 5 are a justification for axiom 8). Together axioms 6, 7 and 8 constitute a

justification for η i.e. the entailment. Notice that axiom 3 participates in different

justifications for different lemmas.

In essence, a justification oriented proof guides a person through the under-

standing of an original justification. Not only can lemmas make non-obvious

intermediate steps explicit, they can also provide a chunking mechanism, which

can help guide a user through a large and tedious to understand justification.

13.3 Related Work

The idea of using proofs as forms of explanation is obviously not new. Indeed, in

some camps [BCR08, Kwo05], proofs are essentially regarded as the main form

of explanation. However, the work that is presented in this paper is based on the

intuitions mentioned in the introduction. That is, it is arguably more practical

and more helpful to not show full blown proofs because (1) users already know and

understand justifications, and (2) it avoids having to teach users a new calculus

or deduction rules.

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 251

In [BFH00] Borgida uses a sequent calculus as the basis for explaining sub-

sumption inALC. The proofs produced by Borgida’s approach explicitly reference

the inference rules that are used to go from one step to the next, and in this re-

gard are fairly close to formal proofs and therefore not in the spirit of justification

oriented proofs. Borgida briefly mentions the idea of sub-steps and weakenings

as ways of deriving higher quality explanations.

Lingenfelder [Lin89] and Huang [Hua94] tackle the problem of presenting ma-

chine generated proofs to humans. In both cases, they attempt to address the

problem that machine generated proofs are difficult for humans to understand.

Lingenfelder remarks that even natural deduction proofs are at too low a level for

human understanding, and that their length presents a difficulty in seeing “the

important steps” and hinders understanding. Huang also argues that natural

deduction proofs are also at too low a level, and develops ND style proofs that

are at a higher level of abstraction. Interestingly, Lingenfelder sketches the idea

of grouping proof steps together and applying lemmas. He also points out that

it is necessary to distinguish between trivial steps and more complicated steps,

possibly with use of a model.

In [dSSC+08], da Silva et al. present proofs using the Inference Web tools.

Trees are used to present proofs, where the nodes in tree (steps in the proofs)

are determined using explicit low level inference rules. This is in contrast to

justification/complexity oriented approach taken here.

Finally, in [Sch04] Schlobach introduces optimal interpolants, and so called

illustrations that are intended to bridge the gap between subsumee and subsumer

class expressions. The notion of lemmas and justifications oriented proofs as

presented here are in the spirit of Schlobach’s illustrations. However, the main

difference is that Schlobach’s work primarily deals with subsumption between

two class expressions in isolation, whereas the work presented here deals with

arbitrary entailments that arise from a set of axioms.

13.4 Proof Generation Framework

In what follows the framework for generating justification oriented proofs is pre-

sented. The framework consists of two main ideas: (1) The notion of justification

lemmatisation, wherein subsets of a justification may be replaced with simple

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 252

summarising axioms, which are known as lemmas. One justification is lemma-

tised into another justification. (2) The notion of stitching a series of lemmatised

justifications into a justification oriented proof. First a definition of justification

lemmatisation is presented and then a definition for justification oriented proofs

is given.

13.4.1 Justification Lemmatisation

Given a justification J for an entailment η, the aim is to lemmatise J into J ′, so

that J ′ is less complex by some measure and for some purpose than J . With this

notion in hand, lemmas for justifications can now be defined. First, an informal

description is given, then a more precise definition is given in Definition 21.

Informally, a set of lemmas ΛS for a justification J for η is a set of axioms

that is entailed by J which can be used to replace some set S ⊆ J to give a new

justification J ′ = (J \S)∪ΛS for η. If, additionally, J ′ is less complex, by some

measure, than J . J ′ is called a lemmatisation of J .

Various restrictions are placed on the generation of the set of lemmas ΛS that

can lemmatise a justification J . These restrictions prevent “trivial” lemmati-

sations, an example of which will be given below. Before these restrictions are

discussed, it is useful to introduce the notion of a tidy set of axioms. Intuitively,

a set of axioms is tidy if it is consistent, contains no synonyms of ⊥ (where a class

name is a synonym of ⊥ with respect to a set of axioms S if S |= A v ⊥), and

contains no synonyms of > (where a class name is a synonym of > with respect

to a set of axioms S if S |= > v A).

Definition 20 (Tidy sets of axioms). A set of axioms S is tidy if S 6|= > v ⊥,

S 6|= A v ⊥ for all A ∈ signature(S), and S 6|= > v A for all A ∈ signature(S).

The definition of lemmatisation that follows, mandates that a set of lemmas

ΛS must only be drawn from (i) the deductive closure of tidy subsets of the set

S ⊆ J , (ii) from the exact set of synonyms of ⊥ or > over S.

Without the above restrictions on the axioms in ΛS , it would be possible to

lemmatise a justification J to produce a justification J ′ that, in isolation, is

simple to understand, but otherwise bears little or no resemblance to J . For

example, consider J = {A v ∃R.B, B v E u ∃S.C, B v D u ∀S.¬C} as

a justification for A v ⊥. Suppose that any axioms entailed by J , could be

used as lemmas (i.e. there are no restrictions on the axioms that make up ΛS).

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 253

In this example, A is unsatisfiable in J , meaning that it would be possible for

J ′ = {A v E,A v ¬E} to be a lemmatisation of J . Here, J ′ is arguably easier

to understand than J , but bears little resemblance to J . In other words, A v E

and A v ¬E are not helpful lemmas for J |= A v ⊥. Similarly unhelpful results

arise if lemmas are drawn from inconsistent sets of axioms, or sets of axioms that

contain synonyms for >.

Given the above intuitions and the notion of tidy sets of axioms, the notion

of justification lemmatisation is defined as follows:

Definition 21 (Justification Lemmatisation). Let J be a justification for η and

S a set of axioms such that S ⊆ J . Let ΘS be the set of tidy subsets of (S∪δ(S)).

Recall that T ? is the deductive closure of a set of axioms T . Let

ΛS ⊆
⋃
T ∈ΘS

T ? ∪ {α |α is of the form A v ⊥ or > v A,

and ∃K ⊆ (S ∪ δ(S)) that is consistent and K |= α}

ΛS is a set of lemmas for a justification J for η if, for J ′ = (J \ S) ∪ ΛS

1. J ′ is a justification for η over J ?, and,

2. Complexity(η,J ′) < Complexity(η,J).

The ability to lemmatise one justification into another justification is a key

process in constructing a justification oriented proof. Given a regular justification

J for η, J can be lemmatised into J1 for η. The axioms in J1 may then be

inspected to determine which of them are lemmas – lemmas are axioms that are

not in J . Given a lemma α ∈ J1 (α 6∈ J) a new justification J2 ⊆ J for α can

be identified. If necessary, J2 can then be lemmatised into a simpler justification

for α. Axioms in J2 can then be inspected and the process can be repeated as

necessary. Ultimately the process builds up a justification oriented proof, the

structure of which is defined below.

13.4.2 Justification Oriented Proofs

Definition 22 (Justification Oriented Proof). A justification oriented proof for

a justification J for an entailment η in O is a weakly connected directed acyclic

graph G = (V,E) such that J ⊆ V ⊂ J ? and either, G = ({η}, {〈η, η〉}) or,

1. η is the one and only sink node in G,

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 254

2. J is the exact set of source nodes in G, and

3. For a given node, the set of predecessor nodes are a justification for the

node over J ?.

In summary, as shown in Figure 13.1, a node in a justification oriented proof

that has incoming edges, is either a lemma or the entailment (sink node) itself.

Source nodes (nodes with no predecessors) are the axioms in the original justifi-

cation. Finally, given one justification J for η, there may be multiple justification

oriented proofs, even if the set of lemmas in the proof is fixed.

Singleton Set Proofs Definition 22 admits justification oriented proofs for

the case where a justification for an entailment is the singleton set containing the

entailment itself. That is, given α ∈ O, it is the case that {α} is a justification for

O |= α, and this has a corresponding justification oriented proof of G = (V,E)

where V = {α} and E = {〈α, α〉}.

Proof Existence Given a justification J for O |= η, there is always a justi-

fication oriented proof for J and η. This follows because either a Justification

Oriented Proof takes the form of a singleton set proof as described above, or a

Justification Oriented proof G can be trivially constructed by setting G = (V,E)

where V = J ∪ {η} and E = {〈αi, η〉 | αi ∈ J }.

Non-Edge-Uniqueness Given a justification J for O |= η, then there can

exist two justification oriented proofs G = (V,E) and G′ = (V ′, E ′) such that

G 6= G′, but V = V ′ (E 6= E ′).

A Comment about Proof Presentation It should be noted that, in the same

way that raw unordered justifications are not presented directly to end users, it

is unlikely the graph which constitutes a justification oriented proof should be

presented directly to end users. Instead, the graph can be used as an input into

some interactive presentation device.

13.5 The Use of Models to Select Proof Steps

As can be seen from Definition 21, justification lemmatisation depends upon the

notion of justification complexity. More specifically, it depends upon whether

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 255

one justification is more complex, by some measure and for some purpose, than

another justification. In this framework, complexity models are used to assign

complexity scores to justifications and determine whether one justification is more

complex, than another. The framework makes no commitment to a particular

complexity model. Indeed, models are intended to be pluggable. A model may

depend upon the application in question and the intended audience. In the work

presented here, the primary aim is to produce justification oriented proofs, which

pick out difficult to spot lemmas, and chunk and summarise sets of heterogeneous

axioms in justifications. With these goals in mind, the simple model presented

in Chapter 12 is used. However, before continuing, models that deal with special

use cases are first discussed. The main intention here, is to give a feel for how

different models can be appropriate for different applications, and how different

models may be plugged into the framework.

A Model for Deriving Proofs for Laconic Justifications

In Chapter 8 laconic justifications were presented as justifications whose axioms

have no superfluous parts and whose parts are as weak as possible. Given O |= η,

a laconic justification oriented proof consists of a sink node η, and predecessors of

η which are either (1) leaf nodes representing axioms contained in O, or (2) are

nodes representing axioms entailed by O, for which each one has a predecessor

representing an axiom contained in O. Given a justification J for η, a simple

complexity model for computing such proofs assigns a score of zero to (J ′, η) if

J ′ is a laconic justification for η, a score of zero to (J ′, α) if α 6= η and α is in

the laconic justification in question, and J ′ is a singleton set containing an axiom

from the original ontology, and otherwise, a score of one.

A Model for Deriving Proofs for Root/Derived Unsatisfiable Classes

Given an ontology O which contains unsatisfiable classes (O |= A v ⊥ for some

class name A in the signature of O), a root unsatisfiable class [Kal06] is a class in

the signature ofO whose unsatisfiability does not depend on the unsatisfiability of

any other class in the signature of O. A derived unsatisfiable class is a class whose

unsatisfiability depends on the unsatisfiability of some other class in the signature

of O. More precisely, given O |= A v ⊥, A is a derived unsatisfiable class if there

exists some class B such thatO |= B v ⊥ and there is a justification JA |= A v ⊥

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 256

and another justification JB |= B v ⊥ such that JA (JB, otherwise, A is a root

unsatisfiable class.

A suitable model that will lemmatise and “collapse” a subset that corresponds

to a justification for a root unsatisfiable class (corresponding to JB above) is as

follows: Given O |= A v ⊥, the model assigns a score of 1 to a justification

JA for O |= η if there exists a justification J ′ ⊂ J for J |= B v ⊥, where

J ′ 6= {B v ⊥} and J ′′ = J \J ′ ∪ {B v ⊥} is a justification for A v ⊥ over the

deductive closure of O, the model otherwise assigns a score of 0.

13.6 An Algorithm for Generating Proofs

Given the above definitions, the main algorithms for generating proofs are pre-

sented below. There are three main algorithms: (1) GenerateProof, which takes

a justification as an input and outputs a proof; (2) LemmatiseJustification, which

takes a justification as an input and outputs either a lemmatised justification or

the justification itself; (3) ComputeJPlus, which takes a justification and computes

a set of axioms that are in the deductive closure of tidy subsets of the justifica-

tion from which lemmas may be drawn. The GenerateProof algorithm uses the

LemmatiseJustification as a sub-routine, and the LemmatiseJustification algorithm

uses the ComputeJPlus algorithm as a sub-routine. Note that for the sake of

brevity, the ComputeJPlus algorithm is not specified line by line in this thesis.

Instead, a definition of J + (Definition 23) is given below, and it is assumed that

the algorithm simply computes J + in accordance with this definition.

13.6.1 GenerateProof

The GenerateProof algorithm for computing justification oriented proofs is de-

picted in Figure 13.2. The basic idea is that, given an input of a justification J
for η, a lemmatised justification J ′ for η is computed. J ′ is then used to initialise

a justification oriented proof P . For each node λ in the proof corresponding to

an axiom in J ′, if λ is not in J then it is a lemma and a justification needs to be

computed for it. In this case a new justification J ′′ is computed for α′ over J .

Next, J ′′ is lemmatised to give J ′′′ which is inserted into the proof P . The pro-

cess then repeats for lemmas in P that do not have any predecessors until none

of the leaves in the proof are lemmas. Although not depicted in Figure 13.2, it is

important to note that, in order to comply with Definition 22, there is a test in

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 257

Input J

λ

J'

Lemmatise J
to give J'

Initialise Proof
P with J'

Choose a lemma λ in P
without predecessors

and compute a justification
J'' (w.r.t. J) for it Insert J'''

into P

Does P contain
lemmas without
predecessors?

J''

λ
Proof P

λ
λ

Lemmatise
J'' to give J'''

Final Proof

Key:

= Entailment for original justification

= Axiom in original justification
= Lemma (does not appear in original justification)

➀ ➁ ➂ ➃ ➄

J'''

➅

Finish

➆

No

Yes

Figure 13.2: An Algorithm for Generating Justification Oriented Proofs

step 6 to determine whether inserting J ′′′ as a result of the lemmatisation process

into P would result in a cyclic graph instead of a DAG. If this is the case, then an

alternative lemmatisation of J ′′ must be chosen (or if there are no alternatives

then J ′′ itself must be chosen) to insert into P . This enforcement of non-cyclical

proofs is also part of the mechanism that ensures the GenerateProof algorithm

terminates. A discussion on termination is presented later.

13.6.2 LemmatiseJustification

The LemmatiseJustification algorithm is presented in Algorithm 13.1. The algo-

rithm takes a justification J for η as its input and returns a justification Jresult

as its output. Either Jresult is a lemmatisation of J or Jresult is equal to J . In

essence, the algorithm produces a lemmatised justification by computing a filter

Stidy on the deductive closure of tidy subsets of J , which obviously includes ax-

ioms that could lemmatise J . Justifications for η are then computed with respect

to Stidy . A complexity score is computed for each justification J ′ ⊆ Stidy , which

is compared to the complexity of J . If the difference between the score for J and

the score for J ′ is positive then J ′ is selected as a lemmatisation of J . Algorithm

13.1 always terminates due to the fact that Stidy is finite in size and hence there

are a finite number of justifications for η with respect to Stidy .

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 258

Algorithm 13.1 LemmatiseJustification(J, η)

1: if J = {η} then
2: return {η}
3: end if
4: Stidy ← ComputeJPlus(J, η) \ {η}
5: X ← ComputeJustifications(Stidy , η)
6: c1 ← ComputeComplexity(J, η)
7: Jresult ← J
8: for J ′ ∈ X do
9: c2 ← ComputeComplexity(J ′, η)

10: if c2 < c1 then
11: Jresult ← J ′

12: end if
13: end for
14: return Jresult

13.6.3 ComputeJPlus

Definition 21 mandates that, for a justification J , lemmas must be drawn from

the deductive closure of tidy subsets of J . However, the deductive closure of a

set of axioms is infinite. For practical purposes it is necessary to work with a

finite representative of the deductive closure that suffices for computing pleasing

lemmatisations and pleasing justification oriented proofs. In addition to these

practicalities, a finite representation of the deductive closure is needed because

the ability to draw lemmas from an infinite set of axioms could lead to non-

termination of the GenerateProof algorithm. In order to ensure termination, not

only is it necessary to disallow cycles in the proof, but it is also necessary to

introduce a filter on the deductive closure that produces a finite set of axioms,

J + from which lemmas may be drawn. In essence, J + is some finite subset of

the deductive closure of J .

The question is, given a justification J , what axioms should J + contain?

Although there is no definitive answer to this, it must be remembered that the

ultimate goal is to include enough in J + so that it is possible to produce a series

of candidate lemmatised justifications, from which a “nice” one may be chosen

using a complexity model. With this in mind, there are a number of possible

options for J + generation:

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 259

Generation with Sub-Concepts

One possibility is to specify J + so that it contains axioms of the form C v
D1 where C and D are built up from sub-concepts of axioms in J . However,

while such a strategy can go a long way to producing a set of axioms containing

lemmas that could result in pleasing proofs, there could be axioms, which might

be lemmas of choice, that are not be contained in the set. For example, given

O = {A v ∃R.B,∃R.B v C,Trans(R)} |= A v C, a lemma of choice might be

∃R.A v ∃R.∃R.B (entailed by A v ∃R.B). However, with the above schema,

based on sub-concepts, the class expression on the right hand side of the axiom

(∃R.∃R.B) does not exists as a sub-concept in J and so the axiom would never

be generated. What is needed is a set of class expressions that is rich enough

so as to be able to build a rich set of axioms that constitute candidate lemmas.

This is achieved using nested sub-concepts:

Generation with Nested Sub-Concepts

Definition 23 (J +). For a justification J for η, let S be the set of sub-concepts

occurring in the axioms in J ∪ {η} plus > and ⊥. Let S ′ be the smallest set of

class expressions such that S ′ ⊇ S and S ′ contains class expressions of the form:

• ¬C where C ∈ S ′ and C is not negated.

• C1 u · · · uCi or C1 t · · · tCi for 2 ≤ i ≤ |S| and for any Cj ∈ {C1, . . . , Ci}
it is the case that Cj ∈ S or Cj = ¬C for some C ∈ S where C is not

negated.

Now, let d = |J |× c where c is the maximum modal depth [BCM+03] of the class

expressions in S. Let R be a property in the signature of J and m be the sum

of all numbers occurring in cardinality restrictions. Let S ′′ be the smallest set

of class expressions such that S ′′ ⊇ S ′ and S ′′ contains class expressions of the

form:

• ∃R.C, ∀R.C, ≥ nR.C or ≤ nR.C, where C ∈ S ′′, the modal depth of C is

no greater than d, and n ≤ m.

• ∃R.{a}, where a and R are in the signature of J or η.

1For OWL syntactic variations of these axioms could be constructed, for example
domain(R,C) instead of ∃R.> v C

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 260

• ¬C where C ∈ S ′′ and C is not negated.

Given S ′′, J + is now defined as the set of axioms of the form C v D, where

C and D are substituted for class expressions in S ′′, R and S are substituted for

property expressions in J , a and b are substituted for individuals in the signature

of J , and for each axiom α ∈ J +, there exists a tidy subset J ′ ⊆ J such that

J ′ |= α.

The ComputeJPlus algorithm in now defined to compute J + in accordance

with Definition 23. Since S is finite, S ′′ is also finite and therefore J + is also

finite. Therefore, there are finite number of justifications for an entailment η with

respect to J +, hence GenerateProof algorithm is guaranteed to terminate.

13.7 The Feasibility of Computing Justification

Oriented Proofs

In order to get a feel for the practicalities of computing justification oriented

proofs, the GenerateProof algorithm and its sub-routines, and the complexity

model shown in Table 12.1 were implemented in Java using the OWL API. The

algorithm has two basic optimisations. First, J + is computed incrementally and

the number of entailment checks is minimised in the obvious way, for example,

given the arbitrary concepts C, D and E, if it is found that J 6|= C v D then an

entailment test is not also performed on J for C v D uE. Second, justifications

in the LemmatiseJustification algorithm are computed one by one rather than all

at once. This means that if a justification J ′ is found as a lemmatisation of

J this justification is selected rather than continuing to look for one of lower

complexity. If necessary, J ′ could be lemmatised to produce a justification of

possibly lower complexity.

The implemented algorithm, with the Pellet reasoner, was tested against the

ontologies listed in Table 13.1. For each ontology, a maximum of 5 justifications

per entailment of the form A v B, A v ⊥ and A(a) were computed. Proofs were

then computed for these justifications. Times for computing the justifications,

and times for computing proofs were measured and averaged.

Generally speaking, if it is possible to compute a justification for an entail-

ment, it appears possible to compute a justification oriented proof for that jus-

tification and entailment. In all cases, the time required to compute the proof is

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 261

Table 13.1: Mean Times for Computing Justifications and Proofs

Ontology Just. Size Just. Time Proof Time
Expressivity/Axioms (Mean/SD/Max) (mean ms) (mean ms)

Generations (ALCOIF/38) 4 / 2.1 / 8 31 2034
Economy (ALCH/1625) 2 / 0.6 / 6 32 144
People+Pets (ALCHOIN/108) 4 / 2.5 / 16 31 801
Tambis (SHIN/595) 8 / 4.1 / 21 1047 244987
Nautilus (ALCF/38) 3 / 2.0 / 6 20 758
Transport (ALCH/1157) 5 / 2.1 / 9 19 469
University (SOIN/52) 5 / 2.1 / 9 21 1738
PeriodicTable (ALU/100) 4 / 9.9 / 36 72 1026
Chemical (ALCHF/114) 8 / 1.2 / 11 38 3690

at least an order of magnitude higher than the time required to compute a jus-

tification. The difference is particularly striking for the Tambis ontology, where

there were several justifications for which it took a significant time to perform

entailment checking while computing J + and then compute justifications over

J +. The implementation, although naive, with plenty of room for further opti-

misation, indicates that it ought to be practical to compute proofs for entailments

in real ontologies, and that the optimisation of the algorithms and other aspects

of justification oriented proofs merit further investigation.

13.8 Examples

This section presents two examples of justification oriented proofs that get con-

structed using the above framework with the complexity model from Chapter 12

plugged into it. The examples illustrate the kinds of lemmas that get introduced

into proofs and illustrate what is possible using the complexity model. Figure

13.3 shows a justification oriented proof for the justification shown in Figure 12.1,

and Figure 13.4 shows (part of) a justification for the justification shown in Figure

12.2.

In the tree style of presentation used, the children of an axiom represent a

justification for that axiom. Original axioms that appear in a justification are

shown in a bold font and lemmas shown in a lightweight font. It should be

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 262

Entailment : Person v ⊥

Person v ¬Movie

> v Movie

∀hasViolenceLevel.⊥ v Movie

∀hasViolenceLevel.⊥ v RRated

RRated ≡ (∃hasScript.ThrillerScript) t (∀hasViolenceLevel.High)

RRated v Movie

RRated v CatMovie

CatMovie v Movie

∃hasViolenceLevel.> v Movie

domain(hasViolenceLevel,Movie)

Figure 13.3: A schematic of a justification oriented proof for the justification
shown in Figure 12.1

noted that the presentation style used for the examples is merely for illustrative

purposes.

As an example of how the read the justification oriented proofs consider the

proof shown in Figure 13.3, which is for the entailment Person v ⊥. This is

entailed by the justification {> v Movie,Person v ¬Movie}, which is presented

at the root level. In the justification oriented proof the axiom > v Movie is not

shown in bold, which means that it is a lemma. Its justification is

{∀hasViolenceLevel.⊥ v Movie, ∃hasViolenceLevel.> v Movie}

which corresponds to its child nodes in the justification oriented proof tree. The

rest of the lemmas and axioms can be read in a similar way. For example, RRated

is a Movie because the ontology contains two axioms: RRated v CatMovie and

CatMovie v Movie. For more examples, a selection of videos of justification

oriented proofs may be found online at:

http://www.cs.man.ac.uk/~horridgm/justificationorientedproofs

13.9 Discussion

The previous chapter presented evidence which shows that people who are experi-

enced with OWL can find justifications difficult or impossible to understand. This

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 263

Entailment : Newspaper(DailyMirror)

reads(Mick DailyMirror)

Tabloid v Newspaper

∀reads.Tabloid(Mick)

WhiteVanMan v ∀reads.Tabloid

WhiteVanMan(Mick)

Man u ∃drives.(Van uWhiteThing) vWhiteVanMan

WhiteVanMan ≡ Man u ∃drives.(Van uWhiteThing)

WhiteThing(Q123ABC)

drives(Mick Q123ABC)

Man(Mick)

Adult uMale u Person v Man

Man ≡ Adult uMale u Person

Adult(Mick)

. . .

Male(Mick)

Person(Mick)

hasPet(Mick Rex)

. . .

domain(hasPet Person)

Figure 13.4: A schematic of a justification oriented proof for the justification
shown in Figure 12.2

chapter has presented a possible solution to this problem in the form justification

oriented proofs.

The key aspect of justification oriented proofs is that the steps in them are

only governed by the entailment relation and the notion of a justification rather

than a fixed set of inference rules. This makes justification oriented proofs rather

general. It means they are not specific to a given logic and they are not specific

to a particular proof calculus. The benefits of this are that the notion applies to

other (monotonic) logics, and from a usability point of view users of tools such

as Protégé-4, who could benefit from justification oriented proofs, do not have to

learn the principles and ideas behind a proof calculus as they only have to know

the semantics of the language (OWL).

When generating justification oriented proofs a balance must be struck be-

tween making individual steps easy to understand, or work through, and making

the proof too fine-grained. In this respect justification oriented proofs could suffer

from granularity problems in the same way that any other proof system could.

When proofs become too fine-grained it is easy to imagine there is a danger that

CHAPTER 13. JUSTIFICATION ORIENTED PROOFS 264

a person trying to understand a proof can lose sight of how the axioms in the

ontology interplay with each other and cause the entailment to hold—while the

person can verify that each step of the proof is correct, they lose sight of the

bigger picture.

Chapter 14

Conclusions

This chapter summarises the significance of the contributions made by this the-

sis. Some outstanding issues are discussed and suggestions for future work are

presented.

14.1 Thesis Overview

This thesis has focused on advancing state of the art knowledge and techniques in

the area of justification based explanation in ontologies. Justifications are widely

used in many tools and are the dominant form of explanation in the world of

OWL. They are also essential to many applications and services which require

them for purposes other than explaining entailments. Despite this, there were

open questions and issues with justification based explanation. Specifically in

the area of computing justifications, fine-grained justifications and understand-

ing justifications. This thesis set out to answer and investigate some of these

questions and issues.

14.2 Summary of Contributions

Broadly speaking, the major contributions of this thesis are therefore:

1. A thorough evaluation of justification finding algorithms, which has pro-

vided strong evidence that shows how these algorithms perform in practice,

and has shed new light on the justificatory structure of real world ontologies.

265

CHAPTER 14. CONCLUSIONS 266

2. A significant advancement in the area of fine-grained justifications, with

the introduction of Laconic and Precise Justifications. This includes the

design, optimisation, implementation of algorithms for computing Laconic

Justifications, and a thorough evaluation of these algorithms.

3. User studies that provide an insight into the way that people understand

justifications. The development of a model for predicting the complexity of

understanding of justifications, and a framework for the lemmatisation of

justifications into justification oriented proofs.

On a practical level, the implementations of justification finding algorithms,

both for regular and laconic justifications, are robust enough for use in ontology

development environments today and other applications where justification find-

ing is used as an auxiliary service. It is likely they will prove to be of real benefit

to the Description Logic and OWL communities.

14.3 Summary and Significance of Main Results

The main results of this thesis are summarised below by topic.

14.3.1 Evaluation of Justification Finding Algorithms

Before this thesis, there was a lack of a large convincing body of evidence show-

ing how robust and highly optimised justification finding algorithms perform in

practice on naturally occurring ontologies. Such evidence is important because

many applications and areas of research beyond justification finding rely on the

good performance of these algorithms. Showing that the algorithms are robust

and perform well in practice provides a sturdy and reassuring platform for these

applications and future research. It also helps to settle an ongoing debate in the

community which centres around the misunderstanding and misinterpretation of

research results, bad experience with prototypical implementations in tools, and

doubts about whether these algorithms are usable in practice. Chapters 3–6 of the

thesis therefore dealt with the topic of evaluating justification finding algorithms.

The experiments carried out in Chapter 6 are far more thorough, systematic

and exhaustive than any other justification finding experiments that have been

reported in the literature to date. The ontology corpus that was used contains a

CHAPTER 14. CONCLUSIONS 267

wide selection of ontologies that vary greatly in expressivity, modelling style and

size. The collection is defined by a third party and none of them were cherry

picked to show good performance or because they contained interesting features.

Moreover they are all naturally occurring, application oriented ontologies. The

main results are:

• It is practical to compute all justifications for entailments in naturally oc-

curring ontologies. This includes entailments that have hundreds of justifi-

cations. The rate of failure to find all justifications for entailments is very

low, and the algorithms perform well in practice and scale well given the

large numbers of justifications and the size of these justifications. The main

reason for the scalability is due to the justificatory structure of naturally

occurring ontologies, in particular, the fact that real justifications tend to

overlap.

• The limiting factor for computing all justifications is hitting set tree size.

Failures that do occur are largely due to timeouts during the hitting set

tree construction process, and arise due to the fact that there are natu-

rally occurring ontologies that contain entailments with hundreds, or even

thousands, of justifications. Large numbers of justifications like these re-

sult in hitting set trees with millions of nodes. The kinds of failures that

occurred in the experiments, where there were large numbers of large justi-

fications, suggest that this is a hard problem to solve, and that the bounds

of tractability come into play. However, future research should focus on

trying to manage this and looking at ways to partition the problem.

• The performance of optimised black-box algorithms compares favourably

with the performance of glass-box algorithms for finding a single justifica-

tion and finding all justifications for an entailment. For consistent ontologies

black-box and glass-box times are typically of the same order of magnitude.

This result, coupled with the fact that it is highly non-trivial to implement

or augment an existing reasoner with glass-box tracing, suggests that it is

not worthwhile implementing tracing solely for the purpose of generating

justifications for explaining entailments. Indeed, the best use of reasoner

development resources, as far as justification finding is concerned, would be

to expend effort in ensuring that entailment checking is as optimised and

as robust as it can be.

CHAPTER 14. CONCLUSIONS 268

• Entailments in naturally occurring ontologies can have extremely large num-

bers of justifications that are well into the hundreds. This is an interesting

finding that does not appear to have been previously documented. It is

important because it has implications for both justification finding systems

and end user facing systems which have to deal with and present these large

numbers of justifications.

• In contrast to consistent ontologies, it appears that timeouts are more likely

to occur when computing justifications for inconsistent ontologies. There

are two reasons for this: (1) Some of the optimisations that are available for

use with consistent ontologies, such as modularisation, cannot be used with

inconsistent ontologies, and (2) The justifications for entailments in con-

sistent ontologies are typically numerous. While the corpus of inconsistent

ontologies used in the experiments is not particularly large, the ontologies

in it are from disparate sources and are rather diverse, which provides a

level of confidence that this is a common phenomenon.

Although the BioPortal ontologies are confined to modelling bio-medical knowl-

edge, the expressivity of them shows that many bio-medical ontologies need highly

expressive Description Logics for modelling purposes. Indeed, the BioPortal cor-

pus is not simply confined to some level of lightweight expressivity that is only

typical of bio-medical ontologies. More over the wide ranges of sizes, number

of non-trivial entailments, number of justifications per entailment, and sizes of

justifications provide a level of confidence that the results obtained in empirical

investigation can be generalised to ontologies that are outside of the BioPortal

corpus.

14.3.2 Laconic and Precise Justifications

The major contribution of this thesis has been the work on Laconic and Precise

Justifications; the definitions of them, algorithms for computing them and an

extensive evaluation of these algorithms on a large corpus of realistic ontologies.

Prior to this work, fine-grained or precise justifications had been identified as be-

ing important in the literature. The superfluity that can exist in regular justifica-

tions had been slated as being distracting, causing problems with understanding,

and causing problems with repair. Despite this, and the fact that there has been

some prior work on fine-grained justifications, there was no proper definition for

CHAPTER 14. CONCLUSIONS 269

them. All previous approaches use intuition to characterise them, or rely upon

“definition by implementation”. This was troublesome because it made it difficult

to extend the notion of fine-grained justifications to more expressive Description

Logics, it made it difficult to design and show the correctness of algorithms for

computing fine-grained justifications, and it made it difficult to properly analyse

their properties and the phenomena associated with superfluity and only paying

attention to parts of axioms. Providing proper definitions for fine-grained justifi-

cations, characterising and defining superfluity and, pinning down what parts of

axioms are, solves these problems and opens up the field for deeper investigation.

Chapters 7–11 therefore focused on fine-grained justifications. The main results

are as follows:

• A proper definition has been provided for Laconic and Precise Justifica-

tions. This is the first proper definition of fine-grained justifications to be

published. Although presented in the context of SHOIQ, at a conceptual

level the definition is essentially independent of the description logic used.

In particular, it centres around the the crisp notion of >⊥-superfluity and

the weakening of parts of axioms, both of which are defined using the stan-

dard notion of subconcepts in combination with Plaisted and Greenbaums’s

structural transformation. The other major advantage of this generality is

that the definition is not tied to a particular implementation technique.

Based on the definition, it is possible to design algorithms for detecting and

computing laconic justifications and check that they produce correct results,

rather than the result being correct because they are what the algorithm

produces.

• A proper characterisation and definition of justification masking has been

provided. This thesis has identified and defined four types of masking: In-

ternal masking, External masking, Cross-masking, and Shared-core masking

and has provided proper definitions for them. This is a significant step for-

ward, as all previous descriptions of masking were based on intuitions and

“definition by example”. This is despite the fact masking was identified

in the literature as one of the primary motivations for fine-grained justi-

fications. Moreover, as the empirical investigation in Chapter 11 shows,

masking is prevalent in naturally occurring ontologies and is therefore a

real and important phenomenon. Out of the 72 BioPortal ontologies, 53

CHAPTER 14. CONCLUSIONS 270

exhibited some kind of masking (9 internal, 23 external, and 53 shared-

core). In some cases, extreme levels of masking were observed, with some

entailments having around 14-18 regular justifications but around 400-500

laconic justifications.

• Syntax is a crucial aspect in the definition of laconic and precise justifi-

cations, and in the definition masking. Indeed, entailment-based notions

alone are not powerful enough to decide whether or not a justification is

laconic or whether or not masking is present. The interplay between syntax

and semantics was the most challenging aspect of coming up with a defini-

tion. At times, trying to pay homage to semantics and notions of weakness

seemed completely at odds with respecting the syntax, and to some ex-

tent the usability, of laconic justifications. Ignoring syntax is not possible,

because all reasonable intuitions of laconic justifications break down, and

ignoring semantics is not possible because it prevents phenomena such as

the notion of justification masking due to weakening being captured.

• It is possible to design and optimise algorithms for computing laconic jus-

tifications that form well in practice. Although some care was necessary

when considering how to compute preferred laconic justifications using op-

timised algorithms, the definitions of laconic and precise justifications are

such that the design and implementation of algorithms for computing them

is a fairly straightforward process. It is not necessary, for example, to mod-

ify tableau reasoner internals, and implementations can be based on existing

off-the-shelf justification finding services.

• The empirical evaluation shows that it is practical to compute laconic jus-

tifications for entailments in naturally occurring ontologies. Moreover, run-

time performance is perfectly acceptable for use in ontology debugging en-

vironments and for use in ancillary services which provide support to other

explanation services.

14.3.3 Understanding Justifications

Over the years, there has been anecdotal evidence from the OWL community

which has expressed the view that some naturally occurring justifications are dif-

ficult or impossible to understand. Prior to this thesis, it was not clear whether

CHAPTER 14. CONCLUSIONS 271

this was true, and if so, what degree of action was necessary to ameliorate the

problem. Hence, it seemed fruitful to investigate how people deal with justifi-

cations, what makes certain justifications difficult to understand, and suggest a

framework that could be used for coping with any problems when they arise.

Chapters 12 and 13 therefore concentrated on the understanding of justifications.

The main results are:

• It was found that a range of people, from neophytes to those with several

years of experience with OWL, can find some naturally occurring justifica-

tions very difficult or impossible to understand. Multiple types of axioms

and concept expressions, specific phenomena such as non-explicit synonyms

of >, trivial satisfaction, and unfamiliar patterns of axioms in subsets of

a justification cause problems with understanding. What is important are

the steps that must be taken to get from the axioms in a justification to

the target entailment, and naturally occurring justifications can contain

extremely difficult steps where the line of reasoning is highly non-obvious.

These results were captured in a complexity model for predicting how easy

or difficult a justification is to understand.

• This thesis has contributed a workable protocol for the validation and evo-

lution of a complexity model. The protocol is a user study based approach

where error proportions are used to assess the actual difficulty of justifica-

tions, in combination with followup think-aloud studies, which are smaller

and more focused, and can be used to investigate specific anomalies. The

advantage of this approach is that such studies can be carried out remotely

without the need for constant facilitator supervision. The use of this pro-

tocol showed that, although not perfect, the complexity model does have

predictive power and performs significantly better than chance alone.

• Superfluity was observed to cause problems with understanding. A series

of eye-tracking experiments revealed that, in some circumstances, people

can fixate on superfluous parts in justifications, and that this can cause

difficulties in understanding. However, some justification superfluity can

be completely trivial to the point where it is irrelevant for understanding.

The reasons as to what makes certain kinds of superfluity distracting and

harmful, and other kinds of superfluity inconsequential for the purposes of

CHAPTER 14. CONCLUSIONS 272

understanding are unclear. What is clear, is that this is a non-trivial prob-

lem, and blindly throwing a superfluity component into the model would

easily reduce the quality and predictive power of the model. The effect

of superfluity on understanding should be investigated as part of future

research.

• Justification oriented proofs were introduced as a speculative solution and

coping aid for situations where people cannot understand justifications.

They centre around the idea of using automated lemma generation tech-

niques to introduce helpful intermediate inference steps into a justification.

In essence, justifications get broken down into smaller chunks which guide

people from the axioms in the original justification through to the target

entailment. They are somewhat different from the natural deduction style

proofs that have been proposed as forms explanation elsewhere in the liter-

ature. In particular, the steps contained in them are not based on a fixed

set of inference rules. Instead, they are based solely on justifications and

the entailment relation, with the size and frequency of steps being cho-

sen by some complexity model. The hope is that a model based approach

will ensure that proofs do not become too fine-grained, so as to avoid users

switching into a proof checking mode and losing sight of why the entailment

holds in an ontology.

14.4 Outstanding Issues

This thesis set out to address several issues with justification based explanation.

While it has undoubtedly “advanced the cause”, there are some outstanding issues

which ought to be addressed:

14.4.1 Dealing with Redundancy in Justifications

As discussed in Section 8.8 on page 153, the definition of laconic justification only

deals with superfluity and does not deal with redundancy in the sense defined

by Quine in [Qui52]. This was a deliberate design decision that was taken to

keep the definition of laconic justifications simple, and more importantly make

it practical to implement a weakening based algorithm for computing them. An

investigation into redundancy and its prevalence in real ontologies was outside

CHAPTER 14. CONCLUSIONS 273

the scope of this thesis. However, it should be investigated and its relationship

to laconic justifications should be determined.

14.4.2 Presentation of Laconic Justifications

Work needs to be done to establish optimal presentation and interaction mech-

anisms for laconic justifications. The main challenge is to come up with smooth

ways in which to relate axioms in laconic justifications back to the asserted ax-

ioms from which they were derived. For simple occurrences of superfluity, the

strikeout mechanism used in Swoop, shown in Figure 7.5 on Page 7.5, is intuitive

to use and particularly effective. However, it is not clear how well this mechanism

would extend to the weakening of cardinality restrictions, or the weakening of ax-

ioms when only one direction of an implication is required. The presentation of

the various masking phenomena poses further interesting challenges, in particular

the indication of internal masking and bringing together shared cores.

14.4.3 Further Optimisation of Algorithms for Comput-

ing Laconic Justifications

Out of the two algorithms for computing laconic justifications, the incremental

π-based algorithm proved to be the most robust. However, there was still a

small percentage of entailments in the NCI ontology, to name one, for which it

was not possible to compute any preferred laconic justifications. The reason for

this was due to extremely deep concept nesting in a handful of (less than 5)

axioms. It could be possible that a hybrid algorithm which involves partial use

of the δ-transformation, (structural transformation) in combination with the π

based transformation would ameliorate the situation. The π could be applied

to all axioms whose subconcept nesting is below some threshold (that would

need to be determined by analytical and empirical analyses), and a variant of

the δ-transformation could be applied to axioms containing subconcept nesting

above this threshold. This would hopefully avoid the blow up in the number of

justifications when using the δ-transformation due to cross-masking, and would

avoid the blow up in size of π(O) due to axioms with deep subconcept nesting.

CHAPTER 14. CONCLUSIONS 274

14.4.4 Iteration and Refinement of the Complexity Model

The complexity model presented in Chapter 12 should be consider as a reason-

ably advanced starting point for further model refinement and validation. More

experimental cycles on a broader test set of justifications with more participants

should obviously be carried out. The main problem here is that to achieve a high

level of confidence that the model performs well on a particularly large corpus,

such as BioPortal, it would be necessary to sample something in the region of

1000 justifications. This is obviously prohibitively expensive. Ultimately, some

compromise has to be reached here, and in any case, it is arguable that only

enough evidence has to be amassed to really convince people that the model

works well in practice.

Differences in results from Experiment 8 and Experiment 9 indicate a dif-

ference in performance between participants with moderate experience in OWL

(PhD Students, Research Associates etc.), and people with little experience in

OWL (MSc students who had only just learnt OWL). It would be interesting to

investigate these differences, and establish how beginners approach understand-

ing justifications compared with people who are experienced in OWL. Not only

could this information be used to improve the complexity model, it could be

informative for people who design tutorials and training courses.

14.4.5 Evaluation of Justification Oriented Proofs

Justification oriented proofs were introduced as a speculative solution to the

problem of justification understanding. A thorough evaluation of justification

oriented proofs is therefore beyond the scope of this thesis. However, it is obvious

that there is far more work to be done here. In particular, there is no guarantee

that current approach is completely immune to producing fine-grained proofs.

It would therefore be worth investigating granularity problems, determining to

what extent justification oriented proofs are susceptible to them, and devising

some way of striking the right balance.

Another large piece of work that needs to be done is the design of a smooth

presentation and interaction mechanism for use in tools like Protégé-4. This

is certainly a non-trivial task. In the presentation of proofs in this thesis, a

top-down summarising approach from entailment to premises was used for illus-

trative purposes. However, it is likely that a bottom-up approach from premises

CHAPTER 14. CONCLUSIONS 275

to entailment would fare as well if not better. Finally, only when an interac-

tion mechanism is in place can justification oriented proofs be evaluated from

a human perspective. Studies need to be carried out to determine the efficacy

of justification oriented proofs. For completeness justification oriented proofs

should be compared with regular justifications, laconic justifications, and classic

natural deduction style proofs. While early indications from demonstrating tools

at conferences and workshops suggest that justification oriented proofs would be

popular with users, a formal user study is of course needed.

14.5 Future Work

The process of carrying out experiments on the BioPortal and the results obtained

from these experiments, in particular the picture gained about the justificatory

structure of realistic ontologies, suggests some avenues for further work which are

presented below.

14.5.1 Dealing with Multiple Justifications

The results presented in Chapters 6 and 10 show that there can be large numbers

of naturally occurring regular justifications and preferred laconic justifications

per entailment. For example, several ontologies contained entailments with hun-

dreds of justifications. While huge numbers of justifications can be computed,

presenting them to people for assimilation becomes a significant problem. At a

basic level, strategies for ranking and ordering justifications should be pursued

so that justifications salient for repair or understanding can be presented first.

Obviously, metrics for ranking must be developed for this to work.

When justifications for an entailment exhibit a high degree of overlap it might

be worthwhile in only presenting the difference between them. A more advanced

strategy would be to find common lemmata which summarise these differences.

CHAPTER 14. CONCLUSIONS 276

For example, the ontology

O = {A v B (α1)

B v C (α2)

A v ∃R.D (α3)

∃R.> v B (α4)

> v ∀S.B (α5)

R ≡ S−} |= A v C (α6)

contains three justifications for A v C: J1 = {α1, α2}, and J2 = {α2, α3, α4}, and

J2 = {α2, α3, α5, α6}. All of these justifications entail A v B, and this could be

used as a lemma to highlight the both the commonalities and differences amongst

them. That is, Jbase = {A v B, B v C} should be considered a base justification

with the lemma A v B being justified by fragments of the other justifications,

for example JAvB = {A v ∃R.D, ∃R.> v B}. The challenge of course is finding

helpful common lemmata, which may be axioms with complex class expressions.

14.5.2 Justifications for Ontology Comprehension

As seen in the results of the empirical evaluation, there are a significant number

of BioPortal ontologies that are logically rich. While some impression of the

richness may be gleaned from looking at the DL expressivity metrics presented in

Table 5.1 on page 93, these metrics are rather coarse-grained and opaque. That

is, DL expressivity does not give an indication of the part played by axioms in

the ontology in entailing structures such as the concept hierarchy. The use of

the notion of non-trivial entailments, counting the number of justifications per

entailment, their average size, their overlap and their expressivity in relation to

the expressivity of the ontology provides a deeper picture of what the ontology

is like from a logic-based perspective.

The kind of logic-based metrics that are useful and the phenomena that they

illustrate seems worthy of further investigation. As well as providing a deeper

picture of the contents of a single ontology it could be used to facilitate the

comparisons of multiple ontologies as well as drawing out commonalities and

differences between different collections of ontologies.

CHAPTER 14. CONCLUSIONS 277

14.5.3 Reasoner Benchmarking

Computing justifications stresses parts of reasoners that do not necessarily get

a thorough work out during classification. This is due to the fact that justifica-

tion finding, and black-box justification finding in particular, typically requires

large numbers of entailment checks on many different sets of axioms. Since many

reasoner benchmarks concentrate on classification, using justification finding per-

formance as a metric could provide a new interesting dimension for comparing

reasoner performance.

14.5.4 Comparison of Different Corpora

Much of the corpus used for the empirical evaluation of algorithms presented in

this thesis has been based on ontologies found in the BioPortal. At the time of

writing, third party non-biomedical-ontology installations of the BioPortal soft-

ware are coming on line. An interesting investigation would be to compare the

repositories of ontologies from different communities, in terms of non-trivial en-

tailments, justifications per entailment etc. and see how the justificatory structure

and modelling style varies from one community to another.

Bibliography

[ABB+00] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Bot-

stein, Heather Butler, J. Michael Cherry, Alan P. Davis, Kara

Dolinski, Selina S. Dwight, Janan T. Eppig, Midori A. Harris,

David P. Hill, Laurie Issel-Tarver, Andrew Kasaerskis, Suzanna

Lewis, John C. Matese, Joel E. Richardson, Martin Ringwald, Ger-

ald M. Rubin, and Gavin Sherlock. Gene Ontology: tool for the

unification of biology. Nature Genetics, 25(1):25–29, May 2000.

[AGM85] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On

the logic of theory change: Partial meet contraction and revision

functions. Journal of Symbolic Logic, 50(2):510–530, 1985.

[Baa91] Franz Baader. Augmenting concept languages by transitive clo-

sure of roles: an alternative to terminological cycles. In IJCAI’91:

Proceedings of the 12th international joint conference on Artificial

intelligence, pages 446–451, San Francisco, CA, USA, 1991. Mor-

gan Kaufmann Publishers Inc.

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the

EL envelope. In eslie Pack Kaelbling and Alessandro Saffiotti, ed-

itors, IJCAI-05, Proceedings of the Nineteenth International Joint

Conference on Artificial Intelligence, Edinburgh, Scotland, UK,

July 30-August 5, 2005, pages 364–369. Professional Book Center,

August 2005.

[BBMR89] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness,

and Lori Alperin Resnick. CLASSIC: a structural data model for

278

BIBLIOGRAPHY 279

objects. In James Clifford, Bruce Lindsay, and David Maier, edi-

tors, Proceedings of the 1989 ACM SIGMOD International Confer-

ence on Management of Data, pages 58–67. Association for Com-

puting Machinery, Inc. (ACM), June 1989.

[BCH06] Claudia Bartz, Amy Coenen, and Woi-Hyun Hong. Participation

in the International Classification for Nursing Practice (ICNP). In

Arie Hasman, Reinold Haux, Johan van der Lei, Etienne De Clercq,

and Francis H. Roger France, editors, Ubiquity: Technologies for

Better Health in Aging Societies - Proceedings of MIE 2006, The

XXst International Congress of the European Federation for Medi-

cal Informatics, Maastricht, The Netherlands, August 27-30, 2006,

volume 124 of Studies in Health Technology and Informatics, pages

157–161. IOS press, 2006.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, D Nardi,

and Peter F. Patel-Schneider. The Description Logic Handbook:

Theory, Implementation and Applications. Cambridge University

Press, 2003.

[BCR08] Alexander Borgida, Diego Calvanese, and Mariano Rodriguez. Ex-

planation in dl-lite. In Description Logics, 2008.

[BEL01] Matthias Baaz, Uwe Egly, and Alexander Leitsch. Normal form

transformations. In John Alan Robinson and Andrei Voronkov,

editors, Handbook of Automated Reasoning, volume 1, pages 273–

333. Elsevier and MIT Press, 2001.

[BFH00] Alex Borgida, Enrico Franconi, and Ian Horrocks. Explaining ALC
subsumption. In Werner Horn, editor, Proceedings of the 14th Eu-

ropean Conference on Artificial Intelligence, Berlin, Germany, Au-

gust 20-25, 2000, pages 209–213. IOS Press, 2000.

[BG09] Dan Brickley and R. V. Guha. RDF Vocabulary Description Lan-

guage 1.0: RDF Schema. W3C Recommendation, World Wide

Web Consortium, February 2009.

[BGB+99] Patricia G. Baker, Carole A. Goble, Sean Bechhofer, Norman W.

BIBLIOGRAPHY 280

Paton, Robert Stevens, and Andy Brass. An ontology for bioinfor-

matics applications. Bioinformatics, 15(6):510–520, 1999.

[BH95] Franz Baader and Bernhard Hollunder. Embedding defaults into

terminological knowledge representation formalisms. Journal of

Automated Reasoning, 14(1):149–180, 1995.

[BHGS01] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens.

OilEd: A Reason-able ontology editor for the semantic web. In

Proc. of the Joint German/Austrian Conf. on Artificial Intelligence

(KI 2001), number 2174 in Lecture Notes in Artificial Intelligence,

pages 396–408. Springer, 2001.

[Bie08] M. Bienvenu. Prime implicate normal form for ALC concepts. In

AAAI-08, pages 412–417, 2008.

[Bie09] Meghyn Bienvenu. Prime implicates and prime implicants: From

propositional to modal logic. Journal of Artificial Intelligence Re-

search, 36:71–128, 2009.

[BLS06a] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-

time reasoner for life science ontologies. In U. Furbach and

N. Shankar, editors, Proceedings of the 3rd International Joint

Conference on Automated Reasoning (IJCAR’06), volume 4130 of

Lecture Notes in Artificial Intelligence, pages 287–291. Springer-

Verlag, 2006.

[BLS06b] F. Baader, C. Lutz, and B. Suntisrivaraporn. Efficient reasoning

in EL+. In Proceedings of the 2006 International Workshop on

Description Logics (DL2006), CEUR-WS, 2006. To appear.

[BMC03] Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG de-

scription logic interface. In Diego Calvanese, Giuseppe De Gia-

como, and Enrico Franconi, editors, Proceedings of the 2003 Inter-

national Workshop on Description Logics (DL 2003), Rome, Italy,

September 5–7, 2003, volume 81 of CEUR Workshop Proceedings.

CEUR, September 2003.

[BP10] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general

tableaux. Journal of Logic Computation, 20(1):5–34, 2010.

BIBLIOGRAPHY 281

[BPS07] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn.

Pinpointing in the description logic EL. In Joachim Hertzberg,

Michael Beetz, and Roman Englert, editors, KI 2007: Advances

in Artificial Intelligence, 30th Annual German Conference on AI,

KI 2007, Osnabrück, Germany, volume 4667 of Lecture Notes in

Computer Science, pages 52–67. Springer, September 2007.

[Bra04] Sebastian Brandt. Polynomial time reasoning in a description logic

with existential restrictions, GCI axioms, and—what else? In

R. López de Mantáras and L. Saitta, editors, Proceedings of the

16th European Conference on Artificial Intelligence (ECAI-2004),

pages 298–302. IOS Press, 2004.

[BS01] Franz Baader and Ulrike Sattler. An overview of tableau algorithms

for description logics. Studia Logica, 69:5–40, 2001.

[BS05] James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfi-

able subsets of contraints using hitting set dualization. In Practical

Aspects of Declarative Languages (PADL 05), 2005.

[BS08] Franz Baader and Boontawee Suntisrivaraporn. Debugging

SNOMED CT using axiom pinpointing in the description logic

EL+. In Proceedings of the 3rd Knowledge Representation in

Medicine Conference (KR-MED’08): Representing and Sharing

Knowledge Using SNOMED, 2008.

[BVL03] Sean Bechhofer, Raphael Volz, and Philip Lord. Cooking the se-

mantic web with the OWL API. In Dieter Fensel, Katia Sycara,

and John Mylopoulos, editors, The Semantic Web - ISWC 2003.

The Second International Semantic Web Conference, Sanibel Is-

land, Florida, USA, volume 2870/2003 of Lecture Notes in Com-

puter Science, pages 659–675, Sanibel Island, Florida, USA, Octo-

ber 2003. Springer.

[BvW06] Patrick Blackburn, Johan van Benthem, and Frank Wolter, edi-

tors. The Handbook of Modal Logic, volume 3 of Studies in Logic.

Elsevier, 2006.

BIBLIOGRAPHY 282

[CGL97] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.

Conjunctive query containment in description logics with n-ary re-

lations. In Ronald J. Brachman, Francesco M. Donini, Enrico Fran-

coni, Ian Horrocks, Alon Y. Levy, and Marie-Christine Rousset, ed-

itors, Proceedings of the 1997 International Workshop on Descrip-

tion Logics, Université Paris-Sud, Centre d’Orsay, Laboratoire de

Recherche en Informatique LRI, volume 410 of URA-CNRS, 1997.

[Chi97] John W. Chinneck. Finding a useful subset of constraints for analy-

sis in an infeasible linear program. Informs Journal on Computing,

9:164–174, 1997.

[CHKS07] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ul-

rike Sattler. Just the right amount: Extracting modules from on-

tologies. In WWW 2007, Proceedings of the 16th International

World Wide Web Conference, Banff, Canada, May 8-12, 2007,

pages 717–727, 2007.

[CHM+08] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia,

Peter Patel-Schneider, and Ulrike Sattler. OWL 2: The next step

for OWL. Journal of Web Semantics, 2008.

[CHWK07] Bernardo Cuenca Grau, Christian Halasheck-Wiener, and Yevgeny

Kazakov. History matters: Incremental ontology reasoning using

modules. In Karl Aberer, Key-Sun Choi, Natalya F. Noy, Guus

Schreiber, and Riichiro Mizoguchi, editors, The Semantic Web - 6th

International Semantic Web Conference, 2nd Asian Semantic Web

Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November

11-15, 2007, volume 4825 of Lecture Notes in Computer Science,

pages 183–196. Springer, 2007.

[CLLR05] Diego Calvanese, Domenico Lembo, Maurizio Lenzerini, and Ric-

cardo Rosati. Dl-lite: Tractable description logics for ontologies. In

Manuela M. Veloso and Subbarao Kambhampati, editors, Proceed-

ings, The Twentieth National Conference on Artificial Intelligence

and the Seventeenth Innovative Applications of Artificial Intelli-

gence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA,

pages 602–607, 2005.

BIBLIOGRAPHY 283

[Coc50] William Gemmell Cochran. The comparison of percentages in

matched samples. Biometrika, 37:256–266, 1950.

[DFK+07] Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Aaron Kershen-

baum, Edith Schonberg, Kavitha Srinivas, and Li Ma. Scal-

able semantic retrieval through summarization and refinement.

In Robert C. Holte and Adele Howe, editors, Proceedings of the

Twenty-Second AAAI Conference on Artificial Intelligence, July

22-26, 2007, Vancouver, British Columbia, Canada, pages 299–

304. AAAI Press, 2007.

[DH88] Randall Davis and Walter C. Hamscher. Model-based reasoning:

troubleshooting. Exploring Artificial Intelligence: Survey Talks

from the National Conferences on Artificial Intelligence, pages 297–

346, 1988.

[dKAHC+99] N. F. de Keizer, Ameen. Abu-Hanna, Ronald Cornet, Johanna

H. M. Zwetsloot-Schonk, and Chris P. Stoutenbeek. Analysis and

design of an ontology for intensive care diagnoses. Methods of In-

formation in Medicine, 38:102–112, 1999.

[dKBRJC08] N. F. de Keizer, F Bakhshi-Raiez, E De Jonge, and Ronald

Cornet. Post-coordination in practice: evaluating compositional

terminological-system-based registration of icu reasons for admis-

sion. International Journal of Medical Informatics, 77:828–835,

2008.

[DLR08] P. P. Kanjamala Mark A. Musen Daniel L. Rubin, Dilvan de

Abreu Moreira. BioPortal: A web portal to biomedical ontolo-

gies. In Peter Fox Deborah L. McGuinness and Boyan Brodaric,

editors, AAAI Spring Symposium Serires, Symbiotic Relationships

between Semantic Web and Knowledge Engineering, Stanford Uni-

versity, volume Technical Report SS-08-05, page 136. AAAI Press,

March 2008.

[dSSC+08] Paulo Pinheiro da Silva, Geoff Sutcliffe, Cynthia Chang, Li Ding,

Nick del Rio, and Deborah L. McGuinness. Presenting tstp proofs

with inference web tools. In PAAR/ESHOL, 2008.

BIBLIOGRAPHY 284

[ELM+05] Karen Eilbeck, Suzanna Lewis, Christopher J. Mungall, Mark Yan-

dell, Lincoln Stein, Richard Durbin, and Michael Ashburner. The

Sequence Ontology: a tool for the unification of genome annota-

tions. Genome Biology, 6(5), April 2005.

[End00] Ulrich Endriss. Reasoning in description logics with wellington 1.0

– system description. In Proceedings of the 7th Workshop on Auto-

mated Reasoning. Bridging the Gap between Theory and Practice,

volume 32 of CEUR Workshop Proceedings. CEUR-WS.org, July

2000.

[FS05] Gerhard Friedrich and Kostyantyn Shchekotykhin. A general di-

agnosis method for ontologies. In Yolanda Gil, Enrico Motta,

V. Richard Benjamins, and Mark A. Musen, editors, The Seman-

tic Web – ISWC 2005 4th International Semantic Web Conference,

ISWC 2005, Galway, Ireland, November 6-10, 2005, volume 3729

of Lecture Notes in Computer Science, pages 232–246. Springer,

October 2005.

[G9̈2] Peter Gärdenfors. Belief Revision: An Introduction, pages 1–20.

Cambridge University Press, 1992.

[Gen84] Michael R. Genesereth. The use of design descriptions in automated

diagnosis. Artificial Intelligence, 24(1):411–436, December 1984.

[GFH+03] Jennifer Golbeck, Gilberto Fragoso, Frank Hartel, Jim Hendler,

Jim Oberthaler, and Bijan Parsia. National cancer institute’s the-

saurus and ontology. Journal of Web Semantics, 1(1):75–80, De-

cember 2003.

[GH07] Christine Golbreich and Ian Horrocks. The OBO to OWL mapping,

GO to OWL 1.1! In Proc. of the Third OWL Experiences and

Directions Workshop, number 258 in CEUR (http://ceur-ws.

org/), 2007.

[GHH+07] Christine Golbreic, Matthew Horridge, Ian Horrocks, Boris Motik,

and Rob Shearer. OBO and OWL: Leveraging semantic web tech-

nologies for the life sciences. In Karl Aberer, Key-Sun Choi, Na-

talya F. Noy, Guus Schreiber, and Riichiro Mizoguchi, editors, The

BIBLIOGRAPHY 285

Semantic Web - 6th International Semantic Web Conference, 2nd

Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Bu-

san, Korea, November 11-15, 2007, volume 4825 of Lecture Notes

in Computer Science, pages 169–182. Springer, 2007.

[GHKS08] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and

Ulrike Sattler. Modular reuse of ontologies: Theory and prac-

tice. Journal of Artificial Intelligence Research (JAIR), 31:273–

318, 2008.

[GiL99] Ontology for immunogenetics: the IMGT-ONTOLOGY. Bioinfor-

matics, 15(12):1047–1054, June 1999.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-

tractability: A Guide to the Theory of NP-Completeness. Books

in the Mathematical Sciences. W. H. Freeman, January 1979.

[GLW06] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did i damage

my ontology? a case for conservative extensions in description

logic. In Patrick Doherty, John Mylopoulos, and Christopher A.

Welty, editors, The 10th International Conference on Principles of

Knowledge Representation and Reasoning (KR 2006), Lake Dis-

trict, United Kingdom. AAAI Press, June 2006.

[Gro09] Mike Grove. OWLSight. http://pellet.owldl.com/

ontology-browser, October 2009.

[GRV10] Birte Glimm, Sebastian Rudolph, and Johanna Völker. Inte-

grated metamodeling and diagnosis in OWL 2. In Peter F. Patel-

Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang 0007,

Jeff Z. Pan, Ian Horrocks, and Birte Glimm, editors, The Semantic

Web - ISWC 2010 - 9th International Semantic Web Conference,

ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Se-

lected Papers, Part I, volume 6496 of Lecture Notes In Computer

Science, pages 257–272. Springer, 2010.

[GSW89] Russell Greiner, Barbara A. Smith, and Ralph W. Wilkerson. A

correction to the algorithm in reiter’s theory of diagnosis. Artificial

Intelligence, 41:79–88, 1989.

BIBLIOGRAPHY 286

[GW11] Stephan Grimm and Jens Wissmann. Elimination of redundancy

in ontologies. In Grigoris Antoniou, Marko Grobelnik, Elena Sim-

perl, Bijan Parsia, Dmitris Plexousakis, Pieter De Leenheer, and

Jeff Pan, editors, The Semantic Web: Research and Applications.

8th Extended Semantic Web Conference, ESWC 2011, Heraklion,

Crete, Greece, May 29-June 2, 2011, Proceedings, Part I, vol-

ume 6643 of Lecture Notes In Computer Science, pages 260–274.

Springer, June 2011.

[Hal77] Maurice H. Halstead. Elements of Software Science. Elsevier, New

York, 1977.

[HB09] Matthew Horridge and Sean Bechhofer. The OWL API: A Java

API for working with OWL 2 ontologies. In Rinke Hoeksta and Pe-

ter F. Patel-Schneider, editors, OWL: Experiences and Directions

(OWLED 2009), 6th OWL Experienced and Directions Workshop,

Chantilly, Virginia, October 2009., CEUR Workshop Proceedings.

CEUR, October 2009.

[HB11] Matthew Horridge and Sean Bechhofer. The OWL API: A Java

API for OWL ontologies. Semantic Web, 2(1):11–21, February

2011.

[HBPS08] Matthew Horridge, Johannes Bauer, Bijan Parsia, and Ulrike Sat-

tler. Understanding entailments in OWL. In Catherine Dol-

bear, Alan Ruttenberg, and Ulrike Sattler, editors, Proceedings

of the Fifth OWLED Workshop on OWL: Experiences and Direc-

tions, collocated with the 7th International Semantic Web Con-

ference (ISWC-2008), Karlsruhe, Germany, October 26-27, 2008,

volume 432 of CEUR Workshop Proceedings. CEUR-WS.org, Oc-

tober 2008.

[HBPS11a] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike Sat-

tler. The cognitive complexity of OWL justifications. In Ric-

cardo Rosati, Sebastian Rudolph, and Michael Zakharyashev, ed-

itors, Proceedings of the 24th International Workshop on Descrip-

tion Logics (DL2011), Barcelona, Spain July 13–16, 2011, CEUR

Workshop Proceedings. CEUR-WS.org, July 2011.

BIBLIOGRAPHY 287

[HBPS11b] Matthew Horridge, Samantha Bail, Bijan Parsia, and Ulrike Sat-

tler. The cognitive complexity of OWL justifications. In Christo-

pher A. Welty, Lora Aroyo, and Natalya F. Noy, editors, The

Semantic Web - ISWC 2011 - 10th International Semantic Web

Conference, ISWC 2011, Bonn, Germany, October 23-27, 2011,

Lecture Notes In Computer Science. Springer, 2011.

[HCK92] Walter Hamscher, Luca Console, and Johan de Kleer, editors.

Readings in Model Based Diagnosis. Morgan Kaufmann Publishers

Inc., June 1992.

[HDG+06] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector,

Robert Stevens, and Hai H Wang. The manchester owl syntax. In

OWL: Experiences and Directions (OWLED), 2006.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more

irresistible SROIQ. In Patrick Doherty, John Mylopoulos, and

Christopher A. Welty, editors, The 10th International Confer-

ence on Principles of Knowledge Representation and Reasoning

(KR 2006), Lake District, United Kingdom, pages 57–67. AAAI

Press, June 2006.

[HM01] Volker Haarslev and Ralf Möller. RACER system description. In

International Joint Conference on Automated Reasoning (IJCAR

2001), volume 2083 of Lecture Notes In Computer Science, pages

701–705, 2001.

[Hor97] Ian Horrocks. Optimising Tableaux Decision Procedures for De-

scription Logics. PhD thesis, University of Manchester, 1997.

[Hor02] Ian Horrocks. DAML+OIL: a reason-able web ontology language.

In Proc. of EDBT 2002, number 2287 in Lecture Notes in Computer

Science, pages 2–13. Springer, March 2002.

[Hor05] Ian Horrocks. Applications of description logics: State of the art

and research challenges. In Frithjof Dau, Marie-Laure Mugnier,

and Gerd Stumme, editors, Conceptual Structures: Common Se-

mantics for Sharing Knowledge, 13th International Conference on

Conceptual Structures, ICCS 2005, Kassel, Germany, July 17-22,

BIBLIOGRAPHY 288

2005, Proceedings, volume 3596 of Lecture Notes In Computer Sci-

ence, pages 78–90. Springer, 2005.

[HP10] Matthew Horridge and Bijan Parsia. From justifications towards

proofs for ontology engineering. In Fangzhen Lin, Ulrike Sattler,

and Miroslaw Truszczynski, editors, Principles of Knowledge Rep-

resentation and Reasoning: Proceedings of the Twelfth Interna-

tional Conference, KR 2010, Toronto, Ontario, Canada, May 9-13,

2010. AAAI Press, 2010.

[HPS08a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Explanation

of OWL entailments in Protégé-4. In Christian Bizer and Anupam

Joshi, editors, International Semantic Web Conference (Posters

& Demos), volume 401 of CEUR Workshop Proceedings. CEUR-

WS.org, October 2008.

[HPS08b] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and

precise justifications in OWL. In Amit P. Sheth, Steffen Staab,

Mike Dean, Massimo Paolucci, Diana Maynard, Timothy W. Finin,

and Krishnaprasad Thirunarayan, editors, The Semantic Web –

ISWC 2008, 7th International Semantic Web Conference, ISWC

2008, Karlsruhe, Germany, October 26-30, 2008.ISWC 2008, vol-

ume 5318 of Lecture Notes In Computer Science, pages 323–338.

Springer, October 2008.

[HPS08c] Matthew Horridge and Peter F. Patel-Schneider. Manchester

OWL Syntax for OWL 1.1. In OWL: Experiences and Directions

(OWLED), 2008.

[HPS09a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Computing

explanations for entailments in Description Logic based ontologies.

In 16th Automated Reasoning Workshop (ARW 2009), Liverpool,

UK., 2009.

[HPS09b] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Explaining

inconsistencies in OWL ontologies. In Luis Godo and Andrea

BIBLIOGRAPHY 289

Pugliese, editors, 3rd International Conference on Scalable Uncer-

tainty Management SUM 2009, September 28–30, 2009 Washing-

ton DC Area, USA, volume 5785 of Lecture Notes In Computer

Science, pages 124–137. Springer, 2009.

[HPS09c] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. From justifi-

cations to proofs for entailments in OWL. In Rinke Hoekstra and

Peter F. Patel-Schneider, editors, Proceedings of the 5th Interna-

tional Workshop on OWL: Experiences and Directions (OWLED

2009), Chantilly, VA, United States, October 23-24, 2009, volume

529 of CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[HPS09d] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Lemmas

for justifications in OWL. In Bernardo Cuenca Grau, Ian Hor-

rocks, Boris Motik, and Ulrike Sattler, editors, Description Logics

(DL 2009), volume 477 of CEUR Workshop Proceedings. CEUR-

WS.org, July 2009.

[HPS10a] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Justification

masking in OWL. In Grant Weddell, Volker Haarslev, and David

Toman, editors, Proceedings of the 23rd International Workshop on

Description Logics (DL 2010), Waterloo, Canada. May 4th–May

7th, 2010, 2010.

[HPS10b] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Justification

oriented proofs in OWL. In Peter F. Patel-Schneider, Yue Pan,

Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Horrocks,

and Birte Glimm, editors, The Semantic Web - ISWC 2010 - 9th

International Semantic Web Conference, ISWC 2010, Shanghai,

China, November 7-11, 2010, Revised Selected Papers, Part I, vol-

ume 6496 of Lecture Notes In Computer Science, pages 354–369.

Springer, November 2010.

[HPS11] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. The state

of biomedical ontologies. In BioOntologies 2011 Co-Located with

ISMB 2011, 15th–16th July, Vienna Austria, 2011.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen.

BIBLIOGRAPHY 290

From SHIQ and RDF to OWL: The making of a web ontology

language. J. of Web Semantics, 1(1):7–26, 2003.

[HS07] Ian Horrocks and Ulrike Sattler. A tableau decision procedure for

SHOIQ. Journal of Automated Reasoning, 39(3):249–276, 2007.

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical rea-

soning for very expressive description logics. Logic Journal of the

IGPL, 8(3), 2000.

[HTR06] Matthew Horridge, Dmitry Tsarkov, and Timothy Redmond.

Supporting early adoption of OWL 1.1 with Protégé-OWL and

FaCT++. In Bernardo Cuenca Grau, Pascal Hitzler, Conor

Shankey, and Evan Wallace, editors, OWL: Experiences and Di-

rections (OWLED), volume 216 of CEUR Workshop Proceedings.

CEUR-WS.org, November 2006.

[Hua94] Xiaorong Huang. Reconstructing proofs at the assertion level. In

Alan Bundy, editor, Automated Deduction - CADE-12, 12th In-

ternational Conference on Automated Deduction, Nancy, France,

June 26 - July 1, 1994, volume 814 of Lecture Notes In Computer

Science, pages 738–752. Springer, July 1994.

[Hv06] Zhisheng Huang and Frank van Harmelen. Reasoning with incon-

sistent ontologies: Evaluation. Sekt ed-ist-2003-506826 deliverable,

Vrije Universiteit Amsterdam, January 2006.

[HWKP06] Christian Halaschek-Wiener, Yarden Katz, and Bijan Parsia. Belief

base revision for expressive description logics. In Bernardo Cuenca

Grau, Pascal Hitzler, Conor Shankey, and Evan Wallace, editors,

Proceedings of the OWLED 06 Workshop on OWL: Experiences

and Directions, Athens, Georgia, USA, November 10-11, 2006.,

volume 216 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[JE10] Dietmar Jannach and Ulrich Engler. Toward model-based debug-

ging of spreadsheet programs. In Alberta Caplinskas and Takako

Nakantani, editors, 9th Joint Conference on Knowledge-Based Soft-

ware Engineering (JCKBSE 10) August 25-27, 2010, Kaunas,

Lithuania, pages 252–264, August 2010.

BIBLIOGRAPHY 291

[JHQ+09] Qiu Ji, Peter Haase, Guilin Qu, Pascal Hitzler, and Steffen Stadt-

moeller. RaDON – repair and diagnosis in ontology networks.

In Lora Aroyo, Paolo Traverso, Fabio Ciravegna, Philipp Cimi-

ano, Tom Heath, Eero Hyvönen, Riichiro Mizoguchi, Eyal Oren,

Marta Sabou, and Elena Simperl, editors, The Semantic Web: Re-

search and Applications, 6th European Semantic Web Conference,

ESWC 2009 Heraklion, Crete, Greece, May 31–June 4, 2009, vol-

ume 5554/2009, pages 863–867. Springer Berlin /Heidelberg, May

2009.

[JLB91] Philip N. Johnson-Laird and Ruth M. J. Byrne. Deduction. Psy-

chology Press, 1991.

[JQH09] Qiu Ji, Guilin Qi, and Peter Haase. A relevance-directed algo-

rithm for finding justifications of dl entailments. In Asunción

Gómez-Pérez, Yong Yu, and Ying Ding, editors, The Semantic

Web, Fourth Asian Conference, ASWC 2009, Shanghai, China,

December 6-9, 2009. Proceedings, volume 5926 of Lecture Notes In

Computer Science, pages 306–320. Springer, December 2009.

[Jun01] Ulrich Junker. QUICKXPLAIN: Conflict detection for arbitrary

constraint propagation algorithms. In Christian Bessiere, Francois

Laburthe, Pedro Meseguer, Jean-Charles Regin, Francesca Rossi,

Babara Smith, and Toby Walsh, editors, Workshop on Modelling

and Solving Problems with Constraints, CONS-1, August 2001.

nternational Joint Conference on Artificial Intelligence (IJCAI-

2001), Seattle WA, August 2001.

[Jun04] Ulrich Junker. QUICKXPLAIN: preferred explanations and relax-

ations for over-constrained problems. In Anthony G. Cohn, ed-

itor, Proceedings of the 19th national conference on Artifical in-

telligence (AAAI 04) San Jose, California,, pages 167–172. AAAI

Press, 2004.

[Kal06] Aditya Kalyanpur. Debugging and Repair of OWL Ontologies. PhD

thesis, The Graduate School of the University of Maryland, 2006.

[Kaz09] Yevgeny Kazakov. Consequence-driven reasoning for horn SHIQ
ontologies. In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik,

BIBLIOGRAPHY 292

and Ulrike Sattler, editors, 22nd International Workshop on De-

scription Logics, Oxford, UK, volume 477 of CEUR Workshop Pro-

ceedings. CEUR-WS.org, July 2009.

[KFNM04] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and

Mark A. Musen. The Protégé OWL plugin: An open development

environment for semantic web applications. In Sheila McIlraith,

Dimitris Plexousakis, and Frank van Harmelen, editors, ISWC

04 The International Semantic Web Conference 2004, Hiroshima,

Japan, Lecture Notes in Computer Science. Springer-Verlag, 2004.

[KK07] Petr Kremen and Zdenek Kouba. Incremental approach to error

explanations in ontologies. In I-KNOW 07. Graz: Graz University

of Technology, 2007, pages 332–339, 2007.

[Knu07] Holger Knublauch. Composing the semantic web: Explaining in-

ferences. http://composing-the-semantic-web.blogspot.com/

2007/08/explanining-inferences.html, August 2007.

[KPG06] Aditya Kalyanpur, Bijan Parsia, and Bernardo Cuenca Grau. Be-

yond asserted axioms: Fine-grain justifications for OWL-DL entail-

ments. In Bijan Parsia, Ulrike Sattler, and David Toman, editors,

DL 2006, Lake District, U.K., volume 189 of CEUR Workshop

Proceedings. CEUR-WS.org, 2006.

[KPH05] Aditya Kalyanpur, Bijan Parsia, and James Hendler. A tool for

working with web ontologies. In International Journal on Semantic

Web and Information Systems, volume 1, Jan - Mar 2005.

[KPHS07] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren

Sirin. Finding all justifications of OWL DL entailments. In Karl

Aberer, Key-Sun Choi, Natalya F. Noy, Guus Schreiber, and Ri-

ichiro Mizoguchi, editors, The Semantic Web - 6th International

Semantic Web Conference, 2nd Asian Semantic Web Conference,

ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007,

volume 4825 of Lecture Notes in Computer Science, pages 267–280.

Springer, 2007.

BIBLIOGRAPHY 293

[KPS05] Aditya Kalyanpur, Bijan Parsia, and Evren Sirin. Black box tech-

niques for debugging unsatisfiable concepts. In Ian Horrocks, Ulrike

Sattler, and Frank Wolter, editors, Proceedings of the 2005 Inter-

national Workshop on Description Logics (DL2005), Edinburgh,

Scotland, UK, July 26-28, 2005, volume 147 of CEUR Workshop

Proceedings. CEUR-WS.org, July 2005.

[KPSG06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca

Grau. Repairing unsatisfiable concepts in OWL ontologies. In

European Semantic Web Conference (ESWC), Budva, Montenegro

2006, 2006.

[KPSH05] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler.

Debugging unsatisfiable classes in OWL ontologies. Journal of Web

Semantics, 3(4), 2005.

[Kwo05] Francis King Hei Kwong. Practical approach to explaining ALC
subsumption. Technical report, The University of Manchester,

2005.

[Lam07] Sik Chun Joey Lam. Methods for Resolving Inconsistencies In On-

tologies. PhD thesis, Department of Computer Science, Aberdeen,

2007.

[LBF+06] Carsten Lutz, Franz Baader, Enrico Franconi, Domenico Lembo,

Ralf Möller, Riccardo Rosati, Ulrike Sattler, Boontawee Suntis-

rivaraporn, and Sergio Tessaris. Reasoning support for ontology

design. In Bernardo Cuenca Grau, Pascal Hitzler, Conor Shankey,

and Evan Wallace, editors, Proceedings of the OWLED 06 Work-

shop on OWL: Experiences and Directions, Athens, Georgia, USA,

Novemver 10–11, 2006, volume 216 of CEUR Workshop Proceed-

ings. CEUR-WS.org, November 2006.

[Lew82] Clayton H. Lewis. Using the thinking-aloud method in cognitive

interface design. Research report RC-9265, IBM, 1982.

[Lin89] Christoph Lingenfelder. Structuring computer generated proofs. In

BIBLIOGRAPHY 294

proceedings of the Eleventh International Joint Conference on Ar-

tificial Intelligence, August 20-25, 1989, Detroit, Michigan, USA,

Volume 1, pages 378–383. Morgan Kaufmann, 1989.

[LM05] Kevin Lee and Thomas Meyer. A classification of ontology mod-

ification. In Geoffrey Webb and Xinghuo Yu, editors, AI 2004:

Advances in Artificial Intelligence, volume 3339 of Lecture Notes

in Computer Science, pages 181–214. Springer Berlin / Heidelberg,

2005.

[LMPB06] Kevin Lee, Thomas Meyer, Jeff Z. Pan, and Richard Booth. Com-

puting maximally satisfiable terminologies for the description logic

ALC with cyclic definitions. In Bijan Parsia, Ulrike Sattler, and

David Toman, editors, Proceedings of the 2006 International Work-

shop on Description Logics (DL2006), Windermere, Lake District,

UK May 30 – June 1, 2006, volume 189 of CEUR Workshop Pro-

ceedings. CEUR, June 2006.

[LN04] Thorsten Liebig and Olaf Noppens. OntoTrack: Combining brows-

ing and editing with reasoning and explaining for OWL Lite on-

tologies. In Sheila McIlraith, Dimitris Plexousakis, and Frank van

Harmelen, editors, The Semantic Web - ISWC 2004. Third Inter-

national Semantic Web Conference 2004, Hiroshima, Japan, vol-

ume 3298 of Lecture Notes in Computer Science, pages 244–258.

Springer, November 2004.

[LPSV06] Sik Chun Lam, Jeff Z. Pan, Derek Sleeman, and Wamberto Vascon-

celos. A fine-grained approach to resolving unsatisfiable ontologies.

In Jiming Liu, Benjamin W. Wah, and Toyoaki Nishida, editors,

2006 IEEE/WIC/ACM International Conference on Web Intelli-

gence (WI’06), 18 - 22 December 2006, Hong Kong, China, pages

428–434, Los Alamitos, CA, USA, December 2006. IEEE Computer

Society.

[LSPV08] Joey Sik Chun Lam, Derek H. Sleeman, Jeff Z. Pan, and

Wamberto Weber Vasconcelos. A fine-grained approach to resolv-

ing unsatisfiable ontologies. Journal of Data Semantics, 10:62–95,

2008.

BIBLIOGRAPHY 295

[MBB95] Deborah L. McGuinness, Alexander T. Borgida, and Er T. Borgida.

Explaining subsumption in description logics. In Proceedings of

the 14th International Joint Conference on Artificial Intelligence,

IJCAI 95, Montréal, Québec, Canada, volume 1, pages 816–821.

Morgan Kaufmann Publishers Inc., August 1995.

[MBB+01] Chris J. Mungall, Michael Bada, Tanya Z. Berardini, Jennifer Dee-

gan, Amelia Ireland, Midori A. Harris, David P. Hill, and Jane

Lomax. Cross-product extensions of the gene ontology. Journal of

Biomedical Informatics, 44(1):80–86, February 2001.

[MBE11] Christopher J. Mungall, Colin Batchelor, and Karen Eilbeck. Evo-

lution of the sequence ontology terms and relationships. Journal

of Biomedical Informatics, 44:87–93, February 2011.

[McC76] Thomas J. McCabe. A complexity measure. In IEEE Transac-

tions On Software Engineering, volume SE-2 of 2, pages 308 – 320,

December 1976.

[McG96] Deborah L. McGuinness. Explaining Reasoning in Description Log-

ics. PhD thesis, Rutgers University Department of Computer Sci-

ence, 1996.

[McN47] Quinn McNemar. Note on the sampling error of the difference

between correlated proportions or percentages. Psychometrika,

12(2):153–157, 1947. 10.1007/BF02295996.

[MHA+10] James Malone, Ele Holloway, Tomasz Adamusiak, Misha Kapush-

esky, Jie Zheng, Nikolay Kolesnikov, Anna Zhukova, Alvis Brazma,

and Helen Parkinson. Modelling sample variables with and exper-

imental factor ontology. Bioinformatics, 26(8):1112–1118, March

2010.

[MHL07] Yue Ma, Pascal Hitzler, and Zuoquan Lin. Algorithms for para-

consistent reasoning with OWL. In ESWC, volume 4159, pages

399–413, June 2007.

[Min75] Marvin Minsky. A framework for representing knowledge. In The

Psychology of Computer Vision, 1975.

BIBLIOGRAPHY 296

[MLBP06] Thomas Meyer, Kevin Lee, Richard Booth, and Jeff Z. Pan. Find-

ing maximally satisfiable terminologies for the description logic

ALC. In 21st National Conference on Artificial Intelligence, AAAI,

2006.

[MMV10] Thomas Meyer, Kodylan Moodley, and Ivan Varzinczak. First

steps in the computation of root justifications. In Alan Bundy,

Jos Lehmann, Guilin Qi, and Ivan Varzinczak, editors, 2nd In-

ternational Workshop on Automated Reasoning about Context and

Ontology Evolution (ARCOE), 16–17 August 2010, Lisbon, Portu-

gal, 2010.

[Moo10] Kodylan Moodley. Debuging and repair of description logic on-

tologies. Master’s thesis, School of Computer Science, University

of KwaZulu-Natal, Durban, December 2010.

[Mot06] Boris Motik. Reasoning in Description Logics using Resolution

and Deductive Databases. PhD thesis, Univesität Karlsruhe (TH),

Karlsruhe, Germany, January 2006.

[MPS98] Deborah L. McGuinness and Peter F. Patel-Schneider. Usability

issues in knowledge representation systems. In Jack Mostow and

Charles Rich, editors, Proceedings of the 15th National Conference

on Artificial Intelligence (AAAI-98) and the 10th Conference on

Innovative Applications of Artificial Intelligence (IAAI-98), pages

608–614, Menlo Park, CA, USA, July 1998. American Association

for Artificial Intelligence.

[MPSP09] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL

2 Web Ontology Language structural specification and functional

style syntax. W3C Recommendation, W3C – World Wide Web

Consortium, October 2009.

[MRBP08] James Malone, Tim F. Rayner, Xiangqun Zheng Bradley, and

Helen Parkinson. Developing an application focused experimen-

tal factor ontology: embracing the OBO community. In Philip

Lord, Susanna-Assunta Sansone, Nigam Shah, and Matt Cockerill,

BIBLIOGRAPHY 297

editors, 16th Annual International Conference on Intelligent Sys-

tems for Molecular Biology, 2008 SIG Meeting on Bio-Ontologies,

Toronto, Canada, July 2008.

[MS06] Boris Motik and Ulrike Sattler. Practical DL reasoning over large

ABoxes with KAON2. In Principles of Knowledge Representa-

tion and Reasoning, CEUR Workshop Proceedings. CEUR-WS.org,

2006.

[MSH07] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning

in description logics using hypertableaux. In Proc. of the 21st Int.

Conf. on Automated Deduction (CADE-21), volume 4603 of Lecture

Notes in Artificial Intelligence, pages 67–83. Springer, 2007.

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Rea-

soning for Description Logics. Journal of Artificial Intelligence

Research, 36:165–228, 2009.

[Mun11] Chris Mungall. OBO Flat File Format 1.4 syntax and semantics.

ftp://ftp.geneontology.org/pub/go/www/obo-syntax.html, Febru-

ary 2011.

[Mur82] Neil V. Murray. Completely non-clausal theorem proving. Artificial

Intelligence, 18(1):67 – 85, 1982.

[nal09] Rafael Pe naloza. Axiom-Pinpointing in Description Logics and

Beyond. PhD thesis, Dresden University of Technology, 2009.

[NBH+06] Stephen E. Newstead, Peter Brandon, Simon J. Handley, Ian Den-

nis, and Jonathan St. B. Evans. Predicting the Difficult of Complex

Logical Reasoning Problems, volume 12. Psychology Press, 2006.

[NBM09] Riku Nortje, Katarina Britz, and Thomas Meyer. Finding EL+

justifications using the Earley parsing algorithm. In Thomas Meyer

and Kerry Taylor, editors, Advances in Ontologies. Procededings of

the Fifth Australasian Ontology Workshop, Melbourne, Australia,

December 2009, December 2009.

[NDG+09] Natalya F. Noy, Michael V. Dorf, Nicholas Griffith, Csongor Nyu-

las, and Mark A. Musen. Harnessing the power of the community in

BIBLIOGRAPHY 298

a library of biomedical ontologies. In Tim Clark, Joanne S. Luciano,

M. Scott Marshall, Eric Prud’hommeaux, and Susie Stephens, ed-

itors, Proceedings of the Workshop on Semantic Web Applications

in Scientific Discourse (SWASD 2009), collocated with the 8th In-

ternational Semantic Web Conference (ISWC-2009), Washington

DC, USA, October 26, 2009., volume 523 of CEUR Workshop Pro-

ceedings. CEUR-WS.org, November 2009.

[Neb90] Bernhard Nebel. Terminological reasoning is inherently intractable.

Artificial Intelligence, 43(2):235–249, 1990.

[NM03] Natalya F. Noy and Mark A. Musen. The PROMPT suite: interac-

tive tools for ontology mergine and mapping. International Journal

of Human Computer Studies, 59(6):983–1024, December 2003.

[Nor01] Riku Nortje. Module extraction for inexpressive description logics.

Master’s thesis, University of South Africa, February 2001.

[NSW+09] Natalya F. Noy, Nigam H. Shah, Patrisha L. Whetzel, Benjamin

Dai, Michael V. Dorf, Nicholas Griffith, Clement Jonquet, Daniel L.

Rubin, Margaret-Anne Storey, Christopher G. Chute, and Mark A.

Musen. BioPortal: Ontologies and integrated data resources at the

click of a mouse. Nucleic Acids Research, 37, May 2009.

[NW01] Andreas Nonnengart and Christoph Weidenbach. Computing small

clause normal forms. In John Alan Robinson and Andrei Voronkov,

editors, Handbook of Automated Reasoning, pages 335–367. Elsevier

and MIT Press, 2001.

[PG86] David A. Plaisted and Steven Greenbaum. A structure-preserving

clause form translation. Journal of Symbolic Computation,

2(3):293–304, September 1986.

[Pot74] George R. Potts. Storing and retrieving information about ordered

relationships. Journal of Experimental Psychology, 103(3):431 –

439, 1974.

[Pri02] Graham Priest. Handbook of Philosophical Logic, volume 6, chapter

Paraconsistent Logic, pages 287–393. Kluwer Academic Publishers,

2nd edition, 2002.

BIBLIOGRAPHY 299

[PSK05] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL

ontologies. In Allan Ellis and Tatsuya Hagino, editors, Proceedings

of the 14th international conference on World Wide Web, WWW

2005, Chiba, Japan, May 10-14, 20, pages 633–640. Association for

Computing Machinery, Inc. (ACM), May 2005.

[Qui52] Willard Van Quine. The problem of simplifying truth func-

tions. The American Mathematical Monthly, 59(8):521–531, Oc-

tober 1952.

[Qui55] Willard Van Quine. A way to simplify truth functions. The Amer-

ican Mathematical Monthly, 62(9):627–631, November 1955.

[Qui59] Willard Van Quine. On cores and prime implicants of truth

functions. The American Mathematical Monthly, 66(9):755–760,

November 1959.

[RBG+97] Alan L. Rector, Sean Bechhofer, Carole Goble, Ian Horrocks, An-

thony W. Nowlan, and Daniel Soloman. The GRAIL concept mod-

elling language for medical terminology. Artificial Intelligence in

Medicine, 9:139–171, 1997.

[RCVB09] Catherine Roussey., Oscar Corcho, and Luis Manuel Vilches-

Blázquez. A catalogue of OWL ontology AntiPatterns. In Na-

talya F. Noy and Yolanda Gil, editors, K-CAP 2009 – Proceed-

ings of the 5th International Conference on Knowledge Capture,

September 1–4, 2009, Redondo Beach, California, USA, pages 205–

206, 2009.

[RDH+04] Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy

Rogers, Holger Knublauch, Robert Stevens, Hai Wang, and Chris

Wroe. OWL pizzas: Practical experience of teaching OWL-DL:

Common errors & common patterns. In 14th International Con-

ference on Knowledge Engineering and Knowledge Management

EKAW 2004, 5-8th October 2004 - Whittlebury Hall, Northamp-

tonshire, UK, pages 63–81, October 2004.

[Rec03] Alan L. Rector. Modularisation of domain ontologies implemented

in description logics and related formalisms including owl. In John

BIBLIOGRAPHY 300

Gennari and Bruce Porter, editors, K-CAP 2003 – Proceedings of

the 2nd international conference on Knowledge Capture, October

23–25, 2003, Sanibel Island, Florida, USA, K-CAP ’03, pages 121–

128, New York, NY, USA, 2003. ACM.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence,

13(1):81–132, 1980.

[Rei87] R. Reiter. A theory of diagnosis from first principles. Artificial

Intelligence, 32:57–95, 1987.

[Rip94] L. J. Rips. The Psychology of Proof. MIT Press, Cambridge, MA,

1994.

[RJ03] Cornelius Rosse and José L. V. Mejino Jr. A reference ontology

for biomedical informatics: the Foundational Model of Anatomy.

Journal of Biomedical Informatics, 36(6):478–500, 2003.

[RN10] Stuart Jonathan Russell and Peter Norvig. Artificial Intelligence:

A Modern Approach. Prentice Hall Series in Artificial Intelligence.

Prentice Hall, 2010.

[RNG93] Alan L. Rector, Anthony W. Nowlan, and Andrzej Glowinski.

Goals for concept representation in the GALEN project. In In Pro-

ceedings of the 17th Annual Symposium on Computer Applications

in Medical Care, October 30 – November 3, 1993, Washington DC,

American Medical Informatics Association, pages 414–418, 1993.

[SAR+07] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard,

William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eil-

beck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis,

Phillipe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone,

Richard H. Scheuermann, Nigam Shah, Patrisha L. Whetzel, and

Suzanna Lewis. The OBO Foundary: Coordinated evolution of

ontology to support biomedical data integration. Nature Biotech-

nology, 25:1251–1255, November 2007.

[Sat96] Ulrike Sattler. A concept language extended with different kinds

BIBLIOGRAPHY 301

of transitive roles. In Günther Görz and Steffen Hölldobler, edi-

tors, KI-96: Advances in Artificial Intelligence, 20th Annual Ger-

man Conference on Artificial Intelligence, Dresden, Germany, vol-

ume 1137 of Lecture Notes in Computer Science, pages 333–345.

Springer, September 1996.

[SC97] Kent A. Spackman and Keith E. Campbell. SNOMED RT: A

reference terminology for health care. In Daniel R. Masys, edi-

tor, Proceedings of AMIA Annual Fall Symposium, pages 640–644,

Bethesda, Maryland, USA, October 1997. Hanley and Belfus Inc.

[SC03] Stefan Schlobach and Ronald Cornet. Non-standard reasoning

services for the debugging of description logic terminologies. In

Georg Gottlob and Toby Walsh, editors, IJCAI-03, Proceedings

of the Eighteenth International Joint Conference on Artificial In-

telligence, Acapulco, Mexico, August 9-15, 2003, pages 355–362.

Morgan Kaufmann, 2003.

[Sch04] Stefan Schlobach. Explaining subsumption by optimal interpola-

tion. In José Júlio Alferes and João Alexandre Leite, editors, Logics

in Artificial Intelligence, 9th European Conference, JELIA 2004,

Lisbon, Portugal, September 27-30-2004, volume 3229 of Lecture

Notes in Computer Science, pages 413–425. Springer, September

2004.

[Sch05a] Stefan Schlobach. Debugging and semantic clarification by pin-

pointing. In Asunción Gómez-Pérez and Jerome Euzenat, editors,

The Semantic Web: Research and Applications, 2nd European Se-

mantic Web Conference, ESWC 2005, Heraklion, Crete, Greece,

May 29–June 1, 2005, Proceedings, volume 3532 of Lecture Notes

In Computer Science, pages 226–240. Springer-Verlag Berlin Hei-

delberg, May 2005.

[Sch05b] Stefan Schlobach. Diagnosing terminologies. In AAAI’05: Pro-

ceedings of the 20th national conference on Artificial intelligence,

pages 670–675. AAAI Press, 2005.

[SCH10] Giorgos Stoilos, Bernardo Cuenca Grau, and Ian Horrocks. How

incomplete is your semantic web reasoner? In Nestor Rychtyckyj,

BIBLIOGRAPHY 302

Daniel Shapiro, Maria Fox, and David Poole, editors, Proceedings

of the Twenty-Fourth AAAI Conference on Artificial Intelligence,

July, 2010 Atlanta, Georgia USA. AAAI Press, July 2010.

[SdF+10] Thomas Scharrenbach, Claudia d’Amato, Nicola Fanizzi, Rolf

Grütter, Bettina Waldvogel, and Abraham Bernstein. Default Log-

ics for Plausible Reasoning with Controversial Axioms. In Fernando

Bobillo, editor, Proceedings of the 6th International Workshop on

Uncertainty Reasoning for the Semantic Web (URSW-2010), 7th

November, 2010, Shanghai, China, CEUR Workshop Proceedings.

CEUR Workshop Proceedings, November 2010.

[SFJ08] Kostyantyn Shchekotykhin, Gerhard Friedrich, and Dietmar Jan-

nach. On computing minimal conflicts for ontology debugging. In

Bernhard Peischl, Neil Snooke, Gerald Steinbauer, and Cees Wit-

teveen, editors, ECAI 2008 Workshop on Model-Based Systems,

July 21-22, Patras, Greece. Affiliated with the 18th European Con-

ference on Artificial Intelligence (ECAI 2008), pages 7–11, 2008.

[SH07] Stefan Schlobach and Zhisheng Huang. Inconsistent ontology

diagnosis and repair. SEKT ED-IST-2003-506826 Deliverable

SEKT/2006/D3.6.3/v1.0.0, Vrije Universiteit Amsterdam, Febru-

ary 2007.

[SHCvH07] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank van

Harmelen. Debugging incoherent terminologies. Journal of Auto-

mated Reasoning, 39:317 – 349, 2007.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyan-

pur, and Yarden Katz. Pellet: A practical OWL-DL reasoner.

Journal of Web Semantics, 5(2), 2007.

[SQJH08] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase.

A modularization-based approach to finding all justifications for

owl dl entailments. In John Domingue and Chutiporn Anutariya,

editors, Proceedings of the 3th Asian Semantic Web Conference

(ASWC’08), volume 5367 of Lecture Notes in Computer Science,

pages 1–15. Springer-Verlag, 2008.

BIBLIOGRAPHY 303

[SR06] Julian Seidenberg and Alan L. Rector. Web ontology segmentation:

analysis, classification and use. In Leslie Carr, David De Roure,

Arun Iyengar, Carole Goble, and Mike Dahlin, editors, Proceedings

of the 15th international c, pages 13–22, New York, NY, USA,

2006. Association for Computing Machinery, Inc. (ACM).

[SSS91] Manfred Schmidt-Schauss and Gert Smolka. Attributive concept

descreiptions with complements. Artificial Intelligence, 48(1):1–26,

1991.

[SSZ09] Ulrike Sattler, Thomas Schneider, and Michael Zakharyaschev.

Which kind of module should i extract? In Bernardo Cuenca

Grau, Ian Horrocks, Boris Motik, and Ulrike Sattler, editors, Pro-

ceedings of the 22nd International Workshop on Description Logics

(DL 2009), Oxford, UK, July 27-30, 2009, volume 477 of CEUR

Workshop Proceedings. CEUR-WS.org, 2009.

[Str92] Gerhard Strube. The role of cognitive science in knowledge en-

gineering. In Proceedings of the First Joint Workshop on Con-

temporary Knowledge Engineering and Cognition, pages 161–174,

London, UK, 1992. Springer-Verlag.

[Stu08] Heiner Stuckenschmidt. Debugging OWL ontologies - a reality

check. In Raul Garcia-Castro, Asunción Gómez-Pérez, Charles J.

Petrie, Emanuele Della Valle, Ulrich Küster, Michal Zaremba, and

M. Omair Shafiq, editors, EON-SWSC 2008 Proceedings of the 6th

International Workshop on Evaluation of Ontology-based Tools and

the Semantic Web Service Challenge, Tenerife, Spain, June, 2008,

volume 359 of CEUR Workshop Proceedings. CEUR-WS.org, June

2008.

[Sun08] Boontawee Suntisrivaraporn. Module extraction and incremen-

tal classification: A pragmatic approach for EL+ ontologies. In

Sean Bechhofer, Manfred Hauswirth, Joerg Hoffmann, and Mano-

lis Koubarakis, editors, Proceedings of the 5th European Seman-

tic Web Conference (ESWC’08), volume 5021 of Lecture Notes in

Computer Science, pages 230–244. Springer-Verlag, 2008.

BIBLIOGRAPHY 304

[Sun09] Boontawee Suntisrivaraporn. Polynomial-Time Reasoning Support

for Design and Maintenance of Large-Scale Biomedical Ontologies.

PhD thesis, Technical University of Dresden, 2009.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic rea-

soner: System description. In Proc. of the Int. Joint Conf. on Au-

tomated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes

in Artificial Intelligence, pages 292–297. Springer, 2006.

[Top09] TopQuadrant. Topquadrant: Products: TopBraid Com-

poser. http://www.topquadrant.com/products/TB_Composer.

html, October 2009.

[Tse68] G. S. Tseitin. On the complexity of derivations in propositional

calculus. In A. O. Slisenko, editor, Studies in Constructive Math-

ematics and Mathematical Logic, 1968.

[WAH+07] Katy Wolstencroft, Pinar Alper, Duncan Hull, Chris Wroe,

Phillip W. Lord, Robert D. Stevens, and Carole A. Goble. The
myGrid ontology: bioinformatics service discovery. International

Journal of Bioinformatics Resesearch and Applications, 3(3):303–

325, 2007.

[Wey88] Elaine J. Weyuker. Evaluating software complexity measures.

IEEE Transactions on Software Engineering, 14(9):1357–1365,

1988.

