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Communication Locality in Computation:
Software, Chip Multiprocessors and Brains

Daniel L. Greenfield

Summary

This thesis extends techniques from digital circuit interconnect prediction (in particular
Rent’s rule) to analyse and predict interconnectedness in software, Chip-Multiprocessors
(CMP) and Networks-on-Chip (NoC). Since the birth of the microprocessor, transis-
tors have been getting cheaper, faster and more energy efficient, whereas global wires
have changed little. At the same time we are moving towards thousands of processing
cores on a chip, with software distributed across them. This new era of communication-
dominated computing is marked by local computation on a core being cheap, but with
global communication between cores and with external memory as expensive. Thus the
physical spatial position of software starts to become important. Indeed, it is shown that
unless physical locality in communication is exploited, the costs become untenable with
technology scaling.

In VLSI (Very Large Scale Integrated) circuits, the fractal connectivity of Rent’s rule is
a well known predictor of the physical locality of interconnect across many orders of
magnitude. It is shown how a generalised Rent’s rule can characterise and model both
spatial and temporal locality in software, and it is demonstrated that locality effects
can be exploited in Network-on-Chip design for fault tolerance. Evidence of Rentian
fractal scaling in software is examined across several benchmarks using multiple meth-
ods. Given Rentian scaling, many fundamental results are derived for future many-core
CMP architectures that relate number of cores, communication, on-chip memory and
the Rent’s exponent, including some surprising scaling requirements towards fine-grain
communication. It is also shown that existing models of an algorithm’s asymptotic time
and energy cost are inadequate to account for physical communication costs and local-
ity. A new analytical framework that utilises locality and its Rentian characterisation
is demonstrated on several example algorithms, and a study is made of the ‘embedding
problem’ for composing embeddings of algorithms together. Finally, in examining the
interplay of communication and massively parallel computation at larger scales, we look
at the mammalian brain as a proof-of-existence. We show that Rent’s rule also appears
to apply to neuronal systems, and that this relates to the allometric scaling of communi-
cation to computation.
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GLOSSARY

C.elegans . . . . . . . . . . . . Short for Caenorhabditis elegans, or the ‘nematode worm’. This is a model
organism often used in biology.

CMP . . . . . . . . . . . . . . . . . Chip Multiprocessor, consists of multiple processors on a single chip (or stacked
die).

Configuration Space Concept originally from Physics where configurations of objects correspond to
a position in a high-dimensional space. For example the configuration phase
space of a particle is the 6-dimensional position correponding to its 3-dimensional
spatial position and 3-dimensional momentum.

DSI . . . . . . . . . . . . . . . . . . . Diffusion Spectrum Imaging. A neuro-imaging technique that maps myelinated
axons by following the diffusion of water molecules as seen by MRI machines.

Grey Matter . . . . . . . . Grey matter corresponds mainly to neurons, their synapses and unmyelinated
axons. Computation occurs at neurons and synapses, so grey matter is represen-
tative of computation.

NoC . . . . . . . . . . . . . . . . . Network-on-Chip. These are communication-networks that allow the general
transport of data between different parts of a computer chip.

Rent’s Rule . . . . . . . . . . A power-law relationship between the I/O terminals at a boundary, and the
amount of logic inside the boundary.

VLSI . . . . . . . . . . . . . . . . . VLSI – Very Large Scale Integrated circuits – or commonly referred to as ‘com-
puter chips’, but with ‘very large’ numbers of devices/transistors on the chip.

White Matter . . . . . . . White matter corresponds mainly to myelinated axons. These axons are pro-
jections for long-distance communication between neurons and protected by a
white sheath of myelination, so white matter is representative of communication.





1
CHAPTER ONE

INTRODUCTION

1.1 Overview

We are entering an exciting new time in computing, where communication costs domi-
nate over the raw computational costs. Old assumptions and models of computational
complexity that assume cheap communication need to be seriously revisited in an era
when moving a word of data from one part of a chip to another can consume a hundred
times the energy of 32-bit arithmetic operations. This thesis argues that it is the com-
munication costs of algorithms, rather than their computation costs, that will dominate
future computing concerns. That, as we move to thousands of cores on a chip, the phys-
ical spatial locality of computation and data becomes critical to performance and cost.
However, there is very little in the way of theory, models or even characterisation of such
locality for Chip-Multiprocessors (CMP). This thesis adapts and extends the existing
theory and models of wire locality in VLSI circuits to the physical and temporal locality
of software running on CMPs. It aims to provide a new foundation for characterising,
modelling, predicting and exploiting the communication properties of software, which
as we show, exhibits Rentian fractal scaling. In doing so, it lays a new communication-
centric foundation for CMP software and hardware, and provides fundamental insights
into their continued technological scaling.

1.2 Main Contributions

Here, the main contributions of the thesis are listed. Those in bold are considered to be
particularly important contributions of the thesis.
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Arguments of how the communication costs of algorithms are becoming more important
than their computational costs:

• Demonstrating that non-local communication patterns such as uniformly-random
traffic, and transpose traffic lead to unacceptable growth in communication cost
with technology scaling.

• Showing how available external I/O bandwidth scales poorly per-core, implying
that data-independent parallelism is not scalable compared to data-interdependent
parallelism.

Examining Rent’s rule for the Network-on-Chip domain:

• A bandwidth version of Rent’s rule is introduced, with a corresponding hop-length
distribution for traffic that characterises the spatial locality of communication. Also,
the scaling behaviour of Networks-on-Chip traffic is determined from this model,
and the distribution of expected types of router operations is shown.

• To exploit this locality, a simple fault-tolerant router is introduced by a wrapper
that bypasses all router logic, but allows through-traffic to continue in the same
direction.

• New analytical methods employing the hop-length distributions, are demonstrated
to evaluate and compare router designs for fault-tolerance behaviour under Rentian,
exponential and random-traffic models. The traffic model is shown to make large
differences to the fault-tolerance of designs, and can affect the choice of a suitable
router.

Existing software benchmarks for CMP and single-threaded execution are examined to
see if they exhibit Rentian scaling:

• SPLASH-2 and Parsec benchmarks are rigorously analysed on a 32-node CMP sim-
ulator, with many shown to demonstrate Rentian scaling, with better fits compared
to other candidate distributions. Hop-length distributions, and average bandwidth
for these benchmarks are shown to be predicted well, compared to a null hypothesis
model.

• The dynamic-data-dependence graphs (DDDG) extracted from traces of the MiBench
single-threaded benchmarks are analysed for fractal dimensionality by box-counting,
where many are again shown to have fractal scaling.

• Applying Rentian analysis to the temporal domain, where the dynamic-data-dependence
graphs are analysed for physical Rentian scaling based on their instruction time, and
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shown to have Rentian scaling and clear evidence of this structure. Some evidence
is also shown that the inter-access time distribution is related to the Rent’s exponent
in the predicted manner.

• The dynamic-data-dependence graphs are analysed for topological Rentian scaling
and many are again shown to exhibit Rentian scaling.

New theorems are derived for Rent’s rule, extending it to more general domains:

• Proof of asymptotic equivalence between Rent’s rule and power-law distance distri-
butions in homogeneous d-dimensional vector space, thus generalising Rent’s rule
beyond the 2-D Manhattan metric domain of VLSI, to arbitrary finite-dimensional
vector spaces.

• Cost-universality as applied to distance distributions, where for a given head dis-
tribution, the optimal power-law tail exponent is shown to be the same under any
strictly increasing cost-function.

• That optimally embedding in any d-dimensional space is equivalent to embedding
in a configuration space – where scaling parameters become independent of dimen-
sionality. This allows Rent’s rule to be generalised by extending to arbitrary config-
uration spaces, including the Spatio-Temporal domain of CMP.

A model for the scaling characteristics of CMP based on the generalised Rent’s rule, using
Spatio-Temporal interconnects:

• Derivation of a Spatio-Temporal CMP model of communication on-chip, off-chip
and though a ‘Rentian’ memory that optimally minimises off-chip communication.

• Relations derived of how external I/O bandwidth scales with number of cores, on-
chip memory, granularity of communication and Rent’s exponent, which should
assist in the architectural exploration of CMP configurations.

• A comparison is made of caches to the perfect ‘Rentian memory’, which result in
bounds on the performance improvement that a scratchpad memory can feasibly
attain compared to caches.

• Scaling laws for optimum tradeoff between number of cores and memory, given I/O
limited performance and growth.

• A comparison of scaling characteristics of data-independent parallel algorithms ver-
sus data-interdependent parallel algorithms that obey Rent’s rule, showing relatively
large reductions in external I/O bandwidth at the thousand-core era by leveraging
interdependent parallelism.
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Asymptotic characterisation of communication in software:

• Demonstrating direct extraction of Rent’s parameters from sample algorithms: ma-
trix multiplication, sequential Fibonacci, Fast-Fourier Transform.

• The asymptotic cost of communication is derived for Rentian software, given the
Rent’s exponent and embedding domain.

• It is shown that, in software, optimal embeddings do not themselves compose to
form optimal embeddings, thus posing the question of whether Rentian scaling
properties can be practically preserved upon composition. This is resolved by prov-
ing that hierarchically composed/decomposed embeddings, although not optimal,
preserve Rentian scaling at only a (small) constant factor penalty compared to opti-
mal embeddings.

• A model of spatially distributed data accesses, showing how the power-law distri-
bution of memory-access can restore constant factor or logarithmic average access
costs, depending on the exponent.

Examining Rentian scaling in neuronal networks – as a natural parallel computing system
at scales beyond existing technology:

• Demonstrating that the human brain and the nematode worm have neuronal net-
works with Rentian scaling.

• Illustrating that small-world networks are fully compatible with fractal Rentian scal-
ing with a worked example.

• Deriving a relationship between Rentian scaling parameters within a brain, to pre-
dict the allometric scaling properties of white-matter versus grey-matter across a
range of mammalian brains, and showing that the parameters extracted for Rentian
scaling within the human brain correctly predict the allometric scaling properties
across mammalian brains.

1.3 Organisation

The research that comprises this thesis was not arrived at as a simple linear exploration.
New analysis lead to new insights, and old ones had to be revisited. Whilst every effort
has been made to make chapters have a consistent theme of exploration, this has come
at the expense of ordering. In particular, the concepts of spatio-temporal interconnect
are introduced in Chapter 5 and used in Chapter 7 for derivation of a Spatio-Temporal
Rentian model for CMP. However, this model is tested experimentally on benchmarks in
Chapter 5.
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Chapter 1 comprises this overview.

Chapter 2 argues that communication costs rather than purely computational ones will
start to dominate power, performance and other measures with technological scaling. It
shows how communication costs in the Chip Multiprocessor (CMP) domain are funda-
mentally different to those in the traditional parallel-computing domain, and that old
intuition and solutions from the parallel-computing domain lead to poor, unscalable so-
lutions for the CMP domain.

Chapter 3 discusses existing models of computation, of communication, and discusses
the role of the fractal scaling known as Rent’s rule in VLSI.

Chapter 4 argues for a bandwidth version of Rent’s rule for communication over a
Network-on-Chip, and examines its implications for Network-on-Chip design and fault-
tolerance.

Chapter 5 examines experimental evidence using multiple methodologies and shows that
many existing software benchmarks obey the fractal scaling of Rent’s rule.

Chapter 6 takes the theory of Rent’s rule beyond VLSI placement. It consists of theo-
rems showing that Rent’s rule is asymptotically equivalent to power-law-tailed distance
distributions. It shows that Rent’s rule applied to homogeneous spaces preserves an in-
variant in an equivalent configuration-space. Preserving this invariant allows a consistent
generalisation of Rent’s rule beyond homogeneous two- or three-dimensional spaces.

Chapter 7 utilises the generalisation from Chapter 6 to derive expressions for the scaling
characteristics of CMP, based on the number of cores, the Rent’s exponent of software,
the amount of on-chip memory, and the granularity of communication. Surprisingly as
the number of cores increases, there is pressure for inter-core communication to become
more fine-grained.

Chapter 8 demonstrates how one can calculate the asymptotic cost of communication
for sample algorithms by direct analysis, supplanting usual measures of computational
complexity. It introduces the ‘embedding problem’, whereby optimal embeddings do not
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themselves compose optimally, and gives a simple solution that allows algorithms to be
composable, and yet also preserve Rentian scaling. It then derives lower-bounds for the
spatial-communication component of memory accesses.

Chapter 9 looks at the brain as a proof-of-existence of parallel computing system at
scales beyond existing technology, and demonstrates that the human brain also obeys
Rent’s rule. Furthermore, it shows how Rentian scaling has been preserved across the
evolution of mammalian brains, as the allometric scaling of white matter to grey matter
across mammals can be predicted by the self-similar Rentian scaling within the human
brain. In the computing domain, this implies that Rentian scaling will likely continue to
govern communication in computation at far larger scales of integration.

Chapter 10 briefly concludes and discusses potential future work.

Appendix A contains plots of the SPLASH-2 and PARSEC benchmark applications show-
ing best-fits of Rentian and alternative models and a comparison of their predicted versus
actual hop-length distributions.

Appendix B comprises plots of box-counting fractal scaling behaviour for the MiBench
benchmark applications.

Appendix C comprises plots of physical Rentian scaling and their temporal-distance dis-
tributions for the MiBench benchmark applications.

Appendix D comprises plots of topological Rentian scaling and their temporal-distance
distributions for the MiBench benchmark applications.

Appendix E describes in more detail the model used to determine best-fit parameters
for the Spatio-Temporal Rentian model of a 32-core system, the results of which are in
Chapter 5 and Appendix A.

Appendix F lists source code for numerically evaluating the Spatio-Temporal Rentian
model for I/O bandwidth versus Rentian memory seen in Chapter 7.
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CHAPTER TWO

MOTIVATIONS:
COMMUNICATION VS.

COMPUTATION

For most of the history of computer science, computation has been ‘expensive’ and com-
munication practically ‘free’. This fundamental, and yet implicit assumption, underlies
our analysis of algorithms, and guides our intuition when constructing solutions to prob-
lems in Computer Science. Unfortunately, this assumption has been eroded with tech-
nological scaling as we can no longer ‘hide’ the underlying laws of physics. Indeed, the
tables have turned – as we shall show, it is now communication that has become ex-
pensive whilst computation is practically ‘free’. We shall show that looking forward, it
is the communication of algorithms rather than their computation that will become the
dominant factor in energy consumption, cost and performance metrics in the many-core
era.

2.1 Broken assumptions: no escape from Physics

The exponential growth of transistor density, as predicted by Moore’s law, has allowed
transistors to scale over the last 35 years from dimensions of 10,000nm (Intel 4004) to
45nm (current Intel and AMD processors). This dramatic growth in transistor density
has allowed processors to scale in complexity from the 2300 transistors of the Intel 4004,
to the 731 million transistors of the Intel Core i7 (including cache). During this period,
however, chip sizes have largely been unchanged at about 10-20mm on a side, depending
on cost. While transistors have been getting smaller and faster, the wires that connect
one region of the chip to another, have not scaled. Relative to transistors, they have
gotten exponentially worse in speed, power, and manufacturing cost.

In table 2.1 we see how technology scaling affects the relative cost of communication
versus computation. This table is adapted from a presentation given by Dally [34]. We
can see that communication is no longer inexpensive – thanks to decades of technological
scaling, even at the older 130nm scale, merely transferring 32-bits of data from one
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technology node 130nm CMOS 45nm CMOS

transfer 32b across-chip 20 ALU ops 57 ALU ops

transfer 32b off-chip 260 ALU ops 1300 ALU ops

Table 2.1: Comparing trends in energy consumption, adapted from Dally [34]

part of the chip to another consumes the equivalent of 20 ALU operations. Moreover,
at current scales of 45nm, it is even worse, and this disparity will continue to grow
exponentially with technological scaling. Furthermore, we see that in order to transfer
data off-chip, the costs become even steeper, with large transistors required to drive the
pins. To some extent, new technologies can help mitigate these, but as we shall see,
they do not halt the larger trend. What this means is that communication, both on-
chip and particularly off-chip, can be many orders of magnitude more expensive than
computation.

Computer Architects have done a remarkable job insulating software engineers from the
changes due to technological scaling. They have kept the illusion of ever faster serial-
processors alive until recently, when diminishing returns to instruction-level parallelism,
excessive power-consumption costs and slow on-chip interconnect, have resulted in aban-
doning this illusion, and forced software engineers to move to multi-core scaling. Whilst
computer scientists rush to cushion this blow, by trying to make parallel programming
easier, they need to be aware that more challenges from technological scaling are waiting
in stall, that they cannot be insulated against.

With continued technological scaling, we are transitioning into an era with thousands or
even millions of cores. With so many cores, one might even say that ‘processors are the
new transistors’. Software and instructions can no longer be thought of as operating in
some sort of Platonic realm. Software, and data, instead have a physical spatial position.
Instructions are actually executed at some physical position, and data needs to be stored
and retrieved from a physical position and transported to another physical position. This
has profound implications for the future of software design.

Suppose two algorithm designers Alice and Bob construct their own data-structure to
store and retrieve information. As there is too much data to fit on one core, it necessarily
spills over to the memory of surrounding cores (or even a neighbourhood of memories,
off-chip). This can be much like the binary tree traversal in figure 2.1. Here colours cor-
respond to the level of the tree. Although binary tree traversal is thought of as O (log N)

this is only the case if communication costs are ignored. A physical implementation nec-
essarily has the data reside somewhere, and this limits the spatial locality. If the nodes
are placed randomly but in the 2-D neighbourhood of the root node, then on average
each traversal of the tree takes time O

(√
N
)

, resulting in a total time of O
(√

N log N
)

.
If nodes are carefully placed in two dimensions (such as at the bottom of figure 2.1), then
the average distances between levels of the binary tree hierarchy grows exponentially, but
traversal takes time O

(√
N
)

. Thus even if Bob carefully produced an algorithm that has
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Figure 2.1: Algorithms and data-structures must be physically embedded in space (here the 2-D space on-
chip). Asymptotic tree traversal costs are shown for binary tree placements, assuming that traversal costs
are proportional to distance.

computational complexity O (log N), Alice could produce a poorer computational com-

plexity algorithm of O
(√

N
)

but focused on communication costs, and asymptotically
outperform Bob’s algorithm. Indeed, in general, Alice will do no worse than Bob by
focusing on communication complexity, but can also do better than Bob as here. We will
show in Chapter 8, that the asymptotic scaling of communication costs is at best equal
to the asymptotic scaling of computational costs, and can typically be worse. This may
mean that communication complexity may one day replace computational complexity as
the measure of asymptotic scaling in algorithms.

2.2 The many-core memory bandwidth wall

We noted (see Table 2.1) that communication power off-chip is not scaling with transistor
performance. Despite this, rather than using less I/O bandwidth, demand for I/O band-
width is growing, and technology is not keeping up. Figure (2.2) shows the estimated
growth for total chip I/O bandwidth based on ITRS predicted figures [59] for pin-count
in their ‘cost-performance balanced’ model and the predicted bandwidth growth of high-
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Figure 2.3: Predicted scaling of I/O Bandwidth per Core using ITRS numbers, based on 2x cores per
generation or 1.4x cores per generation

speed pins. We note that after 2017 the growth changes to a more conservative trend
as manufacturable solutions for these are not currently known. The rate of growth can
be shown by fitting a range of Rent’s bandwidth-exponents (Rent’s rule is discussed in
Chapter 3, and the bandwidth version explained in Chapter 4). These are estimated for
the years up to 2017, yielding exponents between 0.57 to 0.67, depending on pin-count
growth rates.

We should note that these numbers may not account for the power and thermal con-
straints that are also present on the system that may prevent pin counts and pin band-
width from growing as fast as this. Also, the size of I/O pads and drivers do not tend to
change much with each process generation, so the exponential growth in pin count may
have other costly repercussions for die size. Optical off-chip communication may help
improve available bandwidth, which is discussed further below, however it is unlikely to
be a panacea.

From the predicted I/O bandwidth (figure 2.2) we can derive the external memory band-
width per core (figure 2.3), available on average to each core. The transistor density
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doubles every technology generation and this has led some people to believe that the
number of cores could also double each process generation. However the ITRS deems
the number of cores doubling per two process generations to be more representative of
current power-limited design trends, and this is what is currently seen in the marketplace.
Both trends are shown, and we observe the exponential drop in available bandwidth that
can impose a significant bottleneck in performance. This shows that cores cannot feed
their bandwidth from external I/O and instead communication from other cores on-chip
is required to make up the shortfall. We also note that this external bandwidth has
considerably larger communication latencies and consumes more power than on-chip
communication. Indeed, a reason why cores cannot scale linearly with transistor growth
is because larger on-chip memories are needed to reduce latency and external I/O band-
width demands. In Chapter 7, we shall examine this in more detail.

Benia et al. [2] characterised the diverse PARSEC benchmark suite, which includes emerg-
ing applications in Recognition, Mining and Synthesis (RMS) that Intel have declared as
important future workloads [53]. They simulated on 1 to 16-core CMP models and
noted that each core has high bandwidth demands, with algorithms operating on large
working-sets that far exceed on-chip memory. They showed that the bandwidth demands
grow approximately linearly with the number of cores (or worse), so that an exponential
growth in cores means an exponentially growing demand in I/O bandwidth. As such
they also predict that the external I/O bandwidth of CMPs will be ‘their most severe
limitation of performance’.

There are interesting implications for systems and software programming. The notion
that if we had hundreds of cores that we would merely run hundreds of separate applica-
tions is not sensible, even if users wanted to do so, because their external communication
needs would be unlikely to scale. Algorithms which assume simple independent data-
parallel operations distributed across cores also effectively operate like entirely separate
cores that need their own allocation of I/O bandwidth. While a lot of focus in paral-
lelism so far has been on finding or specifying independence between data, especially
in loops, and exploiting this as data-level parallelism, we see that this strategy may not
be scalable to large numbers of cores due to these external I/O constraints. Instead we
need to exploit interdependence. In traditional multicore architectures, external mem-
ory is effectively employed as a large communication crossbar. Indeed, by using such an
approach, many algorithms can be factored into simple data-parallel operations with ex-
ternal memory taking care of communication complexities / interdependencies. In other
words, the strategy many are adopting is to push out interdependencies to memory. For
example, each computation stage of the Fast Fourier Transform is independent and data-
parallel, however the communication between stages is complex and (external) memory
is often used to act as the communication medium. Similar approaches are used for
matrix operations and many other algorithms. This factoring of algorithms into batch
jobs of independent computation which are glued together by (external) interdependent
memory operations is not scalable. Instead, to achieve scalability and locality, we believe
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that interdependence needs to be exploited on-chip with more local computation and
communication between cores required. In short, algorithms must exploit communica-
tion locality between cores and threads so as to avoid communicating off-chip, and to
minimise communication costs on-chip.

Stream processing goes part-way to addressing this by factoring stream-processing stages
into cores with explicit communication between them. That is, their interdependence is
explicitly mapped into a linear (one dimensional) or near-linear inter-core communica-
tion graph. However, with a growing number of cores, this block level partitioning only
goes so far. Additional techniques are needed for further utilisation of cores with efficient
inter-core communication.

For loops, software pipelining [82, 69] is an approach that essentially takes the depen-
dency graph of operations in a loop and distributes them across cores to form a pipeline
across multiple tiles. It is an effective technique for fine-grain parallelism.

Affine Partitioning [70, 71] is another approach that partitions algorithms with affine de-
pendencies, typically within nested loops. It does so by converting the affine dependency
structure into a set of linear equations and finding provably minimal communication so-
lutions. The solution results in an instruction sequence in space (across a mesh of tiles)
and in time (by cycle count) with a set of communication patterns. Software pipelining
can then further extend the parallelisation.

Not all parallelisation approaches, however, result in partitionings with better internal
versus external communication utilisation. Thread Level Speculation (TLS) [96] tech-
niques on loops rely on very high independence between blocks of loop iterations for
speedup, and thus appear very close to data-parallel in nature. They then allow for
some interdependencies by aborting and restarting threads upon encountering depen-
dency conflicts, with obvious penalties. Thus when operating on large datasets, such
TLS techniques may also be significantly limited by external I/O bandwidth.

As external bandwidth, power and latency constraints motivate us to further exploit
internal bandwidth, we envision that many more techniques will be developed for inter-
dependent communication and parallelism.

2.3 Networks-on-Chip and traffic patterns

On-chip communication has evolved along with technological scaling, with its chang-
ing nature of computation vs. communication costs. This is illustrated in figure 2.4.
Whereas, it used to be simple to merely link source and destination with a single wire
(top of figure), as clock frequencies increased, and the demand for wire bandwidth grew,
the quadratic RC delay of wires due to their resistance and capacitance per unit length,
became problematic. Repeaters were inserted to break up long wires, constraining wire
delay and power-consumption to grow linearly with distance. As wire bandwidth de-
mands grew even further, interconnect became pipelined, thus allowing multiple symbols
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Figure 2.4: Virtualisation of interconnect. From wires, to buffered wires, to registered wires, to Networks-
on-Chip.

to be in-flight at the same time without risk of inter-symbol interference. Now, the point-
to-point interconnect is giving way to a more general communication fabric – Networks-
on-Chip [35] with point-to-point circuits or packets. This is seen at the bottom of figure
2.4, where symbols can be routed by the network from multiple sources and destinations.
Wires can then be re-used by multiple pairs of source and host instead of just a dedicated
link. As one can see, the general trend has been to employ more computational resources
to better utilise the relatively exponentially growing cost of on-chip communication.

Some may argue that the current move towards parallel computing connected by a net-
work can merely utilise the High-Performance Computing (HPC) research conducted in
the 90s and adapt it to the on-chip domain. Because of the very different nature of on-
chip communication costs, this is absolutely not the case, and Chapter 3 addresses this
in more detail. Nonetheless, many Networks-on-Chip designs are evaluated and anal-
ysed using methods taken from the HPC domain that are inappropriate for the on-chip
domain. For example, let us look at the very commonly used uniformly-random traffic
and transpose traffic patterns that are employed to test designs.

Let us consider an array of tiles connected by a mesh network, where each tile generates
on average one unit of bandwidth. We want to consider the effects of technology scaling
on the NoC. As we move to newer process technologies, the clock frequencies of the
Processing Element (PE) and NoC may also increase, but not necessarily by the same
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Figure 2.5: Scaling behaviour of bandwidth per router for different traffic distributions. The scale is such
that, on average, one unit of bandwidth is generated per tile.

amount. For our analysis, we will optimistically assume that the NoC frequency scales
by the same amount as the PE frequency. However, one must also take into account
the scaling behaviour of the traffic over the NoC. Uniform random and transpose traffic
are commonly used to assess NoC designs, so it is instructive to look at the implications
of such traffic behaviour. Uniform random traffic occurs when each tile has an equal
probability of communicating with any other tile. Whereas transpose traffic has the tile
at position (x, y) communicate with that at (y, x).

Figure 2.5 shows the average bandwidth requirements per router with scaling. This
should not be confused with the bi-section bandwidth, which grows even faster. Here,
the amount of traffic generated by each tile is a single unit at all scales, and thus does not
include the further effects of clock frequency scaling. We can clearly see that for these
traffic patterns each router has exponentially growing needs, doubling per quadrupling
in tiles, so even if the router link bandwidth did scale with the PE frequency, the number
of links required between routers would need to grow exponentially to keep up. Each
new link corresponds to more physical wires per router, which translates to an expo-
nentially growing number of metal layers. Now, one might argue that different NoC
topologies, such as a hierarchical mesh, hypercube, or other complex topology, might be
able to handle this better. Indeed, in the HPC domain, at sizes insulated from the physics
of technological scaling, this strategy works very well. Unfortunately in the on-chip do-
main, regardless of the topology, different NoC topologies do not change the physical
distance data must travel, nor the quantity of extra physical wiring still needed to trans-
port the extra flow of data. Thus they cannot circumvent this exponentially growing
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need for metal layers and bandwidth. Indeed, another way of interpreting figure 2.5
is that the metal layers for NoC routing also need to double per quadrupling in tiles,
with corresponding power and performance implications. We have already discussed the
growing relative cost of on-chip communication – so we can see that a rapid exponen-
tial growth in traffic per core, on top of an exponential growth in the number of cores,
makes such non-local communication patterns extraordinarily expensive.

Clearly, such scaling behaviour is unacceptable, but it is a simple consequence of assum-
ing uniform random or transpose traffic patterns. Indeed, if logic cells in a VLSI design
were randomly placed, the amount of wiring and metal layers required would scale in a
similar fashion. The reason this behaviour does not occur in the VLSI domain is because
locality is exploited by placing connected cells close to each other, thus minimising wiring
and improving timing and performance. Indeed, also seen in figure 2.5 are plotted the
expected growth in bandwidth per router if Rentian locality is exploited instead, which
is in line with the regular growth in VLSI interconnect demands. Rentian locality will
be discussed more in Chapters 3 and 4. For small arrays, non-local traffic such as the
random-uniform model, might still be tolerable. However, as we move into hundreds or
thousands of tiles on a chip, the exponentially increasing cost of such non-local traffic
patterns makes it impractical, and thus exploiting locality in communication becomes
essential.

2.4 New interconnect technologies

A number of new interconnect technologies are on the horizon to potentially help tackle
these communication challenges [59]. These technologies are discussed is more detail be-
low. Unfortunately, the benefits of these technologies are not scalable, and so represent
only one-off improvements of up to a single order of magnitude, and with significant
costs in terms of manufacturing and integration. It is possible that other forms of in-
terconnect may arise in future, however, they are likely to be limited resources in much
the same way as existing interconnect is. Longer interconnect necessarily has a larger
cost in terms of propagation delay, interconnect ‘wiring’ cost, switching resources and
their associated energy consumption, than a shorter interconnect does. Thus, we believe
that there will continue to be an incentive to reduce communication costs by exploiting
locality, regardless of any future interconnect technology breakthroughs.

2.4.1 Optical

For off-chip communication, optical interconnect is a promising candidate to existing
solutions, although with some challenges still ahead [59]. It is likely to reduce power
consumption, in a one-off fashion, by up to an order of magnitude. We shall focus,
however, on on-chip optical interconnect.
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We should also point out that optical interconnect necessarily runs as a circuit-switched
medium. Although the energy consumed for transmission is largely independent of dis-
tance, longer circuits take up more switching resources than shorter circuits, preventing
the rest of the system from utilising these switching resources. Thus there is a resource
cost (and associated power cost) for longer interconnects compared to short ones. More-
over, optical ring resonators are relatively bulky units that can only steer either individ-
ual wavelengths or bundles of wavelengths together as a set. Unlike an electronic switch
which can steer traffic from multiple sources in an arbitrary fashion to multiple desti-
nations, the optical version needs time to warm or cool so as to match the target set
of wavelengths, and then can only steer that set of wavelengths whilst leaving the other
sets of wavelengths untouched. This greatly restricts the flexibility of optical intercon-
nect, compared to electronic ones. The waveguides that serve as the equivalent of ‘wires’
for an on-chip interconnect, are necessarily wide (1 − 4μm) as they must support the
relatively large wavelengths of photons compared to electrons. By using high refractive
index waveguides it is possible to use smaller width waveguides (e.g. 1μm) but neces-
sarily at the expense of a slower speed of light (e.g. ~1/3) in that medium [50]. These
width constraints mean that optical interconnect does not actually scale along with new
technology nodes – their size remains constrained to top-level global interconnect.

One of the primary motivations for utilising on-chip interconnect is to try to reduce
interconnect power-consumption, however recent work by Dokania and Apsel has chal-
lenged the view that on-chip optical interconnect could achieve this goal [38], even with
off-chip light sources that are merely modulated on-chip. After taking into account the
energy needed for the thermal regulation of these on-chip modulators, they found that
any energy savings over traditional wire-based interconnect are effectively nullified.

2.4.2 LVDS transmission lines

Low-voltage differential signalling is already used for off-chip communication, however
they are not, as yet, utilised on-chip. Recent work by Ito and Mineyama et al. [58,
75] constructed current-mode on-chip LVDS transmission lines with carefully designed
passive equalisation. They demonstrated an order of magnitude reduction in energy
consumption, and improvement in latency. Their 90nm CMOS implementation of length
5mm, was capable of just over 10 Gbps. We should note, however, that the interconnect,
transmitters and receivers take up a large amount of area – and that this area does not
shrink with technology scaling. The LVDS wires themselves take up a very large width
of 20μm including spacing, making them suitable only for top-level global interconnect.
This compares poorly to the current 0.14 − 2.0μm global interconnect pitch width at
the 45nm technology node [59]. Compared to optical, Mineyama shows that [75] it
consumes even less power at these distances. This may make them a considerably more
attractive option than on-chip optical communication. Nonetheless, much like optical,
the benefits are likely to be one-off – they do not improve much with technology scaling.
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2.4.3 Carbon Nanotubes

Carbon Nanotubes are also being seriously considered for integration [59], although they
currently pose a number of manufacturing challenges. They have superior conductivity
for longer length interconnects compared to current copper interconnect, as well as excel-
lent thermal conductivity and do not suffer from electromigration concerns. Their likely
power benefits, however, are small and one-off. They are merely a replacement material
for copper interconnect, as they are still electrical wires with resistance and capacitance,
even if not made of metal.

2.4.4 Surface plasmon resonance

Surface plasmon resonance avoids the large wavelength width requirements of photonic
interconnect, potentially allowing a much higher density of interconnect and even replac-
ing shorter, intermediate levels of on-chip interconnect. In this technology, electromag-
netic waves propagate along the boundary of metal and a dielectric medium. By tuning
the frequency of light to match the resonant frequency of plasmons, the light energy
can effectively be converted into a resonant plasmon that propagates along the surface,
whereupon encountering an irregularity it can be scattered back into light. A lot of work
has gone into manufacturing the small flawless interfaces needed for this form of com-
munication. Unfortunately recent theoretical work by Marklund et al. [74] has shown
that even with a flawless interconnect, this form of propagation may have even worse
scaling characteristics at nanometre scales than ordinary wires, as the damping length
varies according to the fourth power of wavelength.

2.5 Summary

In short, thanks to technological scaling, communication is becoming exponentially more
expensive than computation. Moreover, non-local communication patterns will become
prohibitively expensive as we move to many cores on a chip, since data and executing in-
structions have physical positions on the chip. Instead, we desire to minimise the cost of
communication by exploiting as much communication locality as possible. The problem
is, there is not much understanding of communication locality, particularly physical spa-
tial locality, in software. We qualitatively know that temporal locality is important for
cache behaviour, but what are at its foundations, and what can we expect in software?
How can we quantitatively model locality or predict it? This thesis aims to address these
fundamental questions for the new era of communication-centric computation.
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CHAPTER THREE

BACKGROUND

There has been abundant prior work in trying to model or characterise communication,
primarily in the context of how communication affects other measures such as time com-
plexity (performance) in computation, or area in digital circuitry. Here we discuss these
and their limitations, before delving into the more practical VLSI wiring characterisation
known as Rent’s rule.

3.1 High-performance computing

Parallel processing has been around for a long time, and much research has already been
done in trying to extract ever more performance out of them. Generations of high per-
formance parallel computers have been built using a collection of individual single-chip
processors coupled to a standard network interface or customised router, and linked
together by a communication topology such as a hypercube. These routers have tradi-
tionally been slow and bulky compared to the delay of links between them. Although
the absolute cost of communication can be high, the physical scales at which commu-
nication takes place is large (dedicated router chips orders of magnitude bigger than
individual area-constrained on-chip routers), where the cost and delay is dominated by
the routers themselves and their communication with the processor, rather than the ac-
tual transmission of data over the links, that are typically transmission lines / cables. This
means that the topological distance, i.e. the number of router hops between two nodes,
dominates cost over actual physical distance. The high performance parallel processing
domain therefore admits very high dimensional and complex topologies that can greatly
reduce its communication costs and improve performance. Indeed, high-dimensional
hyper-cubes are popular due to their ability to easily embed other problems [48].

At the scale of individual NoC routers on a chip, however, there is considerably greater
cost in connecting them into high dimensional topologies. Thus the intuition gained from
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the parallel computing community of building complex routers or non-local topologies
needs to be treated carefully and skeptically. Primary concerns about load-balancing
of computation and traffic do not necessarily apply in the CMP domain, where power
constraints are more dominant.

3.2 Existing models of parallelism and communication

There have been a number of models of computation with which parallel algorithms
have been studied. For the most part, however, these have been mainly applicable for the
High Performance Computing domain. Apart from Billardi’s work on D-BSP, these mod-
els typically do not account for the energy and delay costs of moving data that increase
with its physical distance, although Valiant makes his Multi-BSP model highly param-
eterisable so that these attributes can, in theory, be incorporated by choosing suitable
parameters. Moreover, these models have nothing to say about the expected properties
of communication locality, whether in physical space, or in time.

3.2.1 PRAM model

The PRAM model [42] is a parallel version of the RAM computation model. It is widely
adopted by algorithm designers to analyse the performance of algorithms, however it is
also a very simple model that assumes an infinite number of processors, and that mem-
ory is uniformly accessible in constant time, regardless of how it is shared, and has no
resource contention. As such it assumes ideal communication, and does not account for
the non-uniform communication costs of real systems, or their memory access costs. It
works best in the domain where communication and synchronisation costs are negligible
compared to computational costs.

3.2.2 BSP model

The Bulk Synchronous Parallel model (BSP) model of Valiant [106] was introduced in
1990 and is also widely used for algorithm analysis. This model is considerably more
realistic. It consists of a set of p processor-memory pairs, a communication network with
a throughput-related parameter g (time interval between consecutive messages), and a
synchronisation mechanism between them with latency L. Valiant envisioned parallel
algorithm execution to proceed in supersteps. Each superstep consists of three successive
stages:

1. Parallel computation – where each processor performs computations only on its
own local data

2. Communication – where processors exchange data with other processors
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3. Barrier synchronisation – where each processor waits until all the other processors
have finished

The parameter g is set so that for h messages of size one, it takes time hg on the processor
to deliver it. Note that it does not capture any locality in the communication, where one
set of processors may take a longer or shorter time to communicate than another. The
BSP model allows analysis of the time-complexity of algorithms, but not their physical
communication costs. The analysis consists of determining the cost of each superstep,
as the sum of the largest computation time of the processors, the longest communica-
tion time of them, plus the synchronisation latency. The total time cost of the parallel
algorithm is then given by the sum of the superstep costs needed to perform it.

Valiant also introduces the notion of parallel slackness, whereby algorithms designed for
the PRAM model can be run at only a constant factor penalty compared to the PRAM
model, but on the BSP model. This works provided there are sufficiently large numbers of
parallel PRAM processors to be simulated for each BSP processor. Essentially, it consists
of multithreading to hide the latencies of communication and barrier synchronisation,
in order to achieve near-ideal throughput. However, as was discussed in Chapter 2,
modern CMPs are severely I/O bandwidth constrained rather than simply I/O latency
constrained, thus such a technique would not be a panacea for modern CMP.

3.2.3 LogP model

Similar to the BSP model, the LogP model [32], introduced in 1993, also tries to cap-
ture some elements of the communication overhead. The LogP model consists of four
parameters: L – maximum latency of communication, o – processor overhead of com-
munication during which it cannot do other computation, g – minimum interval between
consecutive messages, and P – the number of processors. Unlike the BSP model it does
not constrain computation, communication and synchronisation into separate phases.
Furthermore, any synchronisation required is achieved through communication. How-
ever, as in the BSP model, communication costs are uniform between the processors, and
so do not capture any locality.

3.2.4 D-BSP model

The Decomposable-BSP model of Torre et al. [105], introduced in 1996, extends the BSP
to have decomposable clusters – whereby supersteps only communicate and synchronise
within their own cluster. They allow for the synchronisation and communication opera-
tions to be faster with smaller clusters, thus capturing some locality information. Bilardi
et al. [13] expanded on this, and defined a more restricted recursive version of D-BSP so
that it forms a binary decomposition tree of possible clusters. At each level of cluster size,
a separate parameter for the time-interval between consecutive messages gh and barrier
synchronisation latency Lh is defined.
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This model, finally, encapsulates some information about communication locality. Al-
though it is not necessarily tied to the physical constraints of, say, the two-dimensional
CMP surface – parameters can be chosen so that it reflects these constraints, by having
the latency L increase exponentially with higher levels of the hierarchy. Like previous
models, this one is primarily concerned with asymptotic time, rather than more recent
concerns of cost such as energy consumption. Also, as this model was constructed for
the HPC domain where there is abundant attached local memory (per processor node),
it does not model the very large time and energy costs of external I/O communication to
reach external memory versus local memory or on-chip memory. Nor does it model the
demands of multiple cores on a constrained external I/O bandwidth.

3.2.5 Multi-BSP model

More recently, in 2008, Valiant updated his BSP bridging model specifically for the CMP
domain [107]. Valiant shows that with different parameters, his Multi-BSP model en-
compasses the PRAM, D-BSP, and other models. Like the D-BSP model, this model
assumes a number of levels of hierarchy for a CMP, with corresponding clustering of
cores, memory, bandwidth cost and latency penalty. At each level of hierarchy, the
model assumes there is a cost gh for bandwidth and a cost Lh for latency, similar to
the D-BSP model. He then introduces a memory term for each level of the hierarchy, that
restricts the size of the problem that can be tackled at each level, as communication is
assumed to occur through slots in the shared memory. By allowing for a full hierarchy,
this Multi-BSP model contains multiple hierarchical levels of communication delay from
neighbouring nodes, to distant nodes on chip, and even to off-chip external memory.
Although it manages to capture a good deal of locality by its hierarchy, it does not cap-
ture the direct physical nature of locality. For example, there are parallel algorithms that
rely on a 2-D communication with its neighbours, such as Conway’s Game of Life and
systolic matrix multiplication. In the case of Valiant’s model, there are necessarily physi-
cally neighbouring nodes on a 2-D CMP that can only communicate by traversing up and
down through the entire hierarchy, rather than simply directly as physical neighbours.
Nonetheless, this is a significant improvement in capturing information about locality,
compared to previous approaches. Unfortunately, this model is also primarily concerned
with analysing and optimising asymptotic time complexity, rather than, for example, the
energy consumption of communication induced by the algorithm.

3.2.6 A note on Amdahl’s law

Amdahl’s law is often brought up when discussing limits to parallelism [56]. It should be
made clear that the tradeoffs posed between faster ‘serial’ processing and wider parallel
processing are actually based on coarse-grain parallelism such as tasks and threads, and
only as the problem is constructed. Advocates of the need for faster ‘serial’ processors
may be forgetting that largely, these processors are faster because they utilise Instruction
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Level Parallelism (ILP), deeper pipelining, memory parallelism and some speculative par-
allelism – which are simply different fine-grained forms of parallelism. They may not
be inherently faster at executing serial code, so much as they are better at extracting
such fine-grained parallelism on the fly. In a sea of processors, the internal computation
involved in extracting this parallelism can be offloaded to other simpler cores, and this
fine-grained instruction level parallelism distributed amongst a neighbourhood of cores.
Indeed Taylor shows how a Scalar Operand Network [103] can distribute operands, for
ILP, in an array of processors such as MIT’s RAW project.

The correct application of Amdahl’s law would be to characterise the strictly serial com-
ponent of an algorithm than cannot be sped up by pipelining, or with fine-grained par-
allelism, or speculation, and thus would have little advantage to be executed on a spe-
cialised, fast ‘serial processor’. In short, arguments misusing Amdahl’s law, demonstrate
not so much the limits of parallelism itself, but of the coarse-grained task or thread-level
parallelism that most software engineers currently refer to as ‘parallelism’.

3.3 Communication complexity approaches

Aside from parallel computing and algorithms work done in the HPC domain, some
theory has also been developed for analysing communication costs.

3.3.1 Yao’s two-party and multi-party models

Yao [113] studied the minimum amount of communication needed between two parties,
say Alice and Bob, in order to compute a function together, where both parties have mu-
tually exclusive parts of the function input data. In this model, the parties are assumed
to have infinite computing resources at their disposal, and that the cost of communica-
tion between Alice and Bob is fixed. The communication complexity of a protocol is
given by the maximum number of bits transferred between Alice and Bob to solve the
function under arbitrary inputs. The communication complexity of the problem is then
the lowest computational complexity over all possible protocols. Although some appli-
cation was made to evaluating boolean functions, and extended to partitions of boolean
circuits (where communication is across a divide between parts of a single boolean cir-
cuit), it doesn’t account for the cost of communication increasing by distance. Nor does
it consider the physical embedding of communication problems. Furthermore, even for
boolean circuit evaluation, it is in general an NP-complete problem to determine the
communication complexity for arbitrary functions (as it contains boolean satisfiability
as a sub-problem). Thus, characterising realistically sized circuits for communication
complexity is largely impractical.
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3.3.2 Thompson’s area-time complexity

Thompson [104] developed VLSI models where wires take up area and take time accord-
ing to their length. He examined the tradeoff between VLSI area and computation time
and showed that there were lower bounds to Area-Time-squared complexity (AT 2). Un-
fortunately, the model is rather dated. It assumes that area taken up by wiring directly
comes at the expense of logic area, because wiring and logic occupy the same plane.
However VLSI no longer resembles this – modern VLSI have multiple metal layers al-
lowing wires to reside on separate planes and not directly interfere with logic area. That
is, there are separate communication and computation resources in VLSI - as there are
on CMP. Also, Thomspon assumed that wire delays vary according to the logarithm of
length, which was an appropriate model at the technology scales of the time. Unfor-
tunately, with technology scaling we have moved closer to the underlying physics, with
delay linearly proportional to distance. This is something that Chazelle and Monier ad-
dressed [24] by enforcing linear communication time, however their model still assumes
that wiring is in the same plane as logic. Thus, although there is a large body of literature
with Area-Time optimal algorithms proven, these do not actually help in characterising
the communication costs or performance for modern VLSI, or in CMP.

3.3.3 Leiserson’s layout analysis

Similarly to Thompson, Leiserson examined the area versus interconnect tradeoff, but
utilised the theory of graph separators to analyse connectivity [67]. Graph separator
theory bears some resemblance to topological Rentian bi-partitioning, described later, as
it relates the minimum number of edges that need to be removed to partition a graph
into two equally-sized regions, to the total number of nodes in that graph. For some
simple types of graphs such as planar graphs, k-dimensional meshes, cube-connected-
cycles and other restricted graphs, separator theorems are employed to asymptotically
determine their area of layout. We should point out again, however, that these results
assume a single resource of both logic and wiring, whereas modern VLSI have separate
interconnect resources consisting of multiple planes of metal wiring. Thus they do not
help in characterising the actual communication costs for modern VLSI, or in CMP.
Moreover, they only apply to graphs that have known separator results.

3.3.4 Bilardi’s analysis

Bilardi and Preparata considered the theoretical impact of fundamental physical limi-
tations to parallel computation – in particular the speed of light and the finite size of
devices [14, 15, 87]. Indeed, these constraints of bounded communication speed and of
physical separation of computation and storage due to the finite size of devices, also lies
at the heart of this thesis. They also note that under these constraints, highly complex
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topologies such as binary trees or cube-connected cycles, cannot do any better in asymp-
totic latency compared to a simple mesh structure. Their analysis mainly consists of the
upper and lower bounds in simulating the PRAM model and higher-node versions of its
own model. They are primarily concerned with data-locality, as the farther away mem-
ory is located, the longer it takes to access. They demonstrate super-linear improvements
in performance with the number of nodes, due to increased memory access locality as
well as parallelism. However, their memory access patterns may not capture the true
nature of software locality. Its relevance is discussed more in Chapter 8.

3.3.5 Fox’s analysis

Some work by Fox [43] tried to analytically characterise the overhead of communication
compared to computation for high performance computing machines with a hypercube
and mesh topology. He primarily examined stencil operations regarding the system of
partial differential equations that govern neighbour forces in a 2-D crystal lattice, but
also looked at matrix multiplication and the Fourier transform. In particular, for matrix
multiply he determined by a decomposition analysis that it has an ‘information dimen-
sion’ of two. Its relevance is discussed more in Chapter 8.

3.4 Rentian scaling

In the 1950s whilst working at IBM, Rent discovered empirically that the number of
terminals for packages followed a power-law relationship to the number of gates within
the package, that was not explicitly designed for. This emergent scaling property was
first described by Landman and Russo in 1971 [64], and was denoted as Rent’s Rule. It
takes the general form:

T = kGp

where T is the number of terminals, G is the number of gates, p is the power-law expo-
nent between 0 and 1, and k is a constant of proportionality that has later been inter-
preted as the average number of terminals per gate [29].

Although it started as a simple scaling relationship for the number of pins on a device
package, Landman and Russo [64] remarkably showed that this behaviour was also
present in the internal scaling of logic within integrated circuits, at a continuum of scales.
That is, Rent’s rule is a self-similar property of circuits. Moreover they found that the
Rent’s exponent is characteristic of the type of circuitry present – with an exponent of
0.5 for regular structures like static-RAM, to higher values of 0.75 for random logic.

Donath in 1979 showed that the self-similarity of Rent’s rule within circuits, has direct
implications for the average wirelength of the circuits [39], namely that for p > 1

2
, the
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average wirelength would grow as Θ
(
Gp− 1

2

)
and the total length of wire needed for the

entire circuit would grow as Θ
(
Gp+ 1

2

)
. Later, Donath showed that Rent’s rule actually

predicts a power-law wire-length distribution for p > 1
2

[40] of the form Pr (L) ∝ L2p−3,
and validated it on actual designs.

Since then, Rentian scaling properties, and their associated wire-length distributions have
been experimentally validated on many real designs and with multiple partitioning tech-
niques [98].

3.4.1 Regions I, II and III

There is a considerably lower cross-sectional density of connections between VLSI chips
than there is within a VLSI chip. This is because pins are necessarily orders of magni-
tude larger than local on-chip interconnect. What this means is that near the chip-scale,
the Rentian relationship between terminals and gates diverges considerably from the re-
lationship at lower scales, as the region is no longer self-similar. For example, at the
chip level, partitioning the design into two results in a common high-density count of
terminals at the partition, but this is entirely dissimilar to the low-density count of pins
around the rest of their boundaries. This expected drop-off in power-law scaling at the
highest scales is called Region II, with the main power-law scaling behaviour of Rent’s
rule denoted as Region I. An example for a VLSI benchmark circuit can be seen in figure
3.1(modified after Stroobandt’s paper [97]), where we can clearly see a drop-off in the
otherwise power-law behaviour, at the top levels of the chip hierarchy.

Stroobandt also showed that in certain cases, a Region III phenomena can appear [97]
that diverges from Region I at low scales. This is due to the properties of the building
blocks used to create the circuit – as these gates have a small, fixed number of terminals,
they effectively constrain the allowable interconnection complexity at these low scales.
Such behaviour is dependent on the property of the library of gates allowed in a design.

3.4.2 Application

Rent’s rule has been found to be abundantly useful in the analysis of large circuits in
VLSI [98]. As well as its original use for predicting pin counts, it is used to predict
wire length distributions [40], and even for estimating critical paths in complex circuits
even for future technology nodes [20]. Rent’s rule has been found to apply across vastly
different scales, from only tens of gates to multi-million gate designs and beyond.

More recently, Rent’s rule has been derived from first principles using basic assumptions
[29]. This means that it is not just an empirical observation, but can arise from something
more fundamental and can even be more generally applicable. Christie and Stroobandt
[29] suggest that Rent’s rule arises naturally as a result of the locality of connections –
that is blocks are placed/mapped with consideration as to how they need to connect to
each other so as to not create undue wiring.
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Figure 3.1: Example of Rentian scaling on a benchmark VLSI circuit. This figure is modified after
Stroobandt’s original paper [97]. Note the presence of a Region II near the chip-level scale. The aver-
age behaviour of Blocks (i.e. gates) to Terminals is a power-law in the main Region I.

3.4.3 Topological vs. Physical Rentian scaling

Logic circuits can be represented as graphs, with nodes representing gates, and edges
representing wires. More generally, wires may actually connect to multiple destinations,
and thus are represented as hyper-edges. Rent’s rule can be determined and applied in
two different ways – topologically or physically. In a physical analysis, a contiguous
region of logic is taken and the number of gates/nodes counted within it. The number
of nets that connect from within the region to outside the region are then counted as
terminals. By taking multiple regions of varying sizes, the physical Rent’s parameters can
be estimated. In the VLSI community, because logic is mapped to physical positions by a
placement algorithm, this is typically referred to as the Rent’s parameters by placement.
For our purposes, we choose to instead refer to this as the physical Rent’s exponent, as
the position of nodes is not necessarily due to such a placement algorithm, as we shall
see later.

As the circuit can be represented by the graph/hyper-graph, we can also topologically
determine a Rent’s exponent by partitioning the graph into topological regions/clusters.
Although a number of approaches are available [99], a simple one to describe is min-cut
bi-partitioning. In figure 3.2 we see a simple graph on the left. This is partitioned into
two roughly-equal sized sets of nodes such that there is a minimum number of edges
from one partition to the other. In figure 3.2 this top-level partitioning is shown in green.
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Figure 3.2: Two levels of min-cut bi-partitioning (green, then red) applied to a sample graph.

This can be applied recursively, and we see in figure 3.2, another level of partitioning
is shown in red. Min-cut is known to be an NP-complete problem, so practically this
is performed by heuristic approaches. To determine the Rentian scaling, at each level
of the partitioning hierarchy we can count the number of nodes, and the number of
edges that crosses a higher-level partition. For example, in figure 3.2, at the second level
of partitioning, there are (counting clockwise) 4, 4, 4 and 3 gates, with 4, 3, 4 and 5
terminals respectively.

The topological and physical Rent’s exponents can actually be different [109]. In VLSI,
the physical Rent’s exponent is determined not only by the connectivity properties of the
circuit, but also by their physical placement onto the chip. A poor placement leads to a
higher physical Rent’s exponent than a good placement, and a random placement leads
to a limiting-case physical Rent’s exponent of one.

3.4.4 A-priori wire estimation

Following on from Donath’s original derivation of wire-length distributions, a number of
improved results have since been derived. Due to assumptions in Donath’s average wire-
length derivation regarding hierarchical partitioning, it turned out his predictions were
off by about a factor of two [39, 40]. Donath’s wire distribution derivation also assumed
an infinitely large circuit, so that the power-law distribution continued to unbounded
lengths. Real chips, of course, have a maximum wire-length constrained by the die size.
Later derivations were able to take these factors into account and better predict the
wire-length behaviour at scales near the chip’s side-length [98, 29]. Whereas previous
approaches utilised a hierarchical partitioning analysis, a stochastic approach introduced
by Davis demonstrated better predictions by treating connectivity as a stochastic function
of occupation probabilities [36]. Further extensions were later made into the optical
domain [84], and into 3-D stacked die [60, 116] amongst other areas.

3.4.5 Fractal dimensionality

A number of people have noted that Rent’s rule can be considered a measure of the
fractal dimensionality of the communication graph [41, 83, 43, 84, 99]. Although their
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reasoning is arrived at largely independent, their arguments are essentially identical – the
edges crossing the boundary of a region can be thought of as measuring the surface area
of an object, whilst the number of nodes inside the region can be thought of as counting
the volume of that object. The Rent’s exponent can then be thought of as the scaling ratio
between the surface-area to the volume. For simple d-dimensional meshes, one can easily
see that this indeed produces a matching Rent’s exponent of p = d−1

d
. More simply this

is just: p = 1− 1
d
. Stroobandt gives further arguments as to what properties a measure of

fractal dimensionality should be expected to possess, and how these properties eliminate
other potential candidates, but that are all satisfied by this measure alone [99].

3.5 Summary

Although a number of approaches exist for understanding the communication properties
of high-performance parallel computers and digital circuits, none of these models is ap-
propriate for describing the expected locality and costs of communication for the CMP
domain, and indeed many of them make assumptions that are invalid for current VLSI
technologies. Perhaps the most interesting model of locality is Rent’s rule, which rather
than merely being an analytical model of asymptotic complexity, also produces quantita-
tive predictions of the expected locality of wiring that have been validated on many real
designs. However, the prior work in Rent’s rule does not consider how it might be ap-
plicable to chip-multiprocessors in either the communication characteristics of software
running on it, or for the networks-on-chip that connects the cores together.
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CHAPTER FOUR

RENTIAN LOCALITY FOR

NETWORKS-ON-CHIP

Various tiled architectures exist ranging from Chip Multi-Processors (CMPs) to arrays
of programmable logic or even to heterogeneous arrays that include custom-IP blocks.
If one were to replace the wiring between these blocks with packets over a NoC, then
it is important to determine what the properties of this traffic might be. Indeed, this
knowledge should aid us in the analysis and development of improved NoC routers.

In this chapter, the importance of traffic distribution models is shown in the analysis of
NoCs. A case for a Rent’s-based model is made and its implications explored. The rea-
sons why Rentian-behaviour might be expected are discussed, and a bandwidth version
of Rent’s rule is derived. From this, a hop-length distribution, the NoC equivalent of
a wire-length distribution, is constructed and explored for scaling and traffic implica-
tions. To better explore the differences caused by using alternative locality models, fault
tolerance design is used as a case-study. Firstly, an example semi-random task graph
is mapped using simulated annealing for optimisation. The result is used to generate
comparable best-fit Rent’s and exponential hop-length distributions. The expected dis-
tribution of traffic types under Rent’s rule is then analysed, and the observations are used
to design a new fault-tolerant router. The three hop-length distributions: Rent’s, expo-
nential and uniform random, are applied in the analysis of this fault-tolerant router. It
is shown how the choice of traffic model makes a significant difference to the impact of
faults on routability and in the quantity of congestion around faults. Rent’s distributions
are shown to result in considerably better fault-tolerance characteristics than uniform
random traffic in these analyses.

51
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4.1 Extending Rent’s Rule for NoC

4.1.1 Argument

Future massively parallel CMP will execute applications with enormous amounts of par-
allelism. CMPs are very different from multi-chip multiprocessors due to the much
higher-bandwidth and lower-latency communication channels available between cores
on chip, enabling fine-grain parallelism [81].

As was discussed in Chapter 2, the currently used models of uniform random, transpose
and other non-local traffic patterns have unacceptable scaling behaviour for CMP and
are not sustainable. For scaling to continue, it is essential that locality be exploited, the
question then is characterising how much is actually available, and in what form we
might expect to find it.

Software in CMPs is mapped to physical locations, with data flowing along paths from
one core to another. This combination of fine-grain parallelism and data-flows is anal-
ogous to circuits in VLSI. Indeed, the MIT RAW project uses the term software circuits
to describe such mappings [101], explicitly noting the similarity to VLSI-like place-and-
route. The difference with VLSI is that software circuits use processors instead of dedi-
cated logic blocks, and use a NoC instead of inter-block wires. Indeed, one could trans-
form data-flows in one domain to the other, interchanging dedicated logic blocks with
processors, and wires with a NoC.

If software circuits are anything like hardware circuits, then it is interesting to explore
whether they follow similar laws, such as Rent’s rule. To re-iterate, for VLSI designs,
Rent’s rule relates the number of terminals in a boundary, to the number of blocks within
that boundary by a power-law relation:

T = kGp

Where T is the number of terminals, G is the number of blocks (gates), k is the average
number of terminals for each block, and p is the Rent’s exponent.

We shall refer to this as the classical-version of Rent’s rule, as it applies to its traditional
domain of logic design.

In the following sections, we wish to show that a similar relationship can be applicable
to NoC bandwidth, and examine what that would mean for scaling.

4.1.2 Comparing VLSI with NoC

As shall be shown in section 4.1.3, for Rent’s rule to emerge, a certain type of bandwidth
locality is required to be present at multiple scales. The reasons why locality of tasks is
desirable for NoC are directly analogous to those for classical logic placement as can be
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seen in Table 4.1. Just as it is typically undesirable to place two blocks on opposite ends
of the chip and wire them up, it is also undesirable to map two communicating tasks to
tiles at opposite ends. Indeed, for critical paths, it is desirable to place tasks as closely
together as possible.

The emergence of Rent’s rule, however, is dependent on the properties of the underly-
ing graph being mapped, the mapping algorithm’s objective, and the underlying physical
topology. The primary requirement for Rent’s rule is a certain type of locality at multiple
scales. This requires that the graph being mapped contains sufficient locality. For exam-
ple, complete graphs have no locality to exploit, and uniformly random graphs have very
little locality to exploit. The mapping algorithm must also favour this type of locality,
even if it is not an explicit objective, but rather an implicit one such as minimising critical
paths and congestion. Finally, the underlying physical topology needs to be structured
so that some form of multi-scale locality can exist. For example, a single central star
network does not lend itself to such locality, whereas a multi-scale star network does.

4.1.3 Derivation

Christie-Stroobandt based

To arrive at a Rent’s rule for bandwidth, we can follow a directly analogous derivation
to that of Christie and Stroobandt’s [29], but in place of Gates and Terminals we can use
Blocks and Bandwidth. For completeness, this is described below:

Let us consider a boundary with N blocks and external bandwidth B. Suppose a small
perturbation is made to the boundary such that ΔN additional blocks are included.
Without additional information we can only estimate that the additional blocks are likely
to require the same amount of communication per block as the original N blocks. Thus
we would expect the bandwidth to increase by:

ΔB =

(
B

N

)
ΔN.

Now let us suppose that some of this added bandwidth is actually internal, between the
original G blocks and the additional ΔN blocks. This internal bandwidth reduces the
external bandwidth seen on the new boundary, which we characterise by a parameter p,
where 0 ≤ p ≤ 1:

Domain to minimise Wires NoC

Delay Wire delay NoC latency (& congestion)

Congestion Wire-density Cross-sectional bandwidth

Power Wire buffering & length Hop-length & router
utilisation

Table 4.1: Factors in communication locality
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ΔB = p

(
B

N

)
ΔN.

If ΔB and ΔN are small in comparison to B and N , we can approximate this to a
differential equation:

dB

B
= p

dN

N
,

which yields the bandwidth version of Rent’s rule:

B = bNp,

where b is a constant of integration corresponding to the average bandwidth per tile.

We should note that the exponent here is different in value and meaning to the classical
Rent’s exponent, thus it is important to make a clear distinction between them. Let us
refer to the classical Rent’s exponent relating terminals to gates as the Rent’s terminal-
exponent, and for this new derivation as Rent’s bandwidth-exponent.

Now, consider a 2-D topology with four regions of equal block count. If these are
combined together, then let us define α to be the proportion of external bandwidth to
the four combined individual bandwidths:

α =
b (4N)p

4bNp

= 4p−1.

So α is independent of N , and thus independent of scale. Thus another way of interpret-
ing Rent’s rule is that at each scale, we would expect the amount of bandwidth locality
(characterised by α) to be the same.

Indeed, we can provide an alternate derivation of Rent’s rule with only the assumption
of multi-scale locality.

Multi-scale locality based

Let B (N) be a function describing the average external bandwidth for boundaries con-
taining N blocks. Suppose that for all N up to the size of the design, the following
condition holds:

B (4N)

B (N)
= 4α.

We shall call this the multi-scale locality constraint.

Applying repeatedly with n levels of hierarchy we have:
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Figure 4.1: Rentian scaling in different domains. In VLSI the Rent’s exponent characterises the locality
of external wires (green) to total wires (red and green) at each level of the hierarchy. In NoC, the wires
are replaced with packets, and the Rent’s exponent characterises the locality of packets at each level of the
hierarchy.

B (4nN)

B (N)
= (4α)n ,

In particular let us set N to one, and define x = 4n. Since N and the particular boundaries
are arbitrary, let us assume this relation holds continuously, extending n to R

+:

B (x)

B (1)
= (4p)log4 x ,

then,

B (x) = B (1)xp,

which we recognise as:

B = bNp.

4.1.4 Comparison to classical Rent’s Rule

There is an important distinction to be made between the classical and bandwidth ver-
sions of Rent’s rule. In the classical version, the terminals and blocks in a design are
fixed, regardless of how they are used, and so the Rent’s terminal-exponent is also fixed.
In the bandwidth version, especially over a CMP, the bandwidths are not fixed and the
usage of the NoC can vary dramatically from one application to the next. Thus the
Rent’s bandwidth-exponent is actually dependent on the software/application currently
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running on top of it and may change accordingly. In both the classical and bandwidth
versions, the Rent’s exponent effectively characterises each level of the hierarchy. In
figure 4.1 we see one level of the hierarchy with four sub-blocks. For VLSI there are
terminals that connect within this level of the hierarchy (red), and those that connect
outside (green). Analogously there are packets that flow inside (red arrows) or flow
outside (green arrows). If this split between internal communication and external com-
munication is self-similar, i.e. if we find approximately the same split across a spectrum
of the hierarchy, then it follows the corresponding version of Rent’s rule.

The bandwidth-version of Rent’s Rule does not just apply to CMPs. For a VLSI design
consisting of many blocks wired together, if one replaced these wires with a NoC, then
the Rent’s terminal-exponent of the former may match the bandwidth-exponent of the
latter under certain conditions. This happens if the wire/terminal switching activity for
the original version is highly uniform, and independent of scale, then the number of
wires is directly proportional to the expected bandwidth, and the Rent’s rule for wires
automatically translates into the bandwidth version with identical exponent. This also
requires that long wires should have the same expected switching activity as short wires,
otherwise the rule may not follow, or a different exponent may result. Additionally,
this assumes a seamless transition from wires to NoC and neglects the effects that NoC
congestion, saturation and latency may have on bandwidth.

It should be noted that the classical version of Rent’s rule can be used to estimate band-
widths in VLSI by assuming a particular wire activity. However, this is quite distinct
from a bandwidth version of Rent’s rule itself. The emergence of both versions of Rent’s
rule arises from the type of placement optimisation used. In the classical domain, logic is
placed so as to reduce wiring, and the number of wires between blocks may correspond
reasonably well with the inter-block bandwidth requirements. In the bandwidth domain,
tasks are mapped so as to reduce communication. So they are optimising different at-
tributes, resulting in different Rent’s rule domains. For example, when using a NoC, the
amount of communication between two blocks does not correspond to the amount of
wiring between those two blocks. Indeed, there might not be any direct wiring between
communicating blocks, and even when there is, the use of wires is shared and wire ac-
tivity is application dependent. Thus one cannot merely use the classical Rent’s rule to
estimate such communication.

4.2 General Implications

4.2.1 Hop-length distributions

Just as the distribution of wire-lengths is of importance in the classical VLSI domain, so
is the distribution of hop-lengths in NoC. The effect that hop-length distribution has on
various analyses shall be demonstrated in later sections.
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Figure 4.2: Three distributions fitted to a semi-random task-graph.

The site function, giving the degeneracy of a physical length s, is:

D (s, L) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s (s (2L− s) + 1) 1 ≤ s ≤ L
2

4
3L
(
1− L2

)− 5
3s
(
1− s2

)
+ 6Ls (L− s) L

2 ≤ s ≤ L

1
3 (2L− s + 1) (2L− s) ∗ (2L− s− 1) L ≤ s ≤ 2L

0 s > 2L

And the occupation probability is:

Q (s) =
1

2s
[(1 + 2s(s− 1))p + (2s(s− 1) + 4s)p

−(2s(s− 1))p − (1 + 2s(s− 1) + 4s)p]

The proportion of total internal bandwidth for hop-length s is then:

F (s, H) =
H∑

h=1

4H−h
(
4p(h−1)+1 − 4ph

)
Q (s)D

(
s, 2h

)
(4H − 4pH)

∑2h+1
m=1 Q (m)D (m, 2h)

Where there are 4H tiles arranged in a mesh with side-length L = 2H , and
p is the Rent’s exponent.

Figure 4.3: Equations describing Christie and Stroobandt’s equally optimised partitioning and placement
model [29]

Three hop-length distribution models are examined here. The first model is based on
Rent’s rule using Christie and Stroobandt’s equally optimised partitioning and placement
model (described in figure 4.3). The second assumes a uniform random model. The third
examines a semi-random generated task graph that was mapped by simulated annealing,
found to be close to exponential in distribution.
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4.2.2 Implications for scaling

We can utilise the model to estimate the scaling behaviour of traffic under Rent’s rule.
Using Christie and Stroobandt’s equally optimised partitioning and placement model, we
can calculate the average internal bandwidth per router. This is merely the weighted sum
of the hop-length distribution:

Bav =

∑2L
s=1 F (s, H) s∑2L
s=1 F (s, H)

Figure 4.5 shows how this scales with the number of tiles. There are a number of assump-
tions going on here. Firstly, it is assumed that the amount of traffic generated by each
tile stays fixed with scale, and there is no scaling to account for increased clock frequen-
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cies. We note that a small change in Rent’s bandwidth-exponent can increase the average
traffic per router at large scales. For an exponent of 0.4, there is little change with scal-
ing, however an exponent of 0.7 leads to a many-fold increase. Higher exponents lead
to even greater increases with scaling, however, as seen in figure 4.4, this behaviour is
insignificant compared to the scaling of random uniform and transpose traffic patterns.

4.2.3 Prior work

The equivalent of VLSI placement in the CMP-domain is task-mapping. Interestingly,
some work has already been done by Hu et al. [57] regarding the impact of different
task-mappings on NoC energy consumption. Their aim was to optimise energy con-
sumption, and thus optimising locality wasn’t explicitly their goal. However, because
their NoC energy consumption model depended on the distance packets had to travel,
optimising locality implicitly became a goal. They took a Multimedia System (MMS)
consisting of an .h263 video encoder/decoder as well as an mp3 encoder/decoder, and
then partitioned the benchmark into 40 tasks that were then mapped to a 5x5 array
of tiles. Compared to random mappings (or rather the median result of 3000 random
mappings), they observed a 60.4% reduction in energy consumption, on average, for
sample video clips. As can be seen in figure 4.4, the Rentian model can directly be used
to predict the expected reduction of aggregate bandwidth for optimal versus random
mappings on a 5x5 tiled system. Hu’s energy model has power consumption increasing
linearly with packet distance, so the aggregate bandwidth becomes a reasonable proxy
to compare total dynamic energy consumption. Using the Rentian model, for a very
wide range of exponents of 0.4-0.9, we would expect reduction in aggregate bandwidth
of between 60-71%, and with the more likely higher Rent’s exponents of 0.7-0.9 we
would expect 60-66% in savings. Thus this purely analytical derivation agrees well with
Hu’s experimental results. As the size of the system increases, there is a rapid growth
in the predicted savings towards 100%. We should note that if this MMS design were
implemented in VLSI, the inefficient wiring of random placement would not be tolerated
for a commercial product. When replacing wires with packets, we would argue that this
inefficiency also should not be tolerated.

4.2.4 Hot-spots

So called ‘hot-spots’ occur where a computation or communication resource has signif-
icantly higher utilisation than average. This can be an argument for redistributing the
load of traffic and computation across the cores. In an era of increasing thermal con-
straints, ‘hot-spots’ in the resource-sense can literally turn into a ‘hot-spot’ problem in the
thermal sense. However, one must be very careful to distinguish between the variation in
power consumption from the total power consumption. By distributing tasks randomly,
we have already shown that the total power consumption rises dramatically with scale.
Thus applying this ‘fix’ may indeed cause power consumption to be more uniform but
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would also cause the entire system to be significantly hotter everywhere, defeating the
entire purpose of seeking uniformity and load-balancing in the first place. Certainly,
network congestion can affect performance, and therefore energy-performance, but this
means that the physical mapping of tasks needs to be handled more carefully, rather than
just randomly.

In discussing the concept of something being distributed vs. local, one must also be care-
ful to distinguish between physical locality and topological locality. In the topological
domain, hubs are high degree nodes, i.e. they are connected to many other nodes which
are topologically one hop away from it. Thus hubs have high topological locality, but
are problematic when it comes to actually physically placing them. For example, a hub
may have dozens of topological neighbours, but might only accommodate four physi-
cal neighbours, so it must necessarily have longer average links to communicate with its
topological neighbours. In general, high degree nodes are more ‘centralised’ but can lead
to poor physical locality, whereas topologically ‘distributed’ structures allow better phys-
ical locality. The argument for distributing resources should then focus on the topology
of the task-graph being mapped, rather than the mapping itself. Such a topology should
be restructured to be more distributed and balanced in the topological sense.

Concerning Rent’s rule, we should note that analogous concerns happen in VLSI, with
higher fan-outs and fan-ins for certain logic blocks or even gates. Whilst the occasional
presence of special hubs may lead to local perturbations in the locality from Rentian
statistics, they do not necessarily affect the average behaviour – indeed their rate of
occurrence are even predicted by VLSI Rentian models [114].

4.3 Applied to Fault Tolerance in NoC

In this section we first take a look at several distribution models describing locality,
and then apply them as a case-study to the design of a fault-tolerant router. Since the
probability of encountering a fault grows with the distance a packet must traverse, it is
shown how locality impacts internal router utilisation which can be exploited in router
design. It is then shown how the model of locality can have a significant impact on the
evaluation and comparison of competing router architectures.

4.3.1 Distributions Models

The Rent’s rule-based distribution

For the purposes of our NoC analysis, we shall restrict ourselves to a packet-based non-
hierarchical mesh of homogeneous tiles. We use Christie and Stroobandt’s equally op-
timised partitioning and placement model [29] which is described in figure 4.3. This
assumes a more optimal placement at the lowest scales than what may commonly be
found for gate-level place-and-route of large designs. In such designs, the impact of
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moving a gate several gate-pitches away is small enough to be almost negligible, thus po-
tentially resulting in less sensitive placement at the lowest scale. For the NoC, the impact
of moving a task several tiles away can be quite significant in latency.

For this model of hop-distribution, we find that the first hop accounts for the bulk of
NoC traffic (75-90% for Rent’s exponents between 0.4 and 0.7). This means that com-
munication between neighbouring tiles is the primary contributor to NoC congestion and
power consumption when governed by Rent’s rule. If true, given the large cross-sectional
lengths and wiring density available for communication between neighbouring tiles, this
suggests that a separate low-latency communication path should perhaps be created for
this, without the latency and power overheads of packetisation and NoC routing. We
should note that when there is less optimal placement at the very lowest scale, the first
two hops account for the bulk of traffic instead.

Indeed, more recent work by Barrow-Williams et al. [9] has vindicated this as a strategy.
After our initial publication [45] suggesting this approach, they arrived at similar con-
clusions regarding cache-coherence and employed a separate neighbour-communication
path. Utilising this neighbour-communication path resulted in a significant reduction of
network traffic.

While this analysis assumes homogeneous tiles, we can also estimate the behaviour of
heterogeneous tiles. We note that a heterogeneous tile array may not be heterogeneous
at all scales. For example, we can consider a 2x2 array of heterogeneous tiles that is
then homogeneously tiled to a 16x16 area. In such cases, the placement of tasks is
only restricted at the lowest levels, likely resulting in a significant deviation from Rent’s
rule at these low-scales. In these cases, Christie and Stroobandt’s non-equally optimised
partitioning and placement model can be used to assign a separate Rent’s exponent for
that particular scale of heterogeneity.

The uniform random distribution

When each source is equally likely to send traffic to each destination, we have a uniform
random traffic distribution. This is a simple traffic model commonly used to evaluate
NoC. The resultant hop-distribution corresponds to the site function in figure 4.3. Ran-
dom mappings of task graphs also obey this hop-distribution. We see in figure 4.2 that
low hop-count interconnects are poorly weighted, whereas medium-sized interconnects,
of around half the side length, dominate.

The exponential distribution

The hop-distribution is a function of the mapping algorithm used and what it is trying to
optimise. If the mapping algorithm’s objective is insensitive to the bandwidth or latency
of communication, then it may very well produce a ‘random’ mapping from a commu-
nication perspective. For real applications, however, whether in the VLSI, SoC or CMP
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domains, communication is already a pressing system-level issue, and with further VLSI
scaling will only become more so. Whether a mapping algorithm is trying to optimise
for performance, or for power, locality in communication will become an implicit or
even explicit objective. However, depending on the application and mapping objective,
a Rent’s distribution does not necessarily result.

A semi-random task graph was generated by Task Graphs For Free [37]. The graph is
not completely random in that it is split into multiple stages, with random links from
each stage to the next or later stages. As these links between stages are random, there
is only limited opportunity to extract some locality. It should be noted that although
this tool is commonly used, it is questionable whether this approach generates realistic
task-graphs.

A graph with 250 tasks was generated and mapped to an 8x8 array of tiles. Each task
was randomly allocated a processor load, and each task edge randomly allocated a band-
width load. Simulated annealing was chosen for task graph mapping. The analysis by
Orsila et al. [51] on simulated annealing parameter-selection was utilised. The objective
function chosen for the task combines throughput and aggregate bandwidth, with the
primary objective being to maximise throughput by minimising worst case load.

ObjFn = NTasks ×NT iles × max
i∈tiles

{loadi}+ AggBW

A minimum for the total ObjFn is sought by the simulated annealing. Here NT iles is
the number of tiles, and NTasks is the number of nodes in the task-graph. For each
tile, the load (loadi) is calculated to be the worst case of either the router load in each
routing direction, or the processor load. This is deemed to be more representative of
throughput measurement since a tile’s throughput can be processor-limited or router-
limited. The worst-case load out of all tiles is then deemed to be representative of the
inverse throughput of the entire mapped task-graph.

The aggregate bandwidth (AggBW ) measures the sum bandwidth of all tiles, and min-
imising this is a secondary objective. A decrease in worst-case-load can easily come at
the expense of an increase in aggregate bandwidth. However, it is still in the interests
of throughput maximisation for the annealer to reduce aggregate bandwidth since total
throughput can become bandwidth-limited due to congestion. This is similar to how a
VLSI place-and-route tool optimises critical timing paths, even at the expense of increas-
ing wire density.

The results from the annealing were then analysed to extract a Rent’s exponent and a
hop-distribution. A recursive partitioning was used to determine the Rent’s exponent,
and as can be seen by the fit in figure 4.6a, there is some evidence of Rent’s-like be-
haviour. However the exponent is very high at 0.89, which usually suggests that it is
close to a random graph. Random graphs generally exhibit poor locality and do not
obey Rent’s rule behaviour. Nevertheless, looking at the hop-length distributions in fig-
ure 4.6b we see evidence for some locality, though not of the Rent’s variety. For a Rent’s
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Figure 4.6: Rentian best-fit and resultant hop-distribution

distribution we may expect the hop-length distribution to approximate a power-law at
low values, leading to a linear relationship on a Log-Log scale. In figure 4.6b we instead
see an approximately linear relationship on a Log-Linear scale, thus indicating that it
may actually be closer to an exponential distribution.

An exponential distribution has a slower initial fall-off in frequency compared to a Rent’s
distribution and so there is more of an emphasis for lengths of several hops, but a much
smaller frequency for the single-hop, as can be seen in figure 4.2. This distribution’s
exponent is approximately -0.47.

Comparison of distributions

The extracted Rent’s and exponential model’s exponents now allow for some meaningful
comparison between these distribution models, and with the random distribution.

In fact, in figure 4.2 we can already observe the effect of traffic models on a design deci-
sion. In both the exponential and random models, the first hop accounts for a significant
portion of traffic, whereas this is not so for the random model. Thus having a separate
neighbour-to-neighbour communication path is most valuable for the Rent’s model, a
little less valuable for the exponential model, but not valuable for the random model.

4.4 A fault-tolerant router design

Locality is of key importance to fault-tolerance analysis and design, as the greater the
distance that packets need to travel, the more likely it is to encounter a fault. As we shall
see the type of locality model can affect the fault-tolerance properties of different router
designs. In this section we propose a fault-tolerant dimension-ordered router based on
what we’ve learnt about the distribution of traffic types in Section 4.4.1. This design
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Table 4.2: Suggested modes of operation for a fault-tolerant router

Operation Mode Turn-off/Ignore Fault-type Handled

Normal none fault-free

Through & Turn
traffic only

Storage, switching and
arbitration logic for Injection

and Termination, and PE

faulty PE or Injection /
Termination logic

Through traffic only All storage, switching and
arbitration router logic, and PE

faulty PE or bulk of router
logic

serves as one of the test-cases, demonstrating how different traffic distribution models
affect the analysis of designs.

Implications of traffic distributions

There are a number of important components within each tile. Existing tile-based ar-
chitectures typically have a Processing Element (PE) of some sort (whether a processor,
programmable-logic or custom IP block) that takes up the bulk of the tile area. Then
there is the router logic which we can break down into various elements such as storage,
injection, termination, arbitration, switching and signalling (including error-correction).

Packet-switched routers are typically dominated by storage, arbitration and switching
needs. If the probability of faults is approximately proportional to the area taken up,
then the most likely faulty component is the PE, followed by these other components.

Let us consider what happens if a tile has a faulty PE but a working router. The task that
would have been allocated to the PE must be remapped elsewhere. Since no tasks are
mapped to the faulty-PE tile, there are no Originating or Terminating packets for the tile
and any logic that handles these types of packets is superfluous. Indeed, the fault-tolerant
router should be designed to ignore these requests since such PE faults may be Byzantine
in nature.

The dominance of Through traffic in faulty-PE tiles has interesting implications for the
design of routers. If the only traffic that the router had to handle were Through traffic,
then it doesn’t need to redirect traffic, so a Switch isn’t needed, nor an Arbiter for man-
aging the Switch, and with simple flow-control, the Storage FIFO could be eliminated
as well. Indeed it no longer looks like a router, but instead becomes a pipelined inter-
connect. Surprisingly, perhaps, such an interconnect is sufficient to handle the bulk of
traffic that the router would need to handle. Of course, actually routing traffic is impor-
tant too, but this requires all the switching, storage and arbitration logic in the router.
Altogether this suggests that a layered approach should be taken to router fault-tolerant
design which is summarised in Table 4.2.

The three modes of operation vary from supporting only basic Through traffic, to sup-
porting both Through and Turning traffic, and to fault-free operation supporting all
types of traffic. It should be noted that one may still need to route around faulty tiles
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Figure 4.7: Plot of tiles unreachable from a source tile due to faults

if the links between tiles are also faulty. However, error-correction, whether applied at
every tile, or every N hops, or end-to-end, may be used in conjunction with this strategy
to further reduce the probability of failure. Previous work has also shown how a grace-
fully degrading NoC router [63] can maintain some functionality with some faults in the
arbiters, switches and allocation, but it does not consider an even deeper fault-tolerance
mode that lets traffic go through by effectively bypassing the router altogether.

Figure 4.7 illustrates how a through-mode can improve fault tolerance compared to reg-
ular dimension-ordered routing. Here four different routing strategies are shown and
how they affect a node’s reachability. Grey nodes indicate an unreachable node from the
source. We can see that XY has worse reachability than an adaptable XY-YX routing
algorithm, with the whole left side of the array unreachable. The redundancy in paths
offered to the XY-YX routing algorithms allow the system-level mapping to statically
choose a fault-free path. Note that we do not use any adaptive routing here, and so
packets are still guaranteed to arrive in-order. Recall that we have assumed that the type
of fault is statically covered, with the system-level providing for some adaptability to
detect and cover the fault. The through-mode routers fare much better, especially com-
pared to the regular XY routing algorithm. The one node that is unreachable by the
XY-YX-thru router is because both possible turn points have faults there.
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Design @90nm Dimensions(μm)

Original router 497x495.6

With through-mode 510.2x509.6

area increase 5.6%

Table 4.3: Original & through-mode areas. These results were produced by collaborator Banerjee and
not the author.

Area estimation

Let us now assume we add a through-only mode for the XY and XY-YX routers. In order
to provide through-mode support, additional wrapper logic needs to be placed around
the existing router. This results in additional area, and consequently more places for
faults to occur. Thus an assessment of such a router needs estimates of the area penalty
imposed by through-mode support.

To gain a first-order estimate of areas, a Virtual-Channel (VC) wormhole router [76]
was modified to include the bypass muxing and logic, as well as the additional buffering
needed for a single flit per direction. For flow-control, the input flit for each port is stored
and immediately sent to the output of the adjacent port on the following cycle. A credit-
based flow control is used based on the free FIFO entries available at the destination
router’s input port per virtual channel. The sent packet’s VC is used to decrement the
credit before forwarding this information back to the previous router. This implicit credit
reservation ensures that the faulty router is always guaranteed to be able to send a flit, if
it has one waiting. At this point the router acts as a pipelined interconnect, with some
flow control.

In this way, only a single flit per port needs to be stored for this path, rather than one
flit per VC per port. Also, full throughput can still be obtained for each VC without
interruption as long as the FIFO size is larger than the round-trip latency of credit and
flit propagation. This means that a router with FIFO depth of four can still theoretically
source traffic through a single faulty router at full throughput. However, this round-
trip latency means that the source router may be stalled for longer, and thus may reach
saturation with less traffic than if without the faulty router(s). If two or more neighbour-
ing routers are acting in through-mode, and the FIFOs are not large enough to hide the
credit-latency, then this can also cause a latency impact for congested VC channels.

For simplicity, the configuration of router mode was assumed to be static and setup by
a scan-chain of two configuration registers per router. The full control logic, however,
was not implemented, as the goal was merely to obtain reasonable area estimates. The
author asked Banerjee for assistance in estimating this area, and Banerjee was entirely
responsible for producing the area estimation. The results after synthesis, and placement
are summarised in Table 4.3. The author notes that a potential future optimisation in
area should be possible by removing the dedicated through-mode flit storage and using
part of the regular router FIFO storage instead.
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4.4.1 Router-activity distributions

Let us examine a simple dimension-ordered router. We can identify four main types of
traffic that result in different router activity:

• Originating – A tile may inject a new packet

• Terminating – A tile may be the final destination for the packet and thus remove it

• Turning – A tile may switch from X-routing to Y-routing or vice-versa

• Through – A tile may let traffic pass through without changing its direction

Let us look at the distributions of bandwidths from router to router. Here, Turning and
Through packets take up bandwidth on both the incoming and outgoing edges of the
router, whereas the Originating and Terminating packets take up bandwidth on only
one edge. So we will assign a weight of a half on Originating and Terminating steps.

For a route of Manhattan hop length L, it is easy to show that the average number of
Through hops is:

L− 2 +
1

L

The fractional term accounts for the additional Through hops for the routes without any
turns. Similarly, the average number of Turn hops is:

1− 1

L

The distributions for the expected router bandwidth with Rent’s exponents ranging from
0.4 to 0.7 are illustrated in figure 4.8 for 64 to 16K tiles. The relative proportion of
Turning traffic stays fairly constant for each value of p. This is fairly unsurprising since
we have deliberately assumed a minimal number of turns. It is interesting to note that
for small p there is very little Through or Turning traffic. This is because, as noted
in Section 4.3.1, the traffic mainly consists of neighbour-to-neighbour communication,
thus accounting for the dominance of Originating and Terminating packets. For large p,
however, Through traffic rapidly dominates with exponential increases in tile-size. The
proportion of Turn traffic, however, does not grow. This means that at large scales,
a dimension-ordered router is predominantly letting traffic through from one side to
the other. We should note that for the uniform random model, we would expect that
Through traffic would dominate at all these scales, whereas in this model it only domi-
nates at larger scales with higher Rent’s exponents. Under this Rent’s model, each router
is relatively busy terminating and injecting packets, especially at lower Rent’s exponents,
instead of forwarding packets.
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Figure 4.8: Expected distribution of router traffic for a working tile, for systems with Rent’s exponent
ranging from 0.4 to 0.7

4.4.2 Fault tolerance analyses

It is desirable to minimise the impact of faults on the system level performance, power
and yield/cost. While there are a lot of different types of fault, whether static manu-
facturing faults, electromigration, signal integrity and timing faults due to parametric
variation, for our purposes we shall assume that there is a predetermined static cover of
these faults while the device is turned on. We are interested in comparing, to a first-order
approximation, the impact of faults for some NoC fault-tolerance approaches.

We are not as interested in whether or not a task graph can feasibly be mapped to an
array of faulty tiles and routers. This is because even with simple XY routing, there is a
trivially findable subset of tiles that are capable of talking to every other tile in this subset.
This subset may be relatively small, but it means that a task graph can still feasibly be
mapped. Importantly, however, its performance may be severely crippled as a result, thus
we are more interested in the system-level impact than mappability.
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4.4.2.1 Unreachability analysis

When a task graph is mapped to an array of tiles, each task is assigned to a particular
tile. The logical links between tasks then need to be routed from a physical source tile
to a physical destination tile. Obviously if the logical link resides entirely in the same
physical tile, then no such routing is needed. We shall ignore these and focus on the
actually routed logical links, which we shall refer to as task-links. In the presence of
router faults, some of these task-links may not have a reachable destination from the
source. We shall refer to such links here as unreachable task-links.

One way of estimating the impact of faults at the system-level is to determine the fraction
of task-links that are unreachable. Each unreachable task-link would require the remap-
ping of either the source or destination task to another tile. If there are a large number
of these, we would expect the incremental remapping process to be computationally ex-
pensive, and that the resultant mapping would incur penalties in the system’s objective
function, whether it be in power or performance.

As was shown earlier in figure 4.7, faults in the various routers can result in significantly
many unreachable nodes. The through-mode routers can also result in unreachability,
and of course when the through-mode path fails, then the fault behaviour resembles the
non-through-mode counterpart. The through-mode wrapper adds additional logic which
we must add to the probability of failure. Although it is possible for the bypass path to
be faulty whilst the core logic is not, for now we will use a pessimistic bound and assume
that if any of the wrapper is faulty, then the whole router is considered to be faulty.
Given the small area overhead, this assumption should only have a negligible effect on
the final results.

Let us now analyse the fraction of task-links that are likely to be unreachable for these
dimension-ordered routers. We shall assume that all the task-links that have been mapped
are between pairs of functioning tiles. Tasks that are mapped to non-functioning tiles or
tiles with non-functioning routers will need to be remapped regardless of the behaviour
of the router. As this is independent of the choice of router, this influence on task-links
and remapping is not considered in this analysis.

Let fnorm be the fault rate for the normal router. We shall not estimate this value but
instead use it as a parameter with which we can explore fault-rate sensitivity.

For an XY router, consider a path of m hops. Then the probability of the task-link being
unreachable is:

fXY (m) = 1− (1− fnorm)m−1 .

For the XY-YX router, we need to separately consider turning and non-turning paths.

The probability that an m hop path has no turn is simply:
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pnoturn (m) =
1

m
.

While turning paths have redundancy, non-turning paths do not and so need to be fac-
tored into the fault calculation:

fXY 2 (m) =
1

m
fXY (m) +

m− 1

m
fXY (m)2 .

Let us now examine the Through-Mode routers.

Let θ be the fractional area overhead of the wrapper logic.

Then for a simple Poisson fault distribution [54], the probability of a through-mode
failure is estimated by:

fthru = 1− (1− fnorm)θ .

And the probability of a turn failure is given by:

fturn = 1− (1− fnorm)θ+1 .

Then the probability that a path of m hops fails for an XY-router with through-mode is:

fXY T (m) =
1

m

(
1− (1− fthru)

m−1)+

m− 1

m

(
1− (1− fturn) (1− fthru)

m−2) .
Finally, for an XY-YX router with through-mode, we have:

fXY 2T (m) =
1

m

(
1− (1− fthru)

m−1)+

m− 1

m

(
1− (1− fturn) (1− fthru)

m−2)2
For small fnormwe can approximate these to:

fXY (m) ≈ (m− 1) fnorm

fXY (m) ≈ m− 1

m
fnorm +

m− 1

m
(m− 1)2 f 2

norm

fXY T (m) ≈ m− 1

m
θfnorm +

m− 1

m
(1 + (m− 1) θ) fnorm

fXY 2T (m) ≈ m− 1

m
θfnorm +

m− 1

m
(1 + (m− 1) θ)2 f 2

norm
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Figure 4.9: Plots of task-link unreachability for three hop-length distributions

Here we can see that the XY-Through router has faults dominated by the second term.
In the XY-YX-Through router, parts of the this term are squared, leading to a very large
reduction for low values of m. As hop-frequencies tend to zero as m grows, then it is the
low-hop faults that are the most important here.

Now we are in a position to use hop-distributions to determine the expected fraction of
task-links that are unreachable and that thus need task-remapping. We do so by merely
taking the weighted sum over the hop-distribution.

Figure 4.9 shows the results for the three distributions: a Rent’s rule-based, an expo-
nential, and a uniform random distribution, as well as a comparison between the three
on just the XY-router. As can be seen, the distribution makes a significant impact on
the expected fraction of unreachable task-links. Taking the example of the XY-router,
which consistently performs the worst, the uniform random distribution results in about
about a 4x increase compared to the Rent’s distribution. We can also see that relative
comparisons can also be affected. For example, the Random distribution suggests that
XY-with-through is approximately twice as good as the XY-YX routing for large fault-
rates, whereas in the other distributions this relative gap is certainly not as large.

Looking at the more realistic Rent’s and exponential distributions, we see that the abso-
lute frequency of unreachable task-links induced by faults is considerably smaller, even
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Router Rent Exp Rand

XY 0.88% 1.6% 4.2%

XY2 0.27% 0.46% 0.91%

XYT 0.29% 0.50% 0.96%

XY2T 0.017% 0.029% 0.052%

Table 4.4: Unreachable task-links due to router faults, at a 1% fault rate for non-through-mode routers.

with large fault-rates in the regular router. Looking at Table 4.4, we see that at a 1%
fault rate in the non-through router, the XY-YX-through-mode router has almost two or-
ders of magnitude less impact than that of the plain XY router. However, it is interesting
to note that even the XY router is expected to impact less than 1% of mapped links for
the Rent’s Distribution. This suggests that even a 1% fault rate in the XY routers may
potentially be accommodated by system-level task remapping, although the same may
not hold for the Random distribution at 4.2%.

Induced congestion analysis

We can also use the hop-distribution to calculate the impact of a single fault on the
congestion of surrounding tiles. Let us compare this for our Through-Mode fault model
to another approach which involves turning upon encountering faults [26, 79]. Lets refer
to this strategy as Turn-Mode fault-tolerance. For paths along a single dimension, one
turn at a fault is insufficient, and so a second turn is forced immediately after the first
one, to route around the fault. Alternate models use fault-rings or convex fault-regions
which direct traffic around it [25], which can potentially result in even more congestion,
since all the traffic encountering faults, are forced to route around a ring or fixed path
surrounding the faults.

For the Through-Mode model, it can be shown that the expected increase in traffic at a
node is given by:

R (x, y) =

⎧⎪⎨
⎪⎩

R1 x = 0 ∧ y = 0,

R2 (|x| + |y|) x �= 0 ∧ y �= 0,

R3 (|x| + |y|) otherwise

R1 = −
2L∑

k=1

(
1− 1

k

)
F (k)

R2 (d) =
F (d)

4d
+

2L∑
k=d+1

F (k)

2k

R3 (d) = −
2L∑

k=d+1

(
k − d− 1

2k

)
F (k)

Where a value of one corresponds to all the traffic that would have been handled by the
faulty router (including terminating and originating traffic). For the dimension-ordered



Chapter 4 Rentian locality for Networks-on-Chip 73

+40%
+20%
0%
-20%
-40%+

T
ile

 Y
 p

os
iti

on
Through-mode w Rent

43210-1-2-3-4

4
3
2
1
0

-1
-2
-3
-4

+40%
+20%
0%
-20%
-40%+

Through-mode w Exponential

43210-1-2-3-4

4
3
2
1
0

-1
-2
-3
-4

+40%
+20%
0%
-20%
-40%+

Through-mode w Random

43210-1-2-3-4

4
3
2
1
0

-1
-2
-3
-4

+40%
+20%
0%
-20%
-40%+

Tile X position

T
ile

 Y
 p

os
iti

on

Turn-mode w Rent

43210-1-2-3-4

4
3
2
1
0

-1
-2
-3
-4

+40%
+20%
0%
-20%
-40%+

Tile X position

Turn-mode w Exponential

43210-1-2-3-4

4
3
2
1
0

-1
-2
-3
-4

+40%
+20%
0%
-20%
-40%+

Tile X position

Turn-mode w Random

43210-1-2-3-4

4
3
2
1
0

-1
-2
-3
-4

Figure 4.10: Collateral effects of a fault on router activity. The fault is located at the middle, and the shade
indicates the change in activity of surrounding routers due to re-routing of paths that should have gone
through the faulty router.

approach, a numerical solution was run by computing the difference between routes
with the fault and without the fault, weighted by the hop-distribution. These two are
compared in figure 4.10. Here, the shades correspond to the percentage change in total
router activity compared to the average router activity. It does not differentiate between
the different router directions. The lighter regions correspond to a reduction in traffic,
and naturally the faulty through-mode router handles less traffic. However, this plot does
not count the traffic that should have originated and terminated from the router, as this
can no longer be handled by either and must be addressed by a system-level remapping.
The intensity of the faulty turn-mode router corresponds to this traffic, and so is different
between the three distributions.

We note that for the turn-mode routers, all three distributions result in more router ac-
tivity immediately surrounding the fault, but the impact is quite localised. The through-
mode router however has less marked router activity around the fault but results in
slightly increased router activity over a larger area. It also results in reduced router ac-
tivity along the axes of the faulty router. This is because when switching a task-link’s
routing from XY to YX, all the intermediate routers along the X axis also experience
less traffic.

We can also see significant differences between the three distributions. The random distri-
bution results in marked congestion around the Turn-mode router and under-utilisation
in routers along the axis of the Through-mode router. The exponential distribution ap-
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pears to be somewhere in the middle between the random and Rent’s type distributions.

Both the spatial distribution and quantity of congestion impact the system’s ability to
compensate by remapping. The impact of the faulty Through-mode router on the sur-
rounding tiles extends considerably far in the Random model (9% even at the corners of
the array), and this may make such a router less desirable than the localised congestion
of the Turn-mode router. In the Rent’s distributions, however, the influence is far less (at
most 4.5% around the fault, dropping rapidly to just 0.05% at the corners of the array),
making it more congestion-friendly than the Turn-mode router (which is 15% around
the fault). This means that under the Rent’s distribution, the Through-mode router is
clearly superior, whereas this is not so under the Random distribution. Thus the choice
of distribution makes a significant impact on the selection of router designs.

4.5 Conclusions

In this chapter, in noting the similarities between task mapping on CMP with place-and-
route on VLSI, a Rent’s Rule connectivity model was explored. In addition, two deriva-
tions were given for a bandwidth version of Rent’s Rule that can be applied to NoC.
The conditions under which Rent’s Rule is applicable, particularly for the System-level
mapping of tasks in CMP architectures, was elaborated on. It was also noted that the
Rent’s bandwidth-exponent can vary from one application to next, especially for CMP
architectures. Assuming the law to hold, one can estimate the future requirements of
NoC with scaling, and this was shown to be sensitive to the Rent’s bandwidth-exponent
of the application. However, it was shown that unlike the unacceptable scaling trends
of uniform random and transpose traffic models, a Rentian scaling of NoC bandwidth
fares considerably better, in line with normal VLSI trends.

It was then shown how Rent’s rule results in a distribution of hop-lengths. Two other
hop-lengths were also examined, one representative of uniformly random traffic, and
an exponential distribution that appears more representative for a semi-random graph
mapped using simulated annealing.

Under Rent’s rule, the distribution of traffic types that a dimension-ordered router has
to handle, was analysed. This showed that the dominant router activity was in routing
packets from one side and forwarding it to the opposite side. A through-mode that
bypasses the router logic was thus explored as a fault-tolerance mechanism. For a modest
area increase, it was qualitatively shown that this would allow improved reachability,
however a quantitative analysis was desirable to assess its system-level impact.

Two analyses were introduced that made use of the hop-distribution, one that calculates
the number of unreachable task-links caused by faults, and another that calculates the
expected congestion impact due to a fault. The different hop-length distributions were
shown to produce markedly different results in these analyses, with the Rent’s distribu-
tion performing much better than the uniform random distribution. When comparing
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the congestion impact of faults in the through-mode router versus a turn-based fault-
tolerant router, it was shown that the choice of distribution made a significant impact.
Under the Rent’s distribution, the through-mode router was clearly better, but this was
not so under the random distribution.





5
CHAPTER FIVE

EXPERIMENTAL
EVIDENCE FOR

RENT’S RULE

This chapter examines evidence for Rent’s rule already applying in software. Although
arguments were made in Chapter 2 as to why one might expect such locality, in this
chapter multiple techniques are used to detect the presence of Rentian locality, and es-
tablish how significant it is. This is actually quite a difficult task as the size of even
simulated many-core systems are quite small, and the Rentian behaviour is more likely
to be pronounced at larger scales.

In an ideal testing case one would already have a thousand cores in a message-passing
system, running software optimised for locality with which to evaluate Rentian predic-
tions. It should be noted that for VLSI, Rent’s rule was first observed empirically by Rent
at IBM in the 1960s, but it wasn’t until 1971 that Landman and Russo [64] showed that
this held in a self-similar manner for the internal partitions of a 13,000 node logic cir-
cuit. Then in 1981 Donath showed how this could predict length distributions [40]. By
this stage digital circuits already had an appreciable size with which to fully test Rentian
predictions.

Despite the lack of an ideal platform, this chapter tackles the quantification with two
main approaches. Firstly it looks at simulated shared-memory many-core CMP systems
with a variety of benchmarks. This is an approach first taken by Heirman et al. [52]
who claimed to see such topological Rentian behaviour. This chapter first examine Heir-
man’s results, and then expands on them by performing more rigorous tests for physical
Rentian behaviour (versus Heirman’s topological Rentian tests) in a 32-core simulated
CMP system. Secondly, this chapter examines the more fundamental inter-connectivity
of instructions in single-threaded programs to determine whether they exhibit the frac-
tal connectivity that would be a basis for Rentian scaling. It employs a graph version
of box-counting [95], a technique from the Physics/Network Science community, which
can allow one to measure the fractal dimensionality of the data-dependency graph. It
then directly examines the topological and physical Rentian scaling of such graphs – by
basically treating the executed instructions much like logic gates in a circuit, and seeing

77
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if such a circuit would obey Rent’s rule.

5.1 Other work: Heirman et al.

After our original paper [45] arguing for the existence of a bandwidth version of Rent’s
rule in CMP, illuminating work by Heirman et al. [52] examined this hypothesis on a
cycle-accurate Virtutech Simics [73] simulator. Their setup involved 16, 32 and 64 core
shared-memory CMPs using the SPLASH-2 [1] suite of parallel benchmarks.

We had originally expected that Rentian behaviour would become clearer only with a
larger numbers of cores, and mainly on a message-passing architecture, where appli-
cations were written with some effort to minimise communication costs. Nonetheless,
rather surprisingly, Heirman concluded that even with the implicit communication via
shared memory on CMPs with as few as 16 nodes, there was evidence of Rentian scaling
in bandwidth. What is remarkable is that this used actual NoC traffic, running un-
der a distributed directory-based cache-coherency architecture, including non-coherence
misses and other (conflict, capacity and cold) misses. In private correspondence with the
author, it was revealed that locality of mapping from address space to core was main-
tained by allocating memory on a first-touch basis in blocks of one VM page of 8KB. In
this way, the node that first writes to an unallocated page hosts this page, by mapping
the virtual page to a free physical page with an address that puts it on this node. This al-
lows some locality to be preserved even in a distributed directory-based cache coherence
scheme where address-ranges are simply interleaved amongst the physical cores. How-
ever, it is not clear how practical such a scheme is on a general-purpose commercial CMP,
especially if there are load-balancing concerns on a highly-contested memory page. We
speculate that a more intelligent memory manager could allocate pages based on both
physical locality and load-balancing concerns.

Unfortunately, as shall be shown in section 5.2, some of Heirman’s conclusions of Ren-
tian scaling for these benchmarks may have been a little premature. The appearance of
power-law scaling was not rigorously tested against other potential hypotheses. Indeed,
Heirman himself remarked [52] that the optimality of a particular partitioning would
change over the duration of the algorithm, with some locality seen at one stage being
non-local at another stage, particularly with the FFT (Fast Fourier Transform) bench-
mark. Given that the FFT is known to be an algorithm with poor locality [43], it was
surprising that they extracted relatively low Rent’s exponents for the FFT benchmarks
(ranging from 0.59 to 0.74), whereas one might theoretically expect an exponent closer
to unity (see Chapter 8).

Heirman et al. also showed that Rentian exponents could vary at different phases of
the benchmark’s computation. This is important to elaborate on, as we certainly do
not claim that the Rent’s parameters (and consequently the amount of communication
or locality) would be uniform throughout any benchmark. They also showed that the
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optimal partitioning for one phase of the benchmark may not be as optimal for another
phase of the benchmark. They created a metric that they called ‘suitability’ that mea-
sured the optimality of imposing a single partitioning that is optimal at one time, to all
others times. Some benchmarks, such as barnes, exhibited a high ‘suitability’ throughout
its execution, whereas others such as fft4M (a 4-million point FFT) and cholesky, had
poorer ‘suitabilities’.

5.2 Evidence in simulated CMP experiments

In our own investigations into CMP, we wanted to improve the robustness of our method-
ology compared to previous work, by comparing the Rentian model to other candidate
null-hypotheses. Also, whereas Heirman concentrated at the NoC level on the topologi-
cal Rentian scaling, we were primarily interested in the physical1 Rentian scaling of data
flows at the software-level and the corresponding predictions of hop-length distributions.

For this we utilised some existing traces from Barrow-Williams et al. [8]. They employed
the Virtutech’s Simics simulator platform to construct cycle-accurate traces of SPLASH-2
[1] and Parsec [6] benchmarks for a simulated 32-core x86 CMP. The simulated cores
were each in-order with single issue pipelines much like Intel’s Larrabee CMP project
[93] and each had a private L1 cache and a large shared L2 cache. The traces for each
core logged all reads and writes to memory addresses at a particular cycle time. In this
way, one could directly determine the amount of implicit communication between cores
via the shared memory system. For the SPLASH-2 benchmark, the threads were mapped
very simply – with one thread allocated per core. Thus the flows can also be thought
of as inter-thread data-flows as well as inter-core flows. This is slightly different from
Heirman’s work which examined all NoC flows, including cache directory/coherence
traffic, as this only examines the fundamental algorithm data-flows, and is at a word-
level granularity rather than cache-line level. These traces covered the entire benchmark’s
execution, including any initialisation phases.

We explored the presence of physical Rentian scaling in these traces by employing sim-
ulated annealing to embed the cores so as to minimise aggregate communication costs.
Incidentally, this also allows one to choose multiple NoC topologies to explore the effect
of topology on communication costs, which we also examined, but we do not report
these results here.

For our 2D mesh, the cores were embedded in an 6x6 arrangement with empty cores at
the four corners - the area of which, on a real CMP, could be utilised for other function-
ality.

1Please see Chapter 3 for further discussion on the differences between topological and physical Rentian scaling.
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5.2.1 Caution: the uniform-traffic model

One needs to be particularly careful of the uniform distribution at small scales such as
the 32 nodes here, because on a log-log plot, it can appear to scale as a power-law dis-
tribution with Rent’s exponent p < 1. This is because for Ntot total cores, N cores being
considered, k constant and B external-bandwidth for the N nodes, it scales according to:

B = k.N (Ntot −N) ,

so in the log-log domain:

log B = log k + log N + log (Ntot −N) ,

yielding:

∂ log B

∂ log N
= 1− N

Ntot −N
.

This is quite linear in behaviour for N 	 Ntot. Furthermore, an extremal fit made with
two points at N = Ntot/2 and N = 1 would yield a slope of:

Δ log B

Δ log N
= 1− log 2

log Ntot − log 2
.

For Ntot = 32, this yields a minimum power-law slope of 0.75. By including more interim
points, the best-fit slope starts to increase, but there are only a small number of interim
points for Ntot = 32. For 1024 points, this minimum slope is 0.89. The picture is clearer
in figure 5.1 with Ntot = 1024. A network of this size has a best-fit unweighted slope of
0.91, agreeing with the minimum prediction, however weighing the data-points to adjust
for the smaller variance of larger regions, leads to a reduced slope of 0.774. One notes
that along the x-axis there are far more data-points at higher values than at lower values,
so another approach is to equally weigh each portion of the log-scaled x-axis so that each
portion has a proportional influence on the fit, leading to an equal x-weighted slope of
0.954. For Ntot = 32, the canneal benchmark which is uniform, has a best-fit weighted
slope of just 0.796 (see figure 5.2).

The reason why the uniform distribution poses a problem is that it actually does behave
as an approximate power-law distribution, but with exponent p ∼ 1. Indeed, a uniform
distribution is actually a limiting case of the spatio-temporal Rentian model2, with p → 1.
The biggest danger lies in the sensitivity of p, because a model with p = 0.8 has very
different locality properties to one with p = 1. This makes the uniform model a special
case that should be explicitly tested against. To guard against this with so few nodes,
it means we need to include so-called Region II effects (see Background Chapter 3) by
fitting against a proper Rentian model, rather than just a simple power-law.

2Please see Chapter 7 for more details of this model
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Figure 5.1: Example of ‘fake’ power-law appearance in scaling with uniform traffic for 1024 and 1Mi
nodes

5.2.2 Methodology

First, we employed a hand-crafted simulated annealing algorithm to find a good mapping
of cores. All it can do is shuffle the mapping of the 32 cores in space. If a core needs to
communicate with another core h hops away with bandwidth B it contributes hB to the
aggregate bandwidth (and to NoC dynamic energy consumption as per Banerjee et al.
[7]). The simulated annealing tries to minimise the aggregate bandwidth thus optimising
for locality. This objective function is as good as any other to define ‘optimal locality’
(see the Chapter 6 for a discussion of cost-universality).

Each node was taken as a seed node, and then all the nodes surrounding the seed node
up to a distance L were used to form a boxed region. The bandwidth of communica-
tion from inside the box to outside the box was plotted against the number of nodes
within the box. This allows one to determine the physical rather than purely topologi-
cal Rentian exponent. We fit the results in the log-log domain using a range of possible
functions, but with two free parameters each, and recorded their RMS error. Both the
Rentian and uniform models have two free parameters. For the Rentian model this is
the average bandwidth and the Rent’s exponent, so for the uniform model we proposed
two generalised versions. One is the uniform distribution with total number of nodes
allowed to vary as a free parameter, and the other extends the uniform model retaining
information about the total number of nodes, but adding a free parameter to make it
a full second-order polynomial. The first model, importantly, has an actual hop-length
distribution associated with it, which we make use of for comparing predictions.

The non-linear least-squares fits were done using a Levenberg-Marquardt algorithm
adapted from Price et al. [88]. The candidate fitting models were:

1. A simple power-law of form: λx−μ, which is what is typically used for fitting Rent’s
exponents
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2. A uniform distribution of form: λx (μ− x). This essentially models a region of b

nodes communicating with each other, where the bandwidth between each pair of
nodes is uniform.

3. A modified uniform distribution of form: λx (n− x)+μ, where n is already fixed at
the number of nodes in the system.

4. An exponential of form: λeμx

5. A logarithmic of form: λ log (x) + μ

6. Polynomials of form: (λx + μ)k for k = 1..3

7. A Spatio-Temporal Rentian distribution with average bandwidth a, and Rent’s ex-
ponent b, with a topology of n nodes given. (This model is described in Chapter 7
and Appendix E)

As another Rentian model to compare to, we would have liked to have used Christie and
Stroobandt’s equally optimised and partitioned Rentian model [29] as well, but could
not determine how to adapt it to a system with nodes that are not a power of four.

For each pair of communicating cores, we assumed that the variation of bandwidth was
normally distributed.

For average bandwidth b of communication between each pair of communicating nodes,
and standard deviation σ, we can define a relative variation of:

ε = σ/b,

and for T independent links of communication going from within the box to outside the
box, we would expect a total variance of:

σ2
N = Tσ2,

with a relative variation of:

εN = ε/
√

T .

In the logarithmic domain, this translates to a range of values of:

log bN = log (Tb (1± εN ))

= log T + log b + log (1± εN ) .

For small εN , we have:
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|log (1± εN)| ≈ εN

= ε/
√

T

≈ ε

√
b

bN
.

Thus we assume that the standard-deviation in log-space of a box with N nodes scales
according to 1/

√
bN . We use this to scale the sum-of-squares non-linear regression by

weighting according to relative expected variance.

5.2.3 Results

In the VLSI domain, the appropriateness of a Rentian model is examined by comparing
how well it predicts the wire-length distribution and average wire-length, based on fits
of the Rentian parameters on examples and benchmark circuits. Our equivalent here
in the CMP domain is to examine how well it predicts the hop-length distribution and
aggregate bandwidth (the total distance-weighted bandwidth) for the 2-D mesh NoC
topology.

Figure 5.2 shows a small selection of benchmark results, deliberately chosen to showcase
a variety of behaviour – for a comprehensive set please consult Appendix A. The left-
hand-side consist of physical Rentian fits and the right-hand side consist of the resultant
predicted and actual hop-length distributions.

Just focusing on the Rentian fits, the RMS error for each fit function can be seen in figure
5.3. We note that because there is variation in the bandwidth for any given number of
nodes (cores), the minimal achievable RMS error is constrained by the variation of the
data itself. Thus we can remove the variance in data to obtain another comparison of
RMS fit seen in figure 5.4. Both variances are important as a high data-variance can also
indicate that the model is generally a poor fit, whereas we would also like to compare
the relative scale of RMS error between the candidate fit functions without including
data-variance.

From these we see that many of the alternative candidate functions are poor fits. The
log-law and the power-law distributions did well for many benchmarks, however the
uniform and Spatio-Temporal Rentian distributions were consistently the best fitting.
Remarkably, this makes the uniform distribution the best null-hypothesis out of all the
candidate fit functions, including the regular power-law fit. For the generalised uniform
and Spatio-Temporal Rentian distributions, these also have associated hop-length distri-
butions, thus allowing another form of cross-evaluation.

Given the Rentian parameter fits, the hop-length predictions were compared to the ac-
tual hop-length distribution, and returning back to figure 5.2 we can see these in the
right-hand-side plots. Here, while freqmine subjectively has an almost equally poor Ren-
tian prediction compared to the uniform model, water_nsq is very close, and canneal
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Figure 5.2: A small selection of Rentian fits for benchmarks running on a 32-node CMP simulator, and
their resultant predicted hop-distributions. While freqmine has an almost equally poor Rentian prediction
compared to the uniform model, water_nsq is very close, and canneal has a limiting-case behaviour of
uniform traffic in the Rentian model (p ≈ 1 implying no locality). For a comprehensive set please see
Appendix A.

has a limiting-case behaviour of uniform traffic in the Rentian model (p ≈ 1 implying
no locality). More objectively, we can determine the RMS error of these hop-length
predictions and these are shown for the entire benchmark in figure 5.5. Although the
Spatio-Temporal Rentian model has a smaller RMS error in almost all the benchmarks
compared to the generalised uniform, for many it is quite comparable. For ferret, both
models have very high RMS errors, whilst for some like canneal, fft and swaptions,
both models have very low errors. The latter case corresponds to the limiting Rentian
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Figure 5.3: RMS error (including data’s variance) of BW versus node fits

model of uniform traffic (i.e. p ≈ 1). As an interesting point for comparison, we also
added a direct exponential fit for the hop-distribution and measured the RMS error from
that. Note that unlike the uniform and Spatio-Temporal Rentian models, this is not
even a prediction, but merely a least-squares fit. We note that the predictions from the
Spatio-Temporal Rentian model still manage to outperform the exponential fits for most
benchmarks.

We can also compare the predictions for aggregate bandwidth. Table 5.1 shows the pre-
dicted versus actual aggregate bandwidth for the benchmark applications. Aggregate
bandwidth here corresponds to the total distance-weighted cost of communication. For
the Rentian prediction it takes the hop-length distribution and weighs it by the hop-
distance and then multiplies it by the number of nodes and Rent’s parameter for average
bandwidth per core (also from the Rentian fit). As can be seen, for most of the bench-
marks, the estimated aggregate bandwidth is also quite close (within ±5%) to the actual
value. When it comes to predicting communication energy consumption, there is dy-
namic energy consumed that is proportional to the link distance covered [7], as well as a
component based on router utilisation. Thus accurate predictions of both the aggregate
bandwidth and hop-distribution should allow prediction of NoC energy consumption as
well. We should note that in a Rentian model, although most of the traffic may be local,
the energy consumption is most affected by the tail of the distribution, since costs are
weighted according to traversal distance.
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Figure 5.4: RMS error (excluding data’s variance) of BW versus node fits

5.2.4 Discussion

For a model with only two free parameters it is quite remarkable how close the actual
versus predicted hop-distributions are. After-all it is not the hop-distribution itself that is
being fit, but rather the Rent’s exponent and average bandwidth. We should further note
that the average bandwidth has no bearing on the hop-distribution since it is normalised
out. Thus there is really only one free parameter for the hop-distribution, namely the
Rent’s exponent that is determined separately.

It is also important to note that these results do not necessarily rule out Rentian be-
haviour on some benchmarks – instead they show that for some it is hard to differentiate
between the Rentian model and an alternative one, making it more unlikely. Benchmarks
where it is safe to say it is unlikely to be Rentian are ferret, freqmine, water.spa, and
x264. Note that there are special cases dedup, ferret and x264 which involve more than
one thread per core, where we would expect the unconstrained (semi-random) mapping
of threads to introduce greater non-locality. Indeed, Barrow-Williams et al. [8] demon-
strated that there is greater locality in these benchmarks when examining the thread-to-
thread communication rather than the core-to-core communication, so that it is possible
that a constrained communication-optimised thread mapping would lead to Rentian be-
haviour.

The benchmarks which appear to be uniform-traffic also have Rentian locality of p ≈ 1.
These are dedup, canneal, fft, and swaptions (of which dedup is a special case as dis-
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cussed above). Benchmarks which appear to follow the Rentian model with p < 1

are barnes, blackscholes, bodytrack, facesim, fluidanimate, fmm, streamcluster, radix,
water.nsq, volrend. Those benchmarks which may be Rentian but which have almost
equally good predictions as the generalised uniform models are: cholesky, raytrace, ra-
diosity and vips.

The best-fit spatio-temporal and spatial Rent’s exponents are listed in table 5.2 along
with a judgement of whether it is likely to be Rentian. The criteria chosen was that the
hop-length distribution RMS error should be less than 0.05 and should outperform the
uniform model by at least 2:1. Also, where the normalised RMS error of the Rentian fit
was at the higher end (3.0 or more), or if the aggregate BW prediction error was more
than 5%, it was downgraded in category.

The spatial Rent’s exponents are calculated from the spatio-temporal ones by pspatial =

max
{

2− 1
pST

, 1
2

}
, where the spatial rent’s exponent are necessarily at least 0.5 for a

2-dimensional spatial topology. For more details of the spatio-temporal model please
consult Chapter 7.

Looking through the exponents, the uniform-random benchmarks clearly stand out with
near unity Rent’s exponents. We also note the special case of fluidanimate, where the
spatio-temporal Rent’s exponent of about zero implies that it is one-dimensional in its
communication structure, like a linear dependence chain.
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Benchmark Actual
Aggregate BW

Rentian
predicted

%
Rentian

error

Modified
Uniform
Predicted

%
Uniform

error

barnes 1746786 1748633 0.11% 1897779 8.64%

blackscholes 11884 11458 -3.58% 18971 59.63%

bodytrack 3656176 3893234 6.48% 4283584 17.16%

canneal 8442467 8454134 0.14% 8474101 0.37%

cholesky 5274672 5266977 -0.15% 6300917 19.46%

dedup* 36443085 37009511 1.55% 37986386 4.23%

facesim 56118910 59181378 5.46% 65678526 17.03%

ferret* 11188999 13236903 18.30% 19684363 75.93%

fft 239193 239379 0.08% 240576 0.58%

fluidanimate 2354296 2168705 -7.88% 4173220 77.26%

fmm 1274182 1260237 -1.09% 1643574 28.99%

freqmine 14312190 15458636 8.01% 16494845 15.25%

lu 808769 778992 -3.68% 967681 19.65%

ocean 421679 419407 -0.54% 471679 11.86%

radiosity 14858580 14744439 -0.77% 15464948 4.08%

radix 186723 184412 -1.24% 223855 19.89%

raytrace 1022003 1051469 2.88% 1078492 5.53%

streamcluster 6193909 6354654 2.60% 7703215 24.37%

swaptions 20044115 20125571 0.41% 20450646 2.03%

vips 42144523 43722867 3.75% 47894675 13.64%

volrend 463263 487414 5.21% 554583 19.71%

water.nsq 753212 721876 -4.16% 843360 11.97%

water.spa 447880 460296 2.77% 507438 13.30%

x264* 23880716 25617844 7.27% 27584094 15.51%

Table 5.1: Predicted vs. actual aggregate bandwidth. Asterisks denote benchmarks with more threads than
cores, and unconstrained thread mapping to cores.

5.3 Evidence in dynamic data-dependency-graphs

5.3.1 Earlier work on fractal properties in software

Some previous work [31] has shown that in an object-oriented system, the static net-
work of classes where edges represent relationships between the classes, exhibits fractal
behaviour, and that the dimensionality may even be a good metric as to the complexity of
the software system. There has been some speculation as to whether program behaviour
exhibits fractal properties [77], however as far as we are aware, prior to our first paper
[45], there had been no work demonstrating that the dynamic graph of operations in soft-
ware actually exhibits fractal behaviour. The dimensionality of such fractal behaviour
would be of interest in understanding the intrinsic complexity of communication within
the software.

At different scales, the dimensionality is a measure of the complexity of communication
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Benchmark Likely to be Rentian? ST p̂ Spatial p̂

barnes Yes 0.91 0.90

blackscholes Yes, but with borderline RMS error 0.36 0.50 (min)

bodytrack Yes, but high variance 0.89 0.88

canneal Uniform (p ≈ 1) 1.00 1.00

cholesky Unclear (hop dist RMS higher) 0.81 0.76

dedup* Uniform (p ≈ 1) 0.97 0.97

facesim Perhaps, but high variance 0.88 0.87

ferret* No (unconstrained thread mapping) 0.51 0.50 (min)

fft Uniform (p ≈ 1) 0.99 0.99

fluidanimate Perhaps, but high variance, and with p = 0 -0.03 0.50 (min)

fmm Unclear (hop dist RMS higher) 0.71 0.58

freqmine No 0.91 0.90

lu Unclear (hop dist RMS higher) 0.76 0.69

ocean Yes 0.87 0.85

radiosity Unclear (almost uniform?) 0.94 0.94

radix Yes 0.79 0.73

raytrace Unclear (almost uniform?) 0.97 0.97

streamcluster Yes 0.78 0.72

swaptions Uniform (p ≈ 1) 0.98 0.98

vips Unclear (high variance, low RMS hop dist ratio) 0.90 0.89

volrend Yes 0.86 0.83

water.nsq Yes 0.83 0.80

water.spa No 0.89 0.88

x264* No (unconstrained thread mapping) 0.91 0.91

Table 5.2: Categorisation of benchmarks, and their estimated Rent’s exponents. Asterisks denote bench-
marks with more threads than cores, and unconstrained thread mapping to cores.

between operations, between blocks of operations, functions and higher level assemblies
of code. In a CMP-setting this fractal dimensionality places constraints on the commu-
nication complexity between cores regardless of the level of the software mapping.

There have also been clues as to the fractal nature of communication if we look in
the temporal domain. A number of observations have been made [108] that the time-
evolution of traffic appears to exhibit long-range self-similar traffic that can be charac-
terised by a Hurst parameter. However, since this also involves an interaction of software
with the network, this does not comprise definitive evidence that the graph underlying
software communication is fractal in nature.

5.3.2 Fractal behaviour in software

We were primarily interested in the intrinsic structure of communication of executing
software instructions and what it means for CMPs. Thus we avoided explicitly structured
multi-threaded applications, and instead decided to use the dynamic data-dependency
graphs of single-threaded applications. Much like VLSI networks consist of logic gates
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Figure 5.6: Example of a Data-Dependency Graph

connected via wires, we can also view the data-flow in software as instructions connected
via registers/memory/NoC. These graphs can be mapped to both multicore or single-
core architectures, so we are interested in the properties and limitations imposed by
them for communication. By extracting such a data-dependency graph in a benchmark
application, one can determine whether fractal connectivity properties are present that
would imply Rentian scaling.

In figure 5.6 we see an example of such a graph. with nodes representing instructions
and edges representing word-sized communication. Typically instructions will have two
inputs (or more for complex instructions) and one output that could fan out to multi-
ple other instructions. Such abstracted graphs of computation capture information flow
between executed instructions, and thus optimistically contain all the control informa-
tion in advance. This is equivalent to a perfect oracle expanding the program graph into
exactly the graph that needs to be executed without any speculative operations. While
this is fine for certain statically-fixed algorithm graphs, such as the fixed butterfly-graphs
in FFTs, this is unrealistic for algorithms with highly non-predictable graph expansions.
Nonetheless, assuming this implicit ‘perfect oracle’, provides at least a minimal bound of
communication required for executing without it. We address this assumption in section
5.4, where we instead examine the connectivity of actual instructions without the need
for a perfect oracle.

5.3.3 Box-counting dimension

Box-counting is a methodology used for analysing fractal dimensionality. It involves a
length or ‘yardstick’ of box that tiles the set. For example to measure the dimensionality
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(a) Box-counting of 1D graph (lengths 1-3)

(b) Box-counting of 2D graph (length 1) (c) Box-counting of 2D graph (length 2)

Figure 5.7: Box-counting of example 1D and 2D graphs.

of a region, one can cover it with boxes of a certain side-length. As the length of the boxes
shrinks, the number of boxes scales asymptotically according to some exponent. That
exponent corresponds to the box-counting dimension. For a two-dimensional object, like
a filled circle, the number of boxes will scale according to Θ (L−2) for box side-length L,
however for fractal objects the exponent will be a non-integer – i.e. fractal dimensional.

Song et al. extended the idea of box-counting to the network domain by coming up with
an analogue to ‘box-length’. In their definition, a box of length L contains nodes which
are all at most (L− 1) hops away from one another. The box count is then given by the
minimal number of boxes of length L that can tile the entire network. Note that this
may include boxes that are of smaller ‘lengths’, what matters is that they are tiled and
cover the entire network. Song et al. [95] showed that the scaling behaviour wasn’t as
sensitive to finding the actual minimum, which is computationally very demanding (NP),
and instead that the exponent could be extracted even with randomly chosen nodes as
seed nodes. Figure 5.7 shows an example of how box-counting works on a linear chain
(a) with four boxes of length two, three of length three and two of length four. With large
chains, the asymptotic scaling behaviour would be of Θ (L−1). In figure 5.7(b) and (c)
we see it applied to a 2-D graph with lengths two and three respectively. Note that this
serves to illustrate the general technique of box-counting. In practise, the incremental
box-counting of Concas et al. [31] is used, which is more efficient by merging candidate
boxes together, whilst being observed to still preserve the scaling exponent.
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5.3.4 Methodology

We constructed a tool using Pin [72] to instrument x86 applications running under
Linux. This was used to construct the dynamic data dependency graphs of operations
over the trace. In order to ensure that the initialisation steps were skipped and the im-
portant part measured, we introduced a trigger within each benchmark application to
start capture.

A suite was constructed, mainly comprising of the MiBench benchmark suite [46], plus
a few additional algorithms. Together this comprised a wide variety of algorithm types
including multimedia, scientific computing, graph methods, encryption, compression,
and networking domains.

To look for and measure the possible fractal behaviour, we utilised Concas et al.’s [31]
approach of incremental box-counting. In their approach, a box of length L is one that
contains nodes that are at most (L− 1) hops away from every other node in the box.
The algorithm tiles the graph with boxes of length L and then counts how many there
are. It starts with every node belonging to its own box. For each box length iteration,
it randomly selects seed boxes and greedily merges with neighbouring boxes so long
as the resulting box has maximal length L, and until there are no more box merging
opportunities. The box length is then incremented and the previous box allocation is
used as an input for the next iteration. To give an example, in a 3D mesh, the number
of nodes in the boxes will tend to grow by the cube of L, and thus the number of boxes
will be tend to shrink according to L3. By plotting the number of boxes to box length on
a Log-Log scale, one can then see if such behaviour is indeed exhibited, and if so, what
the dimensionality is.

When merging two candidate boxes, ensuring that all the internal nodes of the two
boxes are at most (L− 1) hops away from every other node can become computationally
expensive. Because of this, we only used 100,000 graph nodes for our analysis. Even
achieving this required some optimisations of the former algorithm [31], as calculating or
storing a non-sparse 100k x 100k matrix of distances between nodes was not practical.
We did this by utilising the properties of the fractal graph, namely that for each box,
the boundary nodes should be small compared to the number of internal nodes. As we
were only interesting in calculating the maximal distances between the nodes of merging
boxes, we noted that there are internal nodes which are discardable. For two internal
nodes X and Y in a box B, if X has greater or equal distance than Y to each of B’s
boundary nodes, then X dominates Y, and we can discard Y if we keep X. This reduces
the storage and computational requirements considerably. These optimisations do not
affect the correctness of the algorithm. For graphs that do not exhibit fractal properties,
it is possible that the storage and computational requirements are not tractable. Indeed,
we discovered that the graphs of some benchmarks could not be analysed with even
10,000 node graphs, whereas others had no problem scaling to millions of nodes.
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5.3.5 Results

We start by examining the results for a known non-fractal dimensional graph. Looking
at Fig 5.8, we see that a uniform-random graph, of the form of Erdös-Rènyi, exhibits a
rapidly accelerating decrease in box counts with box-length, and is certainly not fractal
[91]. This is because most nodes are only a short distance from other nodes, and so upon
merging nodes into boxes, the connectivity of the boxes is very high. We could not run
a large random graph to completion, due to the performance issues discussed in section
5.3.4, so only a 1,500 node random graph was used here for illustration.

To validate the dimensionality extraction, we also tried a linear graph (consisting of a
simple uni-directional chain), also seen in Fig 5.8, noting that it does exhibit dimensional-
ity very close to one. There are some artifacts at the very lowest and largest box sizes, and
this has to do with the random samplings and isolation. Ideally, the box count should be
the minimum possible number of maximally-packed boxes for a particular side-length.
So for a one-dimensional graph of ten nodes, a side-length of two should yield five boxes.
However, random seed selection means that some pairs will be merged on either side of a
lone node, orphaning that node, and increasing the box count. With incremental merg-
ing, this isolating behaviour tends to be preserved, until large box-lengths where there
are very few boxes left over. This behaviour is seen through most of the plots, and in
order to extract a linear fit for the central portion, we ignore box lengths lower than
four and box counts lower than sixteen, as these appear to be the values at which these
artifacts appear for most plots. We apply a least-squares fit over this region to find the
slope. Many benchmarks exhibit very clear fractal behaviour.

The results for the benchmark suite are presented in Appendix B, although we present
some select ones here. For the lame benchmark (figure 5.9b) that performs MP3 encod-
ing, we observe a fairly good fractal relationship over the region with dimensionality of
about 2.6. A similar behaviour and dimensionality is seen for the HTML typesetting
benchmark typeset (figure 5.9a), while rijndael (figure 5.9c) has a dimensionality very
close to three. Several highly sequential benchmarks such as CRC32, adpcmenc and
bitcount (figure 5.9f) were observed to be quite linear in their behaviour. Whereas we
note that qsort (figure 5.9e) does not appear fractal in its scaling behaviour. This makes
sense since a binary tree is not a fixed dimensional graph – with n entries it can only be
embedded with edge length O (1) in a hypercube of dimension O (log n). The tiff2rgba
benchmark (figure 5.9d) appears to have different scales exhibiting different near-linear
fits, possibly hinting at multi-fractal behaviour.

A couple of benchmark graphs did not complete box-counting analysis, because of very
high inter-connectivity. We were initially surprised that tiff2bw, a benchmark that con-
verts an image from colour into black and white, behaved like this, but a closer look
revealed that a lookup table (LUT) was being used for the conversion, and that this
was causing every pixel conversion to reference these values, resulting in very high con-
nectivity. In practise, a CMP implementation should create local copies of the LUT or
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Figure 5.8: Box-counting measure comparing a Random Erdös-Rènyi graph to a linear graph, each with
1500 nodes

substitute them with in-place calculations, thereby eliminating these large hubs, however
we did not manually or automatically transform the graphs in this way – potential future
work that we believe may be worth investigating. This only highlights that an algorithm’s
communication concerns motivate us to alter them for the CMP domain. Analysis of the
dynamic data dependency graph may be one way to pinpoint suitable targets.

5.3.6 Dimensionality of communication vs. parallelism

It should be emphasised that low dimensionality does not necessarily indicate lack of
parallelism, and nor does high dimensionality necessarily indicate lots of available paral-
lelism. Indeed high dimensionality may indicate that communication will be a bottleneck
constraining parallel speed-up.

To give two examples: if a node launches ten strictly sequential graphs, the resultant
graph would still be 1D, but there would be an available parallelism of ten. Conversely,
if a 3D graph of operations were linked together such that there is a sequential depen-
dency from one to the next, then the graph would still not provide an opportunity for
parallelism, even though the dimensionality of communication is three – it can only be
embedded within the one dimension of time. This is because data dependencies must
observe temporal ordering, whereas they are unconstrained in the spatial dimensions.

5.4 Rentian analysis of dynamic-data-dependency graphs

We can take the dynamic data-dependence-graphs of Section 5.3 and apply the tools
of topological (partitioning) and physical (placement) Rentian analysis. We can then
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(a) Box-counting measure of the Typeset benchmark
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(b) Box-counting measure of the Lame benchmark
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(c) Box-counting measure of the Rijndael (aes) benchmark
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(d) Box counting measure of the tiff2rgba benchmark may suggests
possible multi-fractal behaviour, whereby the dimensionalities are
heterogeneous at different scales.
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(e) Box counting of the quick-sort benchmark doesn’t appear fractal
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Figure 5.9: A selection of box-counting plots from the MiBench benchmark suite. For a complete set,
please refer to Appendix B.
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Figure 5.10: Temporal Interconnect

examine the scaling of nodes to edges for Rentian behaviour as well as predictions for
distance-distributions, but in the temporal domain.

5.4.1 Temporal communication and approximate distributions

When mapping operand graphs, we are mapping them both in space and in time. Not
only is there a spatial distance, but also a temporal distance, and much like longer spatial
distances consume more resources, so too do longer temporal distances. In figure 5.10
we see an example graph on the left that has a natural spatial embedding for four cores,
with short spatial and temporal communication lengths between them. A layer of the
example graph is embedded into a single core on the right. The embedding eliminates
spatial communication but comes at the cost of increased temporal-distances. Every
temporal link requires memory for storage, a limited on-chip resource which is used up
for the duration (length) of the link. Rather than provide a uniform performance cost
per memory access, the memory hierarchy is a statistical attempt at minimising costs.
For short range communication, register files are used, followed by L1, L2 and L3 cache
respectively, and then external memory or even virtual memory. With greater temporal
distance, there is a greater resource and performance cost, thus it is also important here
to minimise temporal communication distances.

In our communication-centric paradigm3 it helps to re-examine what services memory is
providing. On the one extreme it acts as a wire in time, directly connecting data from
one time to another, and on another extreme it can be used to logically act as a lookup
table, possibly replacing whole functions. Both extremes are accommodated by the view
of memory as acting as a switch that routes data from one moment in time to the next.
Thus the concepts of memory and the NoC may not be so fundamentally different after
all. We can view memory as routing primarily in time, and the NoC as routing primarily
in space, but really they act together to route data in space-time.

Under the constraint of minimising distances, it might be reasonable to expect Rentian
approximate power-law distributions in the temporal distances. We were pleased to find

3see Chapter 2 for more details
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that Hartstein et al. [49], did indeed observe a power-law distribution for the inter-
access times of cache-lines, much to their surprise, as they had expected an exponential
distribution. They constructed analytical cache models based on this distribution and
showed that it could reasonably model and predict cache behaviour (upon varying cache
architecture). They also showed that by assuming a power-law, they could explain the
empirically observed but unsatisfactorily explained scaling law for cache misses, which
they relate to the power-law exponent of cache line accesses for the application. How-
ever, they did not have a satisfactory explanation as to why such a power-law behaviour
was present in the first place.

We should note, however, that their results are based on the distance of cache line ac-
cesses, whereas our analysis looks at the individual links of operands between executed
instructions. The power-law distribution of operand-distances does not automatically
follow from such a distribution in cache lines, or vice-versa, as a cache line combines
many words of data and thus also involves address-locality within the cache line as well.
It would be interesting to establish that power-law temporal-distance distributions do
exist at the operand scale as well.

Recently, Clauset et al. [30] examined phenomenon previously claimed to be governed
by a power-law probability distribution, and demonstrated that with a more robust sta-
tistical analysis, that many of these were not likely to have been drawn from a perfect
power-law distribution afterall. They recommended the use of Maximum Likelihood Es-
timation (MLE) for parameter estimation and then the use of the Kolmogorov-Smirnov
test and likelihood ratios to determine the goodness-of-fit against other probability distri-
butions. For our distance distributions, we do not make the claim that there is an under-
lying power-law distribution, from which the data-set represents independently drawn
samples. Indeed, because of the nature of repeated loop execution, there are many links
with ‘magic’ lengths that violate any independence. This can result in a certain large dis-
tance L being favoured by orders of magnitude compared to distance L + 1, even though
at each scale (with logarithmic binning) the trend is roughly power-law in nature. Thus
a strict application of the Kolmogorov-Smirnov test will rule out any smoothly-varying
candidate distribution such as the power-law, exponential, log-normal, etc. However,
Clauset et al. also point out that the importance of whether or not it perfectly fits a
power-law distribution depends on how the distribution is used. They distinguish, for
example, between the scientist trying to construct models of how a perfect power-law
emerges, versus the engineer who needs a reasonable approximate model with which to
make decisions. In our case, we are less concerned with whether or not it perfectly fits,
indeed we already know that it cannot fit perfectly, however this should not stop us from
applying it as a simple and useful approximate model. For similar arguments, we would
expect the distance distribution of VLSI circuits to also fail Clauset’s criteria, and yet
Rentian wire-length distribution models yield useful predictions.
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5.4.2 Physical (embedded) analysis

Instead of trying to find an optimal embedding for the instructions by simulated anneal-
ing, we can simply use the instruction sequence as an existing embedding. This also
avoids the problem of needing an ‘oracle’ for the graph, since we are simply taking what
is dynamically generated by executing the instructions as-is.

Plots for the entire MiBench benchmark suite are shown in Appendix C, however a
selection chosen for their diverse behaviour is also presented in figure 5.11. They show
the scaling behaviour for 2 million instructions of their data-dependency graphs. The
meaning of ‘placement’ here is the actual instruction execution position in time – so the
first instruction has position one and the last has instruction position two-million. The
communication graph is then segmented approximately equally in time into eight regions
starting from segment 1, and ending at segment 8, and these are labelled separately
within each plot. The Rentian scaling properties of ‘terminals’ (cut hyper-edges) to nodes
(instructions) is shown on the left. The scaling of the distance distribution of accesses is
shown on the right hand side.

All plots are in log-log form for power-law fitting. Distance distribution frequencies are
logarithmically binned. A shallower distance distribution slope implies less locality, as it
means there is more communication at further distances. For Rentian distributions, there
is a limiting value in the slope of −1 which corresponds to infinitely large dimensionality
in the communication graph’s connectivity. One-dimensional graphs (serial communica-
tion) are a limiting-case, with distance distribution slope of −2 before the model breaks
down allowing steeper slopes. For the Rentian plots on the left, one should note that
there are different sizes in the sample points. Here, the size of the cross corresponds to
the degeneracy (number of identical samples) at that sample point. We should note that
all fits are over the entire data-range, and therefore may include Region II effects that
may alter the values of the slopes.

The selection of benchmarks in figure 5.11 was deliberately chosen to showcase a wide
variety of different behaviours, however many of benchmarks typically exhibited ap-
proximately Rentian behaviour, as seen in Appendix C. Looking at adpcmenc, we can
see that it has a fairly flat Rentian scaling exponent (close to zero), making it look like a
linear-chain in its communication structure, with only on the order of tens of words of
data being communicated even at large scales of the hierarchy. The corresponding dis-
tance distribution starts off looking approximately power-law but is truncated very early
at a link distance of under a hundred instructions, and with frequencies higher than one.
This also indicates a simple sequential structure with dependencies between stages of at
most 100 cycles. In comparison, typeset has a steeper Rentian scaling exponent and is
not truncated early in its distance distribution. We can also see some variation in ex-
ponent for each of the eight regions of time. In the fft benchmark we can see several
separate heterogeneous scaling behaviours. Importantly, the steepness of the fft slopes
on the left-hand scaling graph gets steeper with the number of nodes instead of being
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Figure 5.11: A small selection of Rentian fits and their temporal-distance distributions. For a complete set
please refer to Appendix C.
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Figure 5.12: Heterogeneity in the lame benchmark across different times. Two main Rentian scaling
distributions can be seen with corresponding effects on their distance distributions.
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Figure 5.13: Abrupt change in scaling behaviour for rijndael

approximately linear in the log-log domain. This indicates it is non-Rentian in its scaling
behaviour, and indeed we would expect this for the fft4. The corresponding distance-
distributions are also more scattered, with poor locality for some of the regions. Finally
in the tiff2bw benchmark, we see a clear violation of approximate power-law distance
distributions, as well as poor Rentian scaling.

Taking a close look a the lame benchmark, shown in figure 5.12, we can clearly see two
heterogeneous phases of execution – an almost linear phase like in adpcmenc, as well as
a more complex phase with higher Rent’s exponent and lower associated distance distri-
bution slopes. The presence of heterogeneity is not, in itself, surprising, as Heirman et al.
[52] has already identified how the Rent’s parameters can change with different phases
of a program’s execution. What is remarkable is that we can identify these structures
at all. Taking a step back, one may ask why the data-points in this figure aren’t simply
scattered and indeed why they aren’t merely random, instead of exhibiting differentiable
structures, particularly Rentian structure?

Looking at rijndael in figure 5.13, we see that after about a few thousand instructions,
4See Chapter 8 for more details
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Algorithm 5.1 Example of one-dimensional communication structure, but with a higher-dimensional sub-
structure (in matrixMultiply).
R = matrixIdentity

while (exponent != 0) do

if (exponent & 1)

R = matrixMultiply(R, X)

fi

X = matrixMultiply(X, X)

exponent = exponent >> 1

endwhile

the slope abruptly changes to be flat. This indicates a near one-dimensional communica-
tion structure. It helps to understand how this might occur with an example. Suppose we
had a fixed size matrix multiplication and repeated the operation back to back, say for
exponentiation. Then at the higher-level scale this consists of forwarding matrix multi-
plication results onto the next matrix multiplication operation as seen in Algorithm 5.1.
This results in only linear communication needs at this level of the hierarchy, which is
different from the scaling behaviour within the matrix multiplication. We would expect
larger matrix multiplies to push out the transition point to the right (i.e. more instruc-
tions before linear scaling behaviour takes over).

For a Rentian network that is optimally embedded in one dimension (in this case ‘time’),
one would expect the exponents to be related. For Rent’s exponent p and distance distri-
bution exponent −μ we would expect p + μ ≈ 2. A plot across the benchmark segments
are shown in figure 5.14. The ten percent error bars are shown for the sum, and it does
appear that most benchmarks are within 10% of the Rentian model. Benchmarks with
truncated distributions (marked here by circles), indicate a likely Rent’s exponent of zero
at larger scales, and are unlikely to obey this relationship in exponents. As a form of
evidence, the plot here is certainly suggestive of this Rentian relationship, but it is not
definitive – a tighter fit to the expected curve would be much more desirable. In prac-
tise, this depends on the optimality of the algorithm’s embedding of instructions so as
to minimise temporal communication. Unlike in VLSI, whereby a placement tool can
freely shuffle gates around for its optimisation goals, algorithm designers are not neces-
sarily motivated to optimise an implementation’s temporal communication and compil-
ers currently optimise at the fine-grain scale of tens to hundreds of instructions. Unless
compilers (or programmers) can better work at optimising at a higher level, this may
pose a limitation on the temporal Rentian model’s predictive ability. However, given
existing scaling trends, we believe that there will be increasing motivation to optimise at
such a level. Distance distribution exponents below the line, should move up to the line
at larger scales. Exponents above the line are sub-optimal and should be structured to
move towards the line.
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Figure 5.14: Relating the Rent’s exponent to the distance distribution exponent. For a Rentian network
that is optimally embedded in 1-dimension (in this case ‘time’), then we expect the Rent’s exponent p and
distance distribution exponent −μ to be related by p+μ ≈ 2. The ten percent error bars are shown for the
sum.

5.4.3 Topological analysis

The topological approach treats the graph in the abstract, much like the fractal box-
counting analysis earlier. A selection of plots for MiBench benchmark applications are
shown in figure 5.15, with the entire benchmark suite results available in Appendix D.
They show the scaling behaviour for 2 million instructions of their data-dependency
graphs. The ‘partitioning’ here uses hMetis [62] which tries to find a min-cut bisection of
the communication graph using hyper-edges. This is done recursively for sixteen levels
forming 65,536 partitions. The top three levels of bisection form eight regions which
are labelled segment 1 to segment 8, which although tend to correspond to eight near-
contiguous temporal segments, may not necessarily do so. These labels are shown within
each plot. The Rentian scaling properties of ‘terminals’ (cut hyper-edges) to nodes (in-
structions) is shown on the left. The scaling of the distance distribution of accesses is
shown on the right hand side.

The distance distribution here, as in the physical analysis in section 5.4.2, uses the ac-
tual instruction time distances but utilising the partitioning found by hMetis rather than
partitioning by time. We should perhaps note that the min-cut problem is actually NP-
complete, and hMetis is using heuristic approaches and annealing to achieve its result.
As such hMetis is not guaranteed to find a minimal partitioning. One would hope that
it could do better than the existing embedding of instructions in time from the previous
chapter, but this is not necessarily the case.

All plots are in log-log form for power-law fitting, similarly to section 5.4.2, with identi-
cal plot attributes. We should again note that all fits are over the entire data-range, and
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therefore may include Region II effects that may alter the values of the slopes.

Again, for many of these plots we do see evidence of Rentian scaling. Comparing the
selection in figure 5.15 to the previous physical Rentian analysis, we can note some
differences. Although typeset is not affected much, the spread of slopes and distance
distributions is markedly narrower (reduced from a range of size 0.081 to 0.020), along
with the distance distribution slopes (from a range of 0.25 down to 0.094). For tiff2bw
the behaviour is also clearer, with less variance). This could be because the tool is free
to choose the partitioning and so can separate out other behaviour. For the fft we note a
change in behaviour - it now appears to be Rentian with near constant slopes. However,
one has to remember that there is an implicit context at work here – the topological
partitioning is done recursively in a tree-like manner, and without regard to temporal
ordering dependencies. The Rentian-like scaling property seen on the left-hand-side,
then, is for communication that is embedded in a high-dimensional binary tree substrate
rather than, say, a 2-D mesh with uni-directional time. This highlights the importance of
also doing a physical Rentian analysis.

Looking in figure 5.15 at the benchmark lame for 1 million cycles, we see that there is
a wide scattering of points, and it does not follow a simple Rentian scaling. However,
if we look closer, we see that there are actually several Rentian scaling structures being
presented at once. Again we find for lame a heterogeneous system with modules that
have different Rentian parameters (i.e. multi-fractal) in its behaviour. Indeed we can use
the top-level partitioning of hMetis to separate out these modules, as shown in figure
5.15. In the lame benchmark we see that whereas in the physical Rentian analysis we
could see only two heterogeneous regimes, in the topological one there appears to be
three (region 7 in black is separate from the other two main scaling trends in red and
yellow). The partitioning tool appears to have found a communication structure that
was not exposed in the physical Rentian analysis, possibly because this structure was
embedded (by the programmer) inside a different algorithm’s loop-body. This analysis
suggests that it could be perhaps be separated into another spatial region.

5.5 Conclusion

Using multiple methodologies, this chapter examined and tested existing software for
evidence of Rentian scaling. In addition to Heirman’s work on characterising Rentian
behaviour for CMP systems, this chapter more rigorously examined evidence for it by
comparing against other null-hypotheses in the physically placed domain. Across the
SPLASH-2 and Parsec benchmarks, good agreement with Rentian behaviour was ob-
served on a wide variety of benchmarks. It becomes easier to distinguish between Ren-
tian scaling and other null hypotheses as the size of the system increases, and with only
32 nodes this makes it a challenge. For a number of benchmarks, there wasn’t sufficient
evidence of Rentian behaviour compared to other null hypotheses, and in some cases
the Rentian model was rather unlikely. However, even for those benchmarks deemed
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Figure 5.15: Selection of benchmarks chosen for comparison with the physical analysis.
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unlikely to be Rentian, the spatio-temporal Rentian model was observed to be the best-
fitting model for the growth of bandwidth versus nodes in almost all the benchmark
applications. Moreover, the Rentian model had remarkably good predictions for the
resultant hop-length distributions and aggregate bandwidth for most benchmark appli-
cations. This indicates that the simple model is indeed useful for predicting and charac-
terising the hop-distribution using only one free parameter, and the aggregate bandwidth
with only two free parameters. This lends further credence to the Rentian model as a
characterisation and modelling tool.

To investigate the more fundamental communication structure of software, dynamic
data-dependence graphs were extracted from single-threaded benchmark applications.
With several techniques – box-counting from the Network Science community, and
physical and topological Rentian analysis, it was seen that many benchmark applica-
tions appear to exhibit fractal scaling properties, and the temporal-distance distributions
were also seen to be approximately power-law. Instead of random or non-power-law
distributed scaling structures for terminals versus nodes, clear heterogeneous Rentian
structures were clearly visible in the analysis corresponding to different phases of the
program execution, or to different min-cut partitioning found by an automated tool.
Furthermore, for the physical Rentian analysis, the distance distribution exponent and
Rent’s exponent, were predicted by theory to sum to two. We saw that most benchmarks
were within 10% of this predicted behaviour in exponent sum.

This all indicates that the Rentian model, although not universal, is a simple, practical
model that is useful for characterisation and applies to a wide variety of algorithms.





6
CHAPTER SIX

GENERALISING
RENT’S RULE

Although in Chapter 4 it was examined how Rent’s rule could be generalised to the
NoC domain of bandwidth, the argument focused on the interchangeability of hardware
blocks with software blocks. This implies individual software tasks being specifically
localised on certain cores, and acting more as a software circuit – like the PicoChip
architecture [85]. More generally, however, it is not just software tasks that are being
mapped in space, but also their individual instructions are embedded both in space and
in time.

One would desire, then, a more complete model that unifies the concept of NoC and
memory into a single Spatio-Temporal Rentian model for the CMP domain. This is
where there is both a spatial component, say an N ×N 2-D mesh, as well as a temporal
component of memory and execution time – extending many orders of magnitude further
into time, but only in one direction – forward.

Existing Rentian models from the VLSI domain deal primarily with planar logic that can
be connected in any direction, rather than software which has constraints in the temporal
dimension. Some extension to 3D stacked die also exist [60, 116] but they capture neither
the unbounded extent nor the uni-directionality of the temporal dimension. Nor do they
give an adequate account of how the relative costs of moving in one dimension versus
another affect the embedding, as moving information purely in time can be much cheaper
than moving it in space (and time). Furthermore, we would also like a model to support
a 3-D stacked CMP (say an N ×N ×M mesh) along with the fourth dimension of time.

In order to achieve this goal, one actually needs to better understand Rent’s rule, and
generalise its principles much farther than existing theory. To do so, in this chapter it
is first proven that there is an equivalence between asymptotically power-law tailed dis-
tance distributions and asymptotic Rentian behaviour. Moreover, this proof is done in a
general d-dimensional vector space, rather than just the 2-D Manhattan metric of VLSI.
Previously Donath and others [40] have shown that Rent’s rule leads to approximate
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power-law distance distributions for VLSI, but not the other way around, and not with
this generality. This asymptotic equivalence is quite remarkable in itself. It is then proven
that the problem of finding optimal distributions for mappings in a d-dimensional do-
main is equivalent to an optimisation problem in a configuration-space. It is shown that
the particular power-law tails for the d-dimensional embedding, produce power-law tails
in the equivalent configuration-space with an invariant exponent, independent of the
original embedding dimensionality. Leveraging this invariant power-law tail exponent
allows generalisation to arbitrary embedding domains, including for software running
on a CMP, and perhaps even physical human-interaction networks as will be illustrated.

6.1 The principle of cost universality

It would be useful to be able to meaningfully compare two length distributions f (l) and
g (l) for optimality of communication. Here, the concept of a length distribution is gen-
eral. For example, the length distribution in a manufacturing context may correspond
to actual physical wire length, and for a network-on-chip may correspond to what pro-
portion of traffic goes a particular distance. The total cost incurred by a distribution is
equal to the sum of the cost of each link. If link cost varies by distance we can utilise
a cost function c (l) and the total cost C over a length distribution f , up to maximum
length Lmax, as:

C (f) =

Lmaxˆ

0

f (l) c (l) dl.

We allow f to also be a discrete probability distribution, by way of Kronecker delta
functions.

Definition 6.1. We define the relation f �c g to mean f is more optimal than g over cost
function c i.e. C (f) < C (g), where C (f) =

´ Lmax

0
f (l) c (l) dl.

It is reasonable to assume that the cost function c (l) strictly increases with distance (or
hop count in the case of topological networks). This monotonicity, in practice, is not an
important restriction to represent real monotonic cost functions, as it still allows the rate
of monotonic increase to be arbitrarily small.

Under certain conditions shown below, f is more optimal than g regardless of the specifics
of the cost function as long as cost is strictly increasing. We remove the subscript on the
optimality relation to denote that it is independent of cost function. i.e:

f � g.

Definition 6.2. We define the relation f � g to mean f is more optimal than g over all
strictly increasing cost functions c iff ∀c ∈ C1∧∀l ≥ 0, 0 ≤ c (l) < ∞∧c′ (l) > 0 : f �c g.
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Lemma 6.3. For probability distributions f and g with cumulative distributions F and
G respectively, if ∀l ∈ [0, Lmax] , G (l) ≥ F (l), where Lmax is the maximum length of the
system, then f � g.

Proof. First we can examine the difference in costs incurred for two probability distri-
butions as:

C (f)− C (g) =

Lmaxˆ

0

(f (l)− g (l)) c (l) dl.

As by definition F (0) = G (0) = 0 and F (Lmax) = G (Lmax) = 1, then integrating by
parts we have:

C (f)− C (g) = [(F (l)−G (l)) c (l)]Lmax

0 −
Lmaxˆ

0

(F (l)−G (l)) c′ (l) dl

= 0−
Lmaxˆ

0

(F (l)−G (l)) c′ (l) dl

=

Lmaxˆ

0

(G (l)− F (l)) c′ (l) dl.

This is an integral of a positive function, therefore the result is positive.

Definition 6.4. A family of distribution functions {fk} is said to be ‘cost universal’ if any
two members can be strictly ordered as fj � fk or fk � fj , independent of cost-function.

Lemma 6.5. The family of distributions {fμ} with common head-distribution and con-
tinuous power-law tail distribution from some starting length ltail and with exponent
μ > 1 is ‘cost universal’.

Proof. Let G and H be arbitrary members with power-law exponents μg and μh respec-
tively where μh > μg > 1, then:

G (l) =

⎧⎪⎨
⎪⎩

B (ltail) + λ

(
1−
(

l
ltail

)1−μg

)
, l ≥ ltail

B (l) , otherwise

for some normalisation parameter λ, and similarly for H, for some common c.d.f. head
distribution B (including B ≡ 0).

We know that ∀x, y ∈ R
+:
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log x > log y ⇒ x > y

So that for l ≥ ltail:

H (l)−G (l) > 0 ⇔
(

l

ltail

)1−μg

−
(

l

ltail

)1−μh

> 0

log

((
l

ltail

)1−μg

)
− log

((
l

ltail

)1−μh

)
= ((1− μg)− (1− μh)) log

(
l

ltail

)

= (μh − μg) log

(
l

ltail

)
> 0

⇒ H (l) > G (l)

As any two members can be ordered irrespective of any strictly monotonically increasing
cost-function, the set is cost-universal.

A similar result can be shown for discrete power-law distributions.

6.2 Proving asymptotic equivalence of Rent’s rule and power-law dis-

tance distributions

Let us start with a normed vector space M in d dimensions with distance metric d (X, Y ).
A d-dimensional object Z, which resides in the vector space, is convex iff for any two
points P1 and P2 inside Z, every point along the geodesic from P1 to P2 is also in Z.
Let us choose an arbitrary convex shape Z, such that the longest geodesic inside Z is of
exactly unit length. Let VZ be the d-dimensional volume of Z. For an example, see figure
6.1 for a two dimensional Euclidean vector space.

Suppose we have an edge E of fixed length L which can be anywhere homogeneously in
the d-dimensional vector space, and in any orientation. Let each position and orientation
be uniformly probable, but with lengths obeying a prior distribution. Let us denote the
start of the edge by P1 and the end of the edge by P2, then for a fixed start point the
configuration space1 of possible end points is given by BL = m (P1 | d (P2, P1) = L, P2),
where m () is a function that measures the hyper-volume of the set of points satisfying
the constraints. Let mZ (P ) ≡ m (P ∈ Z, P2 ∈M | d (P2, P ) = L, ) = VZ .BL is the 2d− 1

dimensional volume of configuration space of possibilities for P being inside of Z, for all
1Concept originally from Physics where configurations of objects correspond to a position in the high-dimensional space. For

example the configuration phase space of a particle is the 6-dimensional position corresponding to its 3-dimensional spatial position
and 3-dimensional momentum.
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Figure 6.1: Example of an arbitrary convex shape in 2-D

values of P2. So mZ (P1) = VZ .BL and likewise, the configuration volume of possibilities
for P2 being inside of Z, irrespective of P1, is mZ (P2) = VZ .BL. However the configura-
tion volume for both P1 and P2 being in Z simultaneously are further constrained by the
edge length L, as:

mZ (P1, P2) ≡ m (P1 ∈ Z, P2 ∈ Z | d (P1, P2) = L)

We note that the configuration volume of orientations BL, grows with L, whereas it is
desirable that each orientation is equally probable with total probability equal to one.
So we contract the space to normalise as:

InternalEdgesZ (L) =
1

BL

mZ (P1, P2)

Let us denote the dimensionless, volume-renormalised function:

φZ (L) ≡ 1

VZBL
mZ (P1, P2)

We note that all edges incident with the volume of Z must have at least one point on the
inside (either P1 or P2), but must not double count edges when both points are inside (P1

and P2). These incident edges include both internal edges and terminals.

IncidentEdgesZ (L) ≡ 1

BL

(mZ (P1) + mZ (P2)−mZ (P1, P2))

= 2VZ − VZφZ (L)

= VZ (2− φZ (L))

Whereas terminals are those edges which are incident only with the surface of Z and thus
must further exclude all internal edges:



112 6.2 Proving asymptotic equivalence of Rent’s rule and power-law distance distributions

TerminalsZ (L) ≡ 1

BL

(mZ (P1) + mZ (P2)− 2mZ (P1, P2))

= 2VZ − 2mZ (P1, P2|L)

= 2VZ (1− φZ (L))

For convenience, let us define θ (x) = (1− φZ (x)). An intuitive way of thinking about
φ (x) is to think of a stick of length x and to count all the possible combination of position
and orientation of that stick that manage to fit inside shape Z. Each combination of
position and orientation is equally likely, and we normalise so that at infinitesimal length,
where all possible orientations and positions in Z fits inside shape Z, then φ (0) = 1. As
we shall see shortly, the function θ (x) has some interesting properties that we can employ
in later proofs.

6.2.1 Lemmas proving properties of θ (L)

In this section, we wish to prove particular properties of θ (L) that will be essential in
later proofs:

1. θ (0) = 0

2. θ (L) = 1, L > 1

3. 0 < L1 < L2 ⇒ θ (L1) ≤ θ (L2)

4. limL→0+
θ(L)

L
= Υ, which is a finite positive constant

5. ∃δ > 0, s.t.θ (L) ∈ C1 (0, δ), where C1 (0, δ) is the set of all functions with continuous
derivative in the interval (0, δ).

We start by remapping the product space of Z × Z into the space of Z × S × Λ where
S = {x | |x| = 1} denotes a set of orientations, and Λ a set of edge lengths. In particular:

(X, Y ) →
(

X,
Y −X

|Y −X| , |Y −X|
)

Let: η = 1
|S||VZ |

Let �NB (Y ) be the normal vector for Y ∈ ∂Z, where ∂Z is the the boundary of Z.

Let us also define the identity function:

δZ (X, ε) =

⎧⎪⎪⎨
⎪⎪⎩

1 if X ∈ Z

1− 1
ε
|X − P (X)| if 0 < |X − P (X)| < ε

0 otherwise

where P (X) is the projection of X onto the closest point on the surface ∂Z.
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Let:

δZ (X) ≡ lim
ε→0

δZ (X, ε)

=

⎧⎨
⎩1 if X ∈ Z

0 otherwise

We can write:

φ (L) = lim
ε1,ε2→0

η

ˆ

S

ˆ

M

δZ (X, ε1) δZ (X + L�r, ε2) dXd�r

= η

ˆ

S

ˆ

Z

δZ (X + L�r) dXd�r

Let �F (X, �r, ε) ≡ �rδZ (X + L �r, ε) is a continuous vector field.

By the Gauss–Ostrogradsky theorem:
ˆ

Z

∇ • �F (X, �r, ε) dX =

ˆ

∂Z

�F (X, �r, ε) • �NB (X) dX

=

ˆ

∂Z

δZ (X + L �r, ε)�r • �NB (X) dX

But we also have that:

ˆ

Z

∇ • �F (X, �r, ε) dX =

ˆ

Z

�r • ∇δZ (X + L �r, ε) dX

=

ˆ

Z

∇�rδZ (X + L �r, ε) dX

Then:

φ′ (L) = lim
ε1,ε2→0

η

ˆ

S

ˆ

M

δZ (X, ε1)
∂

∂L
[δZ (X + L�r, ε2)] dXd�r

= lim
ε2→0

η

ˆ

S

ˆ

Z

∇�rδZ (X + L�r, ε2) dXd�r

= lim
ε2→0

η

ˆ

S

ˆ

∂Z

δZ (X + L �r, ε2)�r • �NB (X) dXd�r

= η

ˆ

S

ˆ

∂Z

δZ (X + L�r)�r • �NB (X) dXd�r

Let:
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T (Y, L, ε) ≡ {�x | |�x| = 1, Y + L�x− ε (Y + L�x− P (Y + L�x)) ∈ ∂Z}

and:

T (Y, L) ≡ {�x | |�x| = 1, Y + L�x ∈ ∂Z}

Then:

φ′′ (L) = lim
ε2→0

η

ˆ

S

ˆ

∂Z

∂

∂L
[δZ (X + L �r, ε2)]�r • �NB (X) dXd�r

= lim
ε2→0

η

ˆ

∂Z

ˆ

S

∇�rδZ (X + L�r, ε2)�r • �NB (X) d�rdX

= lim
ε2→0

η

ˆ

∂Z

ε2ˆ

0

ˆ

T (X,L,ε)

− 1

ε2
|X + L�r− P (X + L�r)|�r • �NB (X) d�rdεdX

= η

ˆ

∂Z

ˆ

T (X,L)

(
−�r • �NB (X + L�r)

)(
�r • �NB (X)

)
d�rdX

The following lemma merely proves that a stick of length zero has a configuration volume
of terminals that fills the entire shape Z.

Lemma 6.6. That θ (0) = 0

Proof. By evaluation:

θ (0) = 1− φ (0)

= 1− η

ˆ

S

ˆ

Z

δZ (X) dXd�r

= 1− 1

|S| |VZ |
ˆ

S

|VZ | d�r

= 1− 1

|S| |VZ | |S| |VZ|
= 0

The following lemma merely proves that a stick of greater than unit length has no con-
figuration volume of terminals.
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Lemma 6.7. That θ (L) = 1 for L > 1

Proof. We note that for L > 1, φ (L) = 0 trivially as by definition there are no lengths
that can fit in Z over unit length (the maximum length), so θ (L) = 1− φ (L) = 1.

The following lemma merely proves that as longer sticks have at best the same configu-
ration volume of terminals than shorter sticks.

Lemma 6.8. That 0 < L1 < L2 ⇒ θ (L1) ≤ θ (L2)

Proof. Following on from Lemma 6.7, this is equivalent to establishing that ∀L ∈ (0, 1),
θ′ (L) ≥ 0. Given:

θ′ (L) = −φ′ (L) = −η

ˆ

S

ˆ

∂Z

δZ (Y + L�r)
(

�NB (Y) •�r
)

dYd�r

We know that as Y is at the boundary of Z, then by convexity of Z, all points:{
Y + L�r | �NB (Y) •�r > 0

}
must lie outside Z. Therefore restricting X = Y + Lr̃ to those points inside Z, we have:

∀X ∈ Z,Y ∈ ∂Z :
(

�NB (Y) • −−−−−→(X−Y)
)
≤ 0.

This similarly implies that within the integral bounds for L > 0, that:

−δZ (Y + L�r)
(

�NB (Y) •�r
)
≥ 0.

Integration over the bounds proves for L > 0: θ′ (L) ≥ 0, yielding our desired result:

0 < L1 < L2 ⇒ θ (L1) ≤ θ (L2)

The following lemma proves that the configuration volume of terminals varies linearly
with the length at infinitesimal scales.

Lemma 6.9. That limL→0+
θ(L)

L
= Υ, for some Υ > 0

Proof. First let us establish that 0 < θ (0+) < ∞. We do this by taking the limit as L

approaches zero.

φ′ (0) = limL→0+ η

ˆ

∂Z

ˆ

S

−δZ (Y + L�r)
(

�NB (Y) •�r
)

d�rdY

= −η

ˆ

∂Z

ˆ

W (Y )

(
�NB (Y) •�r

)
d�rdY
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Where:
W (Y) = {�x | NB (Y) • �x > 0, |�x| = 1}

This is because as L approaches zero, the delta region is positive only for vectors of r

leading to the interior of Z.

If for all unit vectors �u we have:

κ =

ˆ

r∈{�x||�x|=1, �u•�x>0}

(�u •�r) d�r

We know that κ > 0 as we are guaranteed by the non-empty integral region to only be
taking a positive value.

Then φ′ (0) = −κ
|S||VZ |

´
∂Z

dY = −κ|∂Z|
|S||VZ | , and θ′ (L) = −φ′ (L)

Thus establishing that:

0 < θ′
(
0+
)

=
κ |∂Z|
|S| |VZ | <∞

We then define Υ ≡ κ|∂Z|
|S||VZ | = θ′ (0+).

The following lemma proves continuity properties, namely that there aren’t any disconti-
nuities in the configuration volume of terminals, or its differential, in some finite positive
region of lengths near zero.

Lemma 6.10. That ∃δ > 0, s.t. θ (L) ∈ C1 (0, δ)

Proof. This is equivalent to proving that |φ′′ (L)| < ∞ for some region L ∈ (0, ε). That
is, the double differential is finite, and hence that θ′ (L) is continuous.

|φ′′ (L)| =

∣∣∣∣∣∣∣η
ˆ

∂Z

ˆ

T (Y,L)

(−NB (Y + L�r) •�r) (NB (Y) •�r) d�rdY

∣∣∣∣∣∣∣
≤ η

ˆ

∂Z

ˆ

T (Y,L)

|(−NB (Y + Lr) •�r) (NB (Y) •�r)| d�rdY

≤ η

ˆ

∂Z

ˆ

T (Y,L)

d�rdY

= η

ˆ

∂Z

|T (Y, L)| dY

But |T (Y, L)| is ordinarily the length of the (d− 2)-dimensional curve along the bound-
ary ∂Z that is distance L from Y. However, in certain circumstances this can blow
up to a (d− 1)-dimensional surface. For example, consider a 3D cone, the tip of the
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cone is equidistant from an entire 2D surface instead of just 1D curves. As we are deal-
ing with a restricted region of maximum length δ, we can choose a small δ such that
we do not have this problem. We do this by noting that any finite (d− 1)-dimensional
sub-region of the convex boundary ∂Z that has constant curvature, that curvature must
be finite, otherwise VZ would not be convex. Let the minimum such radius of curva-
ture in all constant-curvature segments of ∂Z be given by ρmin, then we merely need
to choose 0 < δ < ρmin. We are then guaranteed that only (d− 2)-dimensional curves
are encountered at each point of Y ∈ ∂Z. This thus yields a finite φ′′ (L) in the region
L ∈ (0, δ). Combined with previous results (Lemmas 6.6, 6.8, 6.9), this implies that:
∃δ > 0, s.t. θ (L) ∈ C1 (0, δ).

6.2.2 Rent’s rule from continuous power-law tails

The following theorem proves that a continuous power-law tailed length distribution
with exponent between 1 and 2, asymptotically follows Rent’s rule with a related expo-
nent.

Theorem 6.11. That for a length-distribution with a continuous power-law tail of ex-
ponent 1 < μ < 2, the scaling of terminals crossing arbitrary shape Z in arbitrary d-
dimensional normed vector space M , asymptotically grows according to Rent’s rule with
Rent’s exponent p = 1− μ−1

d
.

Proof. We know that if we were to scale the shape Z by s in R
d, it would result in the

configuration space increasing by sd:

TZ (L, s) = 2VZsdθZ

(
L

s

)

Then for a global probability distribution of lengths h (L) we have number of terminals
T (s) given by:

T (s) ≡
∞̂

0

h (L) T (L, s) dL

= 2VZsd

∞̂

0

h (L) θ

(
L

s

)
dL (6.1)

= 2VZsd

∞̂

0

sh (ys) θ (y) dy

= 2VZsd+1

∞̂

0

h (ys) θ (y) dy

For a power-law tailed distribution h (x) =

⎧⎨
⎩γ (x) , x < L0

λx−μ , x ≥ L0
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with
´ L0

0
γ (x) dx = Γ < 1

Note that this constraint is quite loose and admits Dirac-deltas in the head of the distri-
bution.

T (s) = 2VZsd+1

⎛
⎜⎝

L0/sˆ

0

γ (ys) θ (y) dy +

∞̂

L0/s

λy−μs−μθ (y)dy

⎞
⎟⎠

= 2VZsd+1−μ

⎛
⎜⎝sμ

L0/sˆ

0

γ (ys) θ (y)dy + λ

∞̂

L0/s

y−μθ (y) dy

⎞
⎟⎠

= 2VZsd+1−μ

(
P (s, L0) + λQ

(
L0

s

))

Where:

P (s, L0) ≡ sμ

L0/sˆ

0

γ (ys) θ (y)dy ≤ sμ

L0/sˆ

0

γ (ys) θ

(
L0

s

)
dy

= sμ−1θ

(
L0

s

) L0ˆ

0

γ (x) dx

= sμ−1θ

(
L0

s

)
Γ

Using Lemma 6.8 (positive monotonicity of θ (y)) in the first inequality step.

And we also define:

Q (x) ≡
∞̂

x

y−μθ (y) dy

We know that limx→0+
θ(x)

x
= const. Therefore:

lim
s→∞

∣∣∣∣P (s, L0)

sμ−2

∣∣∣∣ ≤ lim
s→∞

∣∣∣∣∣θ
(

L0

s

)(
L0

s

) L0Γ

∣∣∣∣∣ = θ′ (0)L0Γ = const (6.2)

But then for μ < 2, we have lims→∞ P (s, L0) = 0

By Lemma 6.10, we know that θ (y) is C1 (0, δ) for some δ > 0, and by Lemma 6.9, we
also know that limy→0

θ(y)
y

= Υ.

Let us denote E (y) = θ′ (y)−Υ. So ∀ε > 0, ∃δ′ < δ s.t. ∀y ∈ (0, δ′) : |E (y)| < ε.
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Now:

Q (0)−Q(δ′) =

δ′ˆ

0

y−μθ (y)dy

=
y1−μ

1− μ
θ (y)

∣∣∣∣
δ′

0

−
δ′ˆ

0

y1−μ

1− μ
θ′ (y)dy

=
δ′1−μ

1− μ
θ (δ′) +

δ′ˆ

0

y1−μ

μ− 1
(Υ + E (y)) dy

Now each of these terms is finite provided 1 < μ < 2, resulting in Q (0) − Q (δ′) being
finite. As E (y) < ε:

|Q (0)−Q (δ′)| =

∣∣∣∣∣∣
δ′1−μ

1− μ
θ (δ′) +

δ′ˆ

0

y1−μ

μ− 1
(Υ + E (y)) dy

∣∣∣∣∣∣
≤
∣∣∣∣ δ′1−μ

1− μ
θ (δ′)

∣∣∣∣+
∣∣∣∣∣∣

δ′ˆ

0

y1−μ

μ− 1
(Υ + E (y)) dy

∣∣∣∣∣∣
≤
∣∣∣∣ δ′1−μ

1− μ
θ (δ′)

∣∣∣∣+
∣∣∣∣∣∣

δ′ˆ

0

y1−μ

μ− 1
(Υ + ε) dy

∣∣∣∣∣∣
=

∣∣∣∣ δ′2−μ

1− μ

(
θ (δ′)

δ′

)∣∣∣∣+
∣∣∣∣(Υ + ε)

δ′2−μ

(μ− 1) (2− μ)

∣∣∣∣
Noting that limδ→0

θ(δ)
δ

= Υ, then each of these terms converges to zero:

lim
δ→0

|Q (0)−Q (δ)| = 0

Thus for:

T (s) = 2VZsd+1−μ

(
P (s, L0) + λQ

(
L0

s

))

For L0 	 s, we have P (s, L0) → 0, and Q
(

L0

s

) → Q (0) which is a constant we denote
ζ :

T (s) = 2VZζsd+1−μ

(
λ + O

((
L0

s

)2−μ
))

≈ 2VZζλsd+1−μ

Where O
((

L0

s

)2−μ
)

is the order of the error term.
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Or asymptotically:

lim
s→∞

T (s)

sd+1−μ
= 2VZζλ

This is the same form as Rent’s Rule. Let us compare with the usual parameters of Rent’s
Rule:

T = kNp = k
(
VZsd

)p
Now equating exponents:

p.d = d + 1− μ

μ = (1− p) d + 1

p = 1− μ− 1

d
(6.3)

and constant:

k = 2ζλV 1−p
Z

As the scaling derivation is valid for 1 < μ < 2, these relationships are likewise only valid
for:

1− 1

d
< p < 1

6.2.3 Rent’s rule from discrete power-law tails

The following theorem proves that a discrete power-law tailed length distribution with
exponent between 1 and 2, asymptotically follows Rent’s rule with a related exponent.

Theorem 6.12. That for a length-distribution with a discrete power-law tail of exponent
1 < μ < 2, the scaling of terminals crossing arbitrary convex shape Z in arbitrary d-
dimensional normed vector space M , asymptotically grows according to Rent’s rule with
Rent’s exponent p = 1− μ−1

d
.

Proof. Here we have h (x) =

⎧⎨
⎩γ (x) , x < L0∑

k λx−μδ (x− ϕk) , x ≥ L0

For some discrete distribution spacing ϕ.

We have:

T (s) = 2VZsd

∞̂

0

h (L) θ

(
L

s

)
dL



Chapter 6 Generalising Rent’s rule 121

We know by definition of Dirac-delta that:

(k+ 1
2)ϕˆ

(k− 1
2)ϕ

f (x) δ (x− ϕk) g (x) dx =
1

ϕ
f (ϕk) g (ϕk)

Suppose ∀x, f ′ (x) ≤ 0, and g′ (x) ≥ 0, then let:

fmax ≡ sup
x∈(ϕ(k− 1

2),ϕ(k+ 1
2))
{f (x)} = f

(
ϕ

(
k − 1

2

))

gmax ≡ sup
x∈(ϕ(k− 1

2),ϕ(k+ 1
2))
{g (x)} = g

(
ϕ

(
k +

1

2

))

This allows us to remove the Dirac-deltas with a simpler integral bound:

(k+ 1
2)ϕˆ

(k− 1
2)ϕ

f (x) δ (x− ϕk) g (x) dx ≤
(k+ 1

2)ϕˆ

(k− 1
2)ϕ

fmaxδ (x− ϕk) gmaxdx

= fmaxgmax

=
1

ϕ

(k+ 1
2)ϕˆ

(k− 1
2)ϕ

fmaxgmaxdx

≤ 1

ϕ

(k+ 1
2)ϕˆ

(k− 1
2)ϕ

f (x− ϕ) g (x + ϕ) dx

In particular for f (x) = x−μ and g (x) = θ
(

x
s

)
, over the entire tail of the integral we then

have:

W (s, L0) ≡ 1

s

∞̂

L0

h (x) θ
(x

s

)
dx

=
1

s

∞̂

L0

∑
k

λx−μδ (x− ϕk) θ
(x

s

)
dx

≤ 1

s

∞̂

L0

λ (x− ϕ)−μ θ

(
x + ϕ

s

)
dx

Let ys = x− ϕ, then:
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W (s, L0) ≤
∞̂

(L0−ϕ)/s

λ (ys)−μ θ

(
y +

2ϕ

s

)
dy

= s−μλ

∞̂

(L0−ϕ)/s

y−μθ

(
y +

2ϕ

s

)
dy

We can also similarly say, using the minimum values in the range, that:

W (s, L0) ≥ s−μλ

∞̂

(L0+ϕ)/s

y−μθ

(
y − 2ϕ

s

)
dy

So that:
∞̂

(L0+ϕ)/s

y−μθ

(
y − 2ϕ

s

)
dy ≤ sμ

λ
W (s, L0) ≤

∞̂

(L0−ϕ)/s

y−μθ

(
y +

2ϕ

s

)
dy (6.4)

Let
Q (s, L0) ≡ sμ

λ
W (s, L0)

Then we have:

T (s) = 2VZsd+1

⎛
⎝ L0/sˆ

0

γ (ys) θ (y) dy + W (s, L0)

⎞
⎠

= 2VZsd+1−μ (P (s, L0) + λQ (s, L0))

We can treat P (s, L0), the terminal contribution from the head distribution γ in an
identical way to the continuous version in theorem 6.11. So for μ < 2, we have
lims→∞ P (s, L0) = 0

We have from eqn 6.4:
∞̂

(L0+ϕ)/s

y−μθ

(
y − 2ϕ

s

)
dy ≤ Q (s, L0) ≤

∞̂

(L0−ϕ)/s

y−μθ

(
y +

2ϕ

s

)
dy (6.5)

We want to know the behaviour of lims→∞Q (s, L0) . To do this, let us generalise the
form above.

For x ≥ 2ϕ/s we know by positive monotonicity of θ (x) that:

θ

(
y − 2ϕ

s1 (x)

)
≤ θ (x) ≤ θ

(
y +

2ϕ

s2 (x)

)

For any s1 (x) > 0 and s2 (x) > 0. Thus:

∞̂

x

y−μθ

(
y − 2ϕ

s1 (x)

)
dy ≤

∞̂

x

y−μθ (x) dy ≤
∞̂

x

y−μθ

(
y +

2ϕ

s2 (x)

)
dy
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Equating bounds with eqn 6.5 we have:

(L0 + ϕ)

s1 (x)
= x

∴ s1 (x) =
(L0 + ϕ)

x

Similarly:

s2 (x) =
(L0 − ϕ)

x

This means that:

lim
s→∞

∞̂

(L0+ϕ)/s

y−μθ

(
y − 2ϕ

s

)
dy = lim

x→0+

∞̂

x

y−μθ

(
y − 2ϕ

L0 + ϕ
x

)
dy

and

lim
s→∞

∞̂

(L0−ϕ)/s

y−μθ

(
y +

2ϕ

s

)
dy = lim

x→0+

∞̂

x

y−μθ

(
y +

2ϕ

L0 − ϕ
x

)
dy

Now, we want to show that: limx→0+

∣∣∣´∞x y−μθ
(
y − 2ϕ

s1(x)

)
dy − ´∞

x
y−μθ (x) dy

∣∣∣ = 0

And that: limx→0+

∣∣∣´∞x y−μθ
(
y + 2ϕ

s2(x)

)
dy − ´∞

x
y−μθ (x) dy

∣∣∣ = 0

These limits are two particular cases α = − 2ϕ
L0+ϕ

and α = 2ϕ
L0−ϕ

of the general relationship,
which we define:
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Δ (α, μ) ≡
∣∣∣∣∣∣ lim
x→0+

∞̂

x

y−μ (θ (y + αx)− θ (y)) dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣ lim
x→0+

∞̂

0

y−μ (θ (y + αx)− θ (y)) dy − lim
x→0+

xˆ

0

y−μ (θ (y + αx)− θ (y)) dy

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
∞̂

0

y−μ

(
lim

x→0+

(
θ (y + αx)− θ (y)

x

)
x

)
dy

∣∣∣∣∣∣
+

∣∣∣∣∣∣ lim
x→0+

xˆ

0

y−μ (θ (y + αx)− θ (y)) dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞̂

0

y−μ

(
α lim

x→0+
θ′ (y)x

)
dy

∣∣∣∣∣∣+
∣∣∣∣∣∣ lim
x→0+

xˆ

0

y−μ (θ (y + αx)− θ (y)) dy

∣∣∣∣∣∣
= 0 +

∣∣∣∣∣∣ lim
x→0+

xˆ

0

y−μ (θ (y + αx)− θ (y)) dy

∣∣∣∣∣∣
≤
∣∣∣∣∣∣ lim
x→0+

xˆ

0

y−μ

(
α sup

y∈(0,x)

{θ′ (y)}x

)
dy

∣∣∣∣∣∣
=

∣∣∣∣∣ lim
x→0+

α
x1−μ

μ− 1
x sup

y∈(0,x)

{θ′ (y)}
∣∣∣∣∣

≤
∣∣∣∣∣α lim

x→0+

x2−μ

μ− 1
sup

y∈(0,δ)

{θ′ (y)}
∣∣∣∣∣ , ∀δ > x

For 1 < μ < 2: this has limit 0 as we know by Lemma 6.10 that θ′ (y) is continuous and
finite in some region (0, δ).

∴ lim
s→∞

Q (s, L0) =

∞̂

0

y−μθ (y) dy

= Q (0)

Again, for L0 	 s, we have P (s, L0) → 0, and Q (s, L0)→ Q (0) which is a constant we
denote ζ :

T (s) = 2VZζsd+1−μ

(
λ + O

((
L0

s

)2−μ
))

≈ 2VZζλsd+1−μ

Where O
((

L0

s

)2−μ
)

is the order of the error term.

Or asymptotically:
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lim
s→∞

T (s)

sd+1−μ
= 2VZζλ

Thus provided L0 > ϕ, the discrete version is also finite and converges to the same con-
stant factor as the continuous solution’s. In general, we can extend the head distribution
to be the same as the tail distribution, which allows us to choose L0 arbitrarily, so this
constraint is unimportant.

Note that this discrete length distribution is not the same as saying there is a discrete grid
of points that edges must be ‘snapped’ to. Continuous placement and orientations are
allowed for the discrete lengths in this formalism. However it is also possible to show
that the discrete grid version converges to the continuous case in the limit of very large
scales, by showing that the discrete version of θ (x, s) converges to the continuous version
at large scales.

6.2.4 Rent’s rule from finite distribution lengths

The following theorem proves that a finite, discrete length distribution also follows Rent’s
rule but only with a special, fixed Rent’s exponent.

Theorem 6.13. That for a finite-length discrete distribution (where largest length is at
most Lmax < ∞), the scaling of terminals crossing arbitrary convex shape Z in arbitrary
d-dimensional normed vector space M , asymptotically grows according to Rent’s rule
with Rent’s exponent p = 1− 1

d
.

Proof. We start with h (x) = δ (L1 − x), where δ is the Dirac delta function and L1 ≤
Lmax. Then:

T (s) = 2VZsd

∞̂

L0

δ (L1 − L) θ

(
L

s

)
dL

= 2VZsdθ

(
L1

s

)

In particular for s � L1

T (s) � 2VZsdΥ
L1

s
= 2VZsd−1ΥL1

Or rather:

lim
s→∞

T (s)

sd−1
= 2VZΥL1

Thus equating to Rent’s equation:
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pd = d− 1

p = 1− 1

d

Which is the expected Rent’s exponent for a d-dimensional network embedded in d di-
mensions, with fixed interconnection lengths. By linearity of T w.r.t h, any finite combi-
nation of fixed lengths produces a finite sum of these integrals, and thus also produces
this limiting case Rent’s exponent.

Looking again at equation 6.3, we should note here that there is a phase-transition that
occurs for power-law tailed distributions with exponent μ:

p = 1− μ− 1

d
.

As the power-law exponent μ approaches the limit of 2 for the power-law domain, the
Rent’s exponent converges to 1− 1

d
, which is the case of a finite length distribution. Indeed

it can be shown that for μ > 2 that the Rent’s exponent still converges to a limiting case
of 1− 1

d
, which is an attribute actually observed in VLSI designs [109].

6.2.5 Uniqueness of exact solutions

The following theorem shows that for a particular (exact) terminal distribution function,
there is at most one exact distance distribution that generates it.

We have from eqn 6.1:

T (s) ≡ 2VZsd

∞̂

0

h (L) θ

(
L

s

)
dL

Theorem 6.14. For any given T (s) there is at most one exact distance distribution solu-
tion h (L).

Proof. For a given T (s), let us suppose there exist two distance distribution solutions:
h1 (x) , h2 (x). where h1 �= h2. Then there exists a non-zero function:

g (x) = h1 (x)− h2 (x)

If g is not zero, then it must have a region where it is always positive or always negative.
Let the very first domain be (a, b) from the y-axis. If b is +∞ then we choose another
value for b where a < b <∞.

If g satisfies:

∀s > 0 :

∞̂

0

g (L) θ

(
L

s

)
dL = 0 (6.6)
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Then −g also satisfies this, so without loss of generality we can assume that g is positive
in the domain (a, b):

∀x ∈ (a, b) : g (x) ≥ 0

and
bˆ

a

g (x) dx > 0

This constraint allows us to also handle Dirac-deltas inside the region.

As it is the first domain we can extend that:

∀x ∈ (0, a) : g (x) = 0

Now θ (y) is a strictly monotonically increasing function for y ∈ (0, 1), and ∀y > 1 :

f (y) = 1

Let η (y) = θ (2y)− θ (y).

Then:

η (0) = 0

∀y ∈ (0, 1) : η (y) > 0

and

∀y ≥ 1 : η (y) = 0

This is because ∀y ∈ (0, 1) , δ > 0 : θ (y) < θ (y + δ)

If eqn 6.6 is true for all positive s, then it is true for s1 = 2
b

and s2 = 1
b
, and:

∞̂

0

g (L) θ

(
L

s1

)
dL−

∞̂

0

g (L) θ

(
L

s2

)
dL = 0− 0 = 0

⇒
∞̂

0

g (L) η

(
L

b

)
dL = 0

⇒
bˆ

a

g (L) η

(
L

b

)
dL = 0

But we know η
(

L
b

)
is strictly positive in the region (a, b) and g (L) is also positive, which

results in a non-zero integral, thus is a contradiction.
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We must be careful about interpreting what this means, as this uniqueness-property is for
exact T (s). In general, for asymptotic Rentian behaviour of fixed Rentian parameters,
there are many possible specific T (s) and corresponding h (L) with specific head and tail
distributions. However, it is the tail of the length distribution that is most important
for determining Rentian behaviour, and it is also the tail of the length distribution that
dominates in cost (for a linearly or super-linearly growing cost function). This means
that the minimum power-law tail exponent is favoured as the size of the system grows,
dominating over any deviation due to the head distribution.

6.2.6 Internal Edge Length Distribution

Given a global edge distribution, for a given region size we can determine the expected
number and distribution of internal edge lengths. This is merely:

I (L) = VZsdφ

(
L

s

)
h (L)

Thus there is a cut-off according to φ
(

L
s

)
of the power-law tail comprising h (L). For

simple shapes, such as boxes, this cut-off is polynomial. Regardless of the shape, it is also
strict at L = s as φ (1) = 0. In Network Science, exponential cut-offs in the power-law
distribution are commonly ‘reported’ [30], however this is certainly not the behaviour
here.

6.3 Fractal embeddings into arbitrary spaces

The problem with the classical Rent’s Rule is that it deals with a homogeneous distribu-
tion of resources and costs. We suggest that there is something more fundamental than
Rent’s Rule. That Rent’s rule is actually a homogeneous instance of a more general law
governing embeddings of fractal dimensional graphs. Our proof of the equivalence of
power-law tailed length distributions and Rent’s rule in a homogeneous system leads us
to consider that the particulars of the graph being embedded do not matter for Rentian
behaviour to emerge – instead any graphs stochastically chosen from the same power-law
tailed length distribution should exhibit similar Rentian behaviour.

6.3.1 Invariant property of embeddings

The following lemma shows that length distribution optimisation in a d-dimensional
space, is equivalent to optimisation in a configuration-space, subject to maintaining the
graph property constraints.

Lemma 6.15. Finding the optimal length distribution in a continuous d-dimensional
space is equivalent to finding an optimal configuration-space distribution with translated
cost-function cV (V ) = c

(
aV 1/d

)
for some constant a.
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Proof. The optimal length distribution f (l) is such that the total cost C is minimised,
under cost function c (l), subject to maintaining the graph properties:

C =

ˆ ∞

0

f (l) c (l) dl

Instead of expressing by length, we can simply express these in terms of the volume of
d-dimensional space reachable:

V = ald,

for some constant a. We identify this to also be the configuration volume of possible
links reachable within cost c (l) from each node.

By simple change of variable we have:

C =

ˆ ∞

0

f (l) c (l) dl

=

ˆ ∞

0

f (l (V )) c (l (V ))
∂l

∂V
.dV

=

ˆ ∞

0

f
(
aV 1/d

)
c
(
aV 1/d

) a

d
V 1/d−1dV

=

ˆ ∞

0

(a

d
V 1/d−1f

(
aV 1/d

))
c
(
aV 1/d

)
dV

If we define the translated cost function to be: cV (V ) ≡ c
(
aV 1/d

)
Then the equivalent minimisation problem is to find a distribution fV (V ) subject to
graph property constraints, that minimises:

C =

ˆ ∞

0

fV (V ) cV (V ) dV

Lemma 6.16. That an embedding in d-dimensional space with a power-law-tailed length
distribution of exponent μ = (1− p) d + 1 occurs iff there is also a power-law tailed
distribution in the configuration-space for each node, with exponent μV = 2− p, that is
independent of the dimensionality d.

Proof. For a d-dimensional space with optimal continuous distance distribution under
cost function c (l) of:

f (l) =

⎧⎨
⎩λl−μ , l ≥ ltail

γ (l) , l < ltail

From Lemma 6.15, the optimisation problem is equivalent to optimising in configuration-
space under translated cost function cV (V ) = c

(
aV 1/d

)
, with solution:
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fV (V ) =
a

d
V 1/d−1f

(
aV 1/d

)
then we have:

fV (V ) =

⎧⎨
⎩αV 1/d−1−μ/d , V ≥ aldtail

a
d
V 1/d−1γ

(
aV 1/d

)
, V < aldtail

for some constant α. Thus fV (V ) has a negative power-law tail exponent μV of:

μV = 1 +
μ− 1

d
= 2− p

This is independent of the original embedding dimension d. We can similarly show for
the discrete power-law distribution.

Among other things, this also means we can take a power-law tailed embedding in a do

dimensional space and exponent μo, and we can translate the embedding into a de < do

dimensional space, with appropriate cost-function into another power-law tailed distri-
bution with exponent:

μe =
de

do
(μo − 1) + 1

What this means is that Rentian behaviour, more fundamentally, can be described as a
power-law tail in a configuration-space fV (V ), and optimal embeddings into a partic-
ular space are equivalent to translating the distribution according to the minimal-cost-
mapping of volume to lengths in the embedded space. This also implies that pe = po, that
is the Rent’s exponent under an optimal remapping from one embedding space to an-
other, is unchanged. If, as per prior work [99], we express p according to some intrinsic
dimensionality fD:

p = 1− 1

fD

Then in the tail for some λV :

fV (V ) = λV V p−2 (6.7)

= λV V
− 1

fD
−1

This distribution, with a cost function, is invariant under embedding. Indeed we can
generalise by assuming it is invariant under any embedding space (including ones with
heterogeneous costs and edge distributions). We also note that for the discrete power-law
distribution, we do not need a separate head-distribution – we can just use the power-
law distribution to describe a system uniformly at all scales with Rentian property, noting
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that the set of complete discrete power-law distributions is also ‘cost-universal’. There
are two slightly different generalisations – a local Rentian law, or a global Rentian law.
A local Rentian law has the power-law tail surrounding each node separately, acting on
the configuration space of connections to that node, so that each node has an equal dis-
tribution of connectivity. A global Rentian law operates globally, on all connections at
once. It acts on the configuration space of every node to every other node, and in inho-
mogeneous systems can result in remote nodes having fewer connections than average.
By acting on the N × Vlocal configuration spaces, the configuration space volume Vglobal

is expanded by the number of nodes in the system, and needs to be normalised back by
contracting by N – the number of nodes in the system. Thus the normalised configura-
tion volume Vnorm = Vglobal/N . The local Rentian law needs to be used carefully as it
can give globally contradictory results. This is because node A may assign a connection
probability to node B that is not the same as node B’s connection probability to node
A. If connections are directional, this doesn’t necessarily result in a contradiction, as one
direction may have a different probability to the other direction. However, it is hard to
see how real embeddings operate like this if direction is unimportant. The global Ren-
tian law, however, can lead to boundary or remote edges with fewer connections – which
intuitively one could see happening as nodes with lower average connectivity get pushed
out to make way for better locality for the rest of the nodes in the middle.

We can also extend the cost model to include the originating node, so that at cost zero,
the only node reachable is itself. This allows us to avoid the singularity at the head of
the distribution by always guaranteeing that the initial volume starts at one. A simple
continuous power-law distribution can be used thereafter at all scales.

6.4 Conclusion

This chapter has proven some new fundamental results concerning Rent’s rule. Pre-
viously the analytical tools for Rent’s rule had been restricted to the discrete 2-D (or
3-D) lattice of VLSI with rectangular bounding region. In this chapter, it has been
expanded to continuous d-dimensional vector spaces with arbitrary metric and arbi-
trary convex bounding shape and shown to be asymptotically equivalent to a power-law
tailed distance distribution (whether continuous or discrete). Furthermore, the problem
of optimally embedding a graph in a particular d-dimensional space, under a partic-
ular cost-function has been shown to be equivalent to embeddings in a dimensionless
configuration-space, with an equivalent cost-function. Due to cost-universality over
the family of power-law distributions, the asymptotic power-law tailed exponent in
configuration-space is preserved independent of the particulars of the embedding space.
By preserving this invariant, it allows one to generalise Rent’s rule to new embedding
spaces – including inhomogeneous ones and, importantly, the CMP domain where the
time dimension extends in only one direction and is infinite, whilst the spatial dimensions
are finite. Indeed, this is utilised in Chapter 7 for further analysis.
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6.4.1 An intuitive example: human-interaction networks

To illustrate just how general and how far from the VLSI domain we can now take the
Rentian model, let us look at an intuitive example – modelling the human interaction
network in physical space. In this case, the interaction cost might be the total time
spent (including the time spent earning the monetary cost) of going from one point to
another. These costs are inhomogeneous with distance as there is walking, car, rail, and
air transportation. We note that the distribution of people is inhomogeneous – there can
be large rural regions with low population density, as well as high density city centres.
Thus the volume of links between nodes (people) reachable within a given cost would
likely be very inhomogeneous. Like the CMP scenario, the Rentian embedding should
also be spatio-temporal, describing links both in space and in time. This would allow
the expected frequency of contact between people to also be captured. For an approx-
imately homogeneous population distribution we would then expect an approximately
power-law distance distribution and approximately power-law temporal distribution in
interaction times. Indeed, such spatial behaviour is observed by Brockmann et al. [17]
In their study, they examined data for US bank-notes that were voluntarily logged by
recipients and found power-law scaling of μ ≈ 1.6 spatially (in 2-D), and they suggest
power-law scaling in the underlying inter-wait times as well. The asymptotic equivalence
of Rent’s rule and power-law distance distributions in a homogeneous space, that has
been shown in this chapter, certainly suggests that human travel may at least spatially be
Rentian, however it would be even more interesting to see if it is actually Rentian in a
spatio-temporal sense.

Although Brockmann et al. produced a fitting Lévy-flight model (power-law distributed
random walk) that assumes homogeneity, the generalised Rentian model could then pro-
duce far more detailed predictions by adjusting for population inhomogeneities, as well
as by earning power – as that skews the cost calculation. The model may even be able
to predict the effect of lowering or raising, for example, air transportation costs on the
quantity of air travel, or of adding new routes. It would be very interesting to see if the
human interaction network is actually Rentian in nature, and whether such predictions
would be accurate.
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CHAPTER SEVEN

SPATIO-TEMPORAL
RENTIAN MODEL: CMP
SCALING IMPLICATIONS

7.1 The many-core memory bandwidth wall

Assuming software in a CMP follows a spatio-temporal Rent’s rule, this chapter exam-
ines the scaling implications and tradeoffs for future CMP in terms of their external I/O
bandwidth, on-chip memory, on-chip communication, coarseness of inter-tile communi-
cation, and sensitivity (or lack thereof) to NoC topology.

Chapter 2 examined some of the motivations for needing locality in a CMP setting,
including that parallel execution that exploits data independence, results in scaling prob-
lems for external I/O bandwidth. So if data independence is a problem, can data inter-
dependence and its locality save the day? In the following subsections, an ideal Rentian
many-core system that fully exploits the available locality is analytically examined. Per-
haps surprisingly, although the scaling is considerably better, the memory-wall is still a
crippling problem.

7.1.1 The spatio-temporal Rentian model

The Generalised Rentian results from Chapter 6 show that Rent’s rule is asymptotically
equivalent to a power-law tailed distribution in a cost-ordered configuration-space. We
can choose our configuration space, then, to see how Rent’s rule generally affects CMP
architectures. Computation on a CMP or superscalar processor consists of both spatial
as well as temporal communication costs. There is a cost for moving data in time.
Physically, this comprises moving the data into and out of local storage (such as a register
file) as well as the power consumption taken up by the added memory. The quantity
of memory needed also increases linearly with the length of the temporal interconnect.
Memory is also expensive in terms of basic manufacturing cost for the area it takes up on-
chip, thus the temporal interconnect necessarily incurs an area cost as well. Additionally,
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Figure 7.1: Simple Spatio-Temporal view of a 64-core tiled CMP. Information flows both spatially and
temporally. The cores for one moment in time are shown here. One of these cores (green) has a communi-
cation link to a future instruction on another core.

off-chip memory accounts for a significant proportion of embedded system power cost
[59] including for memory refresh.

For our purposes we will use the full power-law distribution starting at a volume of one
(to represent the configuration volume of the originating tile), as it is self-similar at each
scale of the hierarchy, making the analysis simpler. The asymptotic behaviour here is not
affected by having alternate head distributions, instead of the complete power-law.

In figure 7.1 is an illustration of the spatio-temporal model. Here, the 64-cores (8x8)
form a 3-D vertical column extending up in time, in which instructions are embedded.
However, unlike placement in 2-D VLSI, instructions can only communicate with fu-
ture instructions, and are constrained in how quickly they can communicate with their
neighbours. In this illustration, we see an instruction embedded in one core (green) com-
municating with an instruction on another core at a future time-point. In this model,
we are not concerned with whether this communication is explicit (e.g. message-passing
based) or implicit (e.g. shared memory based). At the time of the data being produced
(green core), it may not even know exactly when or where it will be consumed.

Let the cost of a unit of temporal communication be cT and for spatial communication
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be cS. Depending on the speed of spatial communication, it may take many temporal
time steps before an allowable spatial step. Assuming that the communication statistics
are stationary (independent of time), at least for the duration of the phase of execution
being considered, we can examine just a single temporal layer of communication (seen
as a 2D cross-section in figure 7.1). For this layer, there is a corresponding configuration
volume of allowed edges with associated costs. We need to normalise this configuration
volume to be per-node. For example, there are 64 possible links that extend exactly
one unit in the temporal dimension but no units in the spatial dimension. So this is a
configuration volume of 64 links with cost cT , and a normalised configuration volume
of one. Similarly there is a configuration volume of 64-links for communication exactly
T steps in time, and no steps in space, with cost TcT . For side-length S = 8, there are
also 4S (S − 1) = 224 links that extend exactly one spatial unit and, say, five temporal
units with cost 5cT + cS, and this has a normalised volume of 224/64 = 7/2. Note
that there may be many possible paths of equal cost for each of these spatio-temporal
links, but the actual paths are abstracted away for the Rentian analysis – what matters
here is whether or not a link is allowed, and how much it costs. In this fashion we can
construct volumes of allowable links, and order the configuration space according to
increasing cost. At smaller cost scales, the accessible normalised configuration volume
V (c), which is the total normalised volume with cost less than or equal to c, may grow
according to cost c, in a 3-D fashion i.e. V ∼ Θ (c3), because for increasing cost, there is
a reachable volume of links growing in both space and time. However at large costs, the
accessible normalised configuration volume is constrained to grow along one dimension
(time) alone, thus V = Θ (c).

While the Manhattan-metric is being used for a tile-based NoC topology, we also note
that this analysis can easily be adapted to arbitrary NoC topologies including binary-
trees, fat-trees, butterfly-networks, etc... However, if the spatial costs are largely due to
physical movement of data over links (with cost proportional to spatial distance), then
the accessible configuration volume is still constrained to grow at best in a 3-D manner at
small cost scales, instead of the exponential growth normally due to trees or butterflies.
This restriction is key – as it is not the NoC topology that matters so much as the actual
physical communication costs. The result of using a more complex topology may lead to
even higher embedding costs than the simple 2-D mesh.

7.1.2 Summary of Key Results

For the convenience of the reader, here is a summary of the main results from derivations
in this chapter (further, less important, results are embedded in the rest of the chapter):

1. The spatial Rent’s exponent p′ is related to the spatio-temporal Rent’s exponent
p > 1

2
of software by:

p′ = 2− 1

p
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2. For P cores in a 2D mesh, and sufficiently large Rentian memory of size M words
per core, total I/O bandwidth requirements Btot scale according to:

Btot ∝Mp′−1P p′[
Btot ≈

(
p

1− p

)(
η

p

) 1
p

Mp′−1P p′

]

3. The asymptotic result (2) is unaffected by the communication topology of the cores
(i.e. mesh, tree, etc..), provided there is sufficient on-chip memory

4. The asymptotic result (2) is unaffected by the fineness or coarseness of spatial com-
munication, provided there is sufficient on-chip memory

5. However, result (4) may eventually be impractical as a rapidly growing amount of
memory is needed per core to remain in this asymptotic region. The size of the
‘critical region’ of memory sizes M < Mcrit, where spatial locality is still being
exploited and asymptotic result (2) does not hold, grows for spatial communication
coarseness factor ψ, and the number of cores P according to:

Mcrit ≈ O

(
ψpP

3
2
p

pζ (2− p)

)

Thus as the number of cores increases, spatial communication must become more
fine-grain, with ψ scaling with order:

O
(
M

1
p P− 3

2

)
So that to remain in the asymptotic region of (2) requires τ , the average interval of
a core communicating a word of data to another core, to scale by:

τ ∼ Ω
(
M

1−p
p P− 3

2
(1−p)

)
6. That for a real cache of size Mcache versus an ideal Rentian memory of size Mrentian,

the effective Rentian memory scales asymptotically independent of cache architec-
ture, according to:

Mrentian ∝Mp
cache

with the bandwidth scaling behaviour of:

Btot ∝Mp−1
cacheP

p′

(Note the replacement of the spatial Rentian exponent with the larger spatio-temporal
version instead)

7. With area a scaling, and with I/O bandwidth scaling by (Rentian) exponent β < p′,
in the external I/O-limited case, the optimal number of cores c scales according to
(for a system with Rentian memory):

c ∝∼ a1−p′+β
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and for a cache-based memory system by:

c ∝∼ a(1−p+β)/(1−p+p′)

Some of these derivations are quite surprising, particularly that on-chip topology and
coarse-grain communication don’t affect the asymptotic scaling of I/O bandwidth pro-
vided sufficient memory is on-chip. It is also interesting that even a full exploitation of
spatio-temporal locality with an idealised ‘perfect memory’ is still not sufficient to tackle
the I/O bandwidth scaling problem, although it certainly helps to constrain the on-chip
memory growth.

7.2 Rentian many-core architecture

If we treat software as exhibiting Rentian locality in space and time, then we can analyse
the effect of scaling the number of cores and memory on I/O bandwidth requirements.
The Tilera architecture, based on the RAW platform [111, 101, 102], is probably the
closest current architecture to supporting Rentian behaviour, as spatio-temporal inter-
connect can be explicitly allocated by the software, and instructions can be mapped/scheduled
in space-time so as to minimise this spatio-temporal communication. The following sec-
tion examines the spatio-temporal model in more detail for a 2-D mesh of processors.
This is the spatio-temporal Rentian model used in Chapter 5.

7.2.1 Configuration-space analysis for the 2-D mesh

Let us consider a model where moving data in time costs cT and moving data in space-
alone costs cS. Let us define a relative cost parameter θ = cS/cT . This means that a
movement of data in one unit of space and time (because spatial data movement is not
instantaneous) costs cS + cT is equivalent to (θ + 1) movements in time-alone. We would
expect that θ could be quite large in the case of CMP – so, for convenience, let us assume
that θ is approximated by the nearest integer value.

We are interested, then, in the volume V of configuration space that is reachable within a
cost c. Let s be the number of equivalent temporal-only steps, i.e. s = c/cT , which is an
integer value. So we can instead define V (s) as the volume of configuration space that is
reachable within s equivalent temporal-only steps. However, we also need to restrict the
speed of communication. Let us simply have each spatial-step require ρ temporal-steps
as well.

We wish to determine the number of valid spatio-temporal links of a given cost. Christie
and Stroobandt have previously derived a result for D (lS, L) – the number of spatial-
only links of length lS in a square mesh of side-length L [29] under a Manhattan-metric.
Their result assumed that two nodes A and B with link A ↔ B should only count the
link once. However, for our purposes because it involves communication in time, we
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have: A → B′ and B → A′ where prime denotes a future version of the node. Thus in the
spatio-temporal domain, we need to double their result, and also account for temporal-
only communication where lS = 0. This is shown below:

D (lS, L) ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L2 , lS = 0

2
3
lS (l2S − 1 + 6L (L− lS)) , 1 ≤ lS < L

2
3
(2L− lS + 1) (2L− lS) (2L− lS − 1) , L ≤ lS ≤ 2L

0 otherwise

We can now calculate the volume of reachable (re-normalised) configuration-space with
exactly cost scT as:

VΔ (s) ≡ 1

L2

�s/(θ+ρ)�∑
k=0

D (k, L)

We notice that the relative cost of spatial communication θ and the slowness of spatial
communication ρ appear together as a sum. As θ is likely to be much larger then ρ, let
us merely define ψ = θ + ρ noting that ψ ∼ θ. Then:

VΔ (s) =
1

L2

�s/ψ�∑
k=0

D (k, L)

Let us the define Q (r, L) to be the non-normalised volume reachable at distance r by:

Q (r, L) ≡
r∑

k=0

D (k, L)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6
(6L2 − 2r − 4Lr + 12L2r − r2 − 12Lr2

+12L2r2 + 2r3 − 8Lr3 + r4) , 0 ≤ r < L

1
6
(−4L + 4L2 + 16L3 − 10L4 + 2r − 4Lr − 24L2r

+32L3r + r2 + 12Lr2 − 24L2r2 − 2r3 + 8Lr3 − r4) , L ≤ r < 2L

L4 , r ≥ 2L

Then the normalised volume reachable at distance r is:

VΔ (s) =
1

L2
Q

(⌊
s

ψ

⌋
, L

)
(7.1)

Let Vmax be the maximum configuration volume – essentially constrained by the problem-
size or phase of execution. The total volume of configuration-space within cost scT

(including cost 0 – just the original node itself) is then:
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V (s) = min

{
Vmax,

s∑
r=0

VΔ (r)

}

= min

{
Vmax,

1

L2

s∑
r=0

Q

(⌊
r

ψ

⌋
, L

)}

= min

⎧⎨
⎩Vmax,

1

L2
(s mod ψ)Q

(⌊
s

ψ

⌋
, L

)
+

ψ

L2

�s/ψ�−1∑
r=0

Q (r, L)

⎫⎬
⎭

Let us define R (q, L) to be the non-normalised volume reachable within distance less
than or equal to q:

R (q, L) ≡
q∑

r=0

Q (r, L)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
30

(120L− 90L2 − 6q − 20Lq + 70L2q − 5q2 − 50Lq2

+60L2q2 + 5q3 − 40Lq3 + 20L2q3 + 5q4 − 10Lq4 + q5) , 0 ≤ q < L

1
30

(108L− 100L2 + 60L3 − 50L4 + 12L5 + 6q − 20Lq

−60L2q + 160L3q − 50L4q + 5q2 + 30Lq2 − 120L2q2

+80L3q2 − 5q3 + 40Lq3 − 40L2q3 − 5q4 + 10Lq4 − q5) , L ≤ q < 2L

1
3
(12L− 12L2 + 2L3 + 3L4 − 2L5 + 3L4q) , q ≥ 2L

Removing the floor-function, we have a reasonable continuous interpolation as:

V (s) ≈ min

{
ψ

L2
R

(
s

ψ
, L

)
, Vmax

}

Noting that this is exact for s a multiple of ψ.

We also note that for s ≥ 2ψL that VΔ (s) = 0, and so let Vcrit = V (2ψL).

Then for s ≥ 2ψL:

V (s) = min
{
Vcrit + (s− 2ψL)L2, Vmax

}
Where Vcrit = 1

3
(12L−1 − 12 + 2L + 3L2 + 4L3)ψ

If we normalise the analysis to have one link per node, on average, to a future instruc-
tion, then for P = L2 cores, we have P links in total. We are going to use a complete
continuous power-law distribution, so let us first calculate the normalisation factor η (i.e.
λV in eqn 6.7):

η (1− p)

ˆ Vmax

1

vp−2dv = 1
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Where p is the spatio-temporal Rent’s exponent. Thus η = 1

(1−V p−1
max)

. If Vmax = ∞, we

just have η = 1. We can then determine the total expected number of links with cost scT

as:

E (s) = L2η (1− p)

V (s)ˆ

V (s−1)

vp−2dv

= L2η
(
(V (s− 1))p−1 − (V (s))p−1)

7.2.2 Separating Spatial and Temporal components

Although interconnect is allocated in a spatio-temporal manner, we are interested in
the total number of expected links with particular temporal length or particular spatial
length.

To do this, we need to project out the spatial and temporal components from those
spatio-temporal links.

For spatio-temporal cost distance scT there is a volume VΔ (s) of which the proportion
of links that have spatial distance lS ≤ s

ψ
is:

fS (s, lS) =
D (lS, L)

Q
(⌊

s
ψ

⌋
, L
)

For spatio-temporal cost distance scT there is a volume VΔ (s) of which the proportion
of links that have temporal distance lT ≤ s is:

fT (s, lT ) =
D
(⌊

s−lT
ψ

⌋
, L
)

Q
(⌊

s
ψ

⌋
, L
)

Then the total expectation of links with spatial distance lS within Vmax is:

ES (lS) =

∞∑
s=ψlS

fS (s, lS)E (s)

= L2η
∞∑

s=ψlS

D (lS, L)

Q (s, L)

(
(V (s− 1))p−1 − (V (s))p−1)

= L2η
∞∑

k=lS

D (lS, L)

Q (k, L)

((
ψR (k − 1, L)

L2

)p−1

−
(

ψR (k, L)

L2

)p−1
)

= ηψp−1L4−2p
∞∑

k=lS

D (lS, L)

Q (k, L)

(
(R (k − 1, L))p−1 − (R (k, L))p−1)

Of this, we can separate out the component where k ≥ 2L, past the critical volume Vcrit

where each node can reach any other node:



Chapter 7 Spatio-temporal Rentian model: CMP scaling implications 141

∞∑
k=2L

D (lS, L)

Q (k, L)

(
(V (k − 1))p−1 − (V (k))p−1) =

D (lS, L)

L4

(
V p−1

crit − V p−1
max

)

yielding:

ES (lS) =
ηψp−1

L2p−4
D (lS, L)

((
V p−1

crit − V p−1
max

)
L4

+

2L−1∑
k=lS

(
(R (k − 1, L))p−1 − (R (k, L))p−1)

Q (k, L)

)

We note that upon normalising the expected number of links into a distance-distribution,
that the constant terms at the front vanish. This means that the approximate distance
distribution is independent of ψ – the cost of spatial-communication. Instead, the distri-
bution is dependent on p and L alone. So the 2-D spatial Rentian distance distribution is
independent of the coarseness of communication, although the quantity of communica-
tion can certainly vary with ψ. We also should note that as p increases, the proportion of
links to other nodes, independent of spatial position, grows. This is because V p−1

crit starts
to dominate over the rest of the distance-dependent terms. Indeed, as p approaches unity,
the total distribution approaches D (lS, L), which is the uniform distribution.

Similarly, the total expectation of links with temporal distance lT is (if within Vmax):

ET (lT ) =
∞∑

s=lT

fT (s, lT ) E (s)

= L2η
∞∑

s=lT

D
(⌊

s−lT
ψ

⌋
, L
)

Q
(⌊

s
ψ

⌋
, L
) (

(V (s− 1))p−1 − (V (s))p−1)

≈ L2η

∞∑
k=�lT /ψ�

D
(
k −
⌊

lT
ψ

⌋
, L
)

Q (k, L)

(
(V (kψ))p−1 − (V ((k + 1)ψ))p−1)

= ηL2

∞∑
k=�lT /ψ�

D
(
k −
⌊

lT
ψ

⌋
, L
)

Q (k, L)

((
ψ

L2
R (kψ)

)p−1

−
(

ψ

L2
R ((k + 1)ψ)

)p−1
)

= η
ψp−1

L2p−4

∞∑
k=�lT /ψ�

D
(
k −
⌊

lT
ψ

⌋
, L
)

Q (k, L)

(
(R (kψ))p−1 − (R ((k + 1)ψ))p−1)

= η
ψp−1

L2p−4

2L∑
m=0

D (m, L)

Q
(
m +

⌊
lT
ψ

⌋
, L
) ((R (mψ + lT ))p−1 − (R (mψ + lT + ψ))p−1)

Beyond the critical volume Vcrit the behaviour is one-dimensional and we have for lT �
2ψL:
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ET (lT ) ≈ ηL2
∞∑

k=�lT /ψ�

D
(
k −
⌊

lT
ψ

⌋
, L
)

L4
(
(
Vcrit + (k − 1− 2L)ψL2

)p−1

− (Vcrit + (k − 2L) ψL2
)p−1

)

≈ ηL2L−4
2L∑

m=0

D (m, L) ((Vcrit + (m− 1− 2L +
lT
ψ

)ψL2)p−1

−(Vcrit + (m− 2L +
lT
ψ

)ψL2)p−1)

≈ ηL2L−4
(
L4
) ((

Vcrit + (lT − ψ)L2
)p−1 − (Vcrit + lT L2

)p−1
)

≈ ηL2
((

(lT − ψ) L2
)p−1 − (lT L2

)p−1
)

≈ ηψp−1L2p

((
lT
ψ
− 1

)p−1

−
(

lT
ψ

)p−1
)

≈ ηψp−1L2p (1− p)

(
lT
ψ

)p−2

= ηψL2p (1− p) (lT )p−2

So the temporal distance distribution varies asymptotically by O
(
(lT )p−2), which is ex-

actly what we’d expect for a simple one-dimensional embedding of a Rentian system.
This is an asymptotic form, and the temporal-distance distribution is more complicated
at smaller time-scales, due to the availability of spatial locality. Interestingly, for a given
temporal distance lT the total number of links varies by O (P p) for P = L2 cores, instead
of by O (P ), demonstrating the effect of Rentian sharing between cores – as there is more
spatial communication to reduce temporal communication.

Note that many of these derivations utilise sums up to configuration volume Vmax – a
finite number of embedded instructions with a particular Rentian exponent. We would
expect the configuration volume to be constrained by the number of instructions needed
to tackle a particular problem-size / data-set, in a single phase of program execution.
However, for large problem-size, the deviation in statistics from an ‘infinite’ volume are
small (of order V p−1

max for Vmax � 1), thus we may as well use the limiting case Vmax →∞
for asymptotic derivations.

7.3 Rentian memory and external I/O bandwidth

Here, we derive results that relate the amount of memory per core to the external I/O
bandwidth. We note that transportation of data in time necessarily takes up memory.
The amount of memory required is proportional to its temporal distance. For example,
if all N tiles produced an item of data that was merely consumed the next cycle, and this
behaviour occurred every cycle, then it would merely need memory N . If instead, it was
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Figure 7.2: Illustrating how long temporal-interconnects go off-chip, thereby inducing external I/O. Here
the nodes are instructions, and the arrows between them represent data-flow, with a large temporal gap
between nodes represented by ellipses. This example is with a single core, but there can be many cores
in parallel, with data flowing to other instructions in the same core, or to other cores, and via external
memory.

consumed every T cycles, then it would need memory NT . Figure 7.2 helps illustrate the
general strategy of subsequent derivations. If we exclude the initial fetching of data from
external memory, then we can think of external I/O events as occurring when a temporal
interconnect crosses into external memory. Each temporal interconnect that goes off-
chip takes up a single word of output I/O going off-chip to external memory and a single
word of input I/O coming back, however we will just count them as one I/O word.
There is limited capacity for on-chip temporal interconnect (on-chip memory), and the
surplus is effectively offloaded to external working memory. So, unless the working-set
is small enough to fit in on-chip memory, there is necessarily a partition by external I/O
into temporal interconnect that resides entirely on-chip, and that which goes off-chip.
However, some partitionings can be better that others. A good partitioning, for a given
total on-chip memory, should best allocate the temporal interconnect on-chip so as to
minimise the number of crossings into external memory.

Let us call this idealised perfect on-chip memory a Rentian Memory. The name, as we
shall see later, is because such a memory follows Rentian scaling, much like VLSI wires
do. Such a memory is certainly not representative of caches, which will be handled
later on, but it may be possible for a well-managed scratchpad memory to be close in
performance to a Rentian Memory.

When considering this memory, we must narrow our focus to the temporal component
of the spatio-temporal interconnect. Let λk be the expected number of links that are of
exactly temporal length k (irrespective of the spatial-length component), and let lk be the
proportion of links of temporal length k that stay on-chip. i.e.

∀k, 0 ≤ lk ≤ 1

For convenience let us define: uk = lkλk
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We can characterise the amount of per-core external I/O bandwidth B as being the sum
of the number of wires that don’t fit in memory, that is:

B =
∑

k

(1− lk)λk = 1−
∑

k

lkλk = 1−
∑

k

uk

Note that this is bandwidth in one direction, we should multiply by two to account
for both outgoing and incoming communication. The amount of memory M needed to
accommodate the on-chip temporal interconnects depends on their lengths:

M =
∑

k

ukk

For a given value of M > 0, to minimise B one needs to maximise
∑

uk under the
constraint: 0 ≤ uk ≤ λk and of M above.

Lemma 7.1. The solution that minimises external I/O bandwidth B for on-chip memory
M =

∑
k ukk occurs when {uk} = {λ1, ..., λs−1, β, 0, ..., 0} where us = β for some s,

0 < β ≤ λs. Thus a greedy allocation from shortest temporal interconnect to longest is
optimal.

Proof. Assume the solution is not so, then without loss of generality, we can choose the
last non-zero entry to be s with value ls > 0. There must exist an entry 0 ≤ ur < λr,
s.t. r < s. Let δr = λr − ur, then we can increase ur by δ = max

{
δr,

r
s
ls
}

and decrease
us by s

r
δ. But this decreases B by s−r

r
δ > 0, which implies the original solution was not

minimal, and is thus a contradiction

All this means is that with limited memory storage on chip, to minimise overflow to
external memory I/O, only the shortest temporal interconnects should be stored on chip
(i.e. the ones with the greatest temporal locality).

7.3.1 Many-core scaling

Lemma 7.2. A spatio-temporal embedding with Rent’s exponent p leads to a spatial
Rent’s exponent of p′ = max

{
2− 1

p
, 1− 1

d

}
for spatial embedding dimension d.

Proof. For a fractal-dimensional computation graph of dimension fD embedded in some
space we expect:

p = 1− 1

fD

However, when viewing just the spatial-embedding, we are contracting along the tempo-
ral dimension. Thus we are reducing fD > 2 by one, yielding:
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p′ = 1− 1

fD − 1

=
fD − 2

fD − 1

= 2− fD

fD − 1

= 2− 1

p

However, we know that p′ is constrained to be at a minimum equal to 1 − 1
d

for spatial

embedding dimension d [109]. Thus yielding p′ = max
{

2− 1
p
, 1− 1

d

}
.

Now we can properly tackle the problem of how external I/O bandwidth scales given
memory size, number of cores, and the Rent’s exponent of the algorithm.

Theorem 7.3. Let P be the number of cores, and M the memory per core. Then, at large
problem-sizes, a Rentian many-core processor exhibits the following scaling for total
external I/O bandwidth:

Btot ∝Mp′−1P p′ (7.2)

for Rentian spatial exponent p′ as per Lemma 7.2.

Proof. We will first start with any topology of cores such that each core can reach any
other core within S spatio-temporal steps, and has longest spatial length L. To minimise
cost, a generalised Rentian embedding is given by the configuration-space with:

λk = η

Vkˆ

Vk−1

vp−2dv

where λk is the proportion of wires with spatio-temporal cost distance k, p is the Rent’s
exponent, Vk is the number of nodes within cost distance ck, where ck is the mono-
tonically increasing set of unique cost distances in the topology, and η is a constant
normalisation factor for the distribution.

Regardless of topology (that is at least 2D), we can assume that after some small multiple
of L spatio-temporal steps, each spatial node reaches every other spatial node, and so
the volume V increases by P per step thereafter. We want to examine behaviour for
V � Vcrit, so let us choose S � L spatio-temporal steps as an appropriate distance with
respective configuration volume VS � Vcrit and memory MS.

Let us define k (V ) as the spatio-temporal cost distance for volume V ≥ VS:
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k (V ) =

⌊
V − VS

P

⌋
+ S

Then the temporal distances for a spatio-temporal cost distance k has a range [k − ψL, k]

which can be simply approximated by k as ψL	 S ≤ k.

We are interested in the behaviour of M for large Vcutoff, which we set as the configuration
volume cut-off for the partition between on-chip temporal interconnect and off-chip tem-
poral interconnect. We employ a greedy-strategy of on-chip memory allocation, which is
I/O bandwidth optimal as per Lemma 7.1. Let lk be the proportion of links of temporal
length k that stay on-chip, and let us define: uk = lkλk. Then:

M =
∑

k

ukk = MS +

∞∑
k=S

ukk

≈ MS + η

ˆ Vcutoff

VS

vp−2k (v) dv

≈ MS + η

ˆ Vcutoff

VS

vp−2

(
v − VS

P
+ S

)
dv

= MS + η
V p

cutoff − V p
S

pP
+ η (SP − VS)

V p−1
cutoff − V p−1

S

(p− 1)P

For V p � V p
S :

M ≈MS +
η

pP
V p

cutoff

With asymptotic behaviour:

log M ≈ p log Vcutoff + log
η

pP

Let us then characterise the external I/O bandwidth B per core at large Vcutoff:

B = 1−
∑

k

uk

≈ η

ˆ ∞

Vcutoff

vp−2.dv

= η
V p−1

cutoff

1− p

Then for large Vcutoff:

log B ≈ (p− 1) log Vcutoff + log
η

(1− p)
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We then have:

log B ≈
(

1− 1

p

)(
log M − log

η

pP

)
+ log

η

(1− p)

=

(
1− 1

p

)(
log M + log P + log

p

η

)
+ log

η

(1− p)
(7.3)

Then at large M we necessarily have large V and hence:

∂ log B

∂ log M
= 1− 1

p

And we also have at large M :

∂ log B

∂ log P
= 1− 1

p

As B is the I/O bandwidth per core, to arrive at the total bandwidth Btot = C.B then:

∂ log Btot

∂ log P
= 2− 1

p

This means that the total I/O bandwidth scales according to:

Btot ∝ P 2− 1
p

At first appearances this might seem to be different from an expected Rentian behaviour
of Btot ∝ P p. However, we need to remember that this is the purely spatial, rather than
spatio-temporal scaling behaviour. From Lemma 7.2 we can then write:

B ∝ (MC)p′−1 (7.4)

with constant of proportionality from eqn 7.3 of order ~
(

p
1−p

)(
η
p

) 1
p

, i.e.

Btot ≈
(

p

1− p

)(
η

p

) 1
p

Mp′−1P p′

Or more directly, from eqn (7.4):

Btot ∝Mp′−1P p′
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Figure 7.3: Numerical evaluation of model illustrating how external I/O bandwidth scales with the number
of cores and the memory per core for a 2-D mesh CMP. Note that this is asymptotic behaviour with an
unbounded ‘working-set’ size, and excluding ‘compulsory misses’ where new data is fetched into on-chip
memory for the very first time. An I/O bandwidth of one, here, equates to one read/write access per
instruction.

This characterises the scaling of external I/O bandwidth with respect to on-chip mem-
ory per core, and the number of cores. The spatio-temporal Rentian model can be di-
rectly numerically evaluated from the configuration-space description, and source code
is shown in Appendix F for this. An example from a numerical evaluation of the gener-
alised Rentian model and 2-D mesh topology is given in figure 7.3 with p = 0.8 and thus
p′ = 0.75. The slopes in the tail region when fit with a least squares linear regression yield
−0.25 ± 0.02% as expected. The slopes across cores is 0.75 ± 0.03%, also as expected.
One can see how in the head region, the availability of other cores allows fine-grain spa-
tial locality to be exploited, which once used up, leads to the limiting-case behaviour of
temporal-only locality. Note that this derivation didn’t make any assumptions about the
spatial topology of the CMP. Depending on the spatial topology, the head-region may be
extended outwards, and thus transition to asymptotic tail behaviour at larger memory
sizes. Note that figure 7.3 assumes that ψ = 1, that is very fine-grain communication
between cores. We will cover the dependence on the cost of communication in the next
section.

7.3.2 Accounting for costly spatial communication

The previous derivations assumed extremely fine-grain spatial communication, implicitly
assuming that it is as cheap as on-chip temporal communication. This is a rather unre-
alistic assumption to make given how very little energy it takes to move data in time (by
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merely storing it) versus in space. We define a cost ratio ψ ∈ N
∗ to be the equivalent

temporal cost it takes to move data one unit in space plus the minimum number of units
in time (to an adjacent core). So one way to think of parameter ψ is that it describes
how coarse grain the spatial communication is. To minimise cost, a generalised Rentian
embedding is given by:

λ̃k = α

Vk∑
V =Vk−1+1

V p−2

and

λk =

2N∑
s=0

κk,sλ̃k+θs

where λ̃k is the proportion of wires with spatio-temporal cost distance k, λk is the pro-
portion of wires with temporal distance k, and κk,s is the proportion of spatio-temporal
cost distance (k + ψs) that has temporal distance k.

In a 2-D mesh, for the first ψ−1 steps, there are only temporal steps which do not spread
spatially to other cores, but after the ψth step there are nodes that are one spatial step
away. To calculate λk we must sum up all the bits with just temporal distance k from λ̃.
For the special case of ψ = 1 we have λk = λ̃k as earlier. At 2ψN spatio-temporal steps,
each spatial node reaches every other spatial node, and so the volume V increases by P

per step thereafter. This also means that κk,s is in a region where there is no more spatial
growth and thus the proportions affecting λk do not change with k. We denote this with
κk,s = κs, ∀k ≥ 2ψN . Let us characterise this ‘tail’ region of the distribution.

Our derivation follows similarly to section 7.3.1, with:

B = 1−
∑

k

uk

= −us +
∞∑

k=s+1

λk

≈ α

ˆ ∞

V

2N∑
s=0

κk,s (v + ψs)p−2 .dv

= α
2N∑
s=0

κs

ˆ ∞

V

(v + ψs)p−2 .dv

= α

2N∑
s=0

κs
(V + ψs)p−1

1− p

For V � 2ψN we have:
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B ≈ α

2N∑
s=0

κs
V p−1

1− p

= α
V p−1

1− p

2N∑
s=0

κs

= α
V p−1

1− p
(7.5)

So that the behaviour for large V is unaffected as:

log B = (p− 1) log V + log
α

(1− p)

For M there is a larger Mcrit, but as we are only interested in the asymptotic behaviour
at large M , we can again approximate by:

log M ≈ p log V + log
α

pP

Leading us to the same solution as in section 7.3.1 with:

Btot ∝Mp′−1P p′

Given the solution at P = 1 is independent of ψ, the same constant of proportionality
applies, and is unaffected by ψ.

We are also interested in the behaviour of Mcrit, the point where the system transitions
as it runs out of spatial locality to exploit. We know that both Bcrit and Mcrit are related
by Vcrit. Let us label Mcrit0, Bcrit0 and Vcrit0 as the base case of ψ = 1. We then have, as a
result of the ψ expansion:

Vcrit = ψVcrit0

Thus substituting into eqn 7.5:

Bcrit = ψp−1Bcrit0

and as from eqn (7.4):

Bcrit

Bcrit0
≈
(

Mcrit

Mcrit0

)p′−1

this yields:
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Mcrit ≈ ψ
p−1

p′−1 Mcrit0

= ψpMcrit0

The analytic expression for Mcrit0 as a function of p and P is rather lengthy but it is of

order O

(
ηP

3
2

p

p

)
. We leave it as an exercise to work out by calculating Vcrit0, then Bcrit0

and then approximating Mcrit0.

Although we have introduced the relative-cost parameter ψ, this does not imply that the
rate of spatial communication is inversely proportional to ψ. A value of ψ = 100 does
not mean there is a hundred times less spatial communication than at ψ = 1. Indeed, we
can show that the quantity of spatial communication approximately scales by ψ1−p.

We can think about the Rentian summation in section 7.3.1 as like an inverted square
pyramid that grows from its tip and then extends to a maximum area. We can relate the
area of the cross section to the volume according to a function A (V ). The proportion
of external communication for a given volume is then f (V ) = A(V )−1

A(V )
. The cost factor ψ

effectively stretches the pyramidal shape by that factor, so that we instead use: f
(

V
ψ

)
Then the bandwidth emanating from the core (excluding memory-effects) is given by:

B = η

∞∑
V =1

f

(
V

ψ

)
V p−2

≈ η

ˆ ∞

1

f

(
V

ψ

)
V p−2dV

= η

ˆ ∞

1/ψ

f (W ) (Wψ)p−2 ψdW

= ηψp−1

ˆ ∞

1/ψ

f (W )W p−2dW

But we know that f (V ) = 0 for V ≤ 1 as A (V ) = 1, so:

B ≈ ψp−1

ˆ ∞

1

αf (W )W p−2dW

= ψp−1κ

The constant κ is necessarily less than 1, since f (W ) < 1, but as the number of cores
becomes large, κ ∼ 1, so that B ∼ ψp−1. If on average a core communicates one word
with its neighbours every τ cycles then ψ ∼ τ

1
1−p . Thus the maximum τ that can be

supported whilst still in the asymptotic region scales approximately as:

τmax ∼
(

M

Mcrit0

) 1−p
p
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Figure 7.4: Numerical evaluation of impact of coarser-grain spatial-communication parameter ψ. An I/O
bandwidth per-core of one, here, equates to one read/write access per instruction.

So for 106 words of Rentian storage per core (say 4MB), and Mcrit0 ∼ 10 (reasonable for
a 256-core system as seen in figures 7.3 and 7.4 with ψ = 1), and p = 0.8, then ψ ∼ 2×106

and τmax ∼ 20, i.e. one would want each core to communicate a word with another core
at least every ~20 cycles, otherwise the I/O bandwidth would grow dramatically as seen
in figure 7.4 with the higher ψ values. In this figure we can see how the parameter ψ

affects the ability to exploit spatial locality at low memory sizes – with a rapid drop in
I/O bandwidth seen as locality finally gets exploited at that scale. This reduction in I/O
bandwidth from the head of a distribution compared to the extrapolated asymptotic tail
is due to spatial locality and becomes considerably larger with the number of cores as
seen in figure 7.3 for 1024 and 4096 cores. We also note that in figure 7.4, while the
asymptotic result is independent of ψ (the effective cost of spatial communication), the
width of the head region is affected by it. A larger ψ effectively pushes out the region
where spatial locality can be exploited, and hence where the asymptotic tail behaviour
is valid. For larger numbers of cores, this means that an efficient spatial communication
topology, with fine-grain communication is desired to maintain this asymptotic scaling
with memory.

In figure 7.5 we see how the cost parameter ψ of one million, and a corresponding τ ∼ 20,
pushes out the region where spatial-locality is exploited, compared to figure 7.3 with a
ψ of one. Here, the asymptotic tail doesn’t start until the order of 105 − 106 words,
depending on the number of cores.

An important observation to make is that although by having sufficient memory one can
hide the performance effect of coarse-grain spatial communication, this strategy runs
out of steam as the number of cores increases, thus also requiring finer grain commu-
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Figure 7.5: Numerical evaluation of model illustrating how external I/O bandwidth scales with the number
of cores and the memory per core for a 2-D mesh CMP. Note that this is asymptotic behaviour with an
unbounded ‘working-set’ size, and excluding ‘compulsory misses’ where new data is fetched into on-chip
memory for the very first time. An I/O bandwidth of one, here, equates to one read/write access per
instruction.

nication in order to place performance back into the asymptotic tail region. This is
a surprising result. The ψ scaling required to stay in the asymptotic region approxi-
mately follows Ω

(
M

1
p P− 3

2

)
. As one moves to very large numbers of cores, software

must become increasingly fine grained in exploiting inter-core dependencies, as τ scales
by Ω

(
M

1−p
p P− 3

2
(1−p)

)
. For p = 0.8 this is Ω (M0.25P−0.3), so increasing by 16x cores

without increasing the amount of memory per core requires ~0.43x finer-grain τ (aver-
age cycles per word of spatial communication). One can imagine that ultimately this
could keep happening until τ ∼ 1 with very large penalties for moving out of the asymp-
totic tail. At this point, the only way to constrain I/O bandwidth would be to increase
memory.

7.3.3 Alternate Topologies

Interestingly, in the derivation in section 7.3.1, in the asymptotic region there is no de-
pendence on the topology of the many-core system. The internal details of the topology
are effectively hidden from external I/O bandwidth provided the memory exceeds the
critical threshold. However, this critical threshold depends on the topology, and is re-
lated to the temporal length required for each node to be reachable from every other node
(2ψN in the case of the 2D mesh). Whilst, as discussed earlier in section 7.1.1, a more
highly connected topology is unlikely to reduce this critical threshold if communication
is dominated by 2-D distance traversal costs, a more loosely connected topology can cer-
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tainly result in an increase of the critical threshold (such as having a 1-D communication
topology). Also, a stacked-die solution which is governed by 3-D distance traversal costs
would result in a lower critical threshold, and better spatial distance distributions than
the 2-D physical case.

7.3.4 Real caches versus Rentian memory

The memory model we used was very ideal in that it optimally minimises the external
I/O bandwidth by knowing precisely which items to store on-chip and which to offload
for long-term storage. Although scratch pad memories may be able to function close
to an ideal Rentian memory, most current architectures use caches which operate on
a statistical basis. Hartstein et al. [49] observed that the time distribution between
cache-line access for large complex workloads behaved as a power-law, and Hartstein
et al. derived analytical expressions for the performance of caches [49]. They showed
that this explains the well known ‘

√
2 law’ [28] whereby every doubling of cache size

reduces the miss-rate only by about
√

2. They derived models for direct, set-associative
and fully associative cache models, and validated them on a number of benchmarks with
very large datasets to show that it accurately modeled cache scaling behaviour. Among
other things, they showed that the asymptotic exponent was largely independent of cache
architecture, meaning that the benefits of a direct-mapped versus fully-associative version
were a one-off constant in terms of its asymptotic scaling (much like a well implemented
algorithm may have a smaller constant factor for its asymptotic scaling than a poorer
implementation).

There is an important difference to note between Hartstein’s power-law distribution and
the Rentian one – while theirs governs cache-lines, the Rentian one governs individual
words. Going from one to the other requires an understanding of Address-Space lo-
cality. However, we can take two extremes of Address-Space locality, and show that
they produce the same asymptotic tail exponent. For one extreme, we can assume no
address-locality, so that each word that is used effectively resides on its own cache line.
This means that the inter-access distribution of cache-lines would be identical to the
inter-access distribution of words. At the other extreme, we can assume that there is
full-locality, so that accesses are done as a bundle – where each access of any word
in the cache-line, is immediately followed by accesses to the rest of the words in that
cache-line. Recall that each word must still be accessed with the Rentian power-law dis-
tribution, but what is happening is that the accesses for multiple words are all bundled
together in a correlated fashion. This results in a higher frequency of accesses to the
same cache-line at small temporal distances, but still results in exactly the same asymp-
totic power-law exponent for the larger temporal distances. Given both of these extremes
have the same power-law exponent for cache-line temporal distances as the Rentian one
does, it strongly suggests that this holds in general (although it is not a formal proof).

Another way of understanding Address-Space locality is to pose it as another embedding
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problem, much in the same way as instructions are embedded, so is data. The ordinary
address-space model allows the entire address-space to be accessed randomly with no dif-
ference in penalty. That is, there is nothing special about the particular address-location
– any other location could serve just as well for storing the data, etc... This makes
the address-space effectively indistinguishable (here, fully-connected at equal cost) from
an access-locality standpoint (even if for convenience we use a linear address space).
The cache-line however changes this by effectively adding a fully-connected cluster –
the length of the cache-line, where accesses are cheaper. Multiple levels of caching with
growing cache-line sizes creates a hierarchy of cost scales. However, because the length
of the cache-lines are still finite, the configuration volume available for cheaper-accesses
is likewise small, and the asymptotic behaviour remains the same. This is similar to how
in the Rentian CMP model above, spatial locality is at first exploited leading to a steeper
head distribution, but quickly runs out and leads to exactly the same asymptotic tail
exponent.

This leads one to conclude that we would expect the exponent for the cache-line inter-
access time distribution to be the same as the word inter-access time distribution, namely
μ = 2−p. Using Hartstein’s results we would then expect cache-misses to scale according
to Mp−1 which is slightly different from the perfect Rentian model of Mp′−1 for memory
size M . In general, the performance gap of a cache compared to a perfect memory is
expected to scale as being Θ

(
Mp−p′

)
times less efficient. Alternatively, the equivalent

Rentian memory for a cache memory scales according to Θ
(
M

p−1

p′−1

)
= Θ (Mp). Another

way of stating this is that the efficiency of a cache in minimising cache-misses, compared
to an ideal scratchpad memory, scales according to Θ (Mp), that is a Rentian Memory of
only size ∼ Mp would do just as well. The analysis here helps give an upper-bound to
the performance gap with a scratchpad memory, since no memory can do as well as the
ideal Rentian one.

In figure 7.6 and figure 7.7 we can see the effect of both exploiting spatial locality and
of Rentian memories versus caches. The top two curves show the effect of not exploit-
ing spatial-locality between cores for both a Rentian memory and cache-based memory,
whilst the bottom two curves show how exploiting spatial locality amongst the 1024
cores leads to a significant benefit, but with asymptotically the same slopes as the top two
curves. We can see here that for Rentian exponent of p = 0.8, leveraging the available
spatial-locality is equivalent in benefit to over a thousand-fold increase in on-chip cache
memory, in terms of external I/O bandwidth reduction. The cache behaviour shown here
is a best-case model (for external I/O bandwidth) of cache-line size equal to one word, so
that each word is its own cache-line and is fully-associative. This means that it doesn’t
fetch any words it doesn’t use, and matches the Rentian model at M = 1. Depending
on address-locality, for larger cache-line sizes of S words, the bandwidth may be offset
by a constant multiplicative factor increase of up to S, making it worse still. However,
from a cache-line miss perspective rather than a raw word-based I/O bandwidth mea-
sure, the address-locality reduces the number of cache-line misses of both the cache and
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Figure 7.6: Numerical evaluation of model at ψ = 1, demonstrating the effect of using Rentian Memory
vs. Cache model, and of interdependent vs. independent cores. An I/O bandwidth per-core of one, here,
equates to one read/write access per instruction.

the equivalent Rentian model by the same multiplicative factor. Here, the equivalent
Rentian model would optimally embed entire cache-lines of data instead of words of
data. What this means is that regardless of cache-line size, the cache model has abso-
lutely poorer performance and asymptotically poorer scaling than the Rentian model in
both external I/O bandwidth and in cache-line misses. We also note in figure 7.7 how in
the head region (at lower memory sizes), the I/O bandwidth for Rentian interdependent
cores matches that of independent cores. This is because they are not exploiting spatial
locality in this region, as it is too infrequent/costly, and hence behave like independent
cores effectively communicating via off-chip memory. Here, caches are modelled as being
equivalent in performance to correspondingly smaller Rentian memories of size Mp. So,
in the asymptotic tail region, we see that the transition region for caches, where spatial
locality is exploited, occurs later than for the ideal Rentian memories due to this relative
inefficiency of the caches.

7.3.5 Area & bandwidth constrained many-core scaling

Supposing CMPs are in the external I/O bandwidth-limited domain, one can ask how
best to utilise the doubling of transistors every process generation for performance. For
a fixed Btot, one would need to trade off according to:

M ∝ P
p′

1−p′ ,

for an idealised Rentian memory of M per core.
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Figure 7.7: Numerical evaluation of model at ψ = 106, demonstrating the effect of using Rentian Memory
vs. Cache model, and of interdependent vs. independent cores. An I/O bandwidth per-core of one, here,
equates to one read/write access per instruction.

This means for an example of p′ = 0.75, upon doubling the number of cores, the memory
per core would need to increase eight-fold in order to maintain the same total external
I/O bandwidth, resulting in a sixteen-fold total increase in on-chip memory. Thankfully,
with technology scaling, the bandwidth available is also growing (see Chapter 2), albeit
more slowly. Nonetheless, the power consumption to support this growth in bandwidth
could be crippling. Here we explore the cores/memory tradeoff for a limited-growth in
bandwidth with scaling.

Let ρ be the amortised area for each memory word, and let σ be the logic area for each
core (including amortised routing networks). Let M be the memory-per-core, P the
number of cores, and A the total area. Then we model total area A as:

A = ρMP + σP

Let us start with values A0, M0 and P0 where this is a base case that is known to hold.
Let us then define multipliers:

a ≡ A/A0

m ≡ M/M0

c ≡ P/P0

This gives us:
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aA0 = mcρM0P0 + cσP0

aρM0P0 + aσP0 = mcρM0P0 + cσP0

(a−mc) ρM0 = σ (c− a)

c− a

a−mc
=

ρM0

σ

Let 0 < γ < 1 be the current proportion of area that is core logic, then:

γ =
σ

ρM0 + σ

and

c− a

a−mc
=

1

γ
− 1

c− a + a−mc

a−mc
=

1

γ
a−mc

c−mc
= γ

Suppose the total I/O bandwidth scales by aβ , then we have:

aβ = mp′−1cp′

Given a and γ we can then numerically solve for m and c. For the asymptotic behaviour
we have:

β log a = (p′ − 1) log m + p′ log c

and:

a = c ((1− γ)m + γ)

thus, assuming m grows with a, for large a we have:

log a ≈ log c + log m + log (1− γ) (7.6)

Substituting for m yields:

log c ≈ (1− p′ + β) log a− (1− p′) log (1− γ)

i.e.
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c ∝∼ a1−p′+β

and

m ∝∼ ap′−β

To satisfy the assumption that m is growing with a we require that β < p′. This then
relates the growth in the number of cores to the area given the spatial Rentian scaling
and external I/O bandwidth scaling factors. We notice that when bandwidth growth
can keep up with the spatial Rent’s exponent, then the number of cores scales linearly
with area, as expected. A numerical evaluation shows reasonably close agreement - for
example with p′ = 0.75 and β = 0.6, the scaling exponent over a range of 106 cores is
0.861 versus an expected 0.85.

Using the high-end ITRS bandwidth growth1, we have β = 0.67 and choosing p′ =

0.75 means that for every doubling of transistors, we expect cores to grow by 1.9x and
memory to grow by 1.06x, indicating that locality allows good scaling. For higher values
of p′, where it approaches unity (little to no locality), the number of cores grows by 1.6x
and Rentian memory by 1.26x. This is more in line with the ITRS predicted doubling of
cores every two processor generations.

If we replace the ideal Rentian memory with caches instead we substitute the memory
scaling exponent from p′ to p:

β log a = (p− 1) log m + p′ log c

Substituting for m into eqn 7.6 yields:

log c ≈ (1− p + β)

p′ − p + 1
log a− (1− p′)

p′ − p + 1
log (1− γ)

c ∝∼ a(1−p+β)/(1−p+p′)

and:

m ∝ a(p′−β)/(1−p+p′)

For p′ = 0.75, then p = 0.8 yielding cores growing by 1.8x (instead of 1.9x) and cache
per core (amortised) grows by approximately the same 1.06x. As p′ approaches unity,

1See Chapter 2, figure (2.2)
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so does p, therefore the scaling for poor-locality algorithms is the same for caches as it is
for Rentian memory, namely:

c ∝ aβ

and:

m ∝ a1−β

In this case, the number of cores can only grow if there is an increase in external I/O
bandwidth. This means that applications that have large working sets, but are written
to exploit parallelism through data independence rather than data interdependence can,
ironically enough, only run on fewer cores as they are constrained by I/O bandwidth.
Algorithms that employ large data interdependence amongst cores, on the other hand,
may be more complicated but allow for better scaling of the number of cores, for the
given I/O bandwidth constraints.

GPUs have small working sets and high data parallelism, but at the same time, the I/O
bandwidth grows approximately linearly with raw computational power. High-end desk-
top single-GPU cards already consume almost 400W at peak, it is not clear how much
further they can keep pushing the thermal envelope. Given the growing disparity be-
tween communication energy and computational energy, if computational performance
requires an almost linear increase in communication, it implies that future GPUs will
proportionally spend growing amounts of their energy budget on communication, with
computational performance scaling poorly to maintain their thermal profile.

7.3.6 Shortcomings of the model

An important shortcoming of the spatio-temporal Rentian model is that it only covers
data locality, and does not model instruction locality and the bandwidth needed to feed
it instructions. Indeed to maximally exploit data locality, there is an implicit assump-
tion that instructions can be embedded anywhere. One can then ask – if instructions
can be embedded anywhere, does that mean the movement of instructions themselves
is uniform or non-local? Thankfully, this is not necessarily the case. A way to tackle
this question, however, is to consider coarse-grain multi-scale embedding, whereby the
embedding problem is hierarchical – occurring at multiple scales, as it does in VLSI. This
means that the instruction information would only need to move at the level of its hier-
archy, which can preserve asymptotic Rentian scaling of I/O bandwidth for instructions
as well. Indeed, this type of embedding approach is discussed next, in Chapter 8.
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7.4 Conclusion

This chapter looked at the implications of Rentian software as applied to a CMP model.
It uses a spatio-temporal Rentian model for the analysis, that allows an examination
of how external I/O bandwidth is affected by the number of cores, their exploitation
of spatial locality, the temporal coarseness of inter-core communication, the quantity
of on-chip idealised-memory per core as well as expected behaviour for caches. For
a doubling of transistor area as per Moore’s law, it also explored how to balance the
tradeoff between on-chip memory and cores in an I/O-limited scaling model. An idealised
on-chip memory was introduced, called Rentian Memory, that is ‘perfect’ in the sense
that it minimises the external I/O bandwidth of misses, was still shown to exhibit the
power-law scaling ‘miss’ behaviour of caches, albeit with a better scaling exponent.

Based on this spatio-temporal Rentian model, it is possible to project the scalability
requirements for future CMP applications. They should:

• exploit parallelism through data interdependence rather than data independence

• accomplish their goal with algorithms that have lower complexity of communica-
tion – i.e. lower Rent’s exponents (e.g. using wavelets if possible, instead of large
FFTs)

• ultimately, need to become fine-grained in their communication between cores

From a hardware standpoint, this means that architectures which support such exploita-
tion of locality, such as Tilera and Picochip will better support Rentian scaling as the
number of cores grows, than those of the current x86 many-core architectures from Intel
or AMD.





8
CHAPTER EIGHT

EFFECT OF LOCALITY ON

ASYMPTOTIC
COMPLEXITY

This chapter covers the analysis of asymptotic communication costs in algorithms. In-
deed, it is shown how these communication costs can dominate over traditional com-
putational complexity. The direct calculation of Rentian parameters is demonstrated on
some example algorithms using first-principles.

The embedding problem is discussed, with an example showing how optimal embeddings
do not compose to form another optimal embedding. However, it is then shown that
optimal embeddings don’t need to compose in order to achieve asymptotically Rentian
scaling. Hierarchical composition is introduced, instead, demonstrating that random
or worst-case links at each level of hierarchy still preserves Rentian scaling, but with a
constant factor overhead. This makes Rentian embeddings practically composable for a
CMP-system, at a constant-factor cost of optimality.

Finally, we consider the costs of asymptotic costs of accessing memory. As data has a
physical position, in order to write to or retrieve data, there is always some implicit
spatial communication involved. Lower bounds are shown for this cost, as it relates to
the Rentian exponent – and under certain conditions, the memory access cost can be
O (1). As an example, it is shown how this affects the cost-analysis of very large dense
matrix multiplications.

8.1 Direct Rentian analysis of algorithms

Although Rent’s rule was observed in the 1950s, it has since then predominantly been
applied to the analysis of large existing VLSI graphs, and experimentally determined by
partitioning and placement. Little work has been done in analysing Rentian behaviour
directly on structures or algorithms. This is perhaps a little surprising, however it is un-
likely to have been of practical value in the VLSI domain, as final VLSI graphs are easily
analysed by partitioning and placement. In moving our analysis to software, however,

163
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the first-principles analysis of algorithms becomes important in determining their com-
munication scaling properties, as the actual computation and communication graph is
generated as the software runs. We give some sample ab-initio characterisations below.

8.1.1 Scaling behaviour of trees

For any k-ary tree structure, the minimal terminal scaling law is given by:

T = Θ
(
G1
)

i.e. the Rent’s exponent p = 1 with unbounded dimensionality. Where G is the number
of nodes in a region, and T is the number of edges connecting nodes from inside the
region to nodes outside the region.

Proof. We show that for any connected set of G interior nodes:

T = (k − 1) G + 2

By induction: we start with one node that has (k + 1) edges consisting of one parent edge
and k child edges, satisfies the case of G = 1. For any connected set S of G = n nodes,
connecting another node X results in the connecting edge being subtracted from both S

and X, and leaves k dangling edges from X, resulting in an increase of edges by (k − 1).
This satisfies the case of G = n + 1. Since any connected set of nodes can be constructed
starting from the base case, by incrementally adding nodes, this completes the proof.

8.1.2 Iterative Fibonacci sequence

The iterative Fibonacci algorithm has the dependence:

fk = fk−1 + fk−2

The interior computation has a recurrence pattern that consists of two input edges
(fk−2, fk−1) and two output edges (fk−1, fk). Any contiguous chain of this recurrence
pattern results in:

T = 4

i.e.

p = 0
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This yields a dimensionality of one, which is also trivially observable from the simple
dependence chain.

We note that a recursive form of the Fibonacci calculation (without re-use of calculated
results) would result in a binary tree, and thus have Rent’s exponent p = 1.

8.1.3 Matrix multiplication

The N ×N matrix multiplication algorithm, denoted MM (N ×N), can be decomposed
into eight MM

(
N
2
× N

2

)
multiplications, which then involve point-additions at that level

of hierarchy.

The matrix multiplication has ∼ 2N3 operations (multiplication and addition) and 3N2

terminals (inputs and output). This leads to:

G = 2N3

T = 3N2

implying that:

T =
3

22/3
G2/3

So that:

p =
2

3

and
dim = 3

This implies that communication for matrix multiplication is O (1) provided it is embed-
ded in a growing three-dimensional substrate. Indeed, we know that systolic arrays with
a 2D topology, plus one dimension of time, works for this [22, 67]. Cannon utilised
a 2-D torus topology, but noted that a 2-D mesh is also easily capable of simulating a
2-D toroid version with constant penalty. Leiserson considered a 2-D hexagonal [67]
topology for streaming the matrix multiplication from the edges of the systolic array. In
general, however, the matrices may already reside in on-chip memory as part of a larger
computation.

Similarly, LU decomposition and other common matrix operations are known for systolic
arrays with O (1) link length and O (N) steps [67], and also yield a simple exponent of
p = 2

3
.
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8.1.4 Handling memory accesses

We should note that the count of terminals is based on the number of unique edges
coming out of a boundary, connected to instructions within the boundary. For exam-
ple, two blocks of code may access the same memory location. Both accesses result in
spatio-temporal interconnect – however, when considering the combined two blocks (at
larger instruction counts), these contribute only one terminal at that boundary. For ran-
dom accesses, then, the distribution of accesses can also determine how many terminals
are at the boundary of combined random accesses. Thus the distribution and locality
of memory accesses directly affects the count of terminals, and their Rentian scaling –
which is precisely what we want. For data-driven memory access patterns, this means
that the Rent’s exponent can vary not only based on the underlying algorithm, but also
on how the data drives the algorithm. For example, an arithmetic or Huffman com-
pression algorithm generates and accesses entries in a data-structure based on the input
data stream, and hence the scaling behaviour of Terminals to Instructions depends on
the characteristics of the data-stream being compressed, as well as the algorithm.

8.1.5 Fourier transforms

The interior scaling behaviour of a Fourier transform involves a hierarchy of butterflies.
If we compose based on a sub-tree of butterflies, we have for a butterfly of width N , a
depth of log2 N . Henceforth we denote log N to mean log2 N . Thus:

G = N log N

T = 2N

if:

log T = p log G + κ

for N = 2, we have G = 2 and T = 4, so κ = 2− p2, where p2 is the value of p for N = 2.

log N + 1 = p (log N + log log N) + 2− p2

p =
log N − 1 + p2

log N + log log N

As
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dim =
1

1− p

=
log N − 1 + p2

log log N − 1 + p2

= Θ

(
log N

log log N

)

We note that this compares well with the trivial lower bound of the dilation λ, given
by the ratio of graph diameters. We note that the FFT comprises N log N nodes with a
graph diameter of 2 log N , thus:

λ =
(N log N)1/dim

2 log N

Keeping the desired dilation λ constant and taking logarithms results in:

log λ =
1

dim
(log N + log log N)− log log N − 1

dim =
log N + log log N

log λ + log log N + 1

= Θ

(
log N

log log N

)

8.1.6 Related work

The closest work was by Fox [43] regarding analytical derivations of the communication
overhead in high-performance parallel computing domain. He showed that the cost of
matrix multiplication (on a mesh) is N3/2. There are two crucial differences between his
work and this. First of all, he considers the 2-D domain of the data, rather than the
spatio-temporal domain of the computational data-dependency graph. Incidentally, he
also uses the term ‘space-time’, however in his definition space refers to the data itself
rather than actual physical space. Secondly, his cost metric for communication is based
on the number of transactions crossing the boundary, rather than the physical distance it
must travel. This certainly makes sense for a parallel computing environment, although
it does not for CMP. Also, he does not consider a hierarchical decomposition, although
he notes that in VLSI, that Rent’s rule implies that the system is self-similar across scales
or ‘grain size’ as he terms it, and discusses the behaviour upon varying the ‘grain size’.
For these reasons, his dimensionality for matrix multiplication is two, rather than three
as in here.

Fox also considers embeddings of the FFT onto the hypercube (rather than the 2-D
mesh). From his analysis of communication versus computation in the hypercube topol-
ogy, and as the hypercube has dimensionality of log2 P for P processors, he suggests
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Figure 8.1: Optimal embeddings don’t compose. An optimal spatial embedding of N × N square matrix
multiplication leads to a systolic array with torus topology, however optimal embedding for the transpose
operation has different needs. Transpose within the torus results in non-local links of Manhattan-metric
length 2 (N − 1), thus growing as O (N). The matrix multiply can be folded along the diagonal to produce
an O (1) cost transpose operation, with further O (1) dilation of matrix multiply links. (It can even be
folded again to reform a square placement.) However as there are N3 communication operations using
these links, this can actually make total cost worse.

that the N-point FFT has an information dimension of O (log2 N). The Rentian analysis
shows that it is actually a little less than this.

8.2 The ‘embedding problem’

Real VLSI designs have the benefit of a near-complete network description before tools
try to optimally embed it into silicon. Although designers partition their designs into
modules and blocks, for the most part, the placement tools have abundant freedom to
shuffle gates around within a region. This means there is a large amount of implicit
information in the placement. For example, for N gates with N positions, there are N !

possible configurations, of which the VLSI embedding is a carefully chosen one. Instruc-
tions in software also have implicit position (their instruction address), however, in terms
of optimising their spatio-temporal embedding, there is less freedom to move these in-
structions around. The VLSI equivalent would be a design consisting of many so called
hard-IP blocks, which have fixed placement already within the block.
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Algorithms and functions are designed in a modular fashion, and they should compose
easily, without specific placement optimisations needed that ‘bleed’ across from one algo-
rithm to the next one. For example, let us take matrix multiplication, followed by either
another matrix multiply or by a matrix transposition. The square matrix multiplication
Z = XY has a very simple, optimal embedding solution across multiple cores given by
Cannon [22] and seen in figure 8.1. This consists of only neighbour communication be-
tween nodes in a 2-D toroid (shown as black links) where the row terms of X are passed
along rows, and the column terms of Y passed down columns. We see here how a 2-D
mesh simulates a 2-D toroid with only a constant factor penalty, by folding and interleav-
ing the torus into the 2D mesh. The transpose operation is essentially a communication
operation (here shown as red links). If each node contains a sub-matrix, it merely needs
to perform the transpose operation on that sub-matrix, and then swap the result with its
corresponding transpose node’s. There is a trivial embedding for transposition (seen at
the bottom of figure 8.1), which simply places each node next to its transpose partner,
resulting in only neighbour communication as they swap them. The ‘embedding prob-
lem’ is that these two parts of the algorithm have very different embeddings, and optimal
communication in both does not result in optimal communication across them. That
is, their embeddings do not compose optimally. We can see that in the N × N matrix
multiply, that the transposition operation (seen in red) results in non-local communica-
tion. In general, the worst-case link distance grows by O (S) for sidelength S ≤ N of the
computation. In contrast, if we were to follow the matrix multiplication with another
matrix multiplication, for example in exponentiation, then their embeddings can match,
and there is O (1) local communication from one matrix multiplication to the next.

One may instead wish to construct a combined ‘matrix-multiply and transpose’ oper-
ation, by optimally embedding the combined networks. One approach for this is to
spatially fold the matrix multiplication so that transposition is also a local operation.
This is seen on the right in figure 8.1. We note that now the black links for matrix mul-
tiplication are longer, however it can be shown that these grow by an average constant
factor κ = 3

2
, and so are still O (1) regardless of the sidelength S of the computation.

Noting the potential inconvenience of a triangular embedding, it is also possible to fold
the corners again (almost like origami) so that it reforms a square profile. Again, this
maintains O (1) asymptotic local communication. However, there are very different costs
involved in the two algorithms. The matrix multiply consists of N3 communication op-
erations, and so the total cost grows to ∼ 2κN3 (where the factor of 2 is due to the
torus topology). The transposition operation has communication cost ∼ N compared
to the operation on the regular torus topology of ∼ SN2. So the total communication
cost has changed from (2N3 + SN2) to (3N3 + N). However, we know that S ≤ N ,
and typically S can be much smaller than N , thus folding the topology to make trans-
position local, actually increases total communication costs. Indeed, the non-locality
of the matrix transpose doesn’t actually go away simply because another O (1) embed-
ding is produced, but rather, it causes the matrix multiplication to have a less efficient
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embedding that makes total costs increase.

We should note that the diagonal symmetry property of transposition on matrices is
a particularly special property that was employed in this example to combine the em-
beddings. In general, when composing embeddings from two algorithms, there is no
such property that can be leveraged. What the above example shows, however, is that
even when such a special property can be employed to make a combined embedding, it
can actually make matters worse. Moreover, in practise, we would like the embeddings
themselves to compose easily – that is we would like to describe an embedding for an
algorithm once, without needing special cases for combinations with other algorithms
such as matrix-multiply with transpose.

As the embeddings of two algorithms will generally compose to produce non-local com-
munication between them, it suggests that such non-local communication is practically
unavoidable and that perhaps Rentian scaling is unlikely to emerge. As we shall see next,
this is not actually the case.

8.2.1 Solution: hierarchical composition/decomposition

It is important to remember that Rentian locality does not mean that there are no long
interconnects. Instead, Rentian locality only constrains the amount of non-local inter-
connect. Moreover, Rentian scaling is governed by the Rent’s exponent as an asymptotic
behaviour – small constant factors in cost are less important than the power-law be-
haviour itself.

What this means is that optimal embedding is not a prerequisite to Rentian scaling.
Indeed, as we have seen with composition of matrix-multiplication and transposition,
combining embeddings to minimise communication costs may not actually confer real or
significant advantages. Instead, we need to manage the amount of non-locality. A clue
to solving the embedding problem lies with Donath’s original derivation of wire-length
distributions and average length. Donath’s original predictions for wirelengths turned
out to be correct in terms of its power-law exponent, but was off by a constant-term
factor of about two. The reason is that Donath considered Rent’s rule in a hierarchically
partitioned manner, and assumed non-local random connectivity, to connect sub-blocks
at each scale of the hierarchy. What is important to note is that this is still actually
consistent with Rentian scaling and only resulted in a constant factor increase in the wire-
length distribution, preserving the distribution’s power-law exponent, and preserving
Rentian scaling properties. This means that Rentian scaling can accommodate random
non-local connections, with only a constant factor penalty, provided the non-locality is
constrained to that physical scale of the hierarchy.

This allows us to approach the embedding problem with a divide-and-conquer strategy
loosely based on Donath’s original derivation, adapted for characteristics of the soft-
ware domain versus VLSI. We do this by hierarchically decomposing the spatio-temporal
graph of an algorithm, with constraints on the amount of merging code allowed at each
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Figure 8.2: Decomposition of Matrix Multiply function into smaller Matrix Multiplies (denoted by X).
Merge logic (additions), and sub-partitions can be placed randomly within each level of the hierarchy.
Spatio-temporal interconnect may be non-local, but the non-locality is constrained to the physical domain
of that partition.

level. Donath did not have to deal with the presence of merging code, but only with
spatial partitionings.

Let us then quantify the asymptotic cost of communication for a hierarchically decom-
posable algorithm. We partition the parent problem into s child sub-problems with
problem-size reduction r. For example, an N × N square matrix multiply can be de-
composed into eight matrix multiplies of size N

2
× N

2
, so s = 8 and r = 2. This can

be seen in figure 8.2, where the matrix multiplication is split into four quadrants which
are calculated separately (in eight blue boxes) and then merged together (in green). We
can also see the physical consequence of this partitioning on a CMP in figure 8.3. Here,
we can see again the eight sub-matrix multiplications arranged in both time and space,
along with the thin merge logic. Another level of decomposition is also shown in the
figure consisting of smaller matrix multiplies and corresponding merge logic. We should
note that although decomposition is discussed here and below, the same argument can
also be made for self-similar composition as well.

Let G (N) be the number of instructions (gates) required to accomplish the computation.
This is the traditional ‘computational complexity’ of the problem. For many algorithms
we have asymptotically that this is Θ (Nγ), and for these we can define:

G (N) = gNγ

for some constant g. In the case of matrix multiplication γ = 3. Note that γ = log s
log r

for Rentian partitioning, as the bulk of the instructions should be in the s children of
problem size N

r
.
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Figure 8.3: Hierarchical decomposition of an algorithm (matrix multiply) into space and time. Green
indicates merge logic, blue indicates a lower-level of the hierarchy. An additional level of decomposition is
shown for one blue box.

The child sub-solutions may need further merging computation to form the parent so-
lution. With Rentian scaling, it necessarily also involves interconnect at that level as
otherwise there would be too many terminals at the parent boundary. The number of
merge instructions is: G (N) − sG

(
N
r

)
. Let us assume the number of I/Os for problem

size N follows Rent’s rule:

T (N) ≡ k (G (N))p

For matrix multiplication we have two inputs of size N2 and one output of size N2, so
p = 2

3
(given γ = 3) and k = 3g−p.

There are sT
(

N
r

)
terminals due to sub-problems that need to be wired up, and we will

assume that asymptotically there are at most mT (N) internal and external terminals
(inputs and outputs) of merge instructions, for some constant m ≥ 0. This also ensures
an asymptotically small contribution of merge instructions compared to the childrens’
instruction count. In the case of matrix-multiply m = 1.

These terminals need to be wired up to each other and to the parent terminals. Follow-
ing Donath, given an average fanout for the region, then the average wiring per terminal
is α = Fanout

1+Fanout
which is a minimum of 1/2 for simple edges (one source and one des-
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tination), and is at most one (for high-fanout), regardless of the connectivity. So this
factor is tightly constrained as 1

2
≤ α < 1, and so does not contribute to the asymptotic

complexity terms. Then the total number of interconnects is given by:

I (N) ≡ α

(
(1 + m) T (N) + sT

(
N

r

))

The average cost of interconnect at this level of hierarchy is something that can be directly
estimated given a cost function and a distribution of distances. In the simple case of
cost being linearly proportional to distance, and for uniform-random links or worst-case
links, the cost is simply proportional to the side-length of the volume of instructions.
So for a d-dimensional spatio-temporal embedding, we would expect the average cost of
interconnect to be proportional to:

c (N) ∝ (G (N))1/d

However, this is only up to the spatio-temporal size of the system with P cores with
volume Vcrit ∝ P . Thereafter, the embedding volume growth is one-dimensional, so that
for a Manhattan metric let us define:

c (N) =

⎧⎨
⎩(G (N))1/d , G (N) ≤ ζP

(ζP )1/d + G(N)
ζP

− 1 , G (N) > ζP

In general, however, we can calculate the total communication cost C (N) of the algo-
rithm as being the sum of the costs of the sub-problems, plus the cost of interconnects at
that level of the hierarchy so that:

C (N) = sC

(
N

r

)
+ I (N) c (N)

= sC

(
N

r

)
+ α

(
(1 + m) T (N) + sT

(
N

r

))
c (N)

In the region G (N) ≤ ζP we have:

C (N) = sC

(
N

r

)
+ α

(
(1 + m) T (N) + sT

(
N

r

))
(G (N))1/d (8.1)

We can hierarchically decompose until we reach a base case with H levels of hierarchy
so that rH = N , and sH = N log s/ log r:
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C (N) =

H−1∑
h=0

shαk

(
(1 + m)

(
G

(
N

rh

))p

+ s

(
G

(
N

rh+1

))p)(
G

(
N

rh

))1/d

=
H∑

h′=1

sH−h′

αk
(
(1 + m)

(
G
(
rh′

))p

+ s
(
G
(
rh′−1

))p)(
G
(
rh′

))1/d

= αksH
H∑

h′=1

s−h′

(
(1 + m)

(
grγh′

)p

+ s
(
grγ(h′−1)

)p)(
grγh′

)1/d

= αksHgp+1/d
H∑

h′=1

s−h′

rγ(p+1/d)h′
(
(1 + m) + sr−γp

)

= αksHgp+1/d
(
(1 + m) + sr−γp

) H∑
h′=1

(
s−1rγ(p+1/d)

)h′

= αksHgp+1/d
(
(1 + m) + sr−γp

)((s−1rγ(p+1/d)
)H+1 − (s−1rγ(p+1/d)

)
(s−1rγ(p+1/d))− 1

)

= αkgp+1/d
(
(1 + m) + sr−γp

)((
Nγ(p+1/d) −N log s/ log r

) rγ(p+1/d)

rγ(p+1/d) − s

)

For p > 1− 1/d and G (N) ≤ ζP , we then have:

C (N) = Θ
(
(G (N))p+1/d

)
and this has average spatio-temporal cost of:

Θ
(
(G (N))p+1/d−1

)
This asymptotic scaling behaviour is precisely what we would expect with optimally-
embedded Rentian scaling. We should also point out that the asymptotic total commu-
nication cost here can do no better than the computational complexity, and is typically
worse. This also makes intuitive sense if we consider that the computational complexity
essentially counts instructions, whereas the communication cost counts the distanced-
weighted edges between instructions (which at a minimum grows proportionally to the
number of instructions).

For cost at G (Ncrit) = ζP we have:

C (Ncrit) = αkgp+1/d
(
(1 + m) + sr−γp

)(((ζP

g

)(p+1/d)

−
(

ζP

g

) log s
γ log r

)
rγ(p+1/d)

rγ(p+1/d) − s

)

For the region G (N) > ζP we have:
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C (N) = C (Ncrit) +
αk

ζP
sH

H∑
h′=Hcrit+1

s−h′

(
(1 + m)

(
G
(
rh′

))p

+ s
(
G
(
rh′−1

))p)
×

(
G
(
rh′

)
+ (ζP )1+1/d − ζP

)
With asymptotic total spatio-temporal interconnect cost as G (N) � ζP of:

Θ

(
(G (N))p+1

P

)

and an average spatio-temporal cost of:

Θ

(
(G (N))p

P

)

In the case of matrix multiply, we see that as it grows, it can no longer fit into the fixed
number of cores and d = 1 (temporal dimension only). We then have for the matrix mul-
tiplication problem, an average interconnection cost at large scales of Θ

(
N3( 2

3
+1−1)/P

)
=

Θ
(

N2

P

)
and total spatio-temporal cost of Θ

(
N5

P

)
. This total spatio-temporal cost can be

interpreted as the total communication energy consumption for the algorithm (in both
spatial communication and memory storage costs).

8.2.2 Interdependent composition/decomposition

Although in the preceding example of matrix multiplication, we decomposed the prob-
lem into independent sub-problems, we can also choose to decompose into interdepen-
dent sub-problems with communication occurring between them throughout their exe-
cution. There is no assumption made in the derivation that requires independence, but it
merely makes the analysis simpler.

For example, we can hierarchically decompose a systolic-array implementation of the
matrix-multiplication problem. This time we decompose into eight sub-problems with
spatio-temporal volume G (N) = 2N3, with dimensions 2N × N × N where the factor
of two accounts for a single add and a single multiply per systolic array node. There
are in general T (N) = 8N2 terminals for the sub-problems: 3N2 data inputs including
the previous partial solution, 3N2 data outputs including the current partial solution,
and 2N2 items being shuffled to and from neighbours. There are no merge instructions,
as merging additions take place within the systolic construct, so m = 0. Plugging these
into eqn 8.1 now results in exactly the same asymptotic scaling behaviour, but with
interdependent partitions, instead of independent partitions into sub-problems.

We should note that in some ways, this decomposition analysis of computation and
communication has some rudimentary similarity to the D-BSP and Multi-BSP models dis-
cussed in Chapter 3, as there is a recursive decomposition of the algorithm into localised
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regions in those as well. However, in actuality there are many fundamental differences.
Firstly, the decomposition occurs in a hierarchy of space-and-time, rather than with the
supersteps in the space of processors. The decomposition here, is also not necessarily a
binary one, and crucially, unlike the D-BSP and Multi-BSP models, this decomposition
fully permits communication at all times across the decomposition boundary – as long
as they are counted as ‘terminals’. So whereas the systolic-array implementation of Ma-
trix Multiply cannot be analysed in the D-BSP and Multi-BSP models, it can be analysed
here.

8.2.3 Analysing non-Rentian algorithms: FFT

We can also apply this to non-Rentian systems, such as the FFT. By partitioning the algo-
rithm into independent sub-FFTs and plugging into eqn 8.1, we get altogether different
behaviour, with an asymptotic cost of Θ

(
N1+1/d (log N)1/d

)
. Although this is not as bad

as a completely random embedding with cost Θ
(
(N log N)1+1/d

)
, as some locality can

be leveraged, it is still only better off by a factor of (log N)1/d, which makes it behave
close to a random embedding. We note that as the size of the problem increases, the
number of cores runs out and d becomes 1, yielding an asymptotic spatio-temporal cost
of Θ

(
N2 log N

P

)
. For the case of a single processor P = 1 this is a cost of Θ (N2 log N).

This has a simple interpretation – as the computational time is Θ (N log N) and the stor-
age requirements are Θ (N), so that the total temporal communication cost is merely the
product of these.

8.2.4 Sorting

We note that tree-based sorting algorithms that take time O (n log n) in a RAM model,
would actually take time O

(
n1+1/dS

)
upon accounting for communication costs in a dS-

dimensional substrate. Lang et al. developed a 2-D sort algorithm that takes O (
√

n)

time-steps if each element n has its own processor [65]. This approach maps to the CMP
domain as well.

8.3 Spatial communication cost of memory accesses

Although in Chapter 7 we discussed the cost of temporal interconnect as being propor-
tional to the temporal distance traversed due to, say, the power consumption of retaining
data, another measure concerns the purely spatial communication cost of accessing the
data. As was shown in Chapter 2, because data necessarily takes up physical space,
accessing an entry requires traversing the physical space, thus incurring a spatial com-
munication cost. As per Chapter 7, the minimum aggregate cost is achieved by greedily
allocating temporal interconnect according to access frequency, as per the Rentian Mem-
ory model. So short temporal interconnects should be located close to the accessor, and
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long temporal interconnects should be located more remotely. We have for a temporal
distance distribution f (t) the storage space taken up by temporal interconnect of up to
distance τ as:

M (τ) ≡
τˆ

0

tf (t) dt

If the density of storage is uniform in dS physical dimensions of space, then the spatial
cost of access CT (T ) is given by:

CT (τ) ≡ Θ
(
(M (τ))1/dS

)
The average spatial memory access cost C̄T is then given by:

C̄T ≡
τmaxˆ

0

f (t) (M (t))1/dS dt

For example, in the single-core case, if we have a temporal Rentian behaviour for t ≥ tmin

of:

f (t) = λtp−2

then:

M (τ) =
λ

p
(τp − tpmin)

we can also relate the temporal distance τ to the amount of memory needed for all
temporal interconnect up to τ as:

τ (M) =
(p

λ
M + tpmin

)1/p

Now, we have:

CT (τ) ∝ (τ p − tpmin)1/dS

then:

C̄T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω

(
t

“
1+ 1

dS

”
p−1

max

)
, p > dS

dS+1

Ω (log tmax) , p = dS

dS+1

Ω (1) , p < dS

dS+1
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or, alternatively let Mmax be the amount of memory needed for the algorithm, then:

C̄T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ω

(
M

1+ 1
dS
− 1

p

max

)
, p > dS

dS+1

Ω (log Mmax) , p = dS

dS+1

Ω (1) , p < dS

dS+1

These are lower-bounds as this is derived for an optimal cost memory model – the Ren-
tian memory of Chapter 7. Real memories and caches are likely to do worse than this. We
note that even though memories are spatially distributed, if the distribution of temporal
accesses has exponent below a critical threshold, the average access cost can potentially
be reduced to O (1). This occurs when the Rentian dimensionality of the algorithm being
executed is less than the spatio-temporal embedding dimension d = (dS + 1). However,
if the Rent’s exponent is higher, the average costs grow according to the longest temporal
distances or memory footprint.

For uniform memory accesses, we have another special-case of p = 1, and thus tmax ∝
Mmax. This yields an average spatial access cost Ω

(
M

1/dS
max

)
. We note that this is the same

as shown in Chapter 2 for the binary tree traversal for dS = 2. This also means that if
the access pattern has sufficient locality, we can leverage locality by moving frequent
accesses closer to the accessor, and potentially recover O (1) average access costs, making
it appear as though it were a uniform memory. In the case of the binary tree traversal,
moving frequently accessed items closer to the root would potentially lead to such a
reduction in average access cost.

If we recall the dense matrix multiplication problem MM (N ×N) we know that p = 2
3
.

Now, for a fixed number of cores P , surrounded by a pool of memory in dS = 2 spatial
dimensions, as the size of the matrix multiply N grows, the spatial communication costs
of memory accesses would be expected to grow on average by Ω (log N). This leads
to total access costs of Ω (N3 log N). However, if the operation was surrounded by a
pool of memory in dS = 3 spatial dimensions, then we have average access cost Ω (1)

and a total access cost of Ω (N3), which is what a PRAM or BSP model with uniform
memory access, would also yield. Indeed, work by Aggarwal et al. on the special-case
of uniprocessor matrix multiplication with a polynomial memory access cost also noted
these three regions of behaviour [4]. The result presented here, however, is more general
in that it applies to any algorithm with Rentian locality.

Bilardi and Preparata also considered the access-costs of physical distance traversal for
a uniform mesh of three or less dimensions [14, 15, 87]. However, they were primar-
ily concerned with the time complexity of simulating PRAMs and other meshes with a
higher number of processors. In their model, however, no memory-access parallelism
(per processor) was allowed. They noted that memory access parallelism would increase
the storage requirements of handling multiple requests, and thus potentially physically
dilate the actual memory – making it even more remote. However, this is a little mislead-
ing, as the storage requirements of memory access parallelism do not necessarily have
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to grow in direct proportion to the amount of memory, but can grow at a considerably
slower pace. For example, a tree-like memory access structure (for example, with a depth
of log log N) embedded in two or three dimensions, can at a constant-factor slow-down,
provide a logarithmically growing amount of storage for memory-access parallelism.
Also, without a theory of access-pattern as the Rentian ones presented here, Bilardi and
Preparata consider only a particular synthetic access pattern that lacks the tighter locality
properties of the Rentian model.

8.4 Conclusion

This chapter demonstrated how one can extract Rent’s exponents by direct algorithm
analysis, and how these can then be utilised to determine the scaling costs of communi-
cation.

In previous chapters, the Rentian scaling was found in experiments where embeddings
were assumed to be optimal or near-optimal due to simulated annealing. The problem
is that optimal or near-optimal embeddings compose sub-optimally. The key insight
here was that one can still maintain Rentian scaling with only a constant factor penalty,
even if one relaxes the optimality constraint. Indeed, by merely composing self-similar
algorithm embeddings in a hierarchical fashion, Rentian scaling properties are retained,
and consequently the associated analytical results from Chapter 7. It was further shown
how to derive the asymptotic communication costs of algorithms from such a hierarchical
analysis.

Finally, lower-bounds were derived for the spatial-communication component of mem-
ory accesses. It was shown that this lower-bound undergoes transitions at critical Rent’s
exponents, based on their temporal locality and the physical dimensionality of the mem-
ory.





9
CHAPTER NINE

RENTIAN SCALING IN

NEURONAL NETWORKS

As we integrate even larger quantities of logic into new computational systems with in-
creasing parallelism, we must tackle the growing challenges of rigid power-consumption,
thermal and noise constraints. Thus it is inspiring that evolution has already tackled
these problems and given us a highly-parallel system as a proof of existence – the brain.
As Sarpeshkar has pointed out [92], the human brain is remarkably energy efficient, con-
suming only 12W of energy for the order of 3.6 × 1015 synaptic operations per second,
which in terms of operations per second per Joule, is up to seven orders of magnitude
more efficient than existing processors1.

In brains, as in VLSI, there is a significant cost to communication. Basser derived cable
equations for myelinated axons [10], and showed how nodal and myelin capacitance
per unit length affect the signal propagation. Moreover this capacitance needs to be
charged and discharged with a minimum potential voltage required at the destination,
similarly to VLSI technology, with signalling costs growing according to length. Thus
it is informative for the continued technological evolution of electronic computational
systems, to understand what natural evolution has already done to tackle communica-
tion. Indeed, Sarpheshkar’s pioneering work noted that for the sake of energy efficiency,
information should be coded as a hybrid of analog and digital signalling, and distributed
among multiple paths to combat noise [92]. As the human brain consumes about 20%
of the total energy whilst accounting for only 2% of the mass in the human body, with a
large proportion of that cost being to build and maintain connections between neurons
[5, 80], there is abundant incentive for natural evolution to minimise communication.
One may ask, therefore, whether or not Rentian scaling has been employed by brains
to achieve its desired functionality whilst keeping communication costs down, or if evo-
lution has perhaps come up with an alternative solution that allows it to diverge from
Rentian behaviour.

1Note that Sarpeshkar’s comparison is dated to a high performance processor from 1998

181



182 9.1 Clarifying the collaboration

9.1 Clarifying the collaboration

As the following work is the result of a very close collaborative effort, it is important to
be clear about the manner in which it arose, and the division of efforts.

The initial inspiration for applying Rent’s rule to the human brain came from attending
a talk by Professor Steve Furber who discussed their project of a real-time neuronal net-
work simulator and its interconnection network called SpiNNaker [44]. Afterwards, in
a meeting in March 2007 with Professor Furber and my own supervisor, Dr Moore, we
speculated further as to whether or not the human brain might obey Rent’s rule. After the
meeting, I derived allometric scaling results (see section 9.3) showing that if brains ac-
tually did obey Rentian behaviour then there should be an observable power-law scaling
relationship between the volume of white and grey matter, and that this exponent should
lie within a certain expected range. I decided to compile statistics for a range of brain
sizes to investigate if this was indeed the case, and instead found publications [115, 19]
already showing that there was a very clear power-law scaling relationship across mam-
malian brains, and that there didn’t seem to be particularly good explanations as to why
this was the case for both the neocortex and the cerebellum. I concluded that Rentian
scaling was a distinct possibility, but I lacked expertise in the area or datasets to test it
directly. After attending a fascinating Networks and Neuroscience Symposium in March
2008, I contacted Professor Ed Bullmore. He was interested in this idea and connected
it to Herbert Simon’s notion [94] that all information processing systems (Brains and
Computers) will have common emergent properties - such as hierarchy and modularity.
His exceptionally talented PhD student Danielle Bassett was very keen to take a lead and
collaborate together on this. I wanted to test for physical Rentian scaling in particular,
and to see if the exponent matched the allometric scaling of Bush and Allman [19], based
on my derivations. I also wanted to try box-counting to measure fractal dimensionality.
They suggested a number of datasets, and I detailed methodology on how to exam-
ine these for Rentian behaviour within a brain, and we taught each other many things
about our respective fields. Soon after commencing, we found some work by Beiu and
Ibrahim [12], examining the possibility of Rent’s rule applying to brains. They proposed
an ‘alternative interpretation’ of Rent’s rule that they claimed it does follow. However,
their analysis had fundamental flaws, that my own allometric derivations had already
addressed.

My own physical Rentian-analysis computing environment was not suitable for these
datasets, but Bassett took up the lead by quickly adapting, and improving on the method-
ology I had outlined, into her own Matlab environment. On my end, I adapted my fractal
box-counting and topological Rentian environments for these datasets. We interpreted
the results of each of these together, and concluded that we were indeed seeing evidence
of Rentian behaviour. Dr Bassett performed further analyses on modular hierarchical
decomposition, building upon Newman’s spectral optimisation algorithm [78], which I
do not claim any credit for, and is not presented here. Bassett also came up with the
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methodology of fitting to other two-parameter-fits to test the relative goodness-of-fit of
the power-law. I also refined the allometric scaling derivations to account for varying
neuronal complexity, thanks to her input about their properties. We were a little sur-
prised that the theory actually worked, and certainly pleased, when we found that the
Rent’s exponent for the human brain datasets gave a good prediction for the allometric
scaling exponent of white versus grey matter across mammalian brains.

Dr Bassett took the lead and wrote the bulk of the final paper, with sections written by
me as joint first-author, and with a lot of back-and-forth in refining it together. Excited
about our findings, we initially submitted to Nature in July 2009, but did not receive
a positive response from them. In cross-disciplinary work such as this, that brings in
knowledge from entirely separate fields, we had to also resolve differences in what is
accepted knowledge in their respective fields – such as the assertion in the Network
Science community that ‘small world’ networks [110] do not exhibit fractal scaling [91],
whereas VLSI deals with datasets that are known to be both small world and have fractal
scaling [21, 97]. After a lengthy period of submissions, reviews and revisions, we were
accepted by PLoS Computational Biology in March, and published in April 2010. In
the interim period, two papers [90, 86] in particular came out that took a little bit of
our thunder, examining topological Rentian scaling (in c.elegans), versus our focus on
physical Rentian scaling, that we added as ‘prior work’ and discussed in our final version,
however we feel that our work here, is a significant contribution to the field.

This chapter focuses on my own contributions to this work, dealing more specifically
with the Rentian properties observed and predicted allometric scaling. For a more de-
tailed discussion of the neuroscience behind it, and on the complementary work on char-
acterisation of hierarchical modularity, please refer to our paper [33].

9.2 Datasets and their limitations

The C.elegans dataset consisted of previously published data from Kaiser et al. and
Chloe et al. [61, 27, 112]. This combines the complete spatial position information of
each neuron, along with their network connectivity. Here, wherever there is a synapse
connection between any two neurons, whether electrical or chemical, this is represented
by an edge in the network. Altogether there are 277 nodes and 2105 edges. We should
note that because the neurons innervate an entire organism, they are not homogeneously
distributed, with approximately 131 nodes making up the ‘head’ and the remaining dis-
persed over the rest of the organism.

Complete neuronal wiring maps of the human brain are unlikely to become available
anytime in the immediate future, thus we necessarily needed to use coarse-grain maps
that detailed the wiring at the most global scales. The datasets used were the most fine-
grained maps of connectivity available. For these human neocortical datasets, two forms
of network measurement were used based on Diffusion Spectrum Imaging (DSI), and
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Magnetic Resonance Imaging (MRI). For the MRI dataset [11], 259 healthy subjects
were scanned by MRI, with grey-matter cortical thickness measurements taken in 104
regions according to a fixed parcellation of the neocortex, namely the Brodmann areas.
Lerch et al. [68] had found that correlations in grey-matter neocortical thickness across
subjects resulted in similar results to previously obtained connectivity maps (starting
from a single seed area) using an explicit connectivity mapping technique – Diffusion
Tensor Imaging (DTI). The implication is that this technique may be a faster, simpler
method of building reasonably reliable global connectivity maps of neocortical regions.
This dataset consists of 104 nodes and 1606 edges.

The DSI approach actually utilises MRI technology but in a different manner. It measures
the diffusion of water molecules in a 3D volume. By analysing and following this dif-
fusion vector of water along axons (with surrounding myelin sheaths acting as diffusion
barriers), it is possible to map their connectivity. However correctly ‘following’ voxels
of diffusion can be problematic due to resolution constraints, as there may be multiple
candidate neighbouring voxels to follow. This means that longer axons in a complex
tract may be harder to follow, with a resultant lower probability. The heuristic utilised
by the dataset authors [47] progressively builds the connectivity matrix by adding con-
nections to a backbone minimum spanning tree, starting with the highest probabilities,
until reaching average degree four. We should note that this may ordinarily lead to some
bias of shorter connections over longer connections. Although Haggmann et al. tried
to apply a distance bias correction in their preprocessing, it is still a matter of debate as
to what the correct method is for this [47], and such a bias may still be present. In this
dataset, the entire neocortex was parcellated into 998 cortical regions, and five subjects
were scanned to build the dataset, with one subject scanned twice.

For comparison, a VLSI circuit was also analysed. This is the s953 benchmark circuit
[16], with 440 gates and 772 edges. Note that to maintain consistency and due to limi-
tations with the DSI and MRI datasets, edges were used to denote connectivity, instead
of hyper-edges.

9.3 Allometric scaling

The self-similarity of Rent’s rule governs not only the internal characteristics of VLSI
circuits, but also the scaling characteristics as these circuits grow in size [99]. Thus,
if Rent’s rule did hold for the brain, we might expect a similar relationship across a
range of different brain sizes, as allometric scaling. For our derivation, we first need
to define the number of connections in a cross-sectional area as a function of the white
matter volume, and second, to determine the number of processing elements in the whole
system as a function of the grey-matter volume.

In VLSIs, the wiring of the circuit is located in multiple layers above the logic of the
circuit. Thus, the area of the logic-limited circuit is equal to the area of the logic, V = G.
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In the human brain, however, the white matter tracts are embedded in the same space
as the ‘logic’ or grey matter. The ‘wiring’ of the white matter tracts can cause the ‘logic’
or grey matter segments to be farther apart from each other. Thus, the volume of the
system is given as V = W + G, which for a homogeneous distribution of axons within
grey-matter, is an increase to just G of (W + G)/G or (1 + W/G). This stretching further
causes an increase in the white matter volume, W , by increasing axon length. Since
axon length is a one dimensional linear term, the dilated white matter is larger than the
undilated white matter by a stretching constant μ given by the cube root of the total
increase:

μ = 3
√

1 + W/G. (9.1)

Over the scale of the mammalian white matter, this dilation effect is very small. Even
if W varies as widely as W ∼ (0, G], μ will vary as μ ∼ (1, 1.26]. In log10 space, this
variation in μ becomes log10(μ) ∼ (0, 0.1] which is a small perturbation of log(W ), over
the range of mammalian white matter values. Thus, it is possible to approximate the
dilated white matter volume Wdilated by the undilated white matter volume Wundilated.

Wdilated ∼Wundilated (9.2)

In the remainder of this derivation, the simple symbol W will be used to refer to Wdilated ∼
Wundilated. Furthermore, this is a worst-case behaviour for dilation with interconnect uni-
formly distributed in grey-matter. If we could better separate the white matter from the
grey matter, then distances between grey-matter could be relatively undilated at lower-
levels of the hierarchy. To understand this, recall from Chapter 8, that to obey Rent’s
rule, it is merely sufficient to obey it with hierarchical decomposition (rather than uni-
formly). Indeed it can even support random or worst-case interconnect at each hier-
archical level with only a constant-factor penalty. This means that, if connected in a
more tree-like fashion, dilation need only occur for interconnect at that particular level
of hierarchy, with little or no dilation at the lower levels, but with relatively more dila-
tion at higher levels. This is somewhat analogous to the multi-layered approach of VLSI
interconnect, where there is a relatively undilated bottom logic layer with very little in-
terconnect to dilate logic, and multiple interconnect layers above it that tunnel into the
logic layer.

To determine the number of connections in the cross-sectional area, S, as a function of
the white matter volume, W , we first approximate the brain as a sphere and therefore
the cross-sectional area, A, of the brain as equivalent to the area of a circle:

A = πr2, (9.3)

where r is the radius of the sphere. We also know that the volume, W , of the sphere is
given by

W =
4

3
πr3, (9.4)

which can be rewritten as
r3 =

3

4π
W. (9.5)
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Substituting, we find that

A = π(
3

4π
W )2/3 = π1/3

(
3

4
W

)2/3

= C1W
2/3, (9.6)

where C1 = π1/3(3
4
)2/3 contains all constants independent of W .

We should point out that although a sphere was used in this derivation, any fixed three-
dimensional shape would also result in cross-sectional area growing by the 2/3 power of
volume. Thus other shapes may alter the constant C1, but not the exponent 2/3.

By definition, the number of connections within the cross-sectional area can be written
as

S = θA, (9.7)

where S is the number of synapses, θ is the number of synapses per unit area, and A is
the cross-sectional area. Bassett pointed out, that from prior anatomical data [3], the
number of synapses per unit volume is independent of white matter volume, W , and
therefore the number of synapses per unit area, θ, is also independent of W . So we can
now define θ to be

θ = C2. (9.8)

Substituting eqns 9.6 and 9.8 into eqn 9.7, we can write the number of synaptic connec-
tions S as a function of white matter volume, W :

S = θA = C1C2W
2/3 = C3W

2/3. (9.9)

where C3 = C1C2 = π1/3(3
4
)2/3θ.

To define a relationship between grey matter volume G and the number of processing ele-
ments N , we first recall that the number of neurons in the brain scales disproportionately
slowly with the grey matter volume as G2/3 while the number of synapses scales directly
with G [3]. Therefore, the number of synapses per neuron, or synaptic complexity of the
neurons, is increasing with brain volume. In computer circuits, we also have gates that
vary in complexity, and circuits can even be built up of macrocells that have very high
complexity. However, to perform the gate count needed for Rentian analysis in VLSIs,
we must count computing elements in comparable terms, typically of the simple 2-input
logic gate (NAND2). Thus, larger and more complex computing elements are counted
as multiple NAND2 gates. In order to work with the same counting statistics in the
human brain, we define a constant-complexity processing unit as using a fixed number
of synapses. Since the number of synapses scales with G, then so does the number of
constant-complexity computing units in the grey matter:

N = φG, (9.10)

where φ is the number of constant-complexity computing elements per unit volume.

Now we can rewrite the Rentian scaling relationship

S = kNp, (9.11)
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where k is the Rent coefficient and p is the Rent exponent, in terms of white matter W

and grey matter G volumes:
C3W

2/3 = k(φG)p, (9.12)

or
W = C4G

3p/2, (9.13)

where C4 is
(

kφp

C3

)3/2

= 4
3
√

π

(
kφp

θ

)3/2
.

Neglecting this constant, we can write the allometric scaling relationship more simply as
W ∼ G

3p
2 . Thus, the allometric scaling exponent a = 3p

2
should be multiplied by 2/3 to

find an estimate of the Rent exponent, p. Taking the Rent’s exponents from the MRI and
DSI datasets, we may therefore predict the expected allometric scaling between white
matter and grey matter.

The cross-sectional count of interconnect here is only for white matter, rather than grey
matter – which also contains some local interconnect. Because of the self-similarity of
Rent’s rule, the presence of local grey-matter interconnect does not necessarily affect
the scaling characteristics. An analogy can be made with VLSI. If one were to divide a
logic block and count the total number of wires cut, they would scale according to the
Rent’s exponent. However, the same behaviour would occur if one dropped all short
wires up to a certain length (say by removing the bottom two layers of metal in a VLSI).
Now counting only the wires bisected in the top layers of VLSI metal, the same asymp-
totic power-law exponent would be seen. Another analogy can be found by observing
that connections between gates aren’t even the smallest form of interconnect. Gates,
themselves are composed of many interconnected transistors. Here, the short local grey-
matter interconnect is treated analogously to the short, local poly-silicon interconnect
between transistors within gates, and the white-matter is treated analogously to the re-
maining metal-based interconnect. If one really were to properly partition a VLSI logic
block, then gates should also be chopped, and their internal interconnect (traditionally
poly-silicon) should be exposed. Nonetheless, we are content with operating at a gate-
granularity, rather than at a transistor-granularity. Moreover, we are far more interested
in the asymptotic scaling behaviour at large lengths, rather than at short lengths – as it is
these that dominate the total interconnect cost.

9.4 Methodology

For these datasets, analyses were performed to determine the presence of physical Ren-
tian scaling, topological Rentian scaling, and to determine a box-counting dimension of
the network. Most of these methodologies have already been explained in previous chap-
ters. Topological Rentian scaling was explained in Chapter 3. The fractal-dimensional
box-counting of Song et al. was covered in Chapter 5.

The most interesting analyses here are of the physical Rentian scaling. Unlike the gates
in VLSI, or software in a CMP, the physical position of network nodes and their con-
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nectivity are constrained by nature and evolution, rather than as an immediate solution
to an optimisation problem. Thus, unlike the traditional domain of Rentian analysis, it
is more important to establish that physical rather than the topological network obeys
Rent’s rule. Furthermore, it is the actual physical Rent’s exponent, rather than the topo-
logical Rent’s exponent, that is needed for characterising the connectivity properties of
these neuronal networks, and their resultant allometric scaling. Also, unlike in VLSI,
where gates are more or less homogeneously distributed, for neurological networks the
physical distribution of nodes can be more heterogeneous. In the case of C.elegans, in
particular, most of the neurons are located in concentrated regions at the far ends of
the organism, whilst the remaining neurons are interspersed between them, innervating
the rest of the organism. For the physical Rentian scaling analysis, the physical network
was covered by 5000 boxes of uniformly random sizes and uniformly random spatial
position, and the number of terminals (links connecting to nodes within the box) were
plotted against the number of nodes within the box.

9.4.1 Re-wired networks

Due to the physical and metabolic cost of interconnect, one may reasonably ask why
neuronal networks aren’t more minimally connected to reduce these costs. We thought it
would be interesting, therefore, to compare the actual Rentian scaling properties against
extremal cases of minimally re-wired and randomly re-wired versions of these datasets.
For the minimally re-wired set, the spatial information was used by Dr Bassett to first
build a minimal spanning tree to ensure connectivity, and the next shortest edge was
iteratively added until the total number of edges matched the original dataset. For the
randomly rewired networks, edges were randomly added until it matched the total of the
original dataset.

9.4.2 Non-power-law null hypotheses

With Rentian scaling, we would expect an approximately power-law distribution in the
number of terminals to the number of nodes. In order to assess its significance, it was
important to test it against other null hypotheses. To be fair we utilised other two-
parameter models, including logarithmic, exponential, and two-parameter polynomial
fits.

9.5 Small World vs. Rentian Fractality

There are important differences in fractal behaviour for Rentian scaling and box-counting
measures. Significantly, Rentian scaling is fully compatible with small-world networks,
whereas the box-counting method of Song et al. is not [95]. As many networks in-
cluding neuronal ones are likely to be small-world, it is important to elaborate on their
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differences. As described earlier, we estimated the topological dimension of the informa-
tion processing networks using both topological Rent exponents and box-counting. We
observed that fractal scaling was clearly visible in the Rentian analysis and less visible
in the box-counting plots. However, it is known that small-world properties affect the
scaling measured by a box-counting analysis. Work by Rozenfeld [91] discusses this, and
demonstrates that there is some compatibility between fractal box-counting dimension
and small-world topologies. However, even though the fractal topology of a network
might be seen at small scales, the small world nature means that there is a single box that
covers the entire network with side-length of order log N . This means that the small-
world behaviour rapidly dominates in box-counting, leading to a rapid cut-off of the
power-law behaviour.

Compared to box-counting, Rentian scaling looks at how the number of edges crossing a
boundary scales with the number of nodes inside it. In VLSI, Ozatkas has observed that
this can be thought of as relating the volume of logic inside the boundary, to the flow of
information (surface area) across that boundary in terms of edges [84, 83]. The Rentian
exponent is then given by the ratio of surface area scaling to volume scaling - and can
thus be related to the dimensionality of information flow scaling. One can easily show
that large d-dimensional meshes have Rent’s exponents of p = (d− 1) /d. Moreover, as
already noted in Chapter 3, we can define the Rentian information-flow dimension to be:

d = 1/ (1− p)

Whereas the topological distance used for assessing small-world behaviour and in box-
counting analyses examines the number of hops from one node to another, it isn’t con-
cerned with the quantity of information flow between them. A single link may connect
two small world sub-networks, and thus allow only a small flow of information between
these two sub-networks whilst maintaining small-world behaviour. That is, the single
link is shared between all the nodes on one sub-network that want to communicate with
a node on the other sub-network. Although such a network may be small-world, one has
to wonder whether that single link is sufficient for all the information flows required for
solving real computational problems – certainly despite the desire to reduce wiring costs,
such connectivity patterns generally aren’t practical in VLSI. A Rentian analysis, how-
ever, is primarily concerned with the quantity and scaling of communication required,
rather than topological distance alone.

VLSI networks are known to obey both fractal Rentian behaviour and small-world
topologies [21, 97]. We should emphasise that these are mutually compatible attributes.
For VLSI, a clock tree, typically an H-tree [18], uniformly distributes clock timing in-
formation to disparate parts of the logic network, so that they can synchronise their
communication. H-trees are called thus because their basic structure consists of physical
links, in the 2D space of a VLSI chip, that look like the letter H. At each of the four ends
of the H, another H of half the size is attached at its middle, and so on, thus forming a
fractal tree of H’s. Clock trees are very expensive from both a manufacturing and power-
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Figure 9.1: Effect of adding links to network diameter and Rentian scaling. Note how the H-tree links
reduce network diameter leading to a Small-World network, and yet largely preserve the fractal Rentian
scaling properties of the underlying 2D mesh. In contrast, the random links disrupt the Rentian scaling.

consumption standpoint. The H-tree emerged as a way to achieve the goal of reducing
communication skew at leaf nodes (ensuring that the logic is globally synchronised as a
small-world), whilst keeping costs reasonable. We should point out that clock trees are
by no means the only cause for small-world topologies, and that the rest of the circuitry
may also exhibit small-world behaviour for other reasons.

In figure 9.1a we see the effect on network-diameter of adding multiple levels of an H-
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Tree versus adding random links to a 2-D mesh (not torus), resulting in a small-world
network for both types. Here, each level of the H-tree consists of four links to a central
node. In figure 9.1b we also see that the Rentian behaviour and exponent are only slightly
affected by the addition of an H-tree, whereas the random links lead to a large divergence
in the Rentian behaviour and exponent. Thus the nature of the small-world behaviour
is important in assessing its impact on Rentian scaling. In the case of random links,
the number of links cut by partitioning approximately grows by the number of nodes in
each partition, whereas in the case of the H-tree, the number of links cut is small and
approximately constant at each level of partitioning. This compares with the 2-D mesh,
where the number of links cut grows approximately by the square-root of the number of
nodes in each partition. Importantly, unlike the box-counting metric of Song [95] where
small-world properties dominate over any fractal connectivity, the small-world property
does not necessarily impact on the physical and topological measures of Rentian fractal
behaviour. It is also important to distinguish between the expected truncated power-law
distribution of physical link distances versus the potentially non-power-law nature of
topological distances, especially in small-world networks.

9.6 Results

Here we examine the results of topological Rentian partitioning, fractal box-counting
and physical Rentian scaling analyses. We then use the physical Rentian scaling results
to show how the predicted allometric scaling of the mammalian neocortex compares to
observations.

9.6.1 Topological properties

We observed good topological Rentian scaling in each of the datasets, with a clear Region
I as seen in figure 9.2. We note the general agreement between the DSI subjects in Region
I, despite deviations at the larger non-power-law Region II scale. We found that a power
law also provided a significantly better fit than other models as can be seen in figure
9.5B. The best-fit exponents pT are shown in table 9.1, along with the estimated fractal
dimensionalities D̂T (pT ) = 1/ (1− pT ).

Given the excellent Rentian scaling seen in topological space, we decided that a box-
counting analysis was also appropriate for determining fractal dimensionality. We see in
figure 9.3 that unlike the box-counting results of software from Chapter 5, we certainly
do not see a clear power-law scaling behaviour. However, we should note that there
are far fewer nodes to work with than in Chapter 5, and recall that there are boundary
effects at both small box-sizes and small box-counts. Utilising a similar methodology
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Figure 9.2: Topological Rentian scaling observed in datasets

Network Partitioning Box Counting
pT D̂T (pT ) DT

VLSI 0.73± 0.04 3.81± 1.04 4.02± 0.66

C. elegans 0.77± 0.06 4.42± 1.06 4.52± 0.49

Human MRI 0.75± 0.07 4.12±1.07 5.07± 1.58

Human DSI 1 0.78± 0.07 4.54± 1.07 4.68± 0.77

Human DSI 2 0.80± 0.06 5.06± 1.06 4.59± 0.76

Human DSI 3 0.77± 0.09 4.42± 1.08 4.56± 0.81

Human DSI 4 0.79± 0.06 4.97± 1.06 5.24± 0.39

Human DSI 5 0.79± 0.07 4.84± 1.07 4.60± 0.82

Human DSI 6 0.78± 0.08 4.73± 1.09 4.64± 0.76

Table 9.1: Topological Rentian scaling and box-counting dimensionality. Errors for pT and DT are 95%
confidence intervals.
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Figure 9.3: Box-counting measures on the topological and minimally-rewired datasets. For Human
dataset, the green dots are from MRI and the red are from DSI. The randomly-rewired dataset provided
too few points to be meaningful so are not shown here.

(a) Average distance between nodes (b) Dimension, estimated from topological Rent’s exponent, of net-
works

Figure 9.4: Comparison of observed, minimally rewired and randomly rewired network properties.

to Chapter 5, we ignore the first and last points, and measure the best-fit scaling of the
central points, to estimate a dimensionality. Remarkably, despite the lack of points, as
seen in table 9.1, there was good agreement in box-counting dimension and the estimated
dimensionality determined by topological Rentian scaling.
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Figure 9.5: Comparison of RMS errors in fit across multiple two-parameter models.

We can also compare the basic network properties of average physical distance and topo-
logical dimension between the observed, minimally-rewired and randomly-rewired net-
work, as seen in figure 9.4. Here distance is normalised by setting the average distance
of neighbouring nodes found in the dataset to be one. We note that the average distance
for the C.elegans dataset is much higher for the randomly rewired network due to the
larger inhomogeneities in the spatial distribution of nodes. We see in figure 9.4, that
the observed networks have properties that lie in-between the minimally wired and ran-
domly rewired networks, in terms of average distance and topological dimensionality.
As the size of the network increases, we would expect the random network to tend to
higher topological dimensionality, whereas the real network would largely maintain its
dimensionality, as would the minimally re-wired network.

9.6.2 Physical Rentian scaling

As seen in figure 9.6 we can also see a strong presence of physical Rentian scaling in
the biological datasets. The RMS errors for a variety of fits is shown in figure 9.5A,
where the power-law distribution is seen to have the lowest RMS fit out of the candidate
two-parameter functions.

For the case of the VLSI network, the gates were embedded in a 2-D region with a
simulated-annealing heuristic based on the TimberWolf algorithm. Unfortunately, the
results for the embedding of the VLSI network were not as optimal as has been previously
reported [100].

Examining the minimally re-wired networks in figure 9.7, we can see that the Rentian
behaviour is disrupted for C.elegans and dispersed for the other datasets. As was derived
in Chapter 6, we would expect a fixed length distribution (such as nearest neighbour)
to result in Rentian scaling of p = 1 − 1/dE for embedding dimension dE, but only in
the case of a homogeneous spatial distribution of nodes. The best-fit slopes are shown
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Figure 9.6: Observed physical Rentian scaling for the datasets

in table 9.2, and we observe that for VLSI and DSI datasets, they are close to their
expected theoretical values of 1/2 and 2/3 respectively (for a 2-D network embedded in 2-
D space, and a 3-D network embedded in 3-D space respectively). Compared to the DSI
dataset, the MRI dataset is considerably more dispersed, making slope estimation harder,
and yields a high exponent of 0.93. While the DSI and VLSI datasets have a largely
homogeneous distribution of nodes in space, the MRI and, in particular, the C.elegans
dataset have a heterogeneous distribution. It is understandable, therefore, that upon
minimally rewiring its network, the C.elegans dataset simply doesn’t appear to follow
any scaling relationship. We observe that in comparison to their minimally rewired
versions, the original four datasets in figure 9.6 have considerably tighter scaling, with a
non-trivial Rentian exponent, despite any heterogeneity in their spatial distribution. This
all points to a strong support of the Rentian-scaling hypothesis for these neurological
datasets.

Based on the physical Rentian exponents observed in the human dataset and assuming it
is representative, we can infer an expected allometric scaling exponent across all mam-
malian brains. We observe in figure 9.8, the data from Bush and Allman [19] that shows
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Figure 9.7: Scaling property of minimally re-wired networks. Rentian scaling is disrupted in C.elegans,
and dispersed in the VLSI and MRI datasets. The DSI dataset still exhibits relatively tight scaling but with
Rent’s exponent 0.68 which is close to the expected value of 2/3 for a 3-D network embedded in 3-D space.

a clear power-law scaling behaviour between white matter and grey matter in the neo-
cortex, across many orders of magnitude of mammalian brain sizes (logarithms being
in base-10 here). On top of it are plotted the expected scaling behaviour based on the
Rentian fits of the MRI and DSI datasets. We can see a very good agreement for the MRI
dataset, and a reasonably good agreement with the DSI one.

9.7 Prior work

Bieu et al. [12] also looked at the allometric scaling of white matter to grey matter, and
tried to relate this to Rent’s rule, however they appear to have misunderstood Rent’s
rule. They refer to the power-law relationship of white matter to grey matter volume as
implying the same power-law exponent for the number of connections vs. the number of
neurons (with an added linear term). They have effectively equated the volume of white
matter to the number of links, and volume of grey matter to the number of neurons.
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Network Nodes Edges Physical Topological

ρ DE p pT D̂T (pT )

Observed
VLSI 440 0.4% 2 0.901± 0.006 0.73± 0.04 3.81± 1.04

C. elegans 277 2.7% 2 0.74± 0.07 0.77± 0.06 4.42± 1.06

Human MRI 104 15% 3 0.828± 0.005 0.75± 0.07 4.12±1.07

Human DSI 1000 2.7% 3 0.782± 0.014 0.78± 0.07 4.54± 2.12

Randomly Rewired
VLSI 440 0.4% 2 0.927± 0.003 0.81± 0.06 5.26± 2.42

C. elegans 277 2.7% 2 0.805± 0.003 0.79± 0.05 4.75± 1.48

Human MRI 104 15% 3 0.874± 0.003 0.82± 0.06 5.55±1.06

Human DSI 1000 2.7% 3 0.925± 0.002 0.86± 0.05 7.14± 2.77

Minimally Rewired
VLSI 440 0.4% 2 0.509± 0.005 0.46± 0.06 1.85± 0.23

C. elegans 277 2.7% 2 N/A 0.43± 0.28 1.75± 1.69

Human MRI 104 15% 3 0.93± 0.01 0.59± 0.13 2.43± 1.13

Human DSI 1000 2.7% 3 0.68± 0.004 0.57± 0.11 2.32± 0.79

Table 9.2: Comparison of observed, randomly rewired and minimally rewired network properties. Errors
are 95% confidence intervals, except for the DSI dataset which includes both fit-error and variance between
subjects.

Figure 9.8: Allometric Scaling

What they have potentially neglected is a fundamental, well-known result in the appli-
cation of Rent’s rule, in that it results in a power-law growth in both the total number
of connections and in their average length [39], even though the most-prevalent inter-
connection is to immediate neighbours [40]. Instead, they have implicitly assumed that
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the average volume of a ‘connection’ remains constant, even as the neocortical volume
scales over six orders of magnitude. They, instead, propose using an ‘alternative interpre-
tation’ of Rent’s rule that merely considers the scaling of the total number of connections
(regardless of their length) as following a power-law as the number of nodes increases.
However, what they may not have realised is that the true utility of Rent’s rule lies in its
characterisation of the locality of these connections. This is important because in brains
as in VLSI, it is not merely the number of connections that matters, but the distribution
of lengths that is crucial in determining wiring costs – a property that is independent of
their ‘alternative interpretation’ of total connections alone. Their confusion may perhaps
lie with an earlier paper that introduces the alternative interpretation [66], which plugs
in the exponents fitted with this ‘alternative interpretation’ of total connections, rather
than of terminals, into length-distribution models that are wholly derived and based on
the accepted form of Rent’s rule. The original ‘alternative interpretation’ publication
then claims better predictive accuracy, despite violating the underlying assumptions of
the models these values are plugged into, to the extent that Donath’s model needs to be
‘renormalised’ to deal with negative numbers of predicted wires, and appears to provide
no justification as to why violating these assumptions is acceptable with Davis’ model.
We should further note that as of present, this ‘alternate form’ of Rent’s rule does not
appear to be utilised by other authors other than Bieu et al., and the original authors,
although it is cited by some others for altogether different reasons. Bieu et al. then claim
that the allometric power-law scaling of neocortical volumes (or as interpreted by them,
links and nodes – after accounting for a fixed proportion of white matter and grey matter
being interconnect) follows this ‘alternative interpretation’ of Rent’s rule as they believe
that it appears consistent with other types of computational networks such as Crossbars,
Cube-Connected-Cycles and Binary Hypercubes (even though these types of graphs are
actually known to not follow the accepted form of Rent’s rule). Unfortunately, this may
indicate misunderstandings by them, both of Rent’s rule and what its scaling implications
truly are [99].

Recent work by Partzsch et al. [86] also examined C.elegans for topological Rentian
scaling. They showed that its topological Rentian exponent was higher than shown here
(0.82), however they used an old spectral partitioning algorithm that, whilst in 1994
claimed to provide ‘the lowest possible p [Rent’s exponent]’ has since been supplanted
by more advanced approaches such as hMetis [62]. Indeed, hMetis was utilised by Reda
[90] in another recent paper examining topological Rentian scaling in biological systems.
Reda found that the topological Rent’s exponent in C.elegans was lower than Partzsch’s
result, and their result is consistent with both the physical Rent’s exponents reported
here (as well as the topological ones based on hMetis). To the best of our knowledge,
ours is the first work to report topological Rentian scaling in human neuronal networks
derived from neuroimaging. We also believe that ours is the first work to explore physical
Rentian scaling properties in neuronal networks.
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9.7.1 Allometric scaling derivations

A number of models have been developed by Prothero, Changizi, Zhang and Sejnowski
to try to explain the observed allometric scaling in white versus grey matter [89, 23,
115]. However, one of the main assumptions governing these models – that there are a
constant number of neurons per unit area of cortical surface, has recently been shown
to be unrealistic [55]. Moreover, the Changizi, Zhang and Sejnowski models produce
a near-perfect 4/3 scaling exponent between white matter and grey matter (the earlier
Prothero model produces an incorrect scaling exponent of close to one), and do not
allow for very different scaling exponents, such as is observed in the cerebellum [19]
and is likely to be seen in non-mammalian species. Unlike previous models, utilising
Rentian self-similarity allows us to cross-check the scaling properties within a brain with
the predicted allometric scaling across a range of mammalian species. Furthermore, it
allows for differences between the neocortex and cerebellum, and as Dr Bassett has noted
– even differences between classes of animals, such as for vertebrates and invertebrates.

9.8 Conclusion

It has been shown in this chapter, that the complete nervous systems of C.elegans, as well
as the top-level coarse-grained interconnect of human MRI and DSI neocortical datasets
exhibit both physical and topological Rentian scaling. Moreover, remarkably, the phys-
ical Rentian scaling observed within the human datasets yield good predictions for the
allometric scaling of white matter to grey matter across mammalian brains. Together,
this implies that natural evolution has employed Rentian scaling, both within brains and
across evolution, at scales of integration far beyond existing VLSI, as a means of achiev-
ing the desired functionality whilst minimising communication costs. For computational
systems, this further implies that the self-similarity of Rent’s rule is likely to continue to
govern both the scaling behaviour and internal communication properties of systems at
much larger scales than present today.
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CHAPTER TEN

CONCLUSIONS AND
FUTURE WORK

For most of the history of computing, transistors have been expensive, and wires have
been cheap. Correspondingly, when analysing costs in software the focus has been on
computational complexity, with the act of computing an instruction treated as impor-
tant, whereas the physical movement of data and instructions was of secondary impor-
tance. Thanks to technological scaling, we are entering an altogether different era, one
marked by on-chip and off-chip communication energy costs that are many orders of
magnitude larger than computational ones, and that will likely continue to get exponen-
tially worse. Crucially, at these technological scales, costs (be they in energy, latency,
congestion/wiring, area or performance) grow according to the physical distance of data
traversal, thus the old High Performance Computing tricks of using high-dimensional
topologies no longer works. Instead, the communication locality of algorithms must be
exploited and instructions and data carefully positioned in the two (for computer chips)
or three dimensions of physical space.

In a communication-centric era of CMPs with thousands of cores, it is thus crucial to
understand and exploit the locality of software. It has been shown here, that the theory
of locality in the VLSI domain of gates and wires, based on the fractal properties of
Rent’s rule, can be adapted and extended to the CMP domain of software instructions,
memory, processor cores and networks-on-chip. This thesis demonstrated experimental
evidence of both spatial and temporal Rentian locality, as well as fractal dimensional
properties, over a range of benchmarks applications (comprising PARSEC, SPLASH-2
and MiBench suites), with good predictions of hop-length distributions for the CMP
domain, and of the expected Rentian relationship between temporal-access times and
their Rent’s exponent.

In the Network-on-Chip domain, Rentian locality was shown to lead to considerably
better technological scaling in traffic – in line with ordinary VLSI growth trends, com-
pared to the unacceptably large growth of commonly used non-local (uniformly random
and transpose) traffic models. It was also demonstrated how the hop-length distribution
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from the Rentian, exponential and uniform-random models could be used to analytically
assess alternate designs for properties such as the expected distribution of routing types
required, for fault-tolerance characterisation, and even for congestion analysis. Indeed,
the type of traffic model was shown to result in large differences for some of these prop-
erties, with the Rentian traffic model performing better under most measures, but not
all.

Early in the thesis, Rent’s rule was generalised from the VLSI domain of wires and gates,
to the Network-on-Chip domain of packets, however it was still desirable to generalise
beyond this to a domain where instructions, themselves, are placed both spatially across
many cores and temporally. Here, communication between such instructions are routed
not just spatially, but spatio-temporally, through both a NoC and on-chip/external mem-
ory. For this purpose, results were proven allowing Rent’s rule to be applied to arbitrary
finite-dimensional vector spaces, and then to configuration spaces, including the spatio-
temporal domain of software running on CMPs. In fact, it was this Spatio-Temporal
Rentian model for CMPs that was used to test for existing experimental evidence of
Rentian locality in multicore benchmarks.

The Rentian model of software locality was shown to have many interesting and sur-
prising implications for computer architecture and software. Employing interdependent
parallelism between cores results in greatly reduced external I/O bandwidth requirements
over the independent parallelism approaches such as simple vector-parallelism, thread-
level speculation or current practice of largely independent threaded-parallelism. At the
thousand-core era, and for sufficiently large working sets, this I/O reduction was shown
to be comparable to that of a thousand fold increase in on-chip memory. Surprisingly,
the model also showed an increasing need to move to finer-grain interdependent commu-
nication between cores to alleviate external I/O bandwidth demands. Under external-I/O
dominated constraints, it also gave results on how best to balance the chip area between
the number of cores and on-chip memory, with technological scaling. A model of a
‘perfect’ on-chip memory was also introduced, that placed an upper-bound on the per-
formance of any scratchpad memory. Surprisingly, even a perfect memory still showed
the power-law scaling ‘miss’ behaviour of caches, albeit with a better scaling exponent.

Moving from computer architecture to the software itself, it was shown that algorithms
may be analysed directly for Rentian parameters from first-principles, in addition to the
experimental characterisation seen earlier. However, there was a practical problem raised
about preserving Rentian scaling for software, in that optimally embedded algorithms
that are Rentian, may not themselves compose optimally, resulting in more non-local
communication, and thus potentially disrupting Rentian scaling. This strict optimality
turned out not to be practically important for Rentian scaling, as it was shown that algo-
rithms can be embedded in a composable/decomposable modular fashion, with random
or even worst-case communication at each local level of the hierarchy, whilst preserv-
ing the global Rentian scaling properties. This means that global Rentian properties
in software can be realised practically, in a modular, composable fashion. This thesis



Chapter 10 Conclusions and Future Work 203

further examined how Rentian properties of an algorithm affect the lower bounds for
the spatial communication that is implicit in any memory accesses. Together with the
architectural analysis, the analytical Rentian models allow one to characterise the total
expected asymptotic cost of both spatial and temporal communication for algorithms,
including for memory accesses and external I/O.

Finally, in considering scales of parallel computation beyond existing technology, the
brain was examined as a proof-of-existence. It was shown that Rentian scaling is seen
in the complete nervous systems of the nematode worm, and for course-grain maps of
the human neocortex extracted by neuroimaging. Moreover, the Rentian scaling within
the human neocortex was shown to give good predictions for the allometric scaling of
white-matter to grey-matter across mammalian neocortices. For the computing domain,
this suggests that Rentian scaling is likely to continue to govern communication in com-
putation at far larger scales of integration than seen today.

10.1 Future Work

There are many promising directions that this research opens up. It is likely that many
more techniques from the VLSI arena could be adapted for the CMP software domain,
in areas of placement, routing and analysis, not just spatially but even temporally - such
as spatio-temporal Steiner trees for distributed and high fanout communication. We
saw evidence, in Chapter 5, of heterogeneous Rentian behaviour for the complex lame
benchmark, and although the analysis here assumed homogeneous Rentian behaviour,
the theory should be extendable to heterogeneous, time-varying Rent’s exponents corre-
sponding to different phases of execution, and even to scale-varying Rent’s exponents,
where different levels of the hierarchy may exhibit different Rent’s exponents.

The derivations for Chapter 7 assumed a simple scalar structure of processing in CMPs,
however, more general structures are easily accommodated such as for superscalar pro-
cessors, which allow extremely fine-grain communication between instructions on exe-
cution units within the same core. These could capture more detailed cost functions of
communication within core, versus inter-core. Further exploration could also be made
in quantitatively characterising cache models versus the ideal Rentian memory model.
Alternate cost models could be used to explore the impact of different network-on-chip
topologies. Together, these motivate a direct analytical exploration of many architectural
design decisions in a CMP.

Noting that the analysis of allometric scaling presented in Chapter 9 was solely for the
mammalian neocortex, it would be very interesting to validate the predicted allometric
scaling on the cerebellum as well, where it is known to have a different allometric scaling
exponent. Excitingly, the generalisation of Rent’s rule in Chapter 6 also opens up the pos-
sibility of exploring Rentian scaling in many non-computing or biological systems where
physical position matters, such as in human interaction networks (related to epidemic
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networks) as noted in that chapter, but also in genetic regulatory networks, transporta-
tion networks, consumption, supply-chain and organisational networks – among many
others. In short, it is hoped that this work will inspire others to also apply Rentian
locality to perhaps predict interactions in the physical world around them.
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A
APPENDIX A

SPATIAL SCALING: CMP
SOFTWARE

The following plots for SPLASH-2 and PARSEC benchmark applications show the band-
width versus node distribution on the left, followed by the hop-distributions on the right.
These are based on shared-memory traces by Barrow-Williams et al [8] running on a 32-
core CMP Simics-based simulator [73].

The spatial placement is done by a simulated annealing algorithm, implemented by the
author. Its only goal is to minimise aggregate bandwidth (i.e. sum of all communication
bandwidths weighted by the distance of the communication).

The left-hand side plots show multiple two-free-parameter models fitted to the data. The
right-hand side shows the predicted distance distributions for the generalised uniform
and spatio-temporal Rentian models based on the fit on the left-hand-side plots. These
are the only two models that have associated distance-distribution predictions.

The benchmarks are sorted according to the fitted spatio-temporal Rent’s exponent. This
means they should be sorted from greatest (predicted) locality to least (predicted) locality.
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APPENDIX B

FRACTAL
DIMENSIONALITY:

MIBENCH SOFTWARE

The following plots for MiBench benchmark applications show the box-counting scaling
behaviour for the data-dependency graph of 100,000 contiguous instructions. A method
adapted from Concas et al [31], itself based on the work of Song et al [95] was used for
doing the incremental box-counting.

All plots are in log-log form for power-law fitting. Two benchmark graphs (tiff2bw and
susan.smoothing) are not shown as they failed box-counting analysis, due to small-world
behaviour. Indeed, there are important differences between box-counting dimension and
the Rentian dimensionality, especially when it concerns small-world networks. See the
discussion in Chapter 9 for more details.
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APPENDIX C

TEMPORAL SCALING:
MIBENCH SOFTWARE

The following plots for MiBench benchmark applications show the scaling behaviour for
2 million instructions of their data-dependency graphs. The meaning of ‘placement’ here
is the actual instruction execution position in time – so the first instruction has position
one and the last has instruction position two-million. The communication graph is then
segmented approximately equally in time into eight regions starting from segment 1, and
ending at segment 8, and these are labelled separately within each plot. The Rentian
scaling properties of ‘terminals’ (cut hyper-edges) to nodes (instructions) is shown on the
left. The scaling of the distance distribution of accesses is shown on the right hand side.

Some correspondence between the Rent’s exponent and the distance distribution can be
observed. Although the fits are not ideal, with unknown boundaries of Region II effects,
most of these have the distance distribution slope about ∼ p̂− 2, where p̂ is the slope of
the Rentian fit, except for those with truncated distance distributions (last points ending
at an average frequency of about one or more instead of fractional average frequencies
of less than one).

All plots are in log-log form for power-law fitting. Distance distribution frequencies are
logarithmically binned. A shallower distance distribution slope implies less locality, as it
means there is more communication at further distances. For Rentian distributions, there
is a limiting value in the slope of −1 which corresponds to unbounded dimensionality
in the communication graph’s connectivity. One-dimensional graphs (serial communica-
tion) have a limiting-case distance distribution slope of −2, or steeper. For the Rentian
plots on the left, the size of the cross corresponds to the degeneracy (number of identical
samples) at that sample point.

We should note that all fits are over the entire data-range, and therefore may include
Region II effects that may alter the values of the slopes.
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Terminal vs node scaling of data-dependency graph: gsmenc

(1) slope=0.381
(2) slope=0.403
(3) slope=0.400
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Distance distribution of data-dependency graph: gsmenc

(1) slope=-1.586
(2) slope=-1.584
(3) slope=-1.588
(4) slope=-1.587
(5) slope=-1.583
(6) slope=-1.589
(7) slope=-1.586
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Terminal vs node scaling of data-dependency graph: lame

(1) slope=0.682
(2) slope=0.704
(3) slope=0.624
(4) slope=0.117
(5) slope=0.050
(6) slope=0.032
(7) slope=0.048
(8) slope=0.015
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Distance distribution of data-dependency graph: lame

(1) slope=-1.483
(2) slope=-1.357
(3) slope=-1.466
(4) slope=-2.244
(5) slope=-1.833
(6) slope=-1.833
(7) slope=-1.833
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Terminal vs node scaling of data-dependency graph: Linpack

(1) slope=0.404
(2) slope=0.442
(3) slope=0.441
(4) slope=0.440
(5) slope=0.440
(6) slope=0.442
(7) slope=0.441
(8) slope=0.403
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Distance distribution of data-dependency graph: Linpack

(1) slope=-1.444
(2) slope=-2.148
(3) slope=-2.160
(4) slope=-2.148
(5) slope=-2.160
(6) slope=-2.148
(7) slope=-2.160
(8) slope=-2.256
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Terminal vs node scaling of data-dependency graph: ls

(1) slope=0.477
(2) slope=0.499
(3) slope=0.477
(4) slope=0.487
(5) slope=0.537
(6) slope=0.555
(7) slope=0.553
(8) slope=0.532
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Distance distribution of data-dependency graph: ls

(1) slope=-1.468
(2) slope=-1.557
(3) slope=-1.566
(4) slope=-1.493
(5) slope=-1.476
(6) slope=-1.445
(7) slope=-1.496
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Terminal vs node scaling of data-dependency graph: patricia

(1) slope=0.242
(2) slope=0.273
(3) slope=0.274
(4) slope=0.269
(5) slope=0.296
(6) slope=0.282
(7) slope=0.287
(8) slope=0.250
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Distance distribution of data-dependency graph: patricia

(1) slope=-1.760
(2) slope=-1.817
(3) slope=-1.745
(4) slope=-1.780
(5) slope=-1.695
(6) slope=-1.735
(7) slope=-1.731
(8) slope=-1.727
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Terminal vs node scaling of data-dependency graph: qsort

(1) slope=0.307
(2) slope=0.365
(3) slope=0.367
(4) slope=0.299
(5) slope=0.512
(6) slope=0.460
(7) slope=0.345
(8) slope=0.338
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Distance distribution of data-dependency graph: qsort

(1) slope=-1.785
(2) slope=-1.724
(3) slope=-1.775
(4) slope=-1.727
(5) slope=-1.607
(6) slope=-1.802
(7) slope=-1.741
(8) slope=-1.655
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Terminal vs node scaling of data-dependency graph: rijndael

(1) slope=0.224
(2) slope=0.239
(3) slope=0.224
(4) slope=0.232
(5) slope=0.224
(6) slope=0.232
(7) slope=0.228
(8) slope=0.212
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Distance distribution of data-dependency graph: rijndael

(1) slope=-1.819
(2) slope=-1.852
(3) slope=-1.788
(4) slope=-1.852
(5) slope=-1.788
(6) slope=-1.852
(7) slope=-2.204
(8) slope=-1.788
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Terminal vs node scaling of data-dependency graph: sha

(1) slope=0.156
(2) slope=0.211
(3) slope=0.221
(4) slope=0.221
(5) slope=0.230
(6) slope=0.220
(7) slope=0.203
(8) slope=0.158
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Distance distribution of data-dependency graph: sha

(1) slope=-1.724
(2) slope=-1.809
(3) slope=-1.809
(4) slope=-1.525
(5) slope=-1.809
(6) slope=-1.809
(7) slope=-1.525
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Terminal vs node scaling of data-dependency graph: susan.corner

(1) slope=0.156
(2) slope=0.190
(3) slope=0.190
(4) slope=0.174
(5) slope=0.197
(6) slope=0.176
(7) slope=0.150
(8) slope=0.120
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Distance distribution of data-dependency graph: susan.corner

(1) slope=-1.755
(2) slope=-1.949
(3) slope=-1.910
(4) slope=-1.922
(5) slope=-1.959
(6) slope=-1.926
(7) slope=-1.893
(8) slope=-1.951
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Terminal vs node scaling of data-dependency graph: susan.smoothing

(1) slope=0.412
(2) slope=0.394
(3) slope=0.395
(4) slope=0.395
(5) slope=0.395
(6) slope=0.395
(7) slope=0.395
(8) slope=0.393
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Distance distribution of data-dependency graph: susan.smoothing

(1) slope=-1.558
(2) slope=-1.618
(3) slope=-1.618
(4) slope=-1.619
(5) slope=-1.618
(6) slope=-1.619
(7) slope=-1.619
(8) slope=-1.985
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Terminal vs node scaling of data-dependency graph: tiff2bw

(1) slope=0.603
(2) slope=0.641
(3) slope=0.597
(4) slope=0.620
(5) slope=0.639
(6) slope=0.638
(7) slope=0.644
(8) slope=0.603

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1  10  100  1000  10000  100000  1e+06

F
re

qu
en

cy
 o

f l
in

k 
di

st
an

ce

Link distance in instructions

Distance distribution of data-dependency graph: tiff2bw

(1) slope=-1.587
(2) slope=-1.236
(3) slope=-1.237
(4) slope=-1.238
(5) slope=-1.234
(6) slope=-1.234
(7) slope=-1.240
(8) slope=-1.240
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Terminal vs node scaling of data-dependency graph: tiff2rgba

(1) slope=0.437
(2) slope=0.616
(3) slope=0.640
(4) slope=0.614
(5) slope=0.573
(6) slope=0.591
(7) slope=0.652
(8) slope=0.585
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Distance distribution of data-dependency graph: tiff2rgba

(1) slope=-1.361
(2) slope=-1.292
(3) slope=-1.300
(4) slope=-1.300
(5) slope=-1.300
(6) slope=-1.292
(7) slope=-1.299
(8) slope=-1.303
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Terminal vs node scaling of data-dependency graph: tiffdither

(1) slope=0.700
(2) slope=0.721
(3) slope=0.729
(4) slope=0.720
(5) slope=0.731
(6) slope=0.723
(7) slope=0.727
(8) slope=0.691
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Distance distribution of data-dependency graph: tiffdither

(1) slope=-1.348
(2) slope=-1.411
(3) slope=-1.483
(4) slope=-1.406
(5) slope=-1.480
(6) slope=-1.407
(7) slope=-1.481
(8) slope=-1.527
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Terminal vs node scaling of data-dependency graph: typeset

(1) slope=0.512
(2) slope=0.493
(3) slope=0.546
(4) slope=0.472
(5) slope=0.553
(6) slope=0.527
(7) slope=0.528
(8) slope=0.533
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Distance distribution of data-dependency graph: typeset

(1) slope=-1.487
(2) slope=-1.548
(3) slope=-1.557
(4) slope=-1.609
(5) slope=-1.520
(6) slope=-1.557
(7) slope=-1.616
(8) slope=-1.736





D
APPENDIX D

PARTITIONED SCALING:
MIBENCH SOFTWARE

The following plots for MiBench benchmark applications show the scaling behaviour
for 2 million instructions of their data-dependency graphs. The ‘partitioning’ here uses
hMetis [62] which tries to find a min-cut bisection of the communication graph using
hyper-edges. This is done recursively for sixteen levels. The top three levels of bisection
form eight regions which are labelled segment 1 to segment 8, which although tend to
also correspond to eight near-contiguous temporal segments, do not necessarily do so.
These labels are shown within each plot. The Rentian scaling properties of ‘terminals’
(cut hyper-edges) to nodes (instructions) is shown on the left. The scaling of the distance
distribution of accesses is shown on the right hand side.

The distance distribution here, as in the previous chapter, uses the actual instruction
time distances but using the partitioning found by hMetis. We should perhaps note that
the min-cut problem is actually NP-complete, and hMetis is using heuristic approaches
and annealing to achieve its result. As such hMetis is not guaranteed to find a minimal
partitioning. One would hope that it could do better than the existing embedding of
instructions in time from the previous chapter, but this is not necessarily the case.

All plots are in log-log form for power-law fitting. Distance distribution frequencies are
logarithmically binned. A shallower distance distribution slope implies less locality, as it
means there is more communication at further distances. For Rentian distributions, there
is a limiting value in the slope of −1 which corresponds to infinitely large dimensionality
in the communication graph’s connectivity. One-dimensional graphs (serial communica-
tion) have a limiting-case distance distribution slope of −2, or steeper. For the Rentian
plots on the left, the size of the cross corresponds to the degeneracy (number of identical
samples) at that sample point.

We should note that all fits are over the entire data-range, and therefore may include
Region II effects that may alter the values of the slopes.
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Terminal vs node scaling of data-dependency graph: adpcmdec

(1) slope=-0.016
(2) slope=-0.121
(3) slope=-0.009
(4) slope=-0.038
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(6) slope=-0.290
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Distance distribution of data-dependency graph: adpcmdec

(1) slope=-1.840
(2) slope=-1.741
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Terminal vs node scaling of data-dependency graph: adpcmenc

(1) slope=-0.145
(2) slope=-0.180
(3) slope=-0.253
(4) slope=-0.229
(5) slope=-0.151
(6) slope=-0.123
(7) slope=-0.079
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Distance distribution of data-dependency graph: adpcmenc

(1) slope=-1.422
(2) slope=-1.753
(3) slope=-1.603
(4) slope=-1.647
(5) slope=-1.811
(6) slope=-1.566
(7) slope=-1.393
(8) slope=-1.457
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Terminal vs node scaling of data-dependency graph: basicmath

(1) slope=-0.008
(2) slope=0.067
(3) slope=0.050
(4) slope=0.043
(5) slope=0.073

(6) slope=-0.094
(7) slope=0.070
(8) slope=0.026
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Distance distribution of data-dependency graph: basicmath

(1) slope=-1.712
(2) slope=-1.672
(3) slope=-1.675
(4) slope=-1.666
(5) slope=-1.647
(6) slope=-1.347
(7) slope=-1.606
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Terminal vs node scaling of data-dependency graph: bitcount

(1) slope=0.013
(2) slope=-0.027
(3) slope=-0.034
(4) slope=-0.039
(5) slope=-0.016
(6) slope=-0.022
(7) slope=0.011

(8) slope=-0.014
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Distance distribution of data-dependency graph: bitcount

(1) slope=-2.985
(2) slope=-3.135
(3) slope=3.108

(4) slope=-4.215
(5) slope=-3.726
(6) slope=-3.130
(7) slope=-4.162
(8) slope=-3.391
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Terminal vs node scaling of data-dependency graph: blowfish

(1) slope=0.211
(2) slope=0.215
(3) slope=0.236
(4) slope=0.172
(5) slope=0.220
(6) slope=0.195
(7) slope=0.207
(8) slope=0.201
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Distance distribution of data-dependency graph: blowfish

(1) slope=-1.784
(2) slope=-1.771
(3) slope=-1.776
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Terminal vs node scaling of data-dependency graph: CRC32

(1) slope=0.126
(2) slope=0.085
(3) slope=0.121
(4) slope=0.106
(5) slope=0.096
(6) slope=0.171
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Distance distribution of data-dependency graph: CRC32

(1) slope=-2.353
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Terminal vs node scaling of data-dependency graph: dijkstra

(1) slope=0.715
(2) slope=0.715
(3) slope=0.714
(4) slope=0.715
(5) slope=0.743
(6) slope=0.741
(7) slope=0.750
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Distance distribution of data-dependency graph: dijkstra

(1) slope=-1.407
(2) slope=-1.397
(3) slope=-1.399
(4) slope=-1.381
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Terminal vs node scaling of data-dependency graph: FFT.4

(1) slope=0.172
(2) slope=0.132
(3) slope=0.069
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Distance distribution of data-dependency graph: FFT.4

(1) slope=-1.838
(2) slope=-1.905
(3) slope=-1.650
(4) slope=-1.651
(5) slope=-1.458
(6) slope=-1.505
(7) slope=-1.481
(8) slope=-1.526
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Terminal vs node scaling of data-dependency graph: gsmdec

(1) slope=0.281
(2) slope=0.279
(3) slope=0.296
(4) slope=0.268
(5) slope=0.244
(6) slope=0.254
(7) slope=0.269
(8) slope=0.249

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1  10  100  1000  10000  100000  1e+06

F
re

qu
en

cy
 o

f l
in

k 
di

st
an

ce

Link distance in instructions

Distance distribution of data-dependency graph: gsmdec

(1) slope=-1.709
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(1) slope=-1.765
(2) slope=-1.727
(3) slope=-1.767
(4) slope=-1.744
(5) slope=-1.406
(6) slope=-1.388
(7) slope=-1.516
(8) slope=-1.874

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000  1e+06

N
um

be
r 

of
 te

rm
in

al

Number of nodes (instructions)

Terminal vs node scaling of data-dependency graph: Linpack
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Terminal vs node scaling of data-dependency graph: ls
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Terminal vs node scaling of data-dependency graph: patricia
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Terminal vs node scaling of data-dependency graph: qsort

(1) slope=0.409
(2) slope=0.413
(3) slope=0.420
(4) slope=0.416
(5) slope=0.428
(6) slope=0.431
(7) slope=0.465
(8) slope=0.409

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1  10  100  1000  10000  100000  1e+06

F
re

qu
en

cy
 o

f l
in

k 
di

st
an

ce

Link distance in instructions

Distance distribution of data-dependency graph: qsort
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Terminal vs node scaling of data-dependency graph: rijndael
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Distance distribution of data-dependency graph: rijndael
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Terminal vs node scaling of data-dependency graph: susan.corner
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Terminal vs node scaling of data-dependency graph: susan.smoothing
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Terminal vs node scaling of data-dependency graph: tiff2bw
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Distance distribution of data-dependency graph: tiff2bw

(1) slope=-1.407
(2) slope=-1.482
(3) slope=-1.508
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Terminal vs node scaling of data-dependency graph: tiff2rgba

(1) slope=0.400
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Terminal vs node scaling of data-dependency graph: tiffdither
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Terminal vs node scaling of data-dependency graph: typeset

(1) slope=0.537
(2) slope=0.538
(3) slope=0.543
(4) slope=0.556
(5) slope=0.551
(6) slope=0.541
(7) slope=0.536
(8) slope=0.555

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1  10  100  1000  10000  100000  1e+06

F
re

qu
en

cy
 o

f l
in

k 
di

st
an

ce

Link distance in instructions

Distance distribution of data-dependency graph: typeset
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APPENDIX E

SPATIO-TEMPORAL
RENTIAN MODEL:
32-CORE SYSTEM

This section provides more detail on the Spatio-Temporal Rentian model utilised in
Chapter 5 (section 5.2). In Chapter 7, a Spatio-Temporal Rentian model was examined
for an L×L configuration of cores. For the 32-core system, this is instead accommodated
by an arrangement of 6 × 6 with the four corners unoccupied. This alters the function
D (lS) - the number of spatial links of length lS which can instead be numerically cal-
culated from this configuration. We then have the unnormalised configuration volume
reachable at exactly distance r as:

Q (r) ≡
r∑

k=0

D (k) .

The unnormalised, total configuration volume reachable within distance q is then:

R (q) ≡
q∑

r=0

Q (r) .

The spatial bandwidth is calculated based on the number of cores. First, each node is
taken as a seed node, then all nodes within a distance k of the seed node are counted as
a region of S nodes. The bandwidth for this region of S nodes is given by the amount
of communication from within the S nodes to outside the S nodes, which results in a
weighted sum of powers of the configuration volume. There may be many such regions
of size S nodes, so the average is taken. The expected amount of traffic between two
spatial nodes i and j is given by a weighted sum of the configuration volume:

b
∑

k

λi,j,kV
p−1
k ,

where b is the average bandwidth per node. Let dij be the distance between nodes i and
j. Then λi,j,k is:
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λi,j,k =

⎧⎪⎪⎨
⎪⎪⎩

0 , k < dij − 1
D(di,j)

Q(dij)
, k = dij − 1

D(di,j)

Q(k+1)
− D(di,j)

Q(k)
, dij ≤ k

With this configuration of 32 nodes, each node is reachable from every other node within
8 steps, so ∀k > 8 : Q (k) = Q (8), trivially resulting in λi,j,k = 0. For the set of N nodes
we have configuration volumes:

Vk =
1

|N |R (k) .

Let Ns be the set of regions with size of exactly s nodes (found by setting each node
as a seed node). Then averaging over all regions S ∈ Ns and summing over all nodes
i ∈ S, j ∈ N \ S, the bandwidth Bs (b, p) as a function of the average bandwidth b and
spatio-temporal Rent’s exponent p is:

Bs (b, p) = b
∑

k

⎛
⎝ 1

|Ns|
∑
S∈Ns

∑
i∈S

∑
j∈N\S

λi,j,k

⎞
⎠V p−1

k .

We factor-out the parameter ξs,k as:

ξs,k =
1

|Ns|
∑
S∈Ns

∑
i∈S

∑
j∈N\S

λi,j,k,

thus simplifying as:

Bs (b, p) = b
∑

k

ξs,kV
p−1
k .

The best-fit is done in the logarithmic domain, which is:

log (Bs (b, p)) = log b + log

(∑
k

ξs,kV
p−1
k

)
,

with partial derivatives:

∂ log (Bs (b, p))

∂b
=

1

b

∂ log (Bs (b, p))

∂p
=

∑
k ξs,kV

p−1
k log Vk∑

k ξs,kV
p−1
k

.

We can then use Levenberg-Marquardt to fit this model to the experimental data.
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APPENDIX F

SOURCE CODE FOR
NUMERICAL EVALUATION

OF SPATIO-TEMPORAL
RENTIAN MODEL

Efficient numerical evaluation of the Spatio-Temporal Rentian model, as used in Chap-
ter 7 is non-trivial, as the calculation spans many orders of magnitude that need to be
successively approximated by integration. Thus the C++ source code is included below
to help the reader.

RentianModel.cc

/*

* This program calculates the memory and I/O bandwidth requirements

* using the Spatio-Temporal Rentian Model, given a side-length L of a square

* arrangement of nodes, Rent’s exponent and effective spatial cost psi.

* Communication between nodes is as a 2-D mesh with simple Manhattan metric.

* The number of nodes is N=L*L.

*

* Command-line usage: RentianModel [L] [p] [psi]

*/

#include <iostream>

#include <math.h>

#define ERROR_TOLERANCE 0.0001

/* STRETCH specifies how many times further out to *directly* calculate beyond

* the critical volume where each node can reach every other node. Beyond

* this region, integration is used to approximate further, and the contribution

* of the top ’cone’ is neglected as negligible.

*/

#define STRETCH 100

#define MAX_MEM 2e10

xxxi



xxxii

using namespace std;

/*

* D(ls, L) returns number of links with spatio-temporal distance ls for

* side-length L

*/

double D(int _ls, int _L) {

double ls = _ls;

double L = _L;

if (_ls==0)

return L*L;

if (_ls<_L)

return ls*(ls*ls-1.0+6.0*L*(L-ls))*2.0/3.0;

if (_ls<=2*_L)

return (2.0*L-ls+1.0)*(2.0*L-ls)*(2.0*L-ls-1.0)*2.0/3.0;

return 0.0;

}

/*

* Q(r, L) returns non-normalised configuration volume reachable exactly at

* distance r

*/

double Q(int _r, int _L) {

double r = _r;

double L = _L;

double r2 = r*r;

double r3 = r2*r;

double r4 = r2*r2;

double L2 = L*L;

double L3 = L2*L;

double L4 = L2*L2;

if (_r < _L)

return (6.0*L2-2.0*r-4.0*L*r+12.0*L2*r-r2-12.0*L*r2

+12.0*L2*r2+2.0*r3-8.0*L*r3+r4)/6.0;

if (_r < 2*_L)

return (-4.0*L+4.0*L2+16.0*L3-10.0*L4+2.0*r-4.0*L*r-24.0*L2*r

+32.0*L3*r+r2+12.0*L*r2-24.0*L2*r2-2.0*r3+8.0*L*r3-r4)/6.0;

else return L4;

}

double *prob; // Array of probabilities per ’era’

double *wprob; // Array of length-weighted probabilities per ’era’

int critVal = 0; // Critical value where integral approximation is within

// ERROR_TOLERANCE of the summation

/*

* Returns the weighted sum: Sum[((a+x)^(p-1)-(a+x+1)^(p-1))*x,{x,c,d}]

*/

double calcWeightedSum(double a, int c, int d, double p) {

double sum = 0.0;

for (int x=c; x<=d; ++x) {

if (x!=0) {

sum += (pow(a+x,p-1.0)-pow(a+x+1.0,p-1.0))*x;

}
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}

return sum;

}

/*

* Approximates the calcWeightedSum function using an integral

* returns Integral[((a+x)^(p-1)-(a+x+1)^(p-1))*x,{x,c-0.5,d+0.5}]

*/

double calcWeightedIntegral(double a, double _c, double _d, double p) {

double c = _c-0.5;

double d = _d+0.5;

return (pow(a+c,p)*(a-c*p)-pow(1.0+a+c,p)*(1.0+a-c*p)

+pow(1.0+a+d,p)*(1.0+a-d*p)+pow(a+d,p)*(-a+d*p))/(p*(1.0+p));

}

/*

* Uses calcWeightedIntegral, calcWeightedSum, or a linear combination of both

* to come up with a fast approximation of calcWeightedSum that is within

* ERROR_TOLERANCE of the correct value.

*/

double calcWeightedHybrid(double a, double c, double d, double p) {

if (a+(double)c > (double)critVal)

return calcWeightedIntegral(a, c, d, p);

if (a+(double)d <= (double)critVal)

return calcWeightedSum(a, round(c), round(d), p);

return calcWeightedSum(a, round(c), round(critVal-a), p)

+ calcWeightedHybrid(a, round(critVal-a+1.0), round(d), p);

}

/*

* Finds the transition point for when the sum can be replaced with the

* integral and be within ERROR_TOLERANCE of the correct value.

*/

int findCriticalTransition(double p) {

// the the value of ’l’ for which thereafter it is within .1% error

int a_x=1;

while (true) {

double X = calcWeightedIntegral(a_x, 0, 0, p);

double Y = calcWeightedSum(a_x, 0, 0, p);

double rel = 1.0-X/Y;

if (rel < ERROR_TOLERANCE) {

break;

}

a_x++;

}

return a_x;

}

/* Returns within ERROR_TOLERANCE tolerance the distance-weighted sum:

* Sum[((V0+x*Vdelta)^(p-1)-(V0+(x+1)*Vdelta)^(p-1))*x, {x, lstart, lend}]

* where V0+lstart*Vdelta = Vstart

*/

double calcEither(double p, double Vstart, double Vdelta,
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double lstart, double lend) {

if (critVal == 0) {

critVal = findCriticalTransition(p);

}

double factor = pow(Vdelta, p-1.0); // factor out this term from the sum

return factor*calcWeightedHybrid(Vstart/Vdelta-lstart, lstart, lend, p);

}

/*

* Calculate and print out the details of the head region

*/

void calcHead(int L, double psi, double p) {

double mem = 0;

double cummProb = 0;

int stepsize = 1;

int count = 0;

for (int l=1; l<=psi; l+=stepsize) {

// When dealing with a large psi, it helps to exponentially grow the

// stepsize, to speed up calculation

if (count++ > 1000) {

stepsize *= 2;

count = 0;

}

double V0 = 1; // initially each node can only reach itself

double prob = 0;

double wprob = 0;

for (int r=0; r<=2*L; ++r) {

double deltaV = Q(r,L)/pow(L,2);

double V = V0+(double)(l-1.0)*deltaV;

double Pbig = (pow(V,p-1.0)-pow(V+stepsize*deltaV,p-1.0));

double prop = D(r,L)/Q(r,L);

prob += prop * Pbig;

wprob += prop * calcEither(p, V, deltaV, l, l+stepsize-1.0);

V0 += psi*deltaV;

}

mem += wprob;

cummProb += prob;

cout << "0\t" << mem << "\t" << (1.0-cummProb) << "\t" << cummProb << endl;

}

}

/*

* Calculate and print out details of the transition region

*/

double calcTransition(int L, double psi, double p) {

double V = 1.0; // initially each node can only reach itself

for (int r=0; r<=2*L; ++r) {

double deltaV = Q(r,L)/pow(L,2);

double Pbig = (pow(V,p-1.0)-pow(V+psi*deltaV,p-1.0));

for (int era=0; era<=r; ++era) {

double prop = D(r-era,L)/Q(r,L);

prob[era] += prop * Pbig;

wprob[era] += prop
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* calcEither(p, V, deltaV, (double)era*psi+1.0, (double)(era+1.0)*psi);

}

V += psi*deltaV;

}

// beyond the Vcrit region, we have a simpler relationship

double deltaV = L*L;

for (int r=2*L+1; r<STRETCH*2*L; ++r) {

double Pbig = pow(V,p-1.0)-pow(V+psi*deltaV,p-1.0);

for (int era = r-2*L; era<=r; ++era) {

double prop = D(r-era,L)/Q(r,L);

prob[era] += prop * Pbig;

wprob[era] += prop *

calcEither(p, V, deltaV, (double)era*psi+1.0, (double)(era+1.0)*psi);

}

V += psi*deltaV;

}

// print out the results (excluding the ’top cone’ that hasn’t been filled)

double mem = 0, cummProb = 0;

for (int i=0; i<=(STRETCH-1)*2*L; ++i) {

mem += wprob[i];

cummProb += prob[i];

cout <<i<<"\t"<<mem<<"\t"<<(1.0-cummProb)<<"\t"<<cummProb<<endl;

}

return V;

}

/*

* Calculate and print out the details of the tail region

*/

void calcTail(double Vtail, int L, double psi, double p) {

double mem = 0, cummProb = 0;

// compute memory and BW for entire region including the ending ’cone region’

for (int i=0; i<STRETCH*2*L; ++i) {

mem += wprob[i];

cummProb += prob[i];

}

// starting at Vtail, we can now add a very large configuration volume

// lets start with a spatio-temporal length of 8*L*psi

double S = STRETCH*2.0*(double)L;

double deltaS = 8.0*L;

double deltaV = L*L;

double correctionFactor = 0.0;

for (int y=1; y<=2*L; ++y) {

correctionFactor += D(y, L) * y;

}
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// Compute up to a memory size of MAX_MEM words

while (mem < MAX_MEM) {

cummProb += pow(Vtail,p-1.0)-pow(Vtail+psi*deltaS*deltaV,p-1.0);

mem += calcEither(p, Vtail, deltaV, S*psi, (S+deltaS)*psi-1.0);

// correct for the conical influence of spatio-temporal configuration space

{

double Vstart = Vtail;

double lstart = S*psi;

double a = Vstart/deltaV-lstart;

double c = lstart-0.5;

double d = lstart+deltaS*psi-1.0+0.5;

double factor = pow(deltaV, p-1.0);

mem -= correctionFactor * factor *

(pow(a+d,p)-pow(a+d+1.0,p)-pow(a+c,p)+pow(a+c+1.0,p));

}

S += deltaS;

cout << S<<"\t"<< mem<<"\t"<< (1.0-cummProb)<<"\t"<<cummProb<<"\n";

Vtail += psi*deltaS*deltaV;

deltaS *= 2.0;

}

}

/*

* Command-line usage: RentianModel [L] [p] [psi]

*/

int main(int argc, char *argv[]) {

if (argc < 4) {

cerr << "Usage: RentianModel [L] [p] [psi]" << endl;

return -1;

}

int L = atoi(argv[1]);

double p = atof(argv[2]);

double psi = atoi(argv[3]);

int N = L*L;

cout << "### Distance\tMemPerCore\tBWPerCore\tN = " << N << ", p = " << p

<<", psi = " << psi << endl;

prob = new double[STRETCH*2*L];

wprob = new double[STRETCH*2*L];

// Initialise

for (int i=0; i<STRETCH*2*L; ++i) {

prob[i] = wprob[i] = 0.0;

}

double Vtail; // configuration volume for starting the tail-region calculation

calcHead(L, psi, p);

Vtail = calcTransition(L, psi, p);

calcTail(Vtail, L, psi, p);

return 0;

}


