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Abstract

Game Theory constitutes an appropriate way for approaching the Internet and

modelling situations where participants interact with each other, such as net-

working, online auctions and search engine’s page ranking. Mechanism Design

deals with the design of private-information games and attempts implementing

desired social choices in a strategic setting. This thesis studies how the efficiency

of a system degrades due to the selfish behaviour of its agents, expressed in terms

of the Price of Anarchy (PoA). Our objective is to design mechanisms with im-

proved PoA, or to determine the exact value of the PoA for existing mechanisms

for two well-known problems, Auctions and Network Cost-Sharing Design.

We study three different settings of auctions, combinatorial auction, multi-

unit auction and bandwidth allocation. The combinatorial auction constitutes

a fundamental resource allocation problem that involves the interaction of self-

ish agents in competition for indivisible goods. Although it is well-known that

by using the VCG mechanism the selfishness of the agents does not affect the

efficiency of the system, i.e. the social welfare is maximised, this mechanism

cannot generally be applied in computationally tractable time. In practice, sev-

eral simple auctions (lacking some nice properties of the VCG) are used, such

as the generalised second price auction on AdWords, the simultaneous ascending

price auction for spectrum allocation, and the independent second-price auction

on eBay. The latter auction is of particular interest in this thesis. Precisely,

we give tight bounds on the PoA when the goods are sold in independent and

simultaneous first-price auctions, where the highest bidder gets the item and

pays her own bid. Then, we generalise our results to a class of auctions that we

call bid-dependent auctions, where the goods are also sold in independent and

simultaneous auctions and further the payment of each bidder is a function of

her bid, even if she doesn’t get the item. Overall, we show that the first-price

auction is optimal among all bid-dependent auctions.

The multi-unit auction is a special case of combinatorial auction where all
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items are identical. There are many variations: the discriminatory auction, the

uniform price auction and the Vickrey multi-unit auction. In all those auctions,

the goods are allocated to the highest marginal bids, and their difference lies on

the pricing scheme. Our focus is on the discriminatory auction, which can be

seen as the variant of the first-price auction adjusted to multi-unit auctions.

The bandwidth allocation is equivalent to auctioning divisible resources. Al-

locating network resources, like bandwidth, among agents is a canonical problem

in the network optimisation literature. A traditional model for this problem

was proposed by Kelly [94], where each agent receives a fraction of the resource

proportional to her bid and pays her own bid. We complement the PoA bounds

known in the literature and give tight bounds for a more general case. We further

show that this mechanism is optimal among a wider class of mechanisms.

We further study design issues for network games: given a rooted undirected

graph with nonnegative edge costs, a set of players with terminal vertices need

to establish connectivity with the root. Each player selects a path and the global

objective is to minimise the cost of the used edges. The cost of an edge may

represent infrastructure cost for establishing connectivity or renting expense, and

needs to be covered by the users. There are several ways to split the edge cost

among its users and this is dictated by a cost-sharing protocol. Naturally, it is

in the players best interest to choose paths that charge them with small cost.

The seminal work of Chen et al. [36] was the first to address design questions

for this game. They thoroughly studied the PoA for the following informational

assumptions. i) The designer has full knowledge of the instance, that is, she

knows both the network topology and the players’ terminals. ii) The designer

has no knowledge of the underlying graph. Arguably, there are situations where

the former assumption is too optimistic while the latter is too pessimistic. We

propose a model that lies in the middle-ground; the designer has prior knowledge

of the underlying metric, but knows nothing about the positions of the terminals.

Her goal is to process the graph and choose a universal cost-sharing protocol that

has low PoA against all possible requested subsets. The main question is to what

extent prior knowledge of the underlying metric can help in the design.

We first demonstrate that there exist graph metrics where knowledge of the

underlying metric can dramatically improve the performance of good network

cost-sharing design. However, in our main technical result, we show that there

exist graph metrics for which knowing the underlying metric does not help and

any universal protocol matches the bound of [36] which ignores the graph metric.
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We further study the stochastic and Bayesian games where the players choose

their terminals according to a probability distribution. We showed that in the

stochastic setting there exists a priority protocol that achieves constant PoA,

whereas the PoA under the the Bayesian setting can be very high for any cost-

sharing protocol satisfying some natural properties.
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CHAPTER 1

Introduction

Game Theory constitutes an appropriate way for approaching and modelling

situations where participants interact with each other. Mechanism Design is a

subarea of both Game Theory and Economic Theory, which attempts implement-

ing desired social choices in a strategic setting, by assuming that the different

members of the society act rationally in a game theoretic sense. The emergence

of the Internet motivates the development of both Algorithmic Game Theory

and Mechanism Design which are applicable in many topics, such as networking,

peering, online auctions and exchanges, online advertising, and search engine’s

page ranking. The relation between Game Theory, Mechanism Design, Eco-

nomic Theory, Theoretical Computer Science and the Internet is described in

more details in [118].

The focus of this thesis is to examine the efficiency/inefficiency of equilibria

expressed as the Price of Anarchy (PoA). The PoA was introduced in 1999 by

Koutsoupias and Papadimitriou [98, 99] and is the concept in Game Theory that

measures how the efficiency of a system degrades due to the selfish behaviour

of its agents. The game designer’s objective is to maximise the social welfare

which is the total sum of agents’ payoffs. On the other hand, the agents may act

strategically under the incentive of maximising their own payoff. When agents’

strategies are such that no agent can benefit by unilaterally deviating from their

strategy, the strategy profile is called Nash equilibrium. Price of Anarchy (PoA)

[98] and Price of Stability (PoS) [6] are tools provided by the Algorithmic Game

Theory in order to measure the quality of the equilibrium solutions; PoA (or PoS)

is the ratio between the worst-case (or the best-case) social welfare in a Nash

equilibrium and the maximum social welfare. Our objective is to design mecha-
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nisms with improved PoA, or to determine the exact value of the PoA for existing

mechanisms for the following well-known problems: Auctions of indivisible and

divisible resources and Network Cost-Sharing Design.

The thesis is divided into two parts, one for each problem. The background

and the related work of each problem is discussed in the related part. For the

rest of the introduction we review in a more general way auctions and network

games.

1.1 Auctions

Auctions can be modelled as games of incomplete information between many

selfish agents/bidders in competition for one or more items or resources. The

preference of each bidder is expressed via a valuation function over the different

allocations of the items/resources to the bidders1. The game designer should

decide a mechanism that asks the agents to provide information (bids) about their

valuations, based on which it computes the allocation and bidders’ payments.

Each agent’s utility (payoff) is defined as the difference between her valuation for

the allocation and her payment. The agents’ valuations are usually unknown to

the auctioneer and the other participants. Designing truthful mechanisms, where

there is no way that the bidders can increase their utilities by lying, is one way to

deal with this lack of information. The appeal of truthful mechanisms is twofold:

they relieve the decision-making burden of the participants and their outcome

is predictable. However, the main challenge is to design truthful mechanisms

that allocate the items in an efficient way, i.e., so that they maximise the social

welfare which equals the sum of bidders’ valuations.

1.1.1 Single-item Auction

The most simple auction is that of a single item, where the main question to

address is to decide who should get the item. Suppose that the objective of the

auctioneer is to assign the item to the player who values it the most, maximising

that way the social welfare. She should decide it, though, without knowing par-

ticipants’ valuations. A way to access this information is to ask the participants

directly. The participants, on the other side, would declare a very high valuation

1The valuation may be considered as the agent’s willingness to pay.
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in their attempt to obtain the item and then the auctioneer could not decide

who truly values the item the most.

To overcome this problem, prices have been introduced in order to force

the participants to declare their true valuation, or at least a value close to it.

Obviously, the existence of prices serves another, very important purpose: they

provide a revenue for the seller. For the scope of this thesis, we focus on the

former reason.

Auctions that sell a single indivisible item are well-understood in terms of

both truthfulness and efficiency (i.e., allocating the item to the agent that values

it the most). The English (or ascending price) auction is the oldest form of auc-

tion and satisfies the above two properties. This auction is an iterative auction,

meaning that it is conducted in steps. By starting from a zero or a small price for

the item, the participants repeatedly respond to the current price by announcing

a bid higher than that price; this implies that they are interested in purchasing

at that bid. The price is then updated and the auction ends when no participant

is willing to increase the price. The higher bidder receives the item and pays

her (last) bid. A variant of the English auction is conducted by an auctioneer

who increases the price at each step by a small amount, as long as there are at

least two participants interested in purchasing at the current price. The auction

ends when there is only one participant left2, who buys the item by paying the

current price.

The celebrated Vickrey (or sealed-bid second-price) auction [138] is a counter-

part of the latter variant of the English auction, conducted in a single step. Each

bidder simultaneously submits a sealed bid and then the bidder with the highest

bid receives the item and pays the second highest bid. The Vickrey auction is

both truthful and efficient.

To check the truthfulness of the Vickrey auction, we need to examine two

cases: i) a participant receives the item by bidding her true valuation and ii) a

participant doesn’t receive the item by bidding truthfully. In the first case her

bid is the highest one and she should pay at most her valuation which leads to

nonnegative utility. If she bids any value that remains the highest bid, she still

receives the item at the same price leading to the same utility and if she bids

lower than the second highest bid she loses the item resulting in zero utility.

Therefore, in the first case she cannot increase her utility by lying. In the second

case her utility is zero and she can only receive the item by bidding higher than

2The increments of the price should be sufficiently small such that there is always one
participant left.
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the highest bid. Note though that the highest bid is higher or equal to her

valuation and she should pay that value as it would become the second highest

bid. This results in nonpositive utility and hence, in this case she cannot increase

her utility by lying, meaning that overall the auction is truthful. Given that the

participants act in a truthful way, the Vickrey auction allocates by definition the

item to the participant with the highest bid/valuation satisfying efficiency.

1.1.2 Combinatorial Auctions

Combinatorial auctions are a natural generalisation of the single-item auction

that involve the interaction of n selfish agents in competition for m indivisible

items. The preferences of each player for different bundles of items are expressed

via a valuation set function. It is well-known that in this setting truthfulness

and efficiency are preserved by the Vickrey-Clarke-Groves (VCG) mechanism [50,

79, 138]. Unfortunately, computing the allocation and the payments of the VCG

mechanism may take exponential time in m and n [114, 115] (unless P=NP).

This fact led in dropping the truthfulness requirement and designing simple (in

terms of computation) mechanisms, under the objective of maximising the social

welfare in the equilibria.

In practice, several simple non-truthful mechanisms are used. The most no-

table examples are the generalised second price (GSP) auctions used by AdWords

[61, 137], the simultaneous ascending price auctions for wireless spectrum allo-

cation [109] and the independent second price auctions on eBay. Furthermore,

in these auctions the expressive power of the buyers is heavily restricted by the

bidding language, so that they are not able to represent their complex prefer-

ences precisely. In light of the above, Christodoulou, Kovács and Schapira [40]

proposed the study of simple, non-truthful auctions, called simultaneous (item-

bidding) auctions, using the PoA as a measure of inefficiency of such auctions.

In such an auction, the auctioneer sells each item by running simultaneously m

independent single-item auctions.

1.1.3 Bandwidth Allocation

Auctioning divisible resources is also of particular interest. Allocating network

resources, like bandwidth, among agents is a canonical problem in the network

optimisation literature. In such situations, it is sometimes difficult to talk about
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truthful mechanism, since even expressing the valuation function for every frac-

tional allocation becomes extremely complex.

A traditional model for this problem was proposed by Kelly [94], where allo-

cating these infinitely divisible resources is treated as a market with prices. More

precisely, agents in the system submit bids on resources to express their willing-

ness to pay. After soliciting the bids, the system manager prices each resource

and then agents buy portions of resources by paying a proportional amount of

the prices. The users act as price takers, trying to maximise their utility, i.e. the

difference between their valuations and payments, and they do not anticipate

the effect of their actions on the prices. Kelly [94] showed that, under certain

assumptions, the aggregate utility of the users is maximised when the players

receive portions of the resources that are proportional to their bids. In the case

of a single resource, each user receives a fraction of the resource equal to the ratio

of their bid over the sum of all bids; additionally, they should pay an amount

equal to their own bid. This is known as the proportional allocation mechanism

or Kelly’s mechanism in the literature.

Johari and Tsitsiklis [91] relaxed the assumption that the users act as price

takers and instead they can anticipate the effects of their actions on the prices

of the resources. They observed that this strategic bidding in the proportional

allocation mechanism leads to inefficient allocations that do not maximise the

social welfare.

The proportional allocation mechanism has also been used in the trading post

game proposed by Shapley and Shubik [129]. In the trading post game, each

good is sold in a separate trading post and each trader makes a monetary bid on

each trading post and receives an allocation based on the proportional allocation

mechanism. The trading post model differentiates from Kelly’s mechanism in

the sense that traders also receive payments for the fraction of goods that they

sell.

Additionally, the proportional allocation mechanism is widely used in net-

work pricing and has been implemented for allocating computing resources in

several distributed systems [49], for time-sharing of resources [131] and in re-

source allocation in Capacity-constrained Clouds [135].

1.1.4 Information Models

Regarding non-truthful mechanisms, there are two basic information models with

respect to agents’ valuations: the full information and the Bayesian. In the full
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information setting the valuation function of each player is fixed and known by

all other players. The Bayesian setting was introduced by Harsanyi [84], and

is an elegant way of modelling partial-information settings. In this setting, the

valuation function of each player is drawn from some known probability distribu-

tion that, in a sense, represents the players’ beliefs. Clearly, the full information

model is a special Bayesian one, in which each player has some valuation function

with probability 1. Accordingly, there are different concepts of Nash equilibria

with respect to the information models. The pure and mixed Nash equilibria

refer to the full information model, where players choose a single (pure) strategy

or a probability distribution over pure strategies (mixed strategy), respectively.

In the Bayesian model, the Bayesian Nash equilibrium is defined, in which each

player cannot increase their expected utility by unilaterally deviating from their

strategy, where the expectation is taken over the valuations of the other players.

In Part I of the thesis, we provide bounds for the PoA of several auction

with respect to both information models. We first study simultaneous auctions:

the first-price auction (Chapter 4) and a wider class of auctions that we call

bid-dependent (Chapter 5). We further study the counterpart of the first-price

auction, called discriminatory auction (Chapter 6), which is applied in the special

combinatorial auction where all items are identical. Finally, regarding divisible

items (bandwidth allocation) we study the simultaneous proportional allocation

mechanism (Chapter 7).

1.2 Network Games

Recall that in auctions with indivisible items the goal was to allocate the items

in such a way that no item is assigned to more than one bidder. As for the

case of auctioning divisible resources, we allocate portions of the resources to the

bidders, under the restriction that those portions sum up to 1 for each resource.

In this section, still resources are assigned to players, but in a different notion:

the players now choose some resources to use and it is common that the same

resource is used by more than one player. Then, the players experience some

cost that depends on their choices and the congestion on the resources.

The Internet is full of such applications: communication networks, peer-to-

peer networks and job scheduling are only few of those application. The size of

the Internet makes it impossible to use a central authority in order to impose
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optimal solutions, i.e. solutions that minimise the social cost. Therefore, it is

essential for players to interact with each other, without imposing them any

additional control (except possibly from some underlying protocol), and result

in equilibrium solutions that guarantee good approximations of the optimum

solution, i.e. designing mechanisms with low PoA guarantees.

We focus on special cases of such games that are called network games. In a

network game, the resources are edges of a network and players want to establish

connectivity between two vertices, a source and a destination (possibly different

for each player). Then, the strategy space of the players are all possible paths

connecting those two vertices. The inefficiency of equilibria has been observed

in several network games such as congestion in parallel links [99], selfish load

balancing [132], selfish routing games [9, 38, 127], network design games [6, 36].

Next we explore such games in more details.

1.2.1 Congestion Games

The congestion games were first defined by Rosenthal [123]. In these games

players choose a subset of resources and their overall cost (or latency) is additive

over the resources that they chose and depends on how many players chose the

same resources. A latency function for each resource takes as input the number

of players using that resource and determines the exact latency that each player

experiences for using it.

An interesting connection between congestion games and potential games is

known due to Rosenthal [123] and Monderer and Shapley [110]. A game is called

exact potential [110] if there exists a function (called exact potential function) over

players’ strategies with the following property: the difference of the function’s

outcome when a player’s strategy unilaterally changes equals the difference of

that player’s utility or cost. Rosenthal [123] proved that every congestion game

admits a pure Nash equilibrium, by providing an exact potential function. Then,

Monderer and Shapley [110] showed that every finite exact potential game is

(isomorphic to) a congestion game, and as a result, the two classes of games

coincide.

We next review two special cases of congestion games that lie in the class of

network games, namely atomic and nonatomic selfish routing. Routing games

(see also Chapter 18 of [116]) deal with problems of how to route traffic in a

network. The ground difference between atomic and nonatomic routing games

is that in the former game each player controls a significant amount of traffic
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that she should route unsplittably via a path, whereas in the latter game the

populations is large enough, such that each player controls only an infinitesimal

amount of traffic.

Atomic selfish routing

The atomic selfish routing game is defined by an underlying (directed) graph,

whose edges are associated with cost functions, and a finite set of players each

of whom wants to route a unit amount of traffic from a source vertex to a des-

tination vertex. Each player should choose a single path and the congestion on

the edges that she used induces a latency computed via the edge cost functions.

The objective here is again to maximise the social welfare, or alternatively, to

minimise the social cost which is equal to the aggregate latency that players

experience.

The players route their traffic via their chosen paths which can described by

using a (multicommodity) flow. A flow is an equilibrium flow (or a pure Nash

equilibrium) when no player can decrease their latency by unilaterally changing

their path. The PoA compares the worst-case social cost of an equilibrium flow

with the minimum social cost. If only affine cost functions are allowed, the PoA is

exactly 5/2, a result due to Christodoulou and Koutsoupias [38] and Awerbuch,

Azar and Epstein [9]. We refer the reader to [125] for extension of this PoA

bound to other equilibria concepts, via the so-called smoothness technique. For

cost functions that are bounded-degree polynomials the exact PoA is known due

to Aland et al. [3].

A more general setting is the weighted atomic routing games, where each

player may route many units of unsplittable traffic via a single path. Fotakis,

Kontogiannis and Spirakis [69] proved that a weighted atomic routing game

with affine cost functions always admits a pure Nash equilibrium and the PoA

is 3+
√

5
2
≈ 2.618. However, if we consider even quadratic cost function, the

property of Nash equilibrium existence vanishes and there exists an instance [74]

with no pure Nash equilibrium. Nevertheless, for bounded-degree polynomial

cost functions, Aland et al. [3] provided tight PoA bounds for more general

equilibria concepts which also hold for the pure Nash equilibrium whenever it

exists. Bhawalkar, Gairing and Roughgarden [18] characterised the PoA for

general cost functions (under mild conditions) and extend their results to other

equilibria concepts by using the smoothness technique, similar to [125].
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Nonatomic selfish routing

The nonatomic selfish routing game and its equilibria were formally defined by

Wardrop [140] and Beckmann, McGuire and Winsten [11]. In those games we

assume that each unit of traffic is controlled by a large population of players,

each of whom routes an infinitesimal amount. Therefore, the unit traffic may be

routed from many different paths, in contrast with the atomic games.

Example 1. (Pigou’s example [119]) A notable example of the nonatomic

selfish routing is the Pigou’s example illustrated in Figure 1.1. A unit amount of

traffic should be routed from s to t via two alternative paths with cost functions

c1(x) = 1 and c2(x) = x, respectively, that express the latency/cost that players

experience if they use the paths, where x is the congestion on them. It is in

players’ best interest to choose the second path as it is cheaper; the latency in

the second path cannot exceed 1, which is the latency of the first path. This is

the unique Nash equilibrium (or Wardrop equilibrium) of the game. The cost,

that each player experiences, is defined by c2(1) multiplied by the (tiny) amount

of traffic they control and the social cost is then the aggregate cost which equals

c2(1) = 1.

s t

c1(x) = 1

c2(x) = x

Figure 1.1: Pigou’s example.

However, there is a less costly (optimum) solution which is to split the traffic

equally between the two paths. The upper path then is used by a half unit

of traffic which experience a latency of c1

(
1
2

)
= 1

2
and the lower path is used

by the other half unit with latency of c2

(
1
2

)
= 1, resulting in social cost of

1
2
· 1

2
+ 1

2
· 1 = 3/4. Therefore, the PoA of the game is 4/3.

Roughgarden and Tardos [127] were the first to study the PoA of the nonatomic

selfish routing games and they showed that Pigou’s example is the worst case

instance for affine latency functions, by proving that the PoA is at most 4/3 for

this case. They further showed the first upper bound on the PoA for polyno-
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mial latency functions. For special cases, Dumrauf and Gairing [60] provided

improved bounds.

1.2.2 Network Design

In a different network game we consider a graph with a nonnegative constant

cost on each edge and a set of players that need to establish connectivity between

their pair of source-destination vertices by selecting a path connecting them. The

cost of an edge may represent infrastructure cost for establishing connectivity or

renting expense, and needs to be covered by the players that use that edge in the

solution. There are several ways to split the edge costs among the users and this

is dictated by a cost-sharing protocol. Naturally, it is in the players best interest

to choose paths that charge them with small cost, and therefore it is reasonable

to assume that the solution will be a Nash equilibrium. The global objective is

to minimise the total cost of the used edges in the graph, which is the Minimum

Steiner Forest. The PoA can be used here in order to analyse the quality of

the equilibrium solutions. This is a fundamental network design game that was

originated by Anshelevich et al. [6] and has been extensively studied since. In

[6], they studied the Shapley cost-sharing protocol, where the cost of each edge

is equally split among its users. They showed that the quality of equilibria can

be really poor; even for simple networks the PoA grows linearly with the number

of players3.

However, different cost-sharing protocols may result in different quality of

equilibria. Chen, Roughgarden and Valiant [36] were the first to address design

questions for network cost-sharing games by identifying the cost-sharing proto-

cols with the best PoA (and Price of Stability). For the case of undirected graphs

they showed that the priority/ordered protocols improve the PoA in comparison

to the Shapley protocol. In an ordered protocol, a global order of the players is

first defined and then whenever a subset of players is using an edge, its cost is

covered by the player who is first in the order. For the case of multicast games,

where all players have a common source and therefore the optimum coincides

with the minimum Steiner tree, Chen, Roughgarden and Valiant [36] noticed

that a simple ordered protocol that simulates Prim’s algorithm [121] results in

the best PoA. In fact they showed that there exists a global order of the play-

3The Price of Stability of this game is not well-understood. For undirected graphs it is a
big open question to determine its exact value that is between constant and O(log k/ log log
k) [103], where k is the number of players.
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ers resulting in PoA of 2, as the following example illustrates, which is a great

improvement upon the linear PoA of Shapley protocol.

Example 2. (The “Prim” Protocol) Suppose we are given an undirected graph

with a designated root r, G(V,E, r), nonnegative edge costs and a set of k players

with terminals, t1, . . . , tk. Consider now the weighted graph, H, with vertices

{r, t1, . . . , tk} where the edge weights are induced by the shortest weighted paths

in G between the corresponding vertices. We order the terminals in the same

way that Prim’s algorithm processes them in H, starting from r. Figure 1.2

shows such an example. The left graph is the original network and the right

graph is the complete weighted graph on which we run Prim’s algorithm. The

order that Prim’s algorithm processes the terminals, denoted by bold integers,

is used in the order protocol on the left graph. The Nash equilibrium and the

outcome of Prim’s algorithm (minimum spanning tree) are shown by the thicker

edges. It is not hard to verify that the cost of the path that each player selects

is upper bounded by the weight of the edge used in Prim’s algorithm in order to

connect her terminal. Hence, the approximation ratio of 2 of the Prim’s algorithm

immediately provides an upper bound on the PoA of the ordered protocol.

A lower bound construction of [36] shows that under some natural axioms

(discussed in details in Chapter 9) no cost-sharing protocol can result in better

PoA.
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Figure 1.2: An illustration of “Prim” Protocol.

In Part II of the thesis, we study designing issues of the multicast game with

respect to the PoA. We consider different informational assumptions, first from

the perspective only of the designer, namely games under uncertainty (Chap-

ter 10) and stochastic games (Chapter 11), and then from the perspective of
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both the designer and the players, which are the Bayesian games (Chapter 12).

For the latter case, we show negative results that can be dramatically improved

by relaxing some designing requirement in a reasonable way; we discuss this in

details in Chapter 12.

1.3 Thesis Contribution

In this section, we make an overview of the contribution of this thesis with respect

to the current literature.

1.3.1 Auctions

The first part of the thesis is devoted to combinatorial auctions, multi-unit auc-

tions and bandwidth allocation. In the combinatorial auctions, selfish agents

compete for the allocation of a bundle of items. The allocation of the items in a

way that the social welfare is maximised has been proved to be computationally

inefficient. Christodoulou, Kovács and Schapira [40] proposed the study of sim-

ple auctions, called simultaneous (item-bidding) auctions, under the objective of

maximising the social welfare. In such auctions, the items are sold separately

in simultaneous and independent single-item auctions. Many variants have been

studied and the most notable ones are the first-price, second-price and all-pay

auctions. In all those auctions, the bidders are asked to submit a bid for each

item. Then each item is assigned to the highest bidder. In the first-price auction

the winner is charged his own bid, while in the second-price auction the winner

pays the second highest bid. In both auctions, the rest of the bidders pay zero.

On the contrary, in all-pay auction all bidders (winner and losers) pay their bids.

The first-price auction appears to outperform the other auctions, so far, in terms

of the PoA.

Regarding the first-price and all-pay auctions we provide PoA bounds which

are, most of the cases, tight. Precisely, in [41] (co-authored with Christodoulou,

Kovács and Tang), our results complement the current knowledge about simul-

taneous first-price auctions [64, 133]; for two important classes of valuation func-

tions, namely submodular and subadditive, we provide matching lower bounds

to the upper bounds of 1.58 by Syrgkanis and Tardos [133] and 2 by Feldman et

al. [64], respectively. For subadditive valuations (valuations without complemen-

tarities), the tight bounds hold for a more general class of auctions that includes
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the all-pay auctions, as well, and it is further extended to multi-unit auctions [41],

where the items are identical, and to divisible resources, like bandwidth, as we

show in [46] (co-authored by Christodoulou and Tang). Regarding submodular

valuations, i.e. functions with decreasing marginals, the lower bounds are tight

only for the simultaneous first-price auction. Instead, in [45] the upper bound

of the simultaneous all-pay auctions is improved for such valuations by using

several structural theorems that characterise the Nash equilibria.

Independently, Roughgarden [124] presented a very elegant methodology to

provide PoA lower bounds via a reduction from communication or computational

complexity lower bounds for the underlying optimisation problem. One conse-

quence is the indication that simultaneous first-price auction is the most efficient

(i.e. has the lowest PoA) simple auctions for some classes of valuations, like

subadditive valuations. However, a combination of [124] and our work in [41]

indicates that the question of the most efficient auction remains, regarding more

specialised, nevertheless significant, classes of valuations such as submodular val-

uations; either a different approach than the one in [124] is needed in order to

prove optimality of the first-price auction for those valuations or there is another

auction that improves the PoA.

We further study multi-unit auctions as a special case of combinatorial auc-

tions, where all items are identical. Our focus is on the discriminatory auctions,

where the highest bidders receive the items and pay their bid for the obtained

items. In [41] (co-authored with Christodoulou, Kovács and Tang), we comple-

ment the results of de Keijzer et al. [56] for the case of subadditive valuations, by

providing a matching lower bound of 2. For the case of submodular valuations,

we show a lower bound of 1.099 improving upon the previous lower bound of

1.0004 [56] which holds only for the Bayesian setting.

Additionally, auctions with divisible resources is in our scope of interest. A

traditional model for allocating network resources, like bandwidth was proposed

by Kelly [94], where allocating these infinitely divisible resources is treated as

a market with prices. Johari and Tsitsiklis [91] relaxed the assumption that

the users act as price takers and instead they can anticipate the effects of their

actions on the prices of the resources. They considered many divisible resources

that are sold simultaneously by using the proportional allocation mechanism (or

Kelly’s mechanism); each agent submits a bid for each divisible resource and then

receives a fraction proportional to their bids and pay their own bids. Johari and

Tsitsiklis [91] showed tight bounds on the PoA under the full-information model
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when the valuation functions are concave and Caragiannis and Voudouris [30]

showed an upper bound of 2 on the PoA for the single resource case and under

the Bayesian model. In [46] (co-authored with Christodoulou and Tang) we

provide a lower bound of
√
m/2 for the case of m resources and for the Bayesian

setting. We then considered subadditive valuations4 and we provided a tight

bound of 2 on the PoA which generalises and improves the previous bound of 3.73

for lattice-submodular5 valuations by Syrgkanis and Tardos [133]. We further

showed optimality of the proportional allocation mechanism among any simple

mechanism, as defined in the framework of Roughgarden [124].

1.3.2 Network Games

The second part of the thesis examines design questions in network cost-sharing

games. Given a rooted undirected graph with nonnegative edge costs, players

with terminal vertices need to establish connectivity with the root. Each player

selects a path and the global objective is to minimise the cost of the used edges.

This cost needs to be covered by the users and there are several ways to split the

edge cost among its users which is decided based on a cost-sharing protocol.

Different cost-sharing protocols result in different values of the PoA. The sem-

inal work of Chen, Roughgarden and Valiant [36] was the first to address design

questions for this game. They gave a characterisation of protocols that satisfy

some natural axioms and they thoroughly studied their PoA for the following

two classes of protocols that use different informational assumptions from the

perspective of the designer.

Non-uniform protocols: the designer has full knowledge of the instance, that

is, she knows both the network topology and in addition the players’ terminals;

they showed that a simple priority (ordered) protocol has a constant PoA.

Uniform protocols: the designer has no knowledge of the underlying graph;

they showed that the PoA is logarithmic.

There are situations where the former assumption is too optimistic while the

latter is too pessimistic. In [43] (co-authored with Christodoulou) we propose

a model that lies in the middle-ground; the designer has prior knowledge of the

underlying metric, but is uncertain about the positions of the terminals. We

4The subadditive functions constitute a superclass of the concave functions only in the case
of a single resource. Otherwise the two classes of functions are incomparable.

5The class of lattice-submodular functions is a subclass of subadditive functions and coin-
cides with the concave functions in the case of a single resource.
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consider three different models, the adversarial, the stochastic and the Bayesian

model.

In the adversarial model, the designer knows nothing about the positions

of the terminals and needs to process the graph and choose a single, universal

cost-sharing protocol that has low PoA against all possible requested subsets (no

distributional assumptions are made for the requested subset of players). The

main question we address is: to what extent can prior knowledge of the under-

lying metric help in the design? We first demonstrate that there exist graph

metrics, the outerplanar graphs, where knowledge of the underlying metric can

dramatically improve the performance of good network cost-sharing design. For

outerplanar graph metrics, we provide a universal cost-sharing protocol with

PoA of at most 2, in contrast to protocols that, by ignoring the graph metric,

cannot achieve better than a logarithmic PoA. However, in our main technical

result, we show that there exist graph metrics, namely the hypercube, for which

knowing the underlying metric does not help; that is, any universal protocol has

logarithmic PoA which is tight and matches the bound of [36] that ignores the

graph metric. We attack this problem by developing new techniques that em-

ploy powerful tools from extremal combinatorics, and more specifically Ramsey

Theory in high dimensional hypercubes.

Those results partially answer our questions, however, the question remains

for other significant metrics such as the Euclidean metric and planar graphs.

Furthermore, very few is known with respect to randomised protocols. The only

known result is a logarithmic lower bound of the protocol that chooses an order

uniformly at random [72].

In [43] we further study the stochastic model, where the players’ terminals

are drawn from some probability distribution which is given to the designer. The

goal is now to choose a universal protocol where the expected worst-case cost in

the Nash equilibrium is not far from the expected optimal cost. We show that

there exists a randomised ordered protocol that achieves constant PoA.

In [42] (co-authored with Christodoulou and Leonardi) we study the Bayesian

design, which is similar to the stochastic, with the following ground difference:

the players have also incomplete information, i.e. they are only aware of the

probability distribution over the players’ terminals and they choose their paths

so that they minimise their expected cost-share. We show that the PoA under

the Bayesian setting can be very high (Ω(
√
n), where n is the number of players)

for any cost-sharing protocol satisfying some natural properties. One of them is
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the budget-balance, where players cost-shares should cover exactly the occurring

usage cost. However, by relaxing this assumption and requiring budget-balance

only in all equilibria solutions, we design a cost-sharing protocol with constant

PoA. The protocol is derived after showing an interesting connection between al-

gorithms for oblivious stochastic optimisation problems and cost-sharing design.

We further show how to derive the same constant bound on the PoA by using

anonymous posted prices.
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Part I

Simple Auctions
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CHAPTER 2

Overview

This part is based on joint works with George Christodoulou, Annamária Kovács

and Bo Tang. Chapters 4, 5, 6 are based on the paper [41], co-authored with

George Christodoulou, Annamária Kovács and Bo Tang, which was published

in the ACM Transaction on Economics and Computation in 2016. Chapter 7 is

based on the paper [46], co-authored with George Christodoulou and Bo Tang,

which appeared in the Proceedings of the 8th International Symposium on Al-

gorithmic Game Theory in 2015 and was invited to Special Issue of Theory of

Computing Systems [47] in 2016.

Allocating many resources to many players with combinatorial valuation func-

tions over allocations constitutes a fundamental optimisation problem. In this

thesis we consider both indivisible and divisible recourses. We study the for-

mer case as a combinatorial auction and the latter in the context of bandwidth

allocation.

A very common objective is to maximise the social welfare, i.e. the aggre-

gation of players’ valuation. Under this objective, a mechanism designer should

decide the allocation and possible payments for the players, without having ac-

cess to their valuations, and they should only declare their (maybe non-true)

preferences.

This is a well-studied problem for which it is known that the celebrated VCG

mechanism is truthful, meaning that declaring their true valuation is players’

(weakly) dominant strategy, i.e. it is in their best interest to declare the truth.

Furthermore, the VCG mechanism allocates the resources in such a way that the

aggregation of players’ declared valuation is maximised. Therefore, under the

assumption that the participants are rational and hence, they declare their true
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preference, the VCG mechanism provides the desired outcome, i.e. maximises

the social welfare. In spite of VCG’s nice properties, it is rarely used in practice

due to two main drawbacks: a) it is hard for the players to describe fully their

valuations and b) it is computationally inefficient, meaning that computing the

allocation and the payments requires time possibly exponential with respect to

the number of resources and players. As a consequence many simpler mechanisms

have been recruited.

Simultaneous (item-bidding) Auctions. Of particular interest are

the so-called simultaneous auctions, (also known as item-bidding auctions) from

both practical and theoretical aspects. In such an auction, the resources are

sold simultaneously in single-item auctions. Bikhchandani [21] was the first who

studied the simultaneous sealed bid auctions in full information settings and

observed the inefficiency of their equilibria.

Depending on the type of single-item auctions used, the two main variants

that have been studied for combinatorial auctions are simultaneous second-price

auctions [19, 40, 64] and simultaneous first-price auctions [64, 86, 133]. In both

cases, the bidders are asked to submit a bid for each item. Then each item is

assigned to the highest bidder. The main difference is that in the former a winner

is charged an amount equal to the second highest bid while in the latter a winner

pays his own bid.

Another interesting variant is the simultaneous all-pay (first-price) auction [45,

133], where each item is still assigned to the highest bidder, however, all players

should pay their bids. It is a common economic phenomenon in competitions

that agents make irreversible investments without knowing the outcome. All-

pay auctions are widely used in economics to capture such situations, where all

players, even the losers, pay their bids.

Simultaneous first-price auctions have been shown to be more efficient than

second-price and all-pay auctions. For general valuation functions, Hassidim et

al. [86] showed that pure equilibria of first-price auctions are efficient whenever

they exist, but mixed and Bayesian Nash equilibria of first-price auctions can be

highly inefficient in settings with complementarities. For two important classes of

valuation functions, namely fractionally subadditive and subadditive6, for mixed

and Bayesian Nash equilibria, Hassidim et al. [86], Syrgkanis and Tardos [133]

and Feldman et al. [64] showed that simultaneous first-price auctions have lower

6Fractionally subadditive valuations are also known as XOS valuations. For definitions of
these valuation functions we refer the reader to Chapter 3.
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or the same Price of Anarchy than the respective bounds obtained for second-

price auctions, due to Bhawalkar and Roughgarden [19], Christodoulou, Kovács

and Schapira [40] and Feldman et al. [64], and for the all-pay auctions, due to

Christodoulou et al. [41] and Christodoulou, Sgouritsa and Tang [45].

Simultaneous auctions can be also used for allocating many divisible resources

like bandwidth. Many resources are auctioned in simultaneous single-resource

auctions. In the literature [91, 46, 133], the proportional allocation mechanism

has been used as the single-resource auction, where each bidder submits a single

bid and receives a portion of the resource proportional to her bid by paying her

own bid.

Multi-Unit Auctions. The multi-unit auction is a special case of combi-

natorial auction where all items are identical (or alternatively, they are units of

the same item). Hence, the bidders do not discriminate among items and their

valuation becomes simpler since it depends only on the number of items received

and not on the specific set. The natural bidding scheme now is to submit one

bid for each number of items. In this thesis we consider the standard bidding

format [56] of non-increasing marginal bids; that is the willingness to pay for an

additional unit decreases with the number of units already obtained.

There are many variations for auctioning m units of the same item: the

discriminatory auction, the uniform price auction and the Vickrey multi-unit

auction [56, 100, 108]. In all those auctions, the units are allocated to the m

highest marginal bids, and their difference lies on the pricing scheme. Our focus

is on the discriminatory auction, which can be seen as the variant of the first-

price auction adjusted to multi-unit auctions, where each bidder pays her winning

marginal bids.

Even though we do not sell each item separately any more, we consider this

auction along with item-bidding auctions due to the simplicity of its bidding

scheme.

2.1 Results

Combinatorial Auction. Following the work of [86, 64, 133], we study

the Price of Anarchy of first-price auctions under full information or Bayesian

settings. Our main concern is the development of tools that provide tight bounds

for the Price of Anarchy of these auctions. Our results complement the current
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knowledge about simultaneous first-price auctions.

The current best upper bounds for the Price of Anarchy in first-price auction

are e/(e− 1) ≈ 1.58 for XOS valuations due to Syrgkanis and Tardos [133], and

2 for subadditive valuations Feldman et al. [64] (proven by different techniques).

We provide matching lower bounds to those upper bounds, showing that even for

the case of full information and mixed Nash equilibria the PoA is at least e/(e−
1) for submodular7 valuations (and therefore for XOS) and 2 for subadditive

valuations8.

We present an alternative proof of the upper bound of e/(e − 1) for first-

price auctions with fractionally subadditive valuations. This bound was shown

before in [133] by using a general smoothness framework. Our approach does

not adhere to their framework. A nice thing with our approach, is that it reveals

the worst-case price distribution, that we then use as a building block for the

matching lower bound construction (Chapter 4). An immediate consequence of

our results is that the Price of Anarchy of these auctions stays the same, for

mixed, correlated, coarse-correlated, and Bayesian Nash equilibria. Only for

pure Nash equilibria it is equal to 1. Our findings suggest that smoothness may

provide tight results for certain classes of auctions, using as a base class the class

of mixed Nash equilibria, and not that of pure equilibria. This is in contrast to

what is known for routing games, where the respective base class was the class

of pure equilibria.

Then we generalise our results to a class of item bidding auctions that we

call bid-dependent auctions (Chapter 5). Intuitively, a single item auction is bid-

dependent if the winner is always the highest bidder, and a bidder’s payment

depends only on whether she gets the item or not and on her own bid. Note

that both winner and losers may have to pay. Apart from the first-price auction

(where the losers pay 0), another notable item-bidding auction that falls into

this class is the simultaneous all-pay (first-price) auction [133], where all bidders

(even the losers) are charged their bids. However, the second-price auction is

not a bid-independent auction, since the bidder’s payments may depend also on

other bidder’s bids, e.g. the highest bidder pays the second highest bid.

For submodular and XOS valuations we show upper bounds in the range be-

7In fact our lower bound holds even for the class of OXS valuations that is a strict subclass
of submodular valuations. We refer the reader to Chapter 3 for a definition of OXS valuations
and for their relation to other valuation classes.

8Independently, and after a preliminary version of [41], Roughgarden [124] showed a general
method to provide lower bounds for the Price of Anarchy of auctions. We discuss it and compare
it to our work in Section 2.2.
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tween e/(e − 1) and 2 that depend on a parameter of the auction. We further

show that the lower bound of e/(e − 1) of the first-price auction can be gener-

alised for all bid-dependent auctions. For subadditive valuations, we show that

the PoA of simultaneous bid-dependent auctions is exactly 2, by showing tight

upper and lower bounds. We show that the upper bound technique due to Feld-

man et al. [64] for first-price auctions, can be applied to all mechanisms of this

class. Interestingly, although one might expect that first-price auctions perform

strictly better than all-pay auctions, our results suggest that all simultaneous

bid-dependent auctions perform equally well. We note that our upper bound

for subadditive valuations extends the previously known upper bound of 2 for

all-pay auctions that was only known for XOS valuations [133] .

Multi-Unit Auction. We further apply our techniques on discrimina-

tory price multi-unit auction (Chapter 6). We complement the results of de

Keijzer et al. [56] for the case of subadditive valuations, by providing a matching

lower bound of 2, for the standard bidding format. For the case of submodu-

lar valuations, we were able to provide a lower bound of 1.099. We were also

able to reproduce their upper bound of e/(e− 1) for submodular bids, using our

non-smooth approach. Note that the previous lower bound for such auctions was

1.0004 [56] for Bayesian Nash equilibria. Both our lower bounds hold for the case

of mixed Nash equilibria and therefore for more general equilibrium concepts.

Bandwidth Allocation. Johari and Tsitsiklis [91] studied the efficiency

of the proportional allocation mechanism. They noticed that it does not always

result in an outcome that maximises the social welfare. On the other hand, they

showed that this efficiency loss is bounded by a constant when agents’ valua-

tions are concave. More specifically, they proved that the proportional alloca-

tion mechanism admits a unique pure Nash equilibrium (a result due to Hajek

and Gopalakrishnan [82]) with PoA of 4/3 and there is no other mixed Nash

equilibrium. Their result holds even when many resources are auctioned in si-

multaneous single-resource auctions, where players have combinatorial valuation

functions over fractional allocations.

An essential assumption used by Johari and Tsitsiklis [91] is that agents

have complete information of each other’s valuations. However, in many realistic

scenarios, the agents are only partially informed, which is expressed by using

the Bayesian framework. A natural question is whether the efficiency loss is still

bounded in the Bayesian setting. We give a negative answer to this question
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by showing that the PoA over Bayesian equilibria is at least
√
m/2, where m

is the number of resources (Chapter 7). This result complements the study by

Caragiannis and Voudouris [30], where the PoA of single-resource proportional

allocation games is shown to be at most 2 in the Bayesian setting.

Non-concave valuation functions were studied by Syrgkanis and Tardos [133]

for both full information and Bayesian games. They showed that, when agents’

valuations are lattice-submodular, the PoA for coarse correlated and Bayesian

Nash equilibria is at most 3.73 by applying their general smoothness framework.

We study subadditive valuations that is a superclass of lattice submodular val-

uations, but not of concave valuations [122]9, and we prove that the PoA over

Bayesian Nash equilibria is at most 2 (Chapter 7). Moreover, we show optimality

of the proportional allocation mechanism by proving that this bound is tight and

cannot be improved by any simple mechanism, as defined in the framework of

Roughgarden [124], or any scale-free mechanism10.

2.2 Literature Review

A long line of research aims to design simple auctions with good performance

guarantee (see e.g. [85, 33]). The (in)efficiency of first-price price auctions has

been observed in economics (cf. [100]) starting from the seminal work by Vick-

rey [138].

Simultaneous (item-bidding) Auctions. Bikhchandani [21] was

the first who studied the simultaneous sealed bid auctions in full information

settings and observed the inefficiency of their equilibria. Christodoulou, Kovács

and Schapira [40] extended the concept of PoA to the Bayesian setting and

applied it to simultaneous (item-bidding) auctions. Bikhchandani [21] and then

Hassidim et al. [86] showed that, in case of general valuations, the pure Nash equi-

libria of first-price auctions are always efficient (whenever they exist), whereas

regarding the second-price auctions, Fu, Kleinberg and Lavi [70] proved that the

PoA is at most 2 under the no-overbidding assumption11. For Bayesian Nash

equilibria, Syrgkanis and Tardos [133] and Feldman et al. [64] showed improved

9In fact lattice-submodular and concave functions coincide in the single dimensional case.
10The scale free mechanisms are formally defined in Section 7.2.3. The basic property of a

scale-free mechanism is that, if every bid is scaled by the same constant, the outcome remains
unchanged.

11The no-overbidding assumption is satisfied if for any bidder the sum of her bids over any
set of items does not exceed her valuation of this set
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Valuations Lower Bound Upper Bound

General, Pure 1 1 [21, 86]
General, M-B Ω(

√
m) [86] O(m) [86]

SA, M-B 2 [This thesis] 2 [64]
(XOS, SM, OXS) M-B e/(e− 1) [This thesis] e/(e− 1) [133]

Table 2.1: In the first column, the first argument refers to the valuation class
and the second argument to the related equilibrium concept. SA and SM stand
for subadditive and submodular valuations, respectively, and whenever ‘M-B’
appears the bounds hold for mixed, correlated, coarse correlated (defined in
Chapter 3) or Bayesian Nash equilibria.

upper bounds on the PoA of first-price and second-price auctions. Syrgkanis

and Tardos [133] came up with a general composability framework of smooth

mechanisms, that proved to be quite useful, as it led to upper bounds for several

settings, such as first price auctions, all-pay auctions and multi-unit auctions.

Only a few lower-bound results are known for the PoA of simultaneous auc-

tions. For valuations that include complementarities, Hassidim et al. [86] pre-

sented an example with PoA = Ω(
√
m) for the first-price auction; as mentioned

in [64], similar lower bound can be derived for the second-price auction, as well.

Under the non-overbidding assumption, Bhawalkar and Roughgarden [19] gave

a lower bound of 2.013 for the second-price auction with subadditive bidders

and Ω(n1/4) bidders’ valuations are drawn from correlated distributions. In [64],

similar results are shown under the weak non-overbidding assumption. We sum-

marise the PoA results for the first-price auction in table 2.1.

Independently, Roughgarden [124] presented a very elegant methodology to

provide PoA lower bounds via a reduction from communication or computational

complexity lower bounds for the underlying optimisation problem. One conse-

quence of this reduction is a general lower bound of 2 and e/(e− 1) for the PoA

of any simple12 auction (including simultaneous auctions) with subadditive and

fractionally subadditive bidders, respectively. Therefore, there is an overlap with

our results for these two classes of valuations.

We emphasise that this approach is incomparable to ours in the following

sense. On the one hand, the results in [124] hold for more general formats of

combinatorial auctions than the ones we study here. On the other hand, our

e/(e − 1) lower bound holds even for more special valuation functions where

the results of [124] are either weaker (2e/(2e− 1) for submodular valuations) or

12In a simple mechanism, the players’ action space should be at most sub-doubly-exponential
in the number of items.
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not applicable (for OXS valuations). Feige and Vondrák [63] showed that, for

submodular valuations, a strictly higher than 1 − 1/e amount of the optimum

social welfare can be obtained with polynomial communication13, and Nisan

and Segal [117] showed that, for gross substitute valuations (and therefore for

its subclass, OXS valuations) exact efficiency can be obtained with polynomial

communication. These two results show that, either there exists an auction

better than the first-price auction, or the technique of Roughgarden [124] does

not provide tight lower bounds for these classes of valuations in contrast to our

results. We also note that the PoA lower bound obtained by the reduction used

in [124] can only be applied to approximate Nash equilibria while our results are

proved via an explicit construction that apply to exact Nash equilibria. Further,

our PoA lower bound proof for subadditive valuations uses a simpler construction

than the proof in [124] and it holds even for the case of only 2 bidders and identical

items (multi-unit auction). Finally, it should be stressed that none of our lower

bounds for multi-unit auctions can be derived from [124].

Multi-Unit Auction. Markakis and Telelis [108] studied uniform price

multi-unit auctions. De Keijzer et al. [56] bounded the PoA under the Bayesian

setting for several formats of multi-unit auctions with first or second price rules.

Auctions employing greedy algorithms were studied by Lucier and Borodin [105].

A number of works [102, 29, 126] studied the PoA of generalised second-price

auctions in the full information and Bayesian settings and even with correlated

bidders [106]. Chawla and Hartline [32] proved that for the generalised first-price

auctions with symmetric bidders, the pure Bayesian Nash equilibrium is unique

and always efficient.

Bandwidth Allocation. The efficiency of the proportional allocation

mechanism has been extensively studied in the literature of network resource

allocation. Besides the work mentioned so far, Johari and Tsitsiklis [92] studied

a more general class of scalar-parametrised mechanisms and proved that the

proportional allocation mechanism achieves the best PoA when the mechanism

only chooses a single price.

Syrgkanis and Tardos [133], Caragiannis and Voudouris [30] and Christodoulou

et al. [46] studied the efficiency of the proportional allocation mechanism in the

setting where agents are constrained by budgets that represent the maximum

13The information revealed by the bidders, e.g. their valuation for sets of items, needs
polynomial time to be exchanged.
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payment they can afford. They used as a benchmark the effective welfare cap-

ping the contribution of each player to the welfare by their budget. Syrgkanis and

Tardos [133] proved an upper bound on the PoA of 3.73 for lattice-submodular

valuations by considering many resources under both the full information and

the Bayesian setting. Caragiannis and Voudouris [30] improved this bound to

2.78 for a single resource. At last, Christodoulou et al. [46] further improved

both bounds to 1 + φ ≈ 2.618, where φ is the golden ratio, for the full informa-

tion case with many resources and even for the more general subadditive class

of valuations. Zhang [142] and Feldman, Lai and Zhang [67] studied the effi-

ciency and fairness of the proportional allocation mechanism when agents aim

at maximising non quasi-linear utilities subject to budget constraints.

Nguyen and Tardos [112] and Christodoulou et al. [46] studied the propor-

tional allocation mechanism in the polyhedral environment, where there exists a

collection of resources and the goal is to associate each agent with a single value,

representing their level of activity. Nguyen and Tardos [112] and Christodoulou

et al. [46] proved, respectively, that the PoA for pure Nash equilibria are 4/3 for

concave valuations and 2 for subadditive valuations. Correa, Schulz and Stier-

Moses [55] showed a relationship in the efficiency loss between the proportional

allocation mechanism and non-atomic selfish routing for not necessarily concave

valuation functions.
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CHAPTER 3

Preliminaries

3.1 Mechanisms and Valuations

In a combinatorial auction with n players (or bidders) and m items, every player

i ∈ [n] has a valuation for each subset of items, given by a valuation set function

vi : 2[m] → R+, where [n] denotes the set {1, 2, . . . , n}. The multi-unit auction

is a special case where all items are identical, or alternatively there are m units

of the same item, and the valuation of each player can be represented more

concisely by vi : [m] → R+. In bandwidth allocation (divisible resources) there

are n agents who compete for m divisible resources with unit supply. Every agent

i ∈ [n] has a valuation function, vi : [0, 1]m → R+.

A mechanism takes the agents’ bids/strategies b = (b1, . . . , bn) as input and

outputs a tuple (X,p) for combinatorial auctions, (ξ,p) for multi-unit auctions

and (x,p) for divisible resources, where X, ξ and x denote the allocation of

the resources to the players and p is their payments. The payment vector p =

p(b) = (p1, . . . , pn) specifies the agents’ payments, where pi is a real value that

denotes the payment of player i.

Combinatorial auction. The allocation X = X(b) = (X1, . . . , Xn) is a partition

of the items, where Xi is the set allocated to player i (allowing empty

sets Xi), so that each item is assigned to exactly one player. The valuation

functions are monotone and normalised, that is, for every S ⊆ T ⇒ vi(S) ≤
vi(T ), and vi(∅) = 0. We use the short notation vi(j) = vi({j}).

Multi-unit auction. The allocation ξ= (ξ1, ξ2, . . . , ξn) is a vector of nonnegative

integers, where ξi denotes the number of units allocated to player i, and
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we require that
∑

i ξi ≤ m. The valuation functions are non-decreasing,

i.e. vi(s) ≤ vi(s+ 1) for all s ∈ [m− 1], and normalised, i.e. vi(0) = 0.

Bandwidth Allocation. The vector x = x(b) = (x1, . . . , xn) specifies the allo-

cation of resources, such that the total allocation of each resource doesn’t

exceed the unit supply. For every i, xi = (xi1, . . . , xim) = (xij)j denotes the

allocation to agent i, where xij is the quantity she receives from recourse j.

We require that for every j,
∑

i xij ≤ 1. The valuations are monotonically

non-decreasing, that is, for every two allocations, xi, x
′
i ∈ [0, 1]m, where

∀j ∈ [m] xij ≤ x′ij, we have vi(xi) ≤ vi(x
′
i). We further assume that the

valuations are normalised as vi((0, . . . , 0)) = 0.

We represent the valuations of all agents, respectively for the three auc-

tions, by using the vectors v = v(X) = (v1(X1), . . . , vn(Xn)), v = v(ξ) =

(v1(ξ1), . . . , vn(ξn)) and v = v(x) = (v1(x1), . . . , vn(xn)). Occasionally, instead

of vi(Xi), v(ξi) and vi(xi) we may use the notation vi(X), vi(ξ) and vi(x), which

represents agent i’s valuation under the allocation X, ξ and x, respectively.

For each player i, there is some possible set of valuations Vi such that vi ∈ Vi.
A valuation profile for all players is v = (v1, v2, . . . , vn) ∈ ×iVi. In the Bayesian

setting, the valuation of each player i is drawn from Vi according to some known

distribution Di. We assume that the Di’s are independent (and possibly different)

over the players and we denote by D = ×iDi their product distribution. In the

full information setting the valuation vi is fixed and known by all other players

for all i ∈ [n]. Note that the latter is a special Bayesian auction, in which player

i has valuation vi with probability 1.

3.2 Item-bidding Auctions

In an item bidding auction every agent i submits a non-negative bid bij for each re-

source j representing their willingness to pay for that resource; bi = (bi1, . . . , bim)

is a vector of the bids for each resource. In the multi-unit auction, where all

items are identical, we consider the standard bidding format [56, 100] in which

the bids are in decreasing order14, i.e. bij ≥ bij+1 and bij denotes player i’s

14This is a reasonable restriction when the valuations of an additional unit decreases with
the number of units already obtained, which is the case in submodular valuations. However,
we also use the same bidding format with subadditive valuations, which is also justifiable in
discriminatory auctions where the players pay their bid. The reason is that in real life it is
very rare that extra charges occur by increasing the number of obtained units; on the contrary,
it is very common that buyers receive discounts for buying more units.
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willingness to pay for receiving an extra item given that she has already paid

for j − 1 items. We denote the strategies of all players as b = (b1, . . . , bn) and

by b−i = (b1, . . . , bi−1, bi+1, . . . , bn) we denote the strategies of all agents except

for i. For simplicity, in combinatorial auctions sometimes we use the notation

bi(S) =
∑

j∈S bij, and bi(j) = bij.

We study specific mechanisms for the combinatorial auction, the multi-unit

auction and the bandwidth allocation which are the first-price auction, the dis-

criminatory auction and the proportional allocation mechanism, respectively.

The items are then allocated as follows:

First Price Auction: For each j ∈ [m], the bidder i with the highest bid bij

receives the item. In a case of a tie we consider an arbitrary randomised

tie-breaking rule. Note that with such a rule, for any fixed b = (b1, . . . , bn),

the probabilities for the players to get a particular item are fixed. If no ties

appear, the allocation to player i is Xi = {j ∈ [m] : bij > maxk 6=i(bkj)}.
A player pays his own bid (the highest bid) for every item he receives, i.e.

pi = bi(Xi).

Discriminatory Auction: The units are allocated to the m highest bids, i.e.

ξi is the number of player i’s bids that are among the m highest bids of

all players. In discriminatory pricing, every bidder i pays the sum of his

winning bids, i.e. pi =
∑

j≤ξi bij.

Proportional Allocation Mechanism: The allocation of any resource j ∈ [m] to

player i is denoted by xij =
bij∑

k∈[n] bkj
. Each player pays the sum of her

own bids, i.e. pi =
∑

j∈[m] bij. When all agents bid 0, the allocation can be

defined arbitrarily, but consistently.

The utility ui of agent i is defined as the difference between her valuation for

the received allocation and her payment: ui(X(b),p(b)) = ui(b) = vi(Xi(b))−
pi(b) for combinatorial auctions, ui(ξ(b),p(b)) = ui(b) = vi(ξi(b)) − pi(b) for

multi-unit auctions and ui(x(b),p(b)) = ui(b) = vi(xi(b))−pi(b) for bandwidth

allocation. In the Bayesian setting, we use the notation uvii in order to specify

that vi is the valuation function of agent i. For simplicity, we use shorter notation

for expectations, e.g., we use Ev instead of Ev∼D, E[ui(b)] instead of Eb∼B[ui(b)]

and u(B) instead of Eb∼B[u(b)] whenever D and B are clear from the context.
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3.3 Bidding Strategies and Equilibria

We use b to denote a pure strategy profile; in a more general context, we denote

a strategy profile as B = (B1, . . . , Bn), where Bi is a probability distribution

over all possible pure strategies of agent i. We study five standard equilibrium

concepts: pure Nash, mixed Nash, correlated, coarse correlated and Bayesian

Nash equilibria. The first four of them are for the full information setting and

the last one is defined in the Bayesian setting. In each one of the following lines,

a strategy profile B forms the equilibrium notion on the left, if for every agent i

and all bids b′i it satisfies the inequality on the right:

Pure Nash: B chooses b with probability 1, ui(b) ≥ ui(b
′
i,b−i).

Mixed Nash: B = ×iBi, Eb∼B[ui(b)] ≥ Eb−i∼B−i [ui(b
′
i,b−i)].

Correlated: B = (Bi)i, Eb∼B[ui(b)|bi] ≥ Eb−i∼B−i [ui(b
′
i,b−i)|bi].

Coarse correlated: B = (Bi)i, Eb∼B[ui(b)] ≥ Eb−i∼B−i [ui(b
′
i,b−i)].

Bayesian Nash: B(v) = ×iBi(vi), Ev−i,b[uvii (b)] ≥ Ev−i,b−i [ui(b
′
i,b−i)], ∀vi ∈ Vi.

The first four classes of equilibria are in increasing order of inclusion. More-

over, any pure (or mixed) Nash equilibrium is also a Bayesian pure (or mixed)

Nash equilibrium.

3.4 Price of Anarchy

We give the following definitions only with respect to combinatorial auctions;

the same notions can be defined accordingly for the multi-unit auctions and the

bandwidth allocation.

The most common global objective in such settings is to maximise the sum of

the valuations of the players for their received sets of items, i.e., to maximise the

social welfare SW(X) of the allocation, where SW(X) =
∑

i∈[n] vi(Xi). Therefore,

for an optimal allocation O(v) = Ov = O = (O1, . . . , On) the value SW(O) is

maximum among all possible allocations. In bandwidth allocation we denote the

optimum allocation as o(v) = ov = o = (o1, . . . , on) and by oi = (oi1, . . . , oim)

we denote the optimal allocation to agent i. In the multi-unit auction we use

the same notation, o(v) = ov = o = (o1, . . . , on), for the optimum allocation,

but now oi denotes the number of units allocated to player i in o. Whenever the

allocation rule X is clear from the context, we use SW(b) and vi(b) instead of
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SW(X(b)) and vi(Xi(b)).

The Price of Anarchy (PoA) is defined as the worst case ratio between the

social welfare in the optimum allocation and the social welfare in any equilib-

rium. We define the PoA with respect to pure Nash equilibria, mixed Nash

(or correlated or coarse correlated) equilibria and Bayesian Nash equilibria15,

respectively, as

PoA = max
v∈×iVi

max
b∈N

SW(O(v))

SW(b)
; PoA = max

v∈×iVi
max

B∈MN

SW(O(v))

Eb∼B[SW(b)]
;

PoA = max
D

max
B∈BN

Ev∼D[SW(O(v))]

Ev∼D,b∼B(v)[SW(b)]
,

where N ,MN and BN are respectively the sets of pure Nash equilibria, mixed

Nash (or correlated or coarse correlated) equilibria and Bayesian Nash equilibria.

3.5 Types of Valuations

3.5.1 Valuations for Combinatorial Auctions

Our results concern different classes of valuation functions, which we define next,

in increasing order of inclusion. Let v : 2[m] → R≥0, be a valuation function.

Then, for arbitrary item sets S, T ⊆ [m], v is called

– additive, if

v(S) =
∑
j∈S

v(j);

– multi-unit-demand or OXS16, if, for some k, there exist k unit demand valua-

tions v1, . . . , vk (defined as vr(S) = maxj∈S v
r(j), for any S ⊆ [m]), such that

v(S) = max
S=
⋃̇
r∈[k]Sr

∑
r∈[k]

vr(Sr);
17

– submodular, if

v(S ∪ T ) + v(S ∩ T ) ≤ v(S) + v(T );

15The equilibrium concept will be clear from the context.
16OXS stands for OR-of-XOR-of-Singletons, where SUM is denoted by OR and MAX by

XOR. XORs of singleton valuations are the unit demand valuations. In OXS valuations, the
valuation of a set is given by the best way to split the set among several unit demand valuations.

17
⋃̇

stands for disjoint union.
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– fractionally subadditive or XOS18, if v is determined by a finite set of additive

valuations fγ for γ ∈ Γ, so that

v(S) = max
γ∈Γ

fγ(S);

– subadditive, if

v(S ∪ T ) ≤ v(S) + v(T ).

It is well-known that each one of the above classes is strictly contained in the

next class, e.g., an additive set function is always submodular but not vice versa,

a submodular is always XOS, etc. [62]. As an equivalent definition, submodular

valuations are exactly the valuations with decreasing marginal values, meaning

that, for any S ⊆ T , v({j}∪T )− v(T ) ≤ v({j}∪S)− v(S) holds for any item j.

3.5.2 Valuations for Multi-Unit Auctions

In multi-unit auction we only consider submodular and subadditive valuations.

The valuation v is called:

– submodular, if the items have decreasing marginal values, that is, for every

s ≤ t ≤ m,

vi(t+ 1)− vi(t) ≤ vi(s+ 1)− vi(s);

– subadditive, if, for every s ≤ t ≤ m,

vi(s+ t) ≤ vi(s) + vi(t).

It is easy to check that every submodular valuation is also subadditive.

3.5.3 Valuations for Bandwidth Allocation

Our focus is on two valuation functions: the concave and subadditive. A function

v : [0, 1]m → R+ is

– concave, if for all x, y ∈ [0, 1]m and any λ ∈ (0, 1), it is

v((1− λ)x+ λy) ≥ (1− λ)v(x) + λv(y).

– subadditive, if for all x, y ∈ [0, 1]m, such that x+ y ∈ [0, 1]m, where x+ y is the

18XOS stands for XOR-of-OR-of-Singletons. ORs of singleton valuations are exactly the
additive valuations and we take the XOR meaning the maximum of them.

34



componentwise sum of x and y, it is

v(x+ y) ≤ v(x) + v(y).

Remark 3. Lattice submodular functions used in [133] are subadditive (see Sec-

tion 7.2). In the case of a single variable (single resource), any concave function

is subadditive; more precisely, concave functions are equivalent to lattice sub-

modular functions in this case. However, concave functions of many variables

may not be subadditive [122].
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CHAPTER 4

First Price Auction

In this chapter we study the first-price item-bidding auction where each player

submits a bid for each item and then each item is given to the highest bidder

who pays her bid for that item. We provide the exact PoA when players have

the following classes of valuations: OXS, submodular, fractionally subadditive

and subadditive.

4.1 Fractionally Subadditive Valuations

In this section we present a lower bound of e
e−1

for the PoA of mixed Nash equi-

libria in simultaneous first price auctions with OXS and therefore, submodular

and fractionally subadditive valuations. This is a matching lower bound to the

results by Syrgkanis and Tardos [133].

In order to explain the key properties of the instance that provides the tight

lower bound, we first discuss a new approach to obtain the same upper bound

for the PoA of the first-price auction as in [133]. While the upper bound that

we derive with the help of this idea, can also be obtained based on the very

general smoothness framework [126, 133], the approach we introduce here does

not adhere to this framework19. The strength of our approach consists in its

potential to lead to better (in this case tight) lower bounds, as we demonstrate

subsequently.

19Roughly, because the pure deviating bid a that we identify, depends on the other players’
bids b−i in the Nash equilibrium, whereas in the smoothness technique, it doesn’t.
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4.1.1 Upper Bound

In order to keep the presentation pure, and to focus on the main ingredients, we

first illustrate this approach on a single item auction with full information.

One Item

Since there is only one item, we drop the index referring to the items, e.g. bi is

not a vector anymore, instead it is the bid of player i for the item.

Theorem 4. The PoA of mixed Nash equilibria in first-price single-item auctions

is at most e
e−1

.

Proof. Let v = (v1, . . . , vn) be the valuations of the players, and suppose that

player h has the highest valuation, i.e. vh ∈ maxk∈[n] vk. We fix a mixed Nash

equilibrium B = (B1, B2, . . . , Bn). Let t denote the highest bid in b−h ∼ B−h,

i.e. t = maxi 6=h bi; in other words t is the threshold such that only if player h

bids above it, she gets the item. Further let F (x) be the cumulative distribution

function (CDF) of t, that is, F (x) = Pb−h∼B−h [t ≤ x]. The following lemma

prepares the ground for the selection of an appropriate bid which serves as a

deviation from the equilibrium.

Lemma 5. For any pure strategy a of player h, Eb∼B[uh(b)] ≥ F (a)(vh − a).

Proof. If F is continuous in a, then F (a) = P[t ≤ a] = P[t < a], tie-breaking in

a does not matter, and F (a) equals also the probability that bidder h gets the

item if he bids a. Therefore, F (a)(vh− a) = Eb−i∼B−i [uh(a,b−i)] ≤ Eb∼B[uh(b)],

since B is a Nash equilibrium. If F is not continuous in a (P[t = a] > 0), then,

as a CDF, it is at least right-continuous. By the previous argument E[uh(b)] ≥
F (x)(vh − x) holds for every x = a + ε where F is continuous, and the lemma

follows by taking ε→ 0.

Since in a Nash equilibrium the expected utility of every (other) player is

non-negative, by summing over all players,

n∑
i=1

E[ui(b)] ≥ F (a)(vh − a). (4.1)

On the other hand, for any fixed bidding profile b we have ui(b) = vi(b) −
pi(b), where pi(b) = bi whenever bi is a winning bid, and pi(b) = 0 otherwise.
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(a) (b)

Figure 4.1: Figure (a) is a schematic illustration of the expression F (a∗)(v −
a∗) + E[t], where A = F (a∗)(v − a∗). Figure (b) shows the CDF F̂ (x),which
makes all the inequalities of Lemma 6 tight, i.e. for every x ∈ [0,

(
1− 1

e

)
v],

F (x)(v − x) = A = v
e
.

By taking expectations with respect to b ∼ B, and summing over the players,

E[
∑

i ui(b)] = E[
∑

i(vi(b)−pi(b))] = E[
∑

i(vi(b))−maxi bi] ≤ E[SW (b)]−E[t].

By combining this with (4.1), we obtain,

E[SW (b)] = E

[
n∑
i=1

ui(b)

]
+ E[t] ≥ F (a)(vh − a) + E[t], (4.2)

for any (deviating) bid a. (Analogues of this derivation are standard in the si-

multaneous auctions literature.) We choose the bid a∗ that maximises the right

hand side of (4.2), i.e. a∗ = arg maxa F (a)(v − a) (see Figure 4.1(a) for an il-

lustration). Then, in order to upper bound the PoA, we look for the maximum

value of λ, such that,

F (a∗)(vh − a∗) + E[t] ≥ λvh. (4.3)

In fact, we want to bound the sum of the two shaded regions of Figure 4.1(a).

The following lemma settles the maximum value of such λ as 1 − 1
e

for mixed

equilibria20. This will complete the proof of the theorem, since by (4.2) and

SW (O) = vh we obtain E[SW (b)] ≥ (1− 1
e
)SW (O).

Lemma 6. For any non-negative random variable t with CDF F, and any fixed

20If B is a pure equilibrium, then it is easy to verify that F is a step function, furthermore
a∗ = t, and inequality (4.3) boils down to 1 · (vh − a∗) + a∗ = 1 · vh
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value v, it is true that

F (a∗)(v − a∗) + E[t] ≥
(

1− 1

e

)
v.

Proof. Set A = F (a∗)(v − a∗), for a∗ = arg maxa F (a)(v − a). We use the fact

that the expectation of a non-negative random variable t with CDF F can be

calculated as E[t] =
∫∞

0
(1− F (x))dx.

Thus,

F (a∗)(v − a∗) + E[t] ≥ A+

∫ v−A

0

(1− F (x))dx

= A+ (v − A)−
∫ v−A

0

F (x)dx

≥ v −
∫ v−A

0

A

v − x
dx = v + A ln

(
A

v

)
≥ v +

v

e
ln

(
1

e

)
=

(
1− 1

e

)
v,

where the last inequality holds because A ln(A
v

) is minimised for A = v
e
.

This completes the proof of Theorem 4.

Worst-case price distribution. The CDF F (x) that makes all the

inequalities of (the proof of) Lemma 6 tight (see Figure 4.1(b)), is

F̂ (x) =

{
v

e(v−x)
, for x ≤

(
1− 1

e

)
v

1 , for x >
(
1− 1

e

)
v

Observe that for x ≤
(
1− 1

e

)
v, F̂ (x)(v − x) = v

e
and for x >

(
1− 1

e

)
v,

F̂ (x)(v−x) = v−x < v− (1− 1
e
)v = v

e
. So, the bid that maximises the quantity

F̂ (a)(v− a) is any value a ∈ [0,
(
1− 1

e

)
v]. The given distribution F̂ for t makes

inequality (4.3) tight. Note that the inequality of Lemma 5 is also tight for all

a ∈ [0,
(
1− 1

e

)
v]. In order to construct a (tight) lower bound for the PoA, we

also need to tighten the inequality in (4.2). Intuitively, we need to construct a

Nash equilibrium, where the CDF of t is equal to F̂ (x) and bh doesn’t exceed t

in expectation. We present a construction (with many items) in Section 4.1.2.

Remark 7. Here we discuss our technique and the smoothness technique that

achieves the same upper bound [133]. In [133], a particular mixed bidding strat-

egy Ai was defined for each player i, such that for any pure strategies b, if
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t = maxk 6=i bk then EAi [ui(Ai, t)] + t ≥ v(1 − 1/e). If we denote g(A,F ) =

EA,F [ui(a, t) + t], it can be deduced that maxA mint g(A, t) ≥ v(1 − 1/e). In

Lemma 6 we show that minF maxa g(a, F ) ≥ v(1 − 1/e). Moreover, we prove

that the inequality is tight by providing the minimising distribution F̂ , such

that maxa g(a, F̂ ) = v(1−1/e). By the Minimax Theorem, minF maxa g(a, F ) =

maxA mint g(A, t) = v(1− 1/e). One advantage of our approach is that it can be

coupled with a worst-case distribution F̂ that serves as an optimality certificate

of the method. Moreover, if one can convert F̂ to Nash Equilibrium strategy pro-

file (see Section 4.1.2), a tight Nash equilibrium construction is obtained; this

can be a challenging task, though.

Many Items

For completeness, we generalise the upper bound proof to many items and for

more general informational and equilibrium concepts.

Coarse Correlated Equilibrium. We first prove that for all XOS

(fractionally subadditive) valuation functions, the PoA is at most e
e−1

even in

coarse correlated equilibria.

Theorem 8. The PoA for simultaneous first-price auctions with XOS valuations

for coarse correlated equilibria is at most e
e−1
≈ 1.58.

Proof. The proof highly relies on the definition of XOS valuations. We refer the

reader to Section 3.5.1 for a reminder.

Lemma 9. Let S be any set of items, and fi be a maximising additive function

of S for player i with XOS valuation function vi. Then for any strategy profile

b, where bij = 0 for j /∈ S,

ui(b) ≥
∑
j∈S

P[j ∈ Xi(b)](fi(j)− bij).

Proof. By the definition of XOS valuations, we have that vi(T ) ≥ fi(T ), for every

T ⊆ S. Then,

ui(b) ≥
∑
T⊆S

P[Xi(b) = T ](fi(T )− bi(T ))

=
∑
T⊆S

∑
j∈T

P[Xi(b) = T ] (fi(j)− bij)
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=
∑
j∈S

∑
T⊆S:j∈T

P[Xi(b) = T ] (fi(j)− bij)

=
∑
j∈S

P[j ∈ Xi(b)] (fi(j)− bij) .

We fix a coarse correlated equilibrium B = (B1, B2, . . . , Bn). Let tij be the

random variable indicating the highest bid on item j in b−i ∼ B−i, i.e. tij =

maxk 6=i bkj, and Fij(x) = P[tij ≤ x] be the CDF of tij.

Lemma 10. For any pure strategy b′i of player i and any set of items S,

E
b∼B

[ui(b)] ≥
∑
j∈S

Fij(b
′
ij)(fi(j)− b′ij).

The proof is analogous to that of Lemma 5, by using also Lemma 9.

Let now fi be a maximising additive valuation of player i for the optimal

set Oi. By Lemma 6, for every item j, there exists a value aij such that

Fij(aij)(fi(j)− aij) +E[tij] ≥ (1− 1/e)fi(j). Then, by summing over j ∈ Oi and

applying Lemma 10 for the pure strategy aij for j ∈ Oi and 0 for the rest of the

items, we get,

E
b∼B

[ui(b)] +
∑
j∈Oi

E[tij] ≥
(

1− 1

e

)∑
j∈Oi

fi(j). (4.4)

We further give a lower on the total payments to be used next:∑
i

E
b∼B

[pi(b)] = E
b∼B

[
∑
j

max
k

(bkj)] = E
b∼B

[
∑
i

∑
j∈Oi

max
k

(bkj)]

≥ E
b∼B

[
∑
i

∑
j∈Oi

max
k 6=i

(bkj)] =
∑
i

∑
j∈Oi

E[tij]. (4.5)

By using (4.4) and (4.5) we are ready to complete the proof.

E
b∼B

[SW (b)] =
n∑
i=1

(
E

b∼B
[ui(b)] + E

b∼B
[pi(b)]

)
≥

n∑
i=1

(
E

b∼B
[ui(b)] +

∑
j∈Oi

E[tij]

)

≥
(

1− 1

e

) n∑
i=1

∑
j∈Oi

fi(j) =

(
1− 1

e

) n∑
i=1

vi(Oi)
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=

(
1− 1

e

)
SW (O).

Bayesian Nash Equilibrium. Consider any Bayesian bidding strategy

B and any valuation of player i, vi ∼ Di, drawn independently from Di. We

denote by C = (C1, C2, . . . , Cn) the bidding distribution which includes both the

randomness of both the bidding strategy b ∼ B and of the valuations v ∼ D. It

should be noted that C−i does not depend on some particular v−i, but merely

on D−i and B−i. The utility of agent i with valuation vi can be expressed by

ui(Bi(vi),C−i).

Let tij be the random variable indicating the maximum bid on item j of

players other than i, i.e. tij = maxk 6=i bkj. However, now the randomisation of

tij is derived by b−i ∼ C−i. Let Fij(x) be the CDF of tij.

Given any valuation vi, let fSvi be the maximising additive function for player

i on set S. Similarly to Lemmas 5 and 10, we can prove the following.

Lemma 11. For any valuation vi of player i, any pure strategy b′i and any set

of items S,

E
v−i

b∼B(v)

[uvii (b)] = E
b∼(Bi(vi),C−i)

[uvii (b)] ≥
∑
j∈S

Fij(b
′
ij)(f

S
vi

(j)− b′ij).

Theorem 12. The PoA of Bayesian Nash equilibria in simultaneous first price

auctions is at most e
e−1

.

Proof. Suppose B is any Bayesian Nash equilibrium and let tij be the random

variable as defined above and Fij be its CDF. We consider the following deviation

for any player i. We fix the valuation of player i to be vi and suppose that

w−i ∼ D−i. By Lemma 6, for any item j, there exists a value aij such that

Fij(aij)(f
Oi(vi,w−i)
vi (j) − aij) + E[tij] ≥ (1 − 1/e)f

Oi(vi,w−i)
vi (j). Then bid aij for

every j ∈ Oi(vi,w−i) and 0 for the rest of the items. Then, by applying Lemma

11 for S = Oi(vi,w−i) and take the expectation over w−i,

E v−i
b∼B(v)

[uvii (b)] ≥ E
w−i

[
∑

j∈Oi(vi,w−i)

Fij(aij)(f
Oi(vi,w−i)
vi

(j)− aij)] (4.6)

≥ E
w−i

[
∑

j∈Oi(vi,w−i)

(1− 1/e)fOi(vi,w−i)vi
(j)− E[tij]]. (4.7)
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By replacing w−i with v−i we get he following inequality,

E
v−i

b∼B(v)

[uvii (b)] + E
v−i

[
∑

j∈Oi(v)

E[tij]] ≥
(

1− 1

e

)
E
v−i

[
∑

j∈Oi(v)

fvi(j)]. (4.8)

We further give a lower on the total payments to be used next:∑
i

E
v∼D

b∼B(v)

[pi(b)] = E
b∼C

[
∑
i

pi(b)] = E
b∼C

[
∑
j

max
k

(bkj)]

= E
v∼D
b∼C

[
∑
i

∑
j∈Oi(v)

max
k

(bkj)] ≥
∑
i

E
v∼D

[
∑

j∈Oi(v)

E[tij]]. (4.9)

By using (4.8) and (4.9) we are ready to complete the proof.

E
v

b∼B(v)

[SW (b)] =
n∑
i=1

E
vi

[ E
v−i

b∼B(v)

[uvii (b)]] + E
v

b∼B(v)

[pi(b)]


≥

n∑
i=1

E
vi

[ E
v−i

b∼B(v)

[uvii (b)]] + E
v

[
∑

j∈Oi(v)

E[tij]]


=

n∑
i=1

E
vi

[ E
v−i

b∼B(v)

[uvii (b)] + E
v−i

[
∑

j∈Oi(v)

E[tij]]]


≥

(
1− 1

e

) n∑
i=1

E
vi

[ E
v−i

[
∑

j∈Oi(v)

fvi(j)]]

=

(
1− 1

e

) n∑
i=1

E
v

[vi(Oi(v))]

=

(
1− 1

e

)
E
v

[SW (O(v))].

4.1.2 Tight Lower Bound

Here we present a tight lower bound of e
e−1

for the PoA of mixed Nash equilibria

in simultaneous first price auctions with OXS valuations. This implies a lower

bound for submodular and fractionally subadditive (XOS) valuations. The fol-

lowing theorem (Theorem 13) is a special case of Theorem 22, however, in order
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to make the presentation clearer we also give the proof of Theorem 13.

Theorem 13. The PoA of mixed Nash equilibria in simultaneous first price

auctions with OXS valuations is at least e
e−1
≈ 1.58.

Proof. We construct an instance with n+ 1 players and nn items. We define the

set of items as M = [n]n, that is, they correspond to all the different vectors w =

(w1, w2, ..., wn) with wi ∈ [n] (where [n] denotes the set of integers {1, . . . , n}).
Intuitively, they can be thought of as the nodes of an n dimensional grid, with

coordinates in [n] in each dimension.

We call player 0 the dummy player, and all other players i ∈ [n] real players.

We associate each real player i with one of the dimensions (directions) of the

grid. In particular, for any fixed player i, her valuation for a subset of items

S ⊆ M is the size (number of elements) in the n − 1-dimensional projection of

S in direction i. Formally,

vi(S) = |{w−i | ∃wi s.t. (wi, w−i) ∈ S}|.

It is straightforward to check that vi has decreasing marginal values, and is

therefore submodular. It can be shown that those valuations are also OXS21.

The dummy player 0 has valuation 0 for any subset of items.

Given these valuations, we describe a mixed Nash equilibrium B = (B1, . . . , Bn)

having a PoA arbitrarily close to e/(e−1), for large enough n. The dummy player

bids 0 for every item, and receives the item if all of the real players bid 0 for

it. The utility and welfare of the dummy player is always 0. For real players

the mixed strategy Bi is the following. Every player i picks a number ` ∈ [n]

uniformly at random, and an x according to the distribution with CDF

G(x) = (n− 1)

(
1

(1− x)
1

n−1

− 1

)
,

where x ∈
[
0, 1−

(
n−1
n

)n−1
]
. Subsequently, she bids x for every item w =

(`, w−i), with wi = ` as ith coordinate, and bids 0 for the rest of the items, see

Figure 4.2 for the cases of n = 2 and n = 3. That is, in any bi in the support of

Bi, the player bids a positive x only for an n− 1 dimensional slice of the items.

21In the definition of OXS valuations (Section 3.5.1), we set k = nn−1 and for the unit-
demand valuations corresponding to player i the following holds: if item j corresponds to
w = (w1, w2, ..., wn) then for each r ∈ [k], vri (j) = 1, if w−i is the n-ary representation of r
and vri (j) = 0, otherwise.
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(a) (b) (c)

Figure 4.2: The figure illustrates the cases n = 2 and n = 3 ((a) and (b) respec-
tively) for the lower bound example with OXS valuation functions. In (c) an
optimal allocation for the case n = 3 is shown.

Observe that G has no mass points, so tie-breaking matters only in case of 0 bids

for an item, in which case player 0 gets the item.

Let F (x) denote the probability that bidder i gets a fixed item j, given that

she bids bij = x for this item, and the bids in b−i are drawn from B−i (due to

symmetry, this probability is the same for all items w = (`, w−i)). For every

other player k, the probability that she bids 0 for item j is (n − 1)/n, and the

probability that j is in her selected slice but she bids lower than x is G(x)/n.

Multiplying over the n− 1 other players, we obtain22

F (x) =

(
G(x)

n
+
n− 1

n

)n−1

=

(
n−1
n

)n−1

1− x
.

Notice that vi is an additive valuation restricted to the slice of items that player

i bids for in a particular bi. Therefore, when player i bids x in bi, her ex-

pected utility is F (x)(1 − x) for one of these items, and comprising all items

it is E[ui(bi)] = nn−1F (x)(1− x) = nn−1
(
n−1
n

)n−1
= (n− 1)n−1.

Next we show that B is a Nash equilibrium. In particular, the bids bi in the

support of Bi maximise the expected utility of a fixed player i.

First, we fix an arbitrary w−i, and focus on the set of items C := {(`, w−i) | ` ∈
[n]}, which we call a column for player i. Recall that i is interested in getting

only one item within C, while her valuation is additive over items from different

columns. Moreover, in a fixed b−i, every other player k submits the same bid

for all items in C, because either the whole C is in the current slice of player k,

22Observe that F (x), for large n, converges to F̂ (x), which is the worst case distribution
derived during the proof of the upper bound.
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and she bids the same value x, or no item from the column is in the slice and

she bids 0. Consider first a deviating bid, in which player i bids a positive value

for more than one items in C, say (at least) the values x ≥ x′ > 0 where x is her

highest bid in C. Then her expected utility for this column is strictly less than

F (x)(1− x), because her valuation is F (x) · 1, but she might have to pay x+ x′,

in case she gets both items. Consequently, bidding x for only one item in C and

0 for the rest of C is more profitable.

Second, observe that restricted to a fixed column, submitting any bid x ∈[
0, 1−

(
n−1
n

)n−1
]

for one arbitrary item results in the constant expected utility

of
(
n−1
n

)n−1
, whereas a bid higher than 1 −

(
n−1
n

)n−1
guarantees the item but

pays more so the utility becomes strictly less than
(
n−1
n

)n−1
for this column. In

summary, bidding for exactly one item from each column, an arbitrary (possibly

different) bid x ∈
[
0, 1−

(
n−1
n

)n−1
]

is a best response for i yielding the above

expected utility, which concludes the proof that B is a Nash equilibrium.

It remains to calculate the expected social welfare of B, and the optimal social

welfare. We define a random variable w.r.t. the distribution B. Let Zj = 1 if

one of the real players [n] gets item j, and Zj = 0 if player 0 gets the item. Note

that the social welfare is the random variable
∑

j∈M Zj, and the expected social

welfare is

E
b∼B

[SW (b)] =
∑
j

E[Zj] · 1 = nn(1− P(no real player bids for j))

= nn
(

1−
(
n− 1

n

)n)
.

Finally, we show that the optimum social welfare is nn. An optimal alloca-

tion can be constructed as follows: For each item (w1, w2, ..., wn) compute r =

(
∑n

i=1wi mod n). Allocate this item to the player r + 1. It is easy to see that

this way the n items of any particular column {(`, w−k) | ` ∈ [n]} (in any direc-

tion k) are given to the n different players, and that each player is allocated nn−1

items (Figure 4.2(c) shows the optimum allocation for n = 3). In other words,

any two items allocated to the same player differ in at least two coordinates. In

particular, they belong to different columns of this player, and all contribute 1

to the valuation of the player, which is therefore nn−1. Since this valuation is

maximum possible for every player, the obtained social welfare of nn is optimal.

Thus, the PoA is 1

(1−(n−1
n )

n
)
, and for large n it converges to 1

(1− 1
e)
≈ 1.58.
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4.2 Subadditive Valuations

We construct a lower bound of 2 on the PoA of mixed Nash equilibria when

players have subadditive valuations. This lower bound matches the upper bound

by Feldman et al. [64]. Theorem 14 is a special case of Theorem 27, however, in

order to make the presentation clearer we also give the proof of Theorem 14.

Theorem 14. The PoA of mixed Nash equilibria in simultaneous first price

auctions with subadditive valuations is at least 2.

Proof. Consider two players and m items with the following valuations: player

1 is a unit-demand player with valuation v < 1 (to be determined later) if she

gets at least one item; player 2 has valuation 1 for getting at least one but less

than m items, and 2 if she gets all the items.

Let B be the following mixed bidding profile. Player 1 picks one of the m

items uniformly at random, and bids x for this item and 0 for all other items.

Player 2 bids y for each of the m items. The bids x and y are drawn from

distributions with the following CDFs (inspired by [86]), respectively,

G(x) =
(m− 1)x

1− x
x ∈ [0, 1/m]; F (y) =

v − 1/m

v − y
y ∈ [0, 1/m].

In the case of a tie, the item is always allocated to player 2. We are going to

prove that B is a mixed Nash equilibrium for every v > 1/m.

If player 1 bids any x in the range (0, 1/m] for the one item, she gets the item

with probability F (x), since a tie appears with zero probability. Her expected

utility for x ∈ (0, 1/m] is F (x)(v − x) = v − 1/m. Note that according to G(x)

she bids 0 with zero probability and thus her utility is still v − 1/m if she bids

according to B. Bidding something greater than 1/m results in a utility less than

v−1/m. Regarding player 1, it remains to show that her utility while bidding for

only one item is at least her utility while bidding for more items. Suppose player

1 bids xj for each item j, 1 ≤ j ≤ m and w.l.o.g., assume that xj ≥ xj+1. Player

1 gets at least one item if and only if y < x1. So, with probability F (x1), she

gets at least one item and she pays at least x1. Therefore, her expected utility is

at most F (x1)(v − x1) = v − 1/m, but it would be strictly less if she is charged

nonzero payments for other items. This means that bidding only x1 for one item

and zero for the rest of them dominates the strategy we have assumed.
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If player 2 bids a common bid y for all items, where y ∈ [0, 1/m], she gets

m items with probability G(y) and m − 1 items with probability 1 − G(y).

Her expected utility is therefore G(y)(2 − my) + (1 − G(y))(1 − (m − 1)y) =

G(y)(1−y)+1−(m−1)y = 1. We show that player 2 cannot get a utility higher

than 1 by using any deviating bids. Suppose now that player 2 bids yj for each

item j, for 1 ≤ j ≤ m. Note first that player 2 has no incentive to bid higher

than 1/m for any item, since bidding exactly 1/m would still guarantee the item

and reduce the payment. Hence we assume that yj ≤ 1/m and if player 1 chooses

to bid for item j, player 2 receives item j with probability G(yj). Player 1 bids

for item j (according to G(x)) with probability 1/m. So, the expected utility of

player 2 is

1

m

m∑
j=1

G(yj)

(
2−

m∑
k=1

yk

)
+ (1−G(yj))

1−
m∑
k=1
k 6=j

yk




=
1

m

m∑
j=1

G(yj)(1− yj) + 1−
m∑
k=1
k 6=j

yk


≤ 1

m

m∑
j=1

(m− 1)yj
1− yj

(1− yj) + 1−
m∑
k=1
k 6=j

yk


=

1

m

m∑
j=1

(
myj + 1−

m∑
k=1

yk

)

=
1

m

(
m

m∑
j=1

yj +m−m
m∑
k=1

yk

)
= 1.

Overall, we proved that B is a mixed Nash equilibrium.

It is easy to see that the optimal allocation gives all items to player 2, and has

social welfare of 2. In the Nash equilibrium B, player 2 bids 0 with probability

1− 1
mv

, so, with at least this probability, player 1 gets one item. Therefore,

SW (B) ≤
(

1− 1

mv

)
(v + 1) +

1

mv
2 = 1 + v +

1

mv
− 1

m

If we set v = 1/
√
m, then SW (B) ≤ 1 + 2√

m
− 1

m
. So, PoA≥ 2

1+ 2√
m
− 1
m

which, for
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large m, converges to 2.
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CHAPTER 5

Bid-Dependent Auctions

Here we generalise some results of the previous chapter to simultaneous bid-

dependent auctions. Intuitively, a single item auction is bid-dependent if the

winner is always the highest bidder, and a bidder’s payment depends only on

whether she gets the item or not, and on her own bid. For instance, the first-

price auction and the all-pay auction are bid-dependent but the second-price

auction is not.

We give upper bounds for the PoA in simultaneous bid-dependent auctions

with fractionally subadditive bidder valuations. We parametrise those auctions

based on their payment scheme. We use a single parameter θ, to be defined later,

based on which we derive the upper bounds, which are between 1.58 and 2. For

all those auctions we show a lower bound of 1.58, indicating that none of them

can outperform the simultaneous first price auction.

Regarding subadditive valuations we prove a tight bound of 2 on the PoA of

all simultaneous bid-dependent auctions.

5.1 Fractionally Subadditive Valuations

For a given simultaneous bid-dependent auction, we will denote by qwj (x) and

qlj(x) a bidder’s payment pij(b) for item j when her bid for j is x, depending on

whether she is the winner or a loser, respectively. Note that we assume qwj (x)

(resp. qlj(x)) to be the same for all bidders. Without this assumption the PoA

is unbounded, as we show in the following example.

Example 15. Suppose there is a single item to be sold to two players with valua-

tion v1 = 1 and v2 = ε. The losing payment is 0 for both players but the winning
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payments are different such that qw(x) = x for bidder 1 and q̄w(x) = ε · x for

bidder 2. If there is a tie, then the item is allocated to player 2. Now consider the

bidding strategy b1 = b2 = 1. It is easy to see that it forms a Nash Equilibrium

and has PoA = 1/ε.

In order to guarantee the existence of reasonable Nash Equilibria, we also

make the following natural assumptions about qwj (x) and qlj(x):23

– qwj (x) and qlj(x) are non-decreasing, continuous functions of x and normalised,

such that qlj(0) = qwj (0) = 0;

– qwj (x) ≥ qlj(x) for all x ≥ 0;

– For any constant c, there exists some x > 0, such that qwj (x) > c (to avoid the

case that the payments are always less than the valuations, for which no Nash

equilibria exist).

5.1.1 Upper Bounds

In this section we discuss the general upper bound for simultaneous bid-dependent

auctions.

We define θ to be the worst case ratio between qlj(x) and qwj (x) over all j and

x, i.e. θ = maxj∈[m] sup{x:qwj (x)6=0}{qlj(x)/qwj (x)}. If qlj(x) = qwj (x) = 0 for some

x, we make the convention that qlj(x)/qwj (x) = 0.

Observe that θ ∈ [0, 1], due to the assumption that qlj(x) ≤ qwj (x). We will

prove that (for θ 6= 1) the PoA of coarse-correlated and Bayesian Nash equilibria

of simultaneous bid-dependent auctions with fractionally subadditive bidders is

at most (θ−1)2

θ2−θ+1−eθ−1 . When we set θ = 0 or θ → 1, we get back, respectively,

the upper bounds of e/(e− 1) for first-price auctions, and 2 for all-pay auctions

[133]. For simplicity, we define 1/λ(θ) = (θ−1)2

θ2−θ+1−eθ−1 .

One Item

We start by proving a lemma for a single item, analogous to Lemma 6.

Lemma 16. Consider a single item bid-dependent auction with payment func-

tions qw(x) and ql(x). Let B be an arbitrary randomised bidding profile, and Fi

denote the CDF of the random variable ti = maxk 6=i bk, where b ∼ B. Then for

every bidder i, and non-negative value v, there exists a pure bidding strategy

23Similar assumptions are also made in [20, 25, 104].
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a = a(v,B−i) such that,

Fi(a)
(
v − qw(a) + ql(a)

)
− ql(a) +

∑
k∈[n]

pk(B) ≥ λ(θ) · v,

where pk(B) = Eb∼B[pk(b)] is the expected payment for player k.

Proof. Let a = arg maxx
{
Fi(x)

(
v − qw(x) + ql(x)

)
− ql(x)

}
and further let A =

Fi(a)
(
v − qw(a) + ql(a)

)
−ql(a). In the following we use that Fi is the CDF of ti,

and since qw is continuous and non-negative, E[qw(ti)] =
∫∞

0
(1− Fi(x))dqw(x).

A+
∑
k

pk(B) ≥ A+ E
b

[qw(ti)]

= A+

∫ ∞
0

(1− Fi(x))dqw(x)

≥ A+

∫ ∞
0

(
1− A+ ql(x)

v − qw(x) + ql(x)

)
dqw(x)

≥ A+

∫ ∞
0

(
v − A− qw(x)

v + (θ − 1)qw(x)

)
dqw(x)

≥ A+

∫ v−A

0

(
v − A− y
v + (θ − 1)y

)
dy

The second inequality follows from the definition of A and a and the third

one is due to the fact that ql(x) ≤ θ · qw(x) for any x. For the last one,

we use the fact that qw is non-decreasing and show that there exists x0 such

that qw(x0) ≥ v − A. That is true since for x0 → ∞, by definition of A,

A ≥ Fi(x0)
(
v − qw(x0) + ql(x0)

)
− ql(x0) = v− qw(x0) since F (x0) = 1, meaning

that qw(x0) ≥ v−A. For completeness we also show that v−A ≥ 0, by showing

that v ≥ A ≥ 0: observe that A = Fi(a)v − Fi(a)qw(a) − (1 − Fi(a))ql(a) ≤ v,

since Fi is a CDF; moreover A ≥ Fi(0)
(
v − qw(0) + ql(0)

)
− ql(0) = Fi(0)v ≥ 0.

In case θ < 1,

A+
∑
k

pkj(B) ≥ A+
(A+ θ(v − A))(ln(A+ θ(v − A))− ln(v))− (θ − 1)(v − A)

(θ − 1)2
,

which is minimised for A = v(θ·e1−θ−1)
(θ−1)e1−θ

. The lemma follows by replacing A with

this value.

In case θ = 1, A +
∑

k pkj(B) ≥ A + (v−A)2

2v
≥ 1

2
v, which coincides with the

limit of λ(θ) = θ2−θ+1−eθ−1

(θ−1)2
when θ → 1.
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Many Items

In the following, let fSi be a maximising additive function of set S for player i

with fractionally subadditive valuation function vi. By the definition of fraction-

ally subadditive valuations, we have that vi(T ) ≥ fSi (T ), for every T ⊆ S and

fSi (S) = vi(S).

Lemma 17. For any set S of items, and any strategy profile b, where bij = 0

for j /∈ S,

ui(b) ≥
∑
j∈S

(
P[j ∈ Xi(b)]

(
fSi (j)− qwj (bij) + qlj(bij)

)
− qlj(bij)

)
.

Proof.

ui(b) ≥
∑
T⊆S

P[Xi(b) = T ]

(
fSi (T )−

∑
j∈T

qwj (bij)−
∑
j∈SrT

qlj(bij)

)
=

∑
T⊆S

∑
j∈T

P[Xi(b) = T ]
(
fSi (j)− qwj (bij)

)
−
∑
T⊆S

∑
j∈SrT

P[Xi(b) = T ]qlj(bij)

=
∑
j∈S

∑
T⊆S:j∈T

P[Xi(b) = T ]
(
fSi (j)− qwj (bij)

)
−
∑
j∈S

∑
T⊆S:j /∈T

P[Xi(b) = T ]qlj(bij)

=
∑
j∈S

P[j ∈ Xi(b)]
(
fSi (j)− qwj (bij)

)
−
∑
j∈S

P[j /∈ Xi(b)]qlj(bij)

=
∑
j∈S

(
P[j ∈ Xi(b)](fSi (j)− qwj (bij) + qlj(bij))− qlj(bij)

)
.

Coarse Correlated Equilibrium. We fix a coarse correlated equilib-

rium B = (B1, B2, . . . , Bn). For b−i ∼ B−i, let tij = maxk 6=i bkj be the random

variable and Fij(x) = P[tij ≤ x] be the CDF of tij.

Lemma 18. For any set S of items, and any strategy profile bi of player i, where

bij = 0 for j /∈ S,

ui(B) = E
b∼B

[ui(b)] ≥
∑
j∈S

(
Fij(b

′
ij)
(
fSi (j)− qwj (b′ij) + qlj(b

′
ij)
)
− qlj(b′ij)

)
.

The proof is analogous to that of Lemma 5 by using Lemma 17.
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Theorem 19. For bidders with fractionally subadditive valuations, the PoA of

coarse correlated equilibria for bid-dependent auction is at most 1/λ(θ).

Proof. Let B be a coarse correlated equilibrium. For every player i, consider the

maximising additive valuation, fOii for his optimal set Oi. By Lemma 16, for

every fixed player i and item j there exists a bid aij such that

Fij(aij)
(
fOii (j)− qwj (aij) + qlj(aij)

)
− qlj(aij) ≥ λ(θ)fOii (j)−

∑
k

pkj(B)

For player i, we consider the deviation where her bid is aij for every item in

Oi and 0 for all other items, and apply Lemma 18. Combined with the above

inequality (for all items in Oi), we obtain

ui(B) ≥ λ(θ)
∑
j∈Oi

fOii (j)−
∑
j∈Oi

∑
k

pkj(B) = λ(θ)vi(O
v
i )−

∑
j∈Oi

∑
k

pkj(B).

By summing over all players, we get∑
i

ui(B) ≥ λ(θ)
∑
i

vi(O
v
i )−

∑
j∈[m]

∑
k

pkj(B) = λ(θ)SW (O)−
∑
k

pk(B).

The theorem follows from SW (B) =
∑

i ui(B) +
∑

i pi(B).

Bayesian Nash Equilibrium. Suppose that B is a Bayesian Nash

Equilibrium and the valuation of each player i is drawn according to vi ∼
Di, where the Di are independently distributed. We use the notation C =

(C1, C2, . . . , Cn) to denote the bidding distribution in B which involves the ran-

domness of the valuations v, and of the bidding strategy B(v), that is bi(vi) ∼ Ci.

Let tij be the random variable indicating the maximum bid on item j of

players other than i, i.e. tij = maxk 6=i bkj, when b−i ∼ C−i. Let Fij(x) be the

CDF of tij.

Similarly to Lemmas 5 and 18, we can prove the following.

Lemma 20. For any be an arbitrary set of items, S, and any player i with

valuation vi, let b′i be a pure strategy such that b′ij = 0 for j /∈ S. Then,

E
v−i

b∼B(v)

[uvii (b)] = uvii (Bi(vi),C−i) ≥
∑
j∈S

(
Fij(b

′
ij)(f

S
vi

(j)− qwj (b′ij) + qlj(b
′
ij))− qlj(b′ij)

)
.

Theorem 21. The PoA of Bayesian Nash equilibria for bid-dependent auction,

when the bidders have fractionally subadditive, is at most λ(θ).
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Proof. For any player i and any fractionally subadditive valuation vi ∈ Vi, con-

sider the following deviation: consider some w−i ∼ D−i and then for every

j ∈ O(vi,w−i) use the bid aij as defined in Lemma 16, such that

Fij(aij)
(
fO(vi,w−i)
vi

(j)− qwj (aij) + qlj(aij)
)
− qlj(aij) +

∑
k∈[n]

pkj(Bi(vi),C−i)

≥ λ(θ) · fO(vi,w−i)
vi

(j).

By applying Lemma 20 for S = Oi(vi,w−i), taking expectation over vi and w−i

and summing over all players, we have that

∑
i

E
v

[uvii (B(v))]

=
∑
i

E
vi

[uvii (Bi(vi),C−i)]

≥
∑
i

E
vi,w−i

 ∑
j∈Oi(vi,w−i)

(
Fij(aij)

(
fOi(vi,w−i)vi

(j)− qwj (aij) + qlj(aij)
)
− qlj(aij)

)
=
∑
i

E
v

 ∑
j∈Oi(v)

(
Fij(aij)

(
fOi(v)
vi

(j)− qwj (aij) + qlj(aij)
)
− qlj(aij)

)
≥
∑
i

E
v

 ∑
j∈Oi(v)

(
λ(θ) · fOi(v)

vi
(j)−

∑
k

pkj(Bi(vi),C−i)

)
= λ(θ) ·

∑
i

E
v

[vi(O
v
i )]−

∑
i

∑
j

pkj(C).

Then, Ev[SW (B(v))] =
∑

i Ev[uvii (B(v))]+
∑

i

∑
j pkj(C) ≥ λ(θ) ·Ev[SW (Ov)].

5.1.2 Lower Bound

Here we present a lower bound of e
e−1

for the PoA of all simultaneous bid-

dependent auctions with OXS valuations and for mixed equilibria. This implies

a lower bound for submodular and fractionally subadditive valuations, as well as

for more general classes of equilibria.

Theorem 22. The PoA of simultaneous bid-dependent auctions with full infor-

mation and OXS valuations is at least e
e−1
≈ 1.58.
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Proof. The proof is very similar to the one for simultaneous first price auctions

(Section 4.1.2). Therefore, we only point out the differences. The same construc-

tion applies here; the only difference appears in the Nash equilibrium strategy

profile.

We consider the same set of players and items as in Section 4.1.2; the valuation

functions of the players are also the same as in Section 4.1.2, and the same tie

breaking rule applies. As for the mixed Nash equilibrium B, the dummy player

still bids 0 for every item and every real player still picks an n − 1 dimensional

slice in the same random way. However the bid xj that she bids for every item j

of that slice is drawn according to a distribution with the following item-specific

CDF (we will show later that Gj is a valid CDF):

Gj(x) = n

( (
n−1
n

)n−1
+ qlj(x)

1− qwj (x) + qlj(x)

) 1
n−1

− n+ 1, x ∈ [0, Tj] .

where Tj is the bid such that qwj (Tj) = 1 −
(
n−1
n

)n−1
; notice that due to our

assumptions on qwj , there always exists such a value Tj. Note that we can no

longer require that the bids of a player on different items are equal, since the

CDFs Gj are different. Instead, we require that for every real player the bids xj

for different items in her slice are correlated in the following way: she chooses

ρ uniformly at random from the interval [0, 1], and then sets xj = G−1
j (ρ), for

every j in her slice. Note that for any two items j1, j2 of the slice, it holds

that Gj1(x1) = Gj2(x2) = ρ and xj1 is not necessarily equal to xj2 . However, for

each item j in the slice, the way that xj is chosen is equivalent to sampling it

according to the CDF Gj(xj) (but in a correlated way to the other bids). The

fact that each player’s bids are such that the CDF values become equal, will be

sufficient for proving that B is a mixed Nash equilibrium.

The probability Fj(x) that a player gets item j if she bids x for it is:

Fj(x) =

(
Gj(x)

n
+
n− 1

n

)n−1

=

(
n−1
n

)n−1
+ qlj(x)

1− qwj (x) + qlj(x)
, x ∈ [0, Tj] .

Recall that the valuation of player i is additive, restricted to the slice of items

that she bids for in a particular bi. Therefore, the expected utility of i when she

bids x for item j is Fj(x)(1 − qwj (x)) − (1 − Fj(x))qlj(x) = Fj(x)(1 − qwj (x) +

qlj(x)) − qlj(x) =
(
n−1
n

)n−1
. By comprising all items, her expected utility for

bidding bi ∼ Bi is E[ui(bi)] = nn−1
(
n−1
n

)n−1
= (n− 1)n−1.
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Claim 23. B is a Nash equilibrium.

Proof. First, we fix an arbitrary w−i ∈ [n]n−1, and focus on the set of items

C := {(`, w−i) | ` ∈ [n]}, which we call a column for player i. Recall that i is

interested in getting only one item within C, on the other hand his valuation is

additive over items from different columns. Moreover, in a fixed b−i, every other

player k submits bids xj resulting in equal values of Gj(xj) for all items in C,

because either the whole C is in the current slice of k, and he bids correlated

bids on them, or no item from the column is in the slice and he bids 0.

Consider first a deviating bid, in which i bids a positive value for more than

one items in C, say (at least) the values x1, x2 > 0 for items j1, j2, respectively,

and w.l.o.g. assume that Gj1(x1) ≥ Gj2(x2). We prove that if she loses item j1

she should lose item j2 as well: if she loses j1, then there must be a bidder k

with bid x′1 > x1 for item j1, which implies Gj1(x
′
1) > Gj1(x1). However, since

the bids of player k are correlated (and j2 is in his slice as well), for his bid x′2 on

j2 it holds that Gj2(x
′
2) = Gj1(x

′
1) > Gj1(x1) ≥ Gj2(x2). Therefore, x′2 > x2 and

player i cannot win item j2 either, so bidding for item j2 cannot contribute to the

valuation, whereas the bidder might pay for more items than j1. Consequently,

bidding for only one item in C and 0 for the rest of C is more profitable.

Second, observe that restricted to a fixed column, submitting any bid x ∈
[0, Tj] for one arbitrary item j results in the constant expected utility of

(
n−1
n

)n−1
,

whereas by bidding higher than Tj the utility would be at most 1 − qwj (Tj) =(
n−1
n

)n−1
for this column. In summary, bidding for exactly one item j from each

column, an arbitrary bid x ∈ [0, Tj] is a best response for i yielding the above

expected utility, which concludes the proof that B is a Nash equilibrium.

The rest of the argument is exactly the same as in the proof for first price

auctions. It remains to prove that the Gj’s are valid cumulative distribution

functions. To this end it is sufficient to show that Gj(Tj) = 1 and that Gj(x) is

non-decreasing in [0, Tj]. For simplicity we skip index j.

G(T ) = n

( (
n−1
n

)n−1
+ ql(T )

1− qw(T ) + ql(T )

) 1
n−1

− n+ 1

= n

 (
n−1
n

)n−1
+ ql(T )

1−
(

1−
(
n−1
n

)n−1
)

+ ql(T )

 1
n−1

− n+ 1 = 1.
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Now let x1, x2 ∈ [0, T ], and x1 > x2. In order to prove G(x1) ≥ G(x2), it is

sufficient to prove that
(n−1

n )
n−1

+ql(x1)

1−qw(x1)+ql(x1)
≥ (n−1

n )
n−1

+ql(x2)

1−qw(x2)+ql(x2)
.

(
n−1
n

)n−1
+ ql(x1)

1− qw(x1) + ql(x1)
−
(
n−1
n

)n−1
+ ql(x2)

1− qw(x2) + ql(x2)

=
ql(x1)(1−

(
n−1
n

)n−1 − qw(x2))− ql(x2)(1−
(
n−1
n

)n−1 − qw(x1))

(1− qw(x1) + ql(x1))(1− qw(x2) + ql(x2))

+

(
n−1
n

)n−1
(qw(x1)− qw(x2))

(1− qw(x1) + ql(x1))(1− qw(x2) + ql(x2))

≥
ql(x1)(1−

(
n−1
n

)n−1 − qw(x2))− ql(x2)(1−
(
n−1
n

)n−1 − qw(x1))

(1− qw(x1) + ql(x1))(1− qw(x2) + ql(x2))

≥
(ql(x1)− ql(x2))(1−

(
n−1
n

)n−1 − qw(x1))

(1− qw(x1) + ql(x1))(1− qw(x2) + ql(x2))
≥ 0

The inequalities follow from the monotonicity of qw and ql, and from the fact

that 1−
(
n−1
n

)n−1 ≥ qw(x1) holds by the definition of T .

This completes the proof of Theorem 22.

5.2 Subadditive Valuations

Our results for subadditive valuations hold even for a class of auctions more

general than bid-dependent auctions that were described in Section 5.1: we allow

the payment rule to depend on the rank of the bid, where the rth highest bid (with

an arbitrary tie-breaking rule) has rank r. We use qj(x, r) to denote the payment

that the bidder should pay for item j when her bid is x and gets rank r. In

particular, given a mixed bidding strategy B, bidder i’s expected payment pij(B)

for item j equals to Eb[qj(bij, ri(b
j)] where ri(b

j) denotes the rank of bij among

{b1j, . . . , bnj}. That leads to player i’s payment, pi(B) =
∑

j∈[m] Eb[qj(bij, ri(b
j)].

Note that qwj (x) from the previous subsection is qj(x, 1) here, and qlj(x) can be

different for different ranks. Analogous assumptions to the ones made on qwj (x)

and qlj(x) can be made on qj(x, r) as well.

We next show that the PoA for mixed Nash, correlated, coarse-correlated and

Bayesian equilibria is exactly 2.
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5.2.1 Upper Bound

Lemma 24. For any simultaneous bid-dependent auction, subadditive valuation

profile v and randomised bidding profile B, there exists a randomised bid vector

ai for each player i, sampled from a distribution Ai(v,B−i), such that for the

total expected utility and expected payments of the bidders it holds that

∑
i

ui(Ai(v,B−i),B−i) ≥
1

2

∑
i

vi(O
v
i )−

∑
i

∑
j

pij(B),

where Ov
i is the optimal set of player i.

Proof. Under the profile v, Ov
i is the set of items allocated to player i in the

optimum. We denote by hj(b) = arg maxi bij the bidder with the highest bid for

item j, regarding the pure bidding b. Let tij be the maximum of bids for item

j among players other than i, and ti be the vector such that its jth coordinate

equals tij if j ∈ Ov
i , and 0 otherwise. Note that ti ∼ Ti is an induced random

variable of B−i. We define the randomised bid ai to follow the same distribution

Ti, i.e. Ai(v,B−i) = Ti (inspired by [64]).

We use the notation vi(bi, ti) and Wi(bi, ti) to denote the player i’s valuation

and winning set when she bids bi and the prices are ti, i.e., vi(S) and Wi(S),

respectively, where S = {j|bij ≥ tij}.

ui(Ai(v,B−i),B−i)

= E
ai∼Ai

E
b−i∼B−i

[ui(ai,b−i)]

≥ E
ai∼Ti

E
ti∼Ti

[vi(ai, ti)]−
∑
j∈Ov

i

E
ai∼Ti

[qj(aij, 1)] (since qj(x, 1) ≥ qj(x, r))

= E
ti∼Ti

E
ai∼Ti

[vi(ti, ai)]−
∑
j∈Ov

i

E
ti∼Ti

[qj(tij, 1)] (swap ti and ai)

=
1

2
E

ti∼Ti
E

ai∼Ti
[vi(ti, ai) + vi(ai, ti)]−

∑
j∈Ov

i

E
ti∼Ti

[qj(tij, 1)]

≥ 1

2
vi(O

v
i )−

∑
j∈Ov

i

E
b∼B

[qj(bhj(b)(j), 1)]

≥ 1

2
vi(O

v
i )−

∑
j∈Ov

i

E
b∼B

[qj(bhj(b)(j), 1)]

−
∑
j∈Ov

i

E
b∼B

[∑
k

qj(bk(j), rk(b
j))− qj(bhj(b)(j), rhj(b)(b

j))

]
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=
1

2
vi(O

v
i )−

∑
j∈Ov

i

∑
k

E
b∼B

[qj(bkj, rk(b
j))]

=
1

2
vi(O

v
i )−

∑
j∈Ov

i

∑
k

pkj(B).

In the second inequality vi(ti, ai) + vi(ai, ti) ≥ vi(O
v
i ) is due to the subaddi-

tivity24 of vi and also qj(tij, 1) ≤ qj(bhj(b)(j), 1) since qj(·, 1) is non-decreasing

and tij ≤ bhj(b)(j). For the last inequality, notice that
∑

k qj(bk(j), rk(b
j)) −

qj(bhj(b)(j), rhj(b)(b
j)) ≥ 0, since from the sum of all payments for item j we

subtracted the payment of the winner. The lemma follows by summing over all

players.

Theorem 25. For bidders with subadditive valuations, the PoA of coarse cor-

related equilibria for any bid-dependent auction is at most 2.

Proof. Suppose B is a coarse correlated equilibrium (notice that v is fixed). By

Lemma 24 and the definition of coarse correlated equilibrium, we have

∑
i

ui(B) ≥
∑
i

ui(Ai(v,B−i),B−i) ≥
1

2

∑
i

vi(O
v
i )−

∑
i

∑
j

pij(B).

By rearranging the terms, SW (B) =
∑

i ui(B) +
∑

i

∑
j pij(B) ≥ 1/2 · SW (O).

Theorem 26. For bidders with subadditive valuations, the PoA of Bayesian

Nash equilibria for any bid-dependent auction is at most 2.

Proof. Suppose B is a Bayesian Nash Equilibrium and the valuation of each

player i is vi ∼ Di, where the Di are independently distributed. We use the

notation C = (C1, C2, . . . , Cn) to denote the bidding distribution in B which

includes the randomness of the valuations v, and of the bidding strategy b (like

in the proof of Theorem 21). For any player i and any subadditive valuation

vi ∈ Vi, consider the following deviation: sample w−i ∼ D−i and bid according

to Ai((vi,w−i),C−i) as defined in Lemma 24. By the definition of Nash equi-

librium, we have Ev−i [u
vi
i (Bi(vi),B−i(v−i))] ≥ Ew−i [u

vi
i (Ai((vi,w−i),C−i),C−i)].

By taking expectation over vi and summing over all players,

24The inequality holds if ti 6= ai. If ti = ai happens with non-zero probability, only for those
cases, we increase the deviating bid by an arbitrarily small value.

61



∑
i

E
v

[ui(B(v))] ≥
∑
i

E
vi,w−i

[uvii (Ai((vi,w−i),C−i),C−i)]

= E
v

[∑
i

uvii (Ai(v,C−i),C−i)

]
(by relabelling w−i by v−i)

≥ 1

2
·
∑
i

E
v

[vi(O
v
i )]−

∑
i

∑
j

E
v

[pkj(B(v))]

=
1

2
· E
v

[SW (Ov)]−
∑
i

∑
j

E
v

[pkj(B(v))],

where the last inequality follows by Lemma 24. Finally, we obtain Ev[SW (B(v))] =∑
i Ev[ui(B)] +

∑
i

∑
j Ev[pkj(B(v))] ≥ 1/2 · Ev[SW (Ov)].

5.2.2 Lower Bound

The lower bound holds even for only two different types of payments, qwj in the

case of winning item j and qlj in the case of losing item j.

Theorem 27. For bidders with subbaditive valuations, the PoA of mixed Nash

equilibria for all simultaneous bid-dependent auctions is at least 2.

Proof. We consider 2 players and m items. Let v be a positive real value to be

defined later. Player 1 has value v for every non-empty subset of items; player

2 values with 1 any non-empty strict subset of the items and with 2 the whole

set of items. Consider now the mixed strategy profile B, where player 1 picks

item l uniformly at random and bids xl for it and 0 for the rest of the items,

whereas, player 2 bids yj for every item j. For 1 ≤ j ≤ m, xj and yj are drawn

from distributions with the following CDFs Gj(x) and Fj(y), respectively:

Gj(x) =
(m− 1)qwj (x) + qlj(x)

1− qwj (x) + qlj(x)
, x ∈ [0, Tj];

Fj(y) =
v − 1/m+ qlj(y)

v − qwj (y) + qlj(y)
, y ∈ [0, Tj],

where Tj is the bid such that qwj (Tj) = 1/m; notice that due to the assumptions

on qwj , there always exists such a value Tj. Furthermore, in B, the yj’s are

correlated in the following way: player 2 chooses ρ uniformly at random from

the interval [0, 1] and if ρ ∈
[
0, v−1/m

v

)
then yj = 0, otherwise yj = F−1

j (ρ),
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for every 1 ≤ j ≤ m.25 Note that for every two items j1, j2, it holds that

Fj1(yj1) = Fj2(yj2). In case of a tie, player 2 gets the item. Due to the continuity

of qwj and qlj, Gj(x) and Fj(x) are continuous and therefore none of the CDF

have a mass point in any x 6= 0.

We next show that B is a Nash equilibrium, and each of the Fj and Gj are

valid cumulative distributions. The PoA bound can be then derived as follows.

Player 2 bids 0 with probability 1− 1
mv

so, E[SW (B)] ≤
(
1− 1

mv

)
(1+v)+ 1

mv
2 =

1 + v + 1
mv
− 1

m
. For v = 1/

√
m, PoA ≥ 2

1+ 2√
m
− 1
m

which, for large m, converges

to 2.

Claim 28. B is a Nash equilibrium.

Proof. If player 1 bids any x in the range of (0, Tj] for a single item j and zero for

the rest, her utility is Fj(x)(v−qwj (x))+(1−Fj(x))(−qlj(x)) = Fj(x)(v−qwj (x)+

qlj(x))− qlj(x) = v − 1/m. Since G(0) = 0, her utility is also v − 1/m if she bids

according to G. Suppose player 1 bids x = (x1, . . . , xm), (xj ∈ [0, Tj]) with at

least two positive bids. W.l.o.g., assume F1(x1) = maxi Fi(xi). If y1 ≥ x1, player

1 doesn’t get any item, since for every j, Fj(yj) = F1(y1) ≥ F1(x1) ≥ Fj(xj) and

so yj ≥ xj (recall that in any tie player 2 gets the item). If y1 < x1, player 1 gets

at least the first item and has valuation v, but she cannot pay less than qw1 (x1).

So, this strategy is dominated by the strategy of bidding x1 for the first item and

zero for the rest. Bidding xj > Tj for any item guarantees the item but results

in a utility less than v − qwj (xj) ≤ v − qwj (Tj) = v − 1/m, so it is dominated by

the strategy of bidding exactly Tj for this item.

If player 2 bids any (y1, . . . , ym) such that yj ∈ [0, Tj], then (since player 1

bids positive for any particular item j with probability 1/m) her expected utility

is

1

m

m∑
j=1

Gj(yj)(2−
m∑
k=1

qwk (yk)) + (1−Gj(yj))(1−
m∑
k=1
k 6=j

qwk (yk)− qlj(yj))


=

1

m

m∑
j=1

1 +Gj(yj)(1− qwj (yj) + qlj(yj))−
m∑
k=1
k 6=j

qwk (yk)− qlj(yj)


25For each item j, the way player 2 chooses yj is equivalent to picking it according to the

CDF Fj(y).
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=
1

m

m∑
j=1

1 + (m− 1)qwj (yj) + qlj(yj)−
m∑
k=1
k 6=j

qwk (yk)− qlj(yj)


=

1

m

(
m+m

m∑
j=1

qwj (yj)−m
m∑
k=1

qwk (yk)

)
= 1.

Bidding greater than Tj for any item is dominated by the strategy of bidding

exactly Tj for this item. Overall, B is Nash equilibrium.

Claim 29. Gj and Fj are valid cumulative distributions.

Proof. It is sufficient to show that for every j, Gj(Tj) = Fj(Tj) = 1 and Gj(x)

and Fj(x) are non-decreasing in [0, Tj]. In the following we skip index j.

G(T ) =
(m− 1)qw(T ) + ql(T )

1− qw(T ) + ql(T )
=

(m− 1) 1
m

+ ql(T )

1− 1
m

+ ql(T )
= 1,

F (T ) =
v − 1/m+ ql(T )

v − qw(T ) + ql(T )
=
v − 1/m+ ql(T )

v − 1/m+ ql(T )
= 1.

Now let x1 > x2, x1, x2 ∈ [0, Tj]. Then,

G(x1)−G(x2)

=
(m− 1)qw(x1) + ql(x1)

1− qw(x1) + ql(x1)
− (m− 1)qw(x2) + ql(x2)

1− qw(x2) + ql(x2)

=
(m− 1)(qw(x1)− qw(x2)) +m(qw(x1)ql(x2)− ql(x1)qw(x2))

(1− qw(x1) + ql(x1))(1− qw(x2) + ql(x2))

+
ql(x1)− ql(x2)

(1− qw(x1) + ql(x1))(1− qw(x2) + ql(x2))

=
(m− 1 +mql(x2))(qw(x1)− qw(x2)) +m( 1

m
− qw(x2))(ql(x1)− ql(x2))

(1− qw(x1) + ql(x1))(1− qw(x2) + ql(x2))
≥ 0;

Fj(x1)− Fj(x2)

=
v − 1/m+ ql(x1)

v − qw(x1) + ql(x1)
− v − 1/m+ ql(x2)

v − qw(x2) + ql(x2)

=
(v − 1

m
)(qw(x1)− qw(x2)) + 1

m
(ql(x1)− ql(x2)) + qw(x1)ql(x2)− ql(x1)qw(x2)

(v − qw(x1) + ql(x1))(v − qw(x2) + ql(x2))
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=
(v − 1

m
+ ql(x2))(qw(x1)− qw(x2)) + ( 1

m
− qw(x2))(ql(x1)− ql(x2))

(v − qw(x1) + ql(x1))(v − qw(x2) + ql(x2))
≥ 0.

For both inequalities we use the monotonicity of qw and ql and the fact that

qw(x) ≤ 1/m and qw(x) ≤ v = 1/
√
m for all x ∈ [0, T ].

This finishes the proof of Theorem 27.
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CHAPTER 6

Discriminatory auctions

In this chapter, we study a special case of combinatorial auction, where all items

are identical or units of the same item, called multi-unit auction. The players

have a valuation for each number of units and they express their preferences by

a bid vector where the jth entry represents their willingness to pay for an extra

unit when they have already paid for j − 1 units. We focus on a specific multi-

unit auction, the discriminatory auction, where the units are allocated to the m

highest bids and each player pays her bids for the number of units she receives,

i.e. she pays the aggregation of her first k bids when she receives k units.

Here, we complement the results by de Keijzer et al. [56] for the case of

subadditive valuations, by providing a matching lower bound of 2 for the standard

bidding format. For the case of submodular valuations, we provide a lower bound

of 1.099. As a technical contribution, we reprove the upper bound of e/(e−1) due

to [56] for submodular bids, using a similar approach to the previous chapters.

Due to the different nature of this auction, the proof is not identical with the

one for the first-price auction. Therefore, we present the complete proof of this

upper bound.

We next introduce some extra notation regarding multi-unit auctions, to be

used in the upper bound proof.

6.1 Preliminaries

Consider a discriminatory auction with submodular valuations, with n players

and m items. Recall that vi(j) denotes the valuation of player i for j copies of the

item. For any player i, we define vij = vi(j)
j

. It is easy to see that for submodular
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functions, vij ≥ vi(j+1) for all j ∈ [m− 1]. Recall that we consider the standard

bidding format used in [56, 100], where the bids are in decreasing order, i.e.

bij ≥ bij+1. Let βj(b) be the jth lowest bid among the winning bids under the

strategy profile b. Consider any randomised bidding profile B = (B1, ..., Bn). For

this B, βj(b) is a random variable depending on b ∼ B. We define the following

functions:

Fij(x) = P[βj(b−i) ≤ x], for 1 ≤ j ≤ m;

Gij(x) = P[βj(b−i) ≤ x < βj+1(b−i)] = Fij(x)− Fi(j+1)(x), for 1 ≤ j ≤ m− 1.

We define separately Gim(x) = P[βm(b−i) ≤ x] = Fim(x). Notice that Fij(x) is

the CDF of βj(b−i); moreover it holds that

Fij(x) =
m∑
k=j

Gik(x),

m′∑
j=1

Fij(x) =
m′∑
j=1

jGij(x) +
m∑

j=m′+1

m′Gij(x). (6.1)

We further define F av
i (x) = 1

ovi

∑ovi
j=1 Fij(x), and let βav

i be a random variable

with F av
i (x) as CDF. F av

i (x) is a cumulative distribution function defined on

R+, since F av
i (0) = 0, limx→+∞(F av

i (x)) = 1 and F av
i (x) is the average of non-

decreasing functions, so it is itself a non-decreasing function. Moreover,

E[βav
i ] =

∫ ∞
0

(1− F av
i (x))dx =

∫ ∞
0

(1− 1

ovi

ovi∑
j=1

Fij(x))dx

=
1

ovi

ovi∑
j=1

∫ ∞
0

(1− Fij(x)) dx =
1

ovi

ovi∑
j=1

βj(B−i),

where βj(B−i) = Eb−i∼B−i [βj(b−i)]. Note that the above functions depend on

some randomised bidding profile B−i and on v. These will be clear from context

when we use these functions below.

68



6.2 Submodular Valuations

We first give an alternative proof of the upper bound of e/(e− 1) proved by [56]

for submodular valuations and then give our lower bound of 1.099.

6.2.1 Upper Bound

We start with a technical lemma, which will be used in order to prove our main

results.

Lemma 30. For any submodular valuation profile v and any randomised bidding

profile B, there exists a pure bidding strategy ai(v,B−i) for each player i, such

that:
n∑
i=1

ui(ai(v,B−i),B−i) ≥
(

1− 1

e

) n∑
i=1

vi(o
v
i )−

m∑
j=1

βj(B).

Proof. Recall that vij = vi(j)
j
. Let ai be the value that maximizes (viovi −ai)F

av
i (ai).

Let ai(v,B−i) = (ai, . . . , ai︸ ︷︷ ︸
ovi

, 0, . . . , 0︸ ︷︷ ︸
m−ovi

) be the selected strategy profile for player i.

Observe that by the definition of Gij, Gij(ai) is the probability of ai being the

jth lowest bid among winning bids under B−i. Therefore, if player i bids accord-

ing to ai(v,B−i), Gij(ai) is the probability of player i getting exactly j items,

if j ≤ ovi , and ovi items, if j > ovi , under the bidding profile (ai(v,B−i),B−i).

Similarly to Lemma 5, we get

ui(ai(v,B−i),B−i) ≥
ovi∑
j=1

Gij(ai)(vi(j)− jai) +
m∑

j=ovi +1

Gij(ai)(vi(o
v
i )− ovi ai)

=

ovi∑
j=1

jGij(ai)(vij − ai) +
m∑

j=ovi +1

ovi Gij(ai)(viovi − ai)

≥ (viovi − ai)

 ovi∑
j=1

jGij(ai) +
m∑

j=ovi +1

ovi Gij(ai)


= (viovi − ai)

ovi∑
j=1

Fij(ai) = ovi (viovi − ai)F
av
i (ai)

≥
(

1− 1

e

)
ovi viovi − o

v
i E [βav

i ]
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=

(
1− 1

e

)
vi(o

v
i )− ovi E [βav

i ]

=

(
1− 1

e

)
vi(o

v
i )−

ovi∑
j=1

βj(B−i)

For the second inequality, vij ≥ vioi for submodular valuations and for the fol-

lowing equality, we used (6.1) where m′ is set to ovi . For the last inequality we

apply Lemma 6, since ai maximises the expression (viovi − ai)F
av
i (ai).

For any pure strategy profile b and any valuation profile v it holds that

m∑
j=1

βj(b) ≥
n∑
i=1

ovi∑
j=1

βj(b) ≥
n∑
i=1

ovi∑
j=1

βj(b−i).

By summing up over all players:

n∑
i=1

ui(ai(v,B−i),B−i) ≥
(

1− 1

e

) n∑
i=1

vi(o
v
i )− E

b∼B
[
n∑
i=1

ovi∑
j=1

βj(b−i)]

≥
(

1− 1

e

) n∑
i=1

vi(o
v
i )− E

b∼B
[
m∑
j=1

βj(b)]

=

(
1− 1

e

) n∑
i=1

vi(o
v
i )−

m∑
j=1

βj(B).

Theorem 31. The PoA of coarse correlated equilibria for the discriminatory

auction is at most e
e−1

, when the players’ valuations are submodular.

Proof. Suppose B is a coarse correlated equilibrium (in this case v is fixed). By

Lemma 30 and the definition of coarse correlated equilibrium, we have that

n∑
i=1

ui(B) ≥
n∑
i=1

ui(ai(v,B−i),B−i)

≥
(

1− 1

e

) n∑
i=1

vi(o
v
i )−

m∑
j=1

βj(B)

After rearranging the terms SW (B) =
∑

i ui(B)+
∑

j βj(B) ≥
(
1− 1

e

)
SW (o).
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Theorem 32. The PoA of Bayesian Nash equilibria for the discriminatory auc-

tion is at most e
e−1

, when the players’ valuations are submodular.

Proof. Suppose B is a Bayesian Nash Equilibrium and the valuation of each

player i is vi ∼ Di, where the Di’s are independent distributions. We denote by

C = (C1, C2, . . . , Cn) the bidding distribution in B which includes the random-

ness of both the bidding strategy b and of the valuations v. For any agent i

and any submodular valuation vi ∈ Vi, consider the following deviation: sample

w−i ∼ D−i and bid ai((vi,w−i),C−i) as defined in Lemma 30. By the definition

of the Bayesian Nash equilibrium, we have

E
v−i

[uvii (Bi(vi),B−i(v−i))] ≥ E
w−i

[uvii (ai((vi,w−i),C−i),C−i)]

By taking expectation over vi and summing up over all agents,

n∑
i=1

E
v

[ui(B(v))]

≥
n∑
i=1

E
vi,w−i

[uvii (ai((vi,w−i),C−i),C−i)]

=E
v

[
n∑
i=1

uvii (ai(v,C−i),C−i)

]
(by relabelling w−i by v−i)

≥
(

1− 1

e

) n∑
i=1

vi(o
v
i )−

m∑
j=1

βj(C)

=

(
1− 1

e

) n∑
i=1

vi(o
v
i )−

m∑
j=1

E
v

[βj(B(v))]

So, Ev[SW (B(v))] =
∑

i Ev[ui(B(v))]+
∑

j Ev[βj(B(v))] ≥
(
1− 1

e

)
Ev[SW (ov)].

6.2.2 Lower Bound

Theorem 33. The PoA of mixed Nash equilibria for discriminatory auctions

with submodular valuations is at least 1.099.

Proof. We design a game with two players and two identical items. Player 1

has valuation (v, v), i.e., her valuation is v if she gets one or two items; whereas

player 2 has valuation (1, 2), i.e., he is additive with value 1 for each item. We

use the following distribution functions defined by Hassidim et al. [86]:
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G(x) =
x

1− x
, x ∈ [0, 1/2]; F (y) =

v − 1/2

v − y
, y ∈ [0, 1/2].

Consider the following mixed strategy profile. Player 1 bids (x, 0) and player

2 bids (y, y), where x and y are drawn from G(x) and F (y), respectively. Noting

that player 2 bids 0 with probability F (0) = 1 − 1/2v, we need a tie-breaking

rule for the case of bidding 0, in which player 2 always gets the item. We claim

that this mixed strategy profile is a mixed Nash equilibrium.

First we prove that playing (x, 0) for player 1 is a best response for every

x ∈ [0, 1/2]. Notice that the bid (x, x′) with x′ ≤ x, is dominated by (x, 0), since

if player 1 gets at least one item, she should pay at least x and getting both

items doesn’t add to her utility.

u1(x, 0) = F (x) · (v − x) = v − 1/2.

Clearly, bidding higher than 1/2 guarantees the item but the payment is higher.

Now we need to show that (y, y) is a best response for player 2, for every

y ∈ [0, 1/2]. Consider any strategy (y, y′) with y, y′ ∈ [0, 1/2] and y ≥ y′.

E[u2(y, y′)] = P[x ≤ y′](2− y − y′) + P[x > y′](1− y)

= G(y′)(2− y − y′) + (1−G(y′))(1− y)

= G(y′)(1− y′) + 1− y = 1 + y′ − y ≤ 1.

Note that E[u2(y, y)] = 1 is maximum possible utility. Bidding strictly higher

than 1/2 for one or both items is not profitable, since her utility would be less

than 1.

Now we calculate the expected social welfare of this Nash equilibrium.

E[SW ] = P[y ≥ x]2 + P[x > y](1 + v)

= 2− (1− v)P[x > y]

= 2− (1− v)

∫ 1/2

0

F (x)dG(x)

This expression is maximised for v = 0.643. For this value of v, E[SW ] = 1.818.

Since SW (o) = 2, we get PoA= 1.099.
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6.3 Subadditive Valuations

For subadditive valuations, de Keijzer et al. [56] showed an upper bound of 2

on the PoA of discriminatory auction, under the standard bidding format. We

provide a tight lower bound of 2 which is similar to the lower bound of Section 4.2,

adjusted to discriminatory auctions.

Theorem 34. For discriminatory auctions the PoA of mixed Nash equilibria is

at least 2 for bidders with subadditive valuations.

Proof. Consider two players and m items with the following valuations: player 1

is a unit-demand player with valuation v < 1 if she gets at least one item; player

2 has valuation 1 for getting less than m but at least one items, and 2 if she gets

all the items. Inspired by [86], we use the following distribution functions:

G(x) =
(m− 1)x

1− x
, x ∈ [0, 1/m]; F (y) =

v − 1/m

v − y
, y ∈ [0, 1/m].

Consider the following mixed strategy profile, B: player 1 bids b1 = (x, 0, ..., 0)

and player 2 bids b2 = (y, ..., y), where x and y are drawn from G(x) and F (y),

respectively. In case of a tie, the item is always allocated to player 2. We are

going to prove that B is a mixed Nash equilibrium for every v > 1/m.

If player 1 bids any x in the range (0, 1/m] for one item, she gets the item with

probability F (x), since a tie occurs with zero probability. Her expected utility is

F (x)(v−x) = v−1/m. So, for every x ∈ (0, 1/m] her utility is v−1/m. If player

1 picks x according to G(x), her utility is still v−1/m, since she bids 0 with zero

probability. Bidding something greater than 1/m results in a utility less than

v − 1/m. Regarding player 1, it remains to show that her utility when bidding

for only one item is at least as high as her utility when bidding for more items.

Suppose player 1 bids (x1, ..., xm), where xi ≥ xi+1, for 1 ≤ i ≤ m− 1. Player 1

doesn’t get any item if and only if y ≥ x1. So, with probability F (x1), she gets

at least one item and she pays at least x1. Therefore, her expected utility is at

most F (x1)(v − x1) = v − 1/m, but it would be strictly less if she had nonzero

payments for other items with positive probability. This means that bidding only

x1 for one item and zero for the rest of them dominates the strategy (x1, ..., xm).

If player 2 bids y for all items, where y ∈ [0, 1/m], she gets m items with

probability G(y) and m−1 items with probability 1−G(y). Her expected utility

is G(y)(2−my)+(1−G(y))(1−(m−1)y) = G(y)(1−y)+1−(m−1)y = 1. Bidding
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something greater than 1/m is dominated by bidding exactly 1/m. Suppose now

that player 2 bids (y1, ..., ym), where yi ≥ yi+1 for 1 ≤ i ≤ m − 1. If x ≤ ym,

player 2 gets all the items; otherwise she gets m−1 items and she pays her m−1

highest bids. So, her utility is

G(ym)

(
2−

m∑
i=1

yi

)
+ (1−G(ym))

(
1−

m−1∑
i=1

yi

)

= G(ym)(1− ym) + 1−
m−1∑
i=1

yi

= mym + 1−
m∑
i=1

yi

≤ mym + 1−
m∑
i=1

ym = 1.

Overall, we proved that B is a mixed Nash equilibrium. It is easy to see

that the social welfare in the optimum allocation is 2. In this Nash equilibrium,

player 2 bids 0 with probability 1− 1
mv

, so, with at least this probability, player

1 gets one item.

SW (B) ≤
(

1− 1

mv

)
(v + 1) +

1

mv
2 = 1 + v +

1

mv
− 1

m

If we set v = 1/
√
m, then SW (B) ≤ 1 + 2√

m
− 1

m
. So, PoA ≥ 2

1+ 2√
m
− 1
m

which,

for large m, converges to 2.
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CHAPTER 7

Proportional Allocation

Mechanism

We study the PoA of auctioning divisible resources by the simultaneous pro-

portional allocation mechanism when the players have concave and subadditive

valuations.

For the full information setting with concave valuations, Johari and Tsitsik-

lis [91] showed that there exists a unique pure Nash equilibrium with PoA of 4/3

and there is no other mixed Nash equilibrium. Regarding the Bayesian setting,

Caragiannis and Voudouris [30] showed for a single resource an upper bound of

2. We complement those results by showing that for the Bayesian setting with

concave valuations over many resources, the PoA is at least
√
m/2 (Section 7.1),

where m is the number of resources.

Then, in Section 7.2.1, we study subadditive valuations and show that the

PoA is exactly 2 for all studied concepts of equilibria: pure Nash, mixed Nash,

correlated, coarse correlated and Bayesian Nash equilibria. At last in Sec-

tions 7.2.2 and 7.2.3 we show that the proportional allocation mechanism admits

the best PoA among a range of mechanisms.

7.1 Concave Valuations

In this section, we show that for concave valuations on multiple resources, Bayesian

equilibria can be arbitrarily inefficient. More precisely, we prove that the PoA

is Ω(
√
m) in contrast to the constant bound for pure equilibria [91]. Therefore,

there is a big gap between full and incomplete information settings.
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Theorem 35. When the valuations are concave, the PoA of the proportional

allocation mechanism for Bayesian equilibria is at least
√
m
2

.

Proof. We consider an instance with m resources and 2 players with the following

concave valuations. v1(x) = minj{xj} and v2(x) is drawn from a distribution

D2, such that some resource j ∈ [m] is chosen uniformly at random and then

v2(x) = xj/
√
m.

Let δ = 1/(
√
m + 1)2. We claim that b(v) = (b1, b2(v2)) is a pure Bayesian

Nash equilibrium, where b1j =
√
δ/m − δ, ∀j ∈ [m], and, if j∗ ∈ [m] is the

resource chosen by D2, b2j∗(v2) = δ and b2j = 0, for all j 6= j∗.

Under this bidding profile, player 1 bids the same value for all resources,

and player 2 only bids positive value for a single resource associated with her

valuation. Suppose that player 2 has positive valuation for resource j∗, i.e.,

v2(x) = xj∗/
√
m. Then the rest m − 1 resources are allocated to player 1 and

players are competing for resource j∗. Bidder 2 has no reason to bid positively

for any other resource. If she bids any value b′2j∗ for resource j∗, her utility would

be

u2(b1, b
′
2j) =

1√
m

b′2j∗

b1j∗ + b′2j∗
− b′2j∗ ,

which is maximised for

b′2j∗ =

√
b1j∗√
m
− b1j∗ .

For b1j∗ =
√
δ/m−δ, the utility of player 2 is maximised for b′2j∗ = 1/(

√
m+1)2 =

δ by simple calculations.

Since v1(x) equals the minimum of x’s components, player 1’s valuation is

completely determined by the allocation of resource j∗. So the expected utility

of player 1 under b is

E
v2

[u1(b)] =

√
δ/m− δ√

δ/m− δ + δ
−m(

√
δ/m− δ) = (1−

√
mδ)2 =

1

(
√
m+ 1)

2 = δ.

Suppose now that player 1 deviates to b′1 = (b′11, . . . , b
′
1m). Then, her expected

utility would be

E
v2

[u1(b′1, b2)] =
1

m

∑
j

b′1j
b′1j + δ

−
∑
j

b′1j =
1

m

∑
j

(
b′1j

b′1j + δ
−m · b′1j

)
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≤ 1

m

∑
j

(√
δ/m− δ√
δ/m

−m · (
√
δ/m− δ)

)

=
1

m

∑
j

(
1− 2

√
m · δ +m · δ

)
=

1

m

∑
j

(
1−
√
m · δ

)2

=
1

m

∑
j

(
1√
m+ 1

)2

= δ = E
v2

[u1(b)].

The inequality comes from the fact that
b′1j
b′1j+δ

− m · b′1j is maximised for b′1j =√
δ/m− δ. So we conclude that b is a Bayesian equilibrium.

Finally, we compute the PoA. The expected social welfare under b is

E
v2

[SW(b)] =

√
δ/m− δ√

δ/m− δ + δ
+

1√
m

δ√
δ/m− δ + δ

= 1−
√
mδ +

√
δ =

2√
m+ 1

<
2√
m
.

The optimal social welfare though is 1 by allocating to player 1 all resources.

Therefore, PoA ≥
√
m
2
.

7.2 Subadditive Valuations

In this section, we focus on players with subadditive valuations. We prove that

the proportional allocation mechanism is at least 50% efficient for coarse corre-

lated equilibria and Bayesian Nash equilibria, i.e., PoA ≤ 2. We further show

that this bound is tight and cannot be improved by any simple or scale-free mech-

anism. The upper bound is an improvement upon the 3.73 bound of Syrgkanis

and Tardos [133] for the class of lattice submodular valuations which is a subclass

of subadditive valuations26.

Before proving our PoA bounds, we show that the class of subadditive func-

tions is a superclass of lattice submodular functions. Based on the defini-

tion of Syrgkanis and Tardos [133], a valuation function is lattice submodu-

lar if and only if it is submodular on the product lattice of outcomes, i.e.

∀x, y ∈ [0, 1]m : v(x ∨ y) + v(x ∧ y) ≤ v(x) + v(y), where ∨ and ∧ stand for

the supremum (join) and infimum (meet), respectively.

26The class of concave valuations is not a subclass of the subadditive valuations [122] (as the
result of Section 7.1 indicates), however in the case of a single variable (single resource), the
classes of lattice submodular and concave valuations coincide and therefore concave valuations
are also subadditive.
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Proposition 36. Any lattice submodular function v defined on [0, 1]m is sub-

additive.

Proof. It has been shown in [133] that for any lattice submodular function v(x),
∂2v(x)
(∂xj)2

≤ 0 and ∂2v(x)
∂xj∂xj′

≤ 0. So the function ∂v
∂xj

(x) is non-increasing monotone

for each coordinate xj′ . It suffices to prove that for any x,y ∈ [0, 1]m, v(x +

y)− v(y) ≤ v(x)− v(0). Let zk be the vector that zkj = yj if j ≤ k and xj + yj

otherwise. Note that z0 = x + y and zm = y. Similarly, we define wk to be the

vector that wk
j = 0 if j ≤ k and xj otherwise. It is easy to see that zk ≥ wk for

all k ∈ [m]. So we have,

v(x + y)− v(y) =
∑
j∈[m]

v(zj−1)− v(zj) =
∑
j∈[m]

∫ xj+yj

yj

∂v

∂tj
(tj; z

j
−j)dtj

≤
∑
j∈[m]

∫ xj+yj

yj

∂v

∂tj
(tj − yj; zj−j)dtj ≤

∑
j∈[m]

∫ xj

0

∂v

∂sj
(sj; w

j
−j)dsj = v(x)− v(0).

The second equality is due to the definition of partial derivative and the

inequalities is due to the monotonicity of ∂v
∂xj

(x).

7.2.1 Upper Bound

Similarly to the previous chapters, in order to prove PoA upper bounds we

define a deviation with proper utility bounds and then use the definition of Nash

equilibrium to bound players’ utilities at equilibrium.

Lemma 37. Let v be any subadditive valuation profile and B be some ran-

domised bidding profile. For any player i, there exists a randomised bidding

strategy ai(v,B−i) such that:

∑
i

ui(ai(v,B−i),B−i) ≥
1

2
SW (ov)−

∑
i

∑
j

E
b∼B

[bij].

Proof. Let qij be the sum of the bids of all players except i on resource j, i.e.,

qij =
∑

k 6=i bkj. Note that qij is a random variable that depends on b−i ∼ B−i.

Let Qi be the probability distribution of qi = (qij)j. We consider the bidding

strategy ai(v,B−i) = (ovij · b′ij)j, where b′i ∼ Qi. Then,

ui(ai(v,B−i),B−i)

78



= E
b′i∼Qi

E
qi∼Qi

[
vi

((
ovijb

′
ij

ovijb
′
ij + qij

)
j

)
− ovi · b′i

]

≥1

2
· E
qi∼Qi

E
b′i∼Qi

[
vi

((
ovijb

′
ij

ovijb
′
ij + qij

+
ovijqij

ovijqij + b′ij

)
j

)]
− E

qi∼Qi
[ovi · qi]

≥1

2
· E
qi∼Qi

E
b′i∼Qi

[
vi

((
ovij(b

′
ij + qij)

b′ij + qij

)
j

)]
− E

qi∼Qi
[ovi · qi]

=
1

2
· vi(ovi )−

∑
j

∑
k 6=i

E
b∼B

[ovij · bkj]

≥1

2
· vi(ovi )−

∑
j

∑
k

E
b∼B

[ovij · bkj].

The first inequality follows by swapping qij and b′ij and using the subadditivity

of vi. The second inequality comes from the fact that ovij ≤ 1. By summing up

over all players and by using the fact that
∑

i∈[n] o
v
ij = 1,

∑
i

ui(ai(v,B−i),B−i) ≥
1

2

∑
i

vi(o
v
i )−

∑
i

∑
j

∑
k

E
b∼B

[ovij · bkj]

=
1

2
SW (ov)−

∑
k

∑
j

E
b∼B

[
∑
i

(ovij) · bkj]

=
1

2
SW (ov)−

∑
i

∑
j

E
b∼B

[bij].

Theorem 38. The PoA of coarse correlated equilibria for the proportional allo-

cation mechanism with subadditive valuations is at most 2.

Proof. Let B be any coarse correlated equilibrium (note that v is fixed). By

Lemma 37 and the definition of the coarse correlated equilibrium, we have

∑
i

ui(B) ≥
∑
i

ui(ai(v,B−i),B−i) ≥
1

2
SW (o)−

∑
i

∑
j

E[bij]

By rearranging terms, SW(B) =
∑

i ui(B) +
∑

i

∑
j E[bij] ≥ 1

2
· SW(o).

Theorem 39. The Bayesian PoA of the proportional allocation mechanism with

subadditive players is at most 2.

Proof. Let B be any Bayesian Nash Equilibrium and let vi ∼ Di be the val-

uation of each player i drawn independently from Di. We denote by C =
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(C1, C2, . . . , Cn) the bidding distribution which includes the randomness of both

the bidding strategy b ∼ B and of the valuations v. For any player i and any

subadditive valuation vi ∈ Vi, consider the deviation ai(vi; w−i,C−i) as defined

in Lemma 37, where w−i ∼ D−i. By the definition of the Bayesian Nash equi-

librium, we obtain

E
v−i

[uvii (Bi(vi),B−i(v−i))] = uvii (Bi(vi),C−i) ≥ E
w−i

[uvii (ai(vi; w−i,C−i),C−i)].

By taking the expectation over vi and summing up over all players,

∑
i

E
v

[ui(B(v))] ≥
∑
i

E
vi,w−i

[uvii (ai(vi; w−i,C−i),C−i)]

=E
v

[∑
i

uvii (ai(v,C−i),C−i)

]
≥ 1

2
E
v

[SW (ov)]−
∑
i

∑
j

E[bij].

So, Ev[SW(B(v))] =
∑

i Ev[ui(B(v))] +
∑

i

∑
j E[bij] ≥ 1

2
Ev[SW(ov)].

As we show next, the previous upper bounds of Theorems 38 and 39 are tight

even for the pure Nash equilibrium and a single resource.

Theorem 40. The PoA of pure Nash equilibria for the proportional allocation

mechanism with subadditive valuations is at least 2.

Proof. We consider a game with only two players and a single resource. The

valuation of the first player is v1(x) = 1 + ε · x, for some ε < 1, if x < 1 and

v1(x) = 2 if x = 1. The valuation of the second player is v2(x) = ε · x. One

can easily verify that these two functions are subadditive and the optimal social

welfare is 2. Consider the bidding strategies b1 = b2 = ε
4
. The utility of player

1, when she bids x and player 2 bids ε
4
, is given by 1 + ε · x

x+ε/4
− x which is

maximised for x = ε
4
. The utility of player 2, when she bids x and player 1 bids

ε
4
, is ε · x

x+ε/4
− x which is also maximised when x = ε

4
. So (b1, b2) is a pure Nash

Equilibrium with social welfare 1 + ε. Therefore, the PoA converges to 2 when ε

goes to 0.

7.2.2 Lower Bound for Simple Mechanisms

Now, we show a lower bound that applies to all simple mechanisms, where the

bidding space has size (at most) sub-doubly-exponential in m. More specifically,

80



we apply the general framework of Roughgarden [124], for showing lower bounds

on the PoA for all simple mechanisms, via communication complexity reductions

with respect to the underlying optimisation problem. In our setting, the problem

is to maximise the social welfare by allocating divisible resources to players with

subadditive valuations. We proceed by proving a communication lower bound

for this problem in the following lemma.

Lemma 41. For any constant ε > 0, any (2−ε)-approximation (non-deterministic)

algorithm for maximising social welfare in resource allocation problem with sub-

additive valuations requires an exponential amount of communication.

Proof. We prove this lemma by reducing the communication lower bound for

combinatorial auctions with general valuations (Theorem 3 of [113]) to our setting

(see also [59] for a reduction to combinatorial auctions with subadditive players).

Nisan [113] used an instance with n players and m items, with n < m1/2−ε.

Each player i is associated with a set, Ti, of bundles, with |Ti| = t for some

t > 0. At every instance of this problem, the players’ valuations are determined

by sets, Ii, of bundles, where Ii ⊆ Ti for every i. Given Ii, player i’s valuation

on some subset S of items is vi(S) = 1, if there exists some R ∈ Ii such that

R ⊆ S, otherwise vi(S) = 0. In [113], it was shown that distinguishing between

instances with optimal social welfare of n and 1, requires t bits of communication.

By choosing t exponential in m, their theorem follows.

We prove the lemma by associating any valuation v of the above combinatorial

auction problem, to some appropriate subadditive valuation v′ for our setting.

For any player i and any fractional allocation x = (x1, . . . , xm), let Axi = {j|xij >
1
2
}. We define v′i(xi) = vi(Axi) + 1 if xi 6= 0 and v′i(xi) = 0 otherwise. It is easy

to verify that v′i is subadditive. Notice that v′i(x) = 2 only if there exists R ∈ Ii
such that player i is allocated a fraction higher than 1/2 for every resource in

R. The value 1/2 is chosen such that no two players are assigned more than

that fraction from the same resource. This corresponds to the constraint of an

allocation in the combinatorial auction where no item is allocated to two players.

Therefore, in the divisible goods allocation problem, distinguishing between

instances where the optimal social welfare is 2n and n + 1 is equivalent to dis-

tinguishing between instances where the optimal social welfare is n and 1 in

the corresponding combinatorial auction and hence requires exponential, in m,

number of communication bits.

The PoA lower bound follows the general reduction described in [124].
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Theorem 42. The PoA of ε-mixed Nash equilibria27 of every simple mechanism,

when players have subadditive valuations, is at least 2.

Remark 43. This result holds only for ε-mixed Nash equilibria. Considering

exact Nash equilibria, we show a lower bound for all scale-free mechanisms in

the following section.

7.2.3 Lower Bound for Scale-free Mechanisms

Here we prove a tight lower bound for all scale-free mechanisms including the

proportional allocation mechanism. A mechanism (x,q) is said to be scale-free if

a) for every player i, resource j and constant c > 0, xi(c ·bj) = xi(bj). Moreover,

for a fixed b−i, xi is non-decreasing and positive whenever bij is positive. b)

The payment for player i depends only on her bids bi = (bij)j and equals to∑
j∈[m] qi(bij) where qi is non-decreasing, continuous, normalised (qi(0) = 0), and

there always exists a bid bij such that qi(bij) > 0.

Theorem 44. The mixed PoA of scale-free mechanisms when players have sub-

baditive valuations, is at least 2.

Proof. Given a mechanism (x,q), we construct an instance with 2 players and

m resources. Let V be a positive value such that V/m is in the range of both q1

and q2. This can always be done due to our assumptions on qi. Let T1 and T2 be

the values such that q1(T1) = q2(T2) = V/m. W.l.o.g. we assume that T1 ≥ T2.

By monotonicity of q1, q1(T2) ≤ V/m. Pick an arbitrary value a ∈ (0, 1), and let

α1 = x1(a, a) and α2 = x2(a, a). By the assumption that xi(bj) > 0 for bij > 0,

we have α1, α2 ∈ (0, 1). Let v = V/
√
m. We define the players’ valuations as:

v1(x) =


0, if ∀j ∈ [m], xj = 0,

v, if ∀j xj < α1, ∃k xk > 0

2v, otherwise

v2(x) =


0, if ∀j ∈ [m], xj = 0

V, if ∃j xj < α2, ∃k xk > 0

2V, otherwise

We claim that the following mixed strategy profile B is a Nash equilibrium.

Player 1 picks resource l uniformly at random and bids b1l = y, and b1k = 0,

27A bidding profile B = ×iBi is called ε-mixed Nash equilibrium if, for every player i and
any bid b′i, Eb∼B[ui(b)] ≥ Eb∼B[ui(b

′
i,b−i)]− ε.
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for k 6= l, where y is a random variable drawn by the cumulative distribution

G(y) = mq2(y)
V

, y ∈ [0, T2]. Player 2 bids b2j = z for every item j, where

z is a random variable drawn by the cumulative distribution F (z), defined as

F (z) = v−q1(T2)+q1(z)
v

, z ∈ [0, T2]. Note that G(T2) = 1, F (T2) = 1 and since

qi is continuous, G and F are continuous in (0, T2) and therefore both functions

have no mass point in any (0, T2). We assume that if both players bid 0 for some

resource, player 2 takes the whole resource. We are ready to show that B is a

Nash equilibrium.

If player 1 bids any y in the range (0, T2] for a single resource j and zero for

the rest, then she gets an allocation of at least α1 for resource j (that she values

for 2v), only if y ≥ z, which happens with probability F (y). If y < z her value

is v. Therefore, her expected valuation is v+F (y)v. So, for every y ∈ (0, T2] her

expected utility is v+F (y)v− q1(y) = 2v− q1(T2). If player 1 picks y according

to G(y), her utility is still 2v − q1(T2), since she bids 0 with zero probability.

Suppose player 1 bids y = (y1, . . . , ym), yj ∈ [0, T2] for every j, with at least two

positive bids, and w.l.o.g., assume y1 = maxj yj. If z > y1, player 1 has value

v for the allocation she receives. If z ≤ y1, player 1 has value 2v, but she may

pay more than q1(y1). So, this strategy is dominated by the strategy of bidding

y1 for the first resource and zero for the rest. Bidding greater than T2 for any

resource is dominated by the strategy of bidding exactly T2 for that resource.

If player 2 bids z ∈ [0, T2] for all resources, she gets an allocation of at

least α2 for all the m resources with probability G(z). So, her expected utility is

V +G(z)V −mq2(z) = V . Bidding greater than T2 for any resource is dominated

by bidding exactly T2 for this resource. Suppose that player 2 bids any z =

(z1, . . . zm), with zj ∈ [0, T2] for every j, then, since player 1 bids positively for

any item with probability 1/m, player’s 2 expected utility is

E[u2] =
1

m

∑
j

(
V +G(zj)V −

∑
k

q2(zk)

)

=
1

m

∑
j

(
V +mq2(zj)−

∑
k

q2(zk)

)

=
1

m

(
mV +m

∑
j

q2(zj)−m
∑
k

q2(zk)

)
= V.

Overall, B is Nash equilibrium. Therefore, it is sufficient to bound the ex-

pected social welfare in B. Player 1 bids 0 with zero probability. So, whenever
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player 2 bids 0, she receives exactly m − 1 resources, which she values for V .

Player 2 bids 0 with probability F (0) = 1 − q1(T2)
v
≥ 1 − V

mv
= 1 − 1√

m
. Hence,

E[SW(B)] ≤ 2V −F (0) · V + 2v ≤ 2V
(

1 + 1√
m

)
− V

(
1− 1√

m

)
= V

(
1 + 3√

m

)
.

On the other hand, the social welfare in the optimum allocation is 2(V + v) =

2V
(

1 + 1√
m

)
(player 1 is allocated α1 proportion from one resource and the rest

is allocated to player 2). We conclude that PoA ≥ 2

(
1+ 1√

m

)
(

1+ 3√
m

) which, for large m,

converges to 2.
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Part II

Cost-Sharing Networks
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CHAPTER 8

Overview

This part is based on joint works with George Christodoulou and Stefano Leo-

nardi. Chapters 10 and 11 are based on the paper [43], co-authored with George

Christodoulou, which was published in the Proceedings of the 27th Annual ACM-

SIAM Symposium on Discrete Algorithms in 2016. Chapter 12 is based on the

paper [42], co-authored with George Christodoulou and Stefano Leonardi, which

appeared in the Proceedings of the 9th International Symposium on Algorithmic

Game Theory in 2016 and was invited to Special Issue of Theory of Computing

Systems in 2017.

Network Cost-Sharing Games. We study a multicast game in a

rooted undirected graph G = (V,E) with a nonnegative cost ce on each edge

e ∈ E. A set of k terminal vertices or players t1, . . . , tk need to establish connec-

tivity with the root t. Each player selects a path Pi and the outcome produced

is the graph H = ∪iPi. The global objective is to minimise the cost,
∑

e∈H ce,

of this graph, which is the Minimum Steiner Tree. The cost of H should be

covered by its users and the way the cost is split among them is dictated by a

cost-sharing protocol. The players prefer paths that charge them with small cost,

and therefore the solution will be a Nash equilibrium.

Cost-Sharing Design. Different cost-sharing protocols result in different

quality of equilibria. In this work, we are interested in the design of protocols

that induce good equilibrium solutions in the worst-case, therefore we focus on

protocols that guarantee low PoA. Chen, Roughgarden and Valiant [36] initiated

the design aspect for network cost-sharing games. They gave a characterisation
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of protocols that satisfy some natural axioms and they thoroughly studied the

PoA for the following two classes of protocols, that use different informational

assumptions from the perspective of the designer.

Non-uniform protocols. The designer has full knowledge of the instance, that is,

she knows both the network topology given by G and the costs ce, and in

addition the set of players’ requests t1, . . . , tk. They showed that a simple

priority protocol (see Example 45) has a constant PoA; the NE induced

by the protocol simulate Prim’s algorithm for the Minimum Spanning Tree

(MST) problem, and therefore achieve constant approximation.

Uniform protocols. The designer needs to decide how to split the edge cost

among the users without knowledge of the underlying graph. They showed

that the PoA is Θ(log k); both upper and lower bound comes from the

analysis of the Greedy Algorithm for the Online Steiner Tree problem.

Cost-Sharing Design under Uncertainty. Arguably, there are sit-

uations where the former assumption is too optimistic while the latter is too

pessimistic. We propose a model that lies in the middle-ground as a framework

to design network cost-sharing protocols with good equilibria, when the designer

has incomplete information. We assume that the designer has prior knowledge

of the underlying metric, (given by the graph G and the shortest path metric

induced by the costs ce), but is uncertain about the requested subset of play-

ers. We consider three different models, the adversarial, the stochastic and the

Bayesian models.

Adversarial Model. The designer knows nothing about the number or the

positions of the ti’s and has as goal to process the graph and choose a single,

universal cost-sharing protocol that has low PoA against all possible requested

subsets. Here, no distributional assumptions are made about arrivals of players,

instead the worst-case approach is used similarly to competitive analysis of online

algorithms. Once the designer selects the protocol, then an adversary will choose

the requested subset of players and their positions in the graph (the ti’s), in a

way that maximises the PoA of the induced game.

Stochastic and Bayesian Models. The players’ terminals are chosen ac-

cording to some probability distribution which is known to the designer. The

ground difference is that in the stochastic model the players act by fully knowing

the instance, including the terminals of the other players, whereas in the Bayesian
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Figure 8.1: The figure is a variation of the worst-case graph for the Online Steiner
Tree problem [87] that serves as the worst-case graph for the universal protocols
of the network cost-sharing game. In edges with no written cost, we consider
the unit cost; note that the graph can be easily generalised so that the number
of vertices is arbitrarily big. We assume two orders on the vertices, denoted by
qi or pi. The q-order is adversarially chosen and results in high PoA of Ω(log k).
The p-order results in constant PoA.

model, the players have also incomplete knowledge about the other terminals,

the same way as the designer does and therefore, act in order to minimise their

expected cost-share. The goal in both latter models is to choose a universal

protocol where the expected worst-case cost in the Nash equilibrium is not far

from the expected optimal cost.

Example 45. (Ordered protocols). An important special class with interesting

properties is that of ordered protocols. The designer decides a total order of the

users, and when a subset of players uses some edge, the full cost is covered by the

player who comes first in the order. Any NE of the induced game corresponds

to the solution produced by the Greedy Algorithm for the MST: each player

is connected, via a shortest path, with the component of the players that come

before him in the order. The analysis of the PoA in the uniform model boils down

to the analysis of the Greedy Algorithm for the Online Steiner Tree problem,

where the worst-case order is considered.

The following example demonstrates that even this special class of ordered

protocols becomes very rich, once the designer has prior knowledge of the un-

derlying metric space. Uniform protocols throw away this crucial component,

the structure of the underlying metric, that universal protocols can use in their

favour in order to come up with better PoA guarantees.

Uniform protocols. The designer chooses an order of the players 1, . . . , k with-
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out prior knowledge of the graph. The adversary constructs a worst-case

graph by simulating the adversary for the Greedy Algorithm of the On-

line Steiner Tree problem [87] and places the players accordingly. See

for example Figure 8.1, the q labels. There is a Nash equilibrium that

is formed by the bold edges, whereas the optimum solution is the path

(r, q1, q6, q4, q7, q3, q8, q5, q9, q2). Therefore, the PoA of uniform ordered pro-

tocol is Ω(log k) [36].

Universal protocols. The designer takes into account the graph; consider again

the graph of Figures 8.1. Order the vertices according to the linear order

dictated from the path p1, . . . , p9 (say from left to right). The adversary

will choose k and the positions of the players (t1, . . . , tk). Note that when

a player chooses her path, all the players that are on her left will cover the

cost of their chosen paths because they precede her in the order. There-

fore, each player would connect with the previous player in the p-order

via shortest path resulting in a cost that is exactly the same with that

of the optimum solution28. Overall, no matter which subset of players the

adversary chooses, the PoA remains constant (in fact PoA= 1) as k grows.

Example 46. (Generalised weighted Shapley). In [36], it was shown that

ordered protocols are essentially optimal among uniform protocols. In our model,

the choice of the optimal method may depend on the underlying graph metric.

Take the example in Figure 8.2. By using Shapley cost-sharing the adversary

can choose to activate {v1, v2, v3} and it is a NE if v1, v3 connect directly to r

and v2 connects through v1. Regarding any ordered protocol, the square defined

by the vi’s contains a path of length 2 where the middle vertex comes last in

the order. The adversary will select this triplet of players, say v1, v2, v3. In the

NE, v1 connects directly to r, v3 and v2 connect through v1. In both cases, (by

ignoring ε) the cost of the NE is 5 and the minimum Steiner tree that connects

those vertices with r has cost 4 and therefore, PoA ≥ 5/4.

However, the following (generalised Shapley) protocol, has PoA = 1. Parti-

tion the players into two sets S1 = {v1, v2}, S2 = {v3, v4}. If players from both

partitions appear on some edge, then the cost is charged only to players from

S1. Players that belong to the same partition share the cost equally. One can

28The optimum solution connects all players by using the unit-cost edges that connect the
leftmost to the rightmost player and uses one edge of cost 8 in order to connect that component
to r.
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Figure 8.2: The figure shows an example where both the best ordered protocol
and the Shapley protocol have PoA ≥ 5/4, whereas there is an intermediate
protocol with PoA= 1; we set ε > 0 arbitrarily small.

verify that for all possible subsets of players this protocol produces only optimal

equilibria.

8.1 Results

We propose a framework for the design of (universal) network cost-sharing pro-

tocols with good equilibria, in situations where the designer has incomplete in-

formation about the input. We consider three different models, the adversarial,

the stochastic and the Bayesian. In all models, the designer has prior knowledge

of the underlying metric but the requested subset of players is not known and is

activated either in an adversarial manner (adversarial model) or is drawn from

a known probability distribution (stochastic and Bayesian model). The central

question we address is: to what extent does prior knowledge of the metric help in

good network design under uncertainty?

For the adversarial model (Chapter 10), we first demonstrate that there exist

classes of graph metrics where prior knowledge of the underlying metric can

dramatically improve the performance of good network cost-sharing design. For

outerplanar graph metrics, we provide a universal ordered cost-sharing protocol

with constant PoA, against any choice of the adversary. This is in contrast to

uniform protocols that ignore the graph and cannot achieve PoA better than

Ω(log k) in outerplanar metrics.

Our main technical result shows that there exist graph metrics, for which

knowing the underlying metric does not help the designer, and any universal
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protocol29 has PoA of Ω(log k). This matches the upper bound of O(log k) that

can be achieved without prior knowledge of the metric [87, 36]. Our results for

the adversarial model motivate the following question that is left open.

Open Question For which metric spaces can one design universal protocols

with constant PoA? What sort of structural graph properties are needed to obtain

good guarantees?

Then, we switch to the stochastic model (Chapter 11), where the players (ter-

minal vertices) are activated according to some probability distribution that is

known to the designer. We show that there exists a randomised ordered protocol

that achieves constant PoA. If each player is activated independently with some

probability, by using standard derandomisation techniques [141, 130], we pro-

duce a deterministic ordered protocol that achieves constant PoA. We remark,

that the first result holds also for the black-box model, where the probability

distribution is not known to the designer, but is allowed to draw independent

(polynomially many) samples.

At last, for the Bayesian model (Chapter 12), we show that even for i.i.d.

players, i.e. players with independent and identical prior distributions on the

position of their terminal, there exists a lower bound of Ω(
√
k) on the PoA

of any (deterministic or randomised) cost-sharing protocol that satisfies certain

natural axioms posed by [36]. One of the axioms that [36] required in their

design space is that every cost-sharing protocol should satisfy budget balance,

i.e. that the players’ cost-shares cover exactly the cost of any solution. We relax

this property by requiring budget-balance only in all equilibria. We provide a

protocol that is ex-post30 budget-balanced in equilibrium with constant PoA.

We further present anonymous posted prices with the same upper bound on the

PoA that are ex-ante31 budget-balanced in equilibrium; we discuss limitations of

other concepts, such as budget-balance in equilibrium with “high” probability or

bounded possible excess and deficit.

29The result holds only for deterministic protocols. It is not known whether the same lower
bound holds for randomised protocols. For the special case of an ordered protocol that orders
the players uniformly at random, a logarithmic lower bound is known by Garg et al. [72].

30In ex-post budget-balance we require budget-balance in every realisation of the game. If
the expected excess and deficit are zero, the budget balance is called ex-ante.

31Ex-post budget-balanced cannot be obtained via anonymous prices.
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8.2 Techniques

We prove our main lower bound for the adversarial model (Chapter 10) in two

parts. In the first part (Section 10.2) we bound the PoA achieved by any ordered

protocol. Our origin is a well-known “zig-zag” ordered structure that has been

used to show a lower bound on the Greedy Algorithm of the Online Steiner Tree

problem (see the labeled path (q1, q6, q4, . . . , q2) in Figure 8.1). The challenge

is to show that high dimensional hypercubes exhibit such a distance preserving

structure no matter how the vertices are ordered. Section 10.2 is devoted to this

task and we believe that this is of independent interest.

We show the existence proof by employing powerful tools from Extremal

Combinatorics and in particular Ramsey Theory [78]. We are inspired by a

Ramsey-type result due to Alon et al. [5], in which they show that for any given

length ` ≥ 5, any r-edge colouring of a high dimensional hypercube contains a

monochromatic cycle of length 2`. Unfortunately, we cannot immediately use

their results, but we show a similar Ramsey-type result for a different, carefully

constructed structure; we assert that every 2-edge colouring of high dimensional

hypercubes Qn contains a monochromatic copy of that structure. Then, we pre-

scribe a special 2-edge-colouring that depends on the ordering of Qn, so that

the special subgraph preserves some nice labelling properties. A suitable subset

of the subgraph’s vertices can be 1-embedded into a hypercube of lower dimen-

sion. Recursively, we show existence of the desired distance preserving “zig-zag”

structure.

In the second part (Section 10.3), we extend the lower bound to all universal

cost-sharing protocols, by using the characterisation of [36]. At a high level,

we use as basis the construction for the ordered protocol and create “multiple

copies”32. The adversary will choose different subsets of players, depending on

whether the designer chose protocols “closer” to Shapley or to ordered. In the

latter case, we use arguments from Matching Theory to guarantee existence of

ordered-like players in one of the hypercubes.

For the stochastic model (Chapter 11), we construct an approximate mini-

mum Steiner tree over a subset of vertices which is drawn from the known proba-

bility distribution. This tree is used as a base to construct a spanning tree, which

determines a total order over the vertices. We finally produce a deterministic

32Note that the standard complexity measure, to analyse the inefficiency of equilibria, is the
number of participants, k, and not the total number of vertices in the graph (see for example
[6, 36]).
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order by applying standard derandomisation techniques [141, 130].

Chapter 12 is devoted to the Bayesian setting. Regarding the cost-sharing

protocols that are budget-balanced only in equilibrium (Section 12.2), we show

an interesting connection between algorithms for Oblivious Stochastic optimi-

sation problems and cost-sharing design with low PoA. We are able to enforce

approximate solutions of the stochastic problem, as Bayesian Nash equilibria,

with the same guarantees on the PoA. Although this connection is quite simple,

it results in significant improvement on the PoA comparing to budget-balanced

protocols.

8.3 Related Work

Following the work of [6, 7], a long line of research studies network cost-sharing

games, mainly focusing on the PoS of the Shapley cost-sharing mechanism. [6]

showed a tight Θ(log k) bound for directed networks, while for undirected net-

works several variants have been studied [22, 23, 24, 35, 37, 58, 68, 103] but the

exact value of PoS still remains a big open problem. For multicast games, an

improved upper bound of O(log k/ log log k) is known due to Li [103], while for

broadcast games, a series of work [68, 101] lead finally to a constant due to Bilò

et al. [24]. The PoA of some special equilibria has been also studied in [31, 34].

Chen, Roughgarden and Valiant [36] initiated the study of network cost-

sharing design with respect to PoA and PoS. They characterised a class of

protocols that satisfy certain desired properties (which was later extended by

Gopalakrishnan, Marden and Wierman, in [76]), and they thoroughly studied

PoA and PoS for several cases. Von Falkenhausen and Harks [139] studied sin-

gleton and matroid games with weighted players, while Gkatzelis, Kollias and

Roughgarden [73] focus on weighted congestion games with polynomial cost func-

tions. Gairing, Kollias and Kotsialou [71] studied the PoA and the PoS for cost-

sharing methods on weighted congestion games for convex and polynomial cost

functions, respectively.

Moulin and Shenker [111] studied cost-sharing games under mechanism de-

sign context; they characterised the budget-balanced and group strategyproof

mechanisms and identify the one with minimum welfare loss. In similar context,

other papers considered (group)strategy proof and efficient mechanisms and re-

laxed the budget-balanced constraint. Könemann et al. [97] showed, for the

Steiner forest game, a 2-budget-balanced cost-sharing method, meaning that at
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least half of the cost is covered by the players, and proved that this factor cannot

be improved. Devanur, Mihail and Vazirani [57] and Immorlica, Mahdian and

Mirrokni [89] studied other cost-sharing games, like the set cover and the facility

location games showing positive and negative bounds on the fraction of the cost

that is covered by the players.

Close in spirit to universal cost-sharing protocols is the notion of Coordination

Mechanisms [39] that provides a way to improve the PoA in cases of incomplete

information. The designer has to decide in advance local scheduling policies or

increases in edge latencies, without knowing the exact input, and has been used

for scheduling problems [1, 2, 10, 16, 27, 28, 39, 53, 88, 96] as well as for simple

routing games [17, 48].

The underlying optimisation problem that we consider here is the mini-

mum Steiner tree problem. It is a well-studied problem and known to be in

NP-complete and the best known approximation is 1.39 [26]. As discussed in

Example 45, the analysis of the equilibria induced by ordered protocols corre-

sponds to the analysis of the Greedy Algorithm for the MST. In the uniform

model, this corresponds to the analysis of the Greedy Algorithm [8, 87] for the

(Generalised) Online Steiner Tree problem [4, 12, 136], which was shown to be

Θ(log k)-competitive by Imase and Waxman [87] (O(log2 k)-competitive for the

Generalised Online Steiner Tree problem by [8]). The universal model is closely

related to universal network design problems [90], hence our choice for the term

“universal”. In the universal TSP, given a metric space, the algorithm designer

has to decide a master order so that tours that use this order have good approx-

imation [13, 15, 44, 77, 83, 90, 120].

Much work has been done in stochastic models and we only mention the most

related to our work. Karger and Minkoff [93] showed a constant approximation

guarantee for the maybecast problem, where the designer needs to fix (before

activation) some path for every vertex to the root. Garg et al. [72] gave bounds

on the approximation of the stochastic online Steiner tree problem for several

informational assumptions. A line of works [14, 77, 128, 130] has studied the

a priori TSP. Shmoys and Talwar [130] assumed independent activations and

demonstrated randomised and deterministic algorithms with constant approxi-

mations.
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CHAPTER 9

Models and Preliminaries

A multicast network cost-sharing game, is specified by a connected undirected

graph G = (V,E), with a designated root r and nonnegative weight ce for every

edge e, a set of players S = {1, . . . , k} and a cost-sharing protocol. Each player i

is associated with a terminal ti which she needs to connect with r; ti is called the

type of player i. We denote by t = (t1, . . . , tk) the vector of players’ terminals.

We say that a vertex is activated if there exists some requested player associated

with it. The cost-sharing protocol is defined by the protocol designer or just the

designer.

9.1 Information Models

We consider the following information models from the perspective of the designer

and the players:

Adversarial: The designer knows nothing about the set S of activated vertices.

The players though have full knowledge of the instance.

Stochastic: The players’ types are drawn from some distribution D defined over

V k. The actual types are unknown to the designer, who is only aware of

D. However, the players decide their strategies by knowing other players’

types.

Bayesian: The players’ types are drawn from some product distribution D

defined over V k. Both the designer and the players know only D. A

natural assumption is that the players know their own type.

Regarding the stochastic and the Bayesian models, the type of player i is drawn
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according to some known distribution, Di : V → [0, 1] with
∑

v∈V Di(v) = 1,

possibly different for each player, that results in the joint distribution D = ×iDi.

9.2 Universal Cost-Sharing Protocols

The designer is not aware of the players’ terminals and thus of the activated

vertices, hence, she should define the cost-sharing protocol over a larger set N

that includes all potential players; we will determine N later for each setting.

Consider a set of players N , then a cost-sharing method ξe : 2N → R|N |+ is a

function of the set of players, R ⊆ N , using edge e and decides the cost-share for

each such player i ∈ R. A natural rule is that the shares for players not included

in R should always be 0. We use the notation ξe(i, R) to denote the cost-share

of player i under input R; note that if i /∈ R, then by default ξe(i, R) = 0. A

cost-sharing protocol Ξ assigns, for every e ∈ E, some cost-sharing method ξe.

Following previous work [36, 139], we focus on cost-sharing protocols that

satisfy the following natural properties:

(1) Budget-balance: For every network game induced by the cost-sharing pro-

tocol Ξ, and every outcome of it,
∑

i∈R ξe(i, R) = ce, for every edge e.

(2) Separability: For every network game induced by the cost-sharing protocol

Ξ, the cost-shares of each edge are completely determined by the set of

players using it.

(3) Stability: In every network game induced by the cost-sharing protocol Ξ,

there exists at least one pure (Bayesian) Nash equilibrium, regardless of

the graph structure.

We call a cost-sharing protocol Ξ universal, if it satisfies the above properties

for any graph G, and it assigns the cost-sharing method ξe : 2N → R|N |+ to

any edge e based only on knowledge of G (without any knowledge of S) for the

adversarial model, while in the stochastic and Bayesian models the method can

in addition depend on D.

Due to the characterisation in [36], we restrict ourselves to the family of

generalised weighted Shapley protocols in all, but the Bayesian, settings. Chen,

Roughgarden and Valiant [36] characterise the linear protocols33 satisfying the

33A linear protocol, for every edge e of cost ce ≥ 0, assigns the method ce · ξ, where ξ is the
method it assigns to any edge of unit cost.
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three properties to be the generalised weighted Shapley protocols and they fur-

ther showed that for any non-linear protocol, there exists a linear one with at

most the same PoA. They assumed that no structural property of the network

is known. We note that this is also our requirement, so that even if the network

evolves over time, the protocol always guarantees the existence of a pure Nash

equilibrium. We remark that, if additionally the existence of the equilibrium

relies on the network structure, other protocols may also exist; however, this is

out of the scope of this thesis and we refer the reader to [107] for an example in

singleton games.

Determining N. For the adversarial setting, since the designer is not aware

of t, we will define the cost-sharing protocol for a set that includes all potential

players. W.l.o.g. we can assume that each player is associated with a distinct

vertex34 and hence, we define the cost-sharing protocol with respect to V .

For the stochastic and Bayesian settings, it is not so clear any more if it is

w.l.o.g. to assume that each player is associated with a distinct vertex; instead,

we consider N to be the set of all possible pairs of player-type, i.e. |N | = k|V |,
where k is the number of players.

Discussion. In a sense, the protocol is defined on the players’ types and not

on the players themselves, which is a ground difference between our model and

the uniform protocols of [36]. Therefore, the protocol should decide the shares

for any possible combination of players’ types.

We fairly assume that when a player uses an edge, the protocol is aware of

their origin and some global identification. For instance, if the players use the

network in order to route some traffic, this would probably carry the address of

origin and some id.

34This is true, since on the one hand if the worst-case instance includes a vertex being the
type of more than one player, the designer can use an arbitrary order among those players and
charge only the first in the order; then the rest will follow the same path by paying zero. On
the other hand, if the designer can benefit by considering any other charging method between
players of the same vertex, the adversary can choose only one player per vertex.
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9.3 Generalised Weighted Shapley Pro-

tocol

The Generalised Weighted Shapley Protocol (GWSP) (see also the definition

of [76]) is defined by the players’ weights (parameters) {w1, . . . , wn} and an

ordered partition of the players Σ = (U1, . . . , Uh). An interpretation of Σ is that

for i < j, players from Ui “arrive” before players from Uj and they should cover

the cost. More formally, for every edge e of cost ce, every set of players Re that

uses e and for s = arg minj{Uj|Uj ∩ Re 6= ∅}, the GWSP assigns the following

method to e:

ξe(i, Re) =

{
wi∑

j∈Us∩Re wj
ce, if i ∈ Us ∩Re

0, otherwise

In the special case that each Ui contains exactly one player, the protocol is called

ordered. The order of Ui’s indicates a permutation of the players, denoted by π.

9.4 Pure Nash Equilibrium

We denote by Pi(ti) = Pi the strategy space of player i with terminal/type ti,

i.e. the set of all the paths connecting ti to r. P = (P1, . . . , Pk) denotes an

outcome or a strategy profile, where Pi ∈ Pi for all i ∈ S. As usual, P−i denotes

the strategies of all players but i. Let Re be the set of players using edge e ∈ E
under P. The cost-share of player i induced by ξe’s is equal to

ci(P) =
∑
e∈Pi

ξe(i, Re).

The players’ objective is to minimise their cost-share ci(P).

A strategy profile P = (P1, . . . , Pk) is a Nash equilibrium (NE) if for every

player i ∈ S and every strategy P ′i ∈ Pi,

ci(P) ≤ ci(P−i, P
′
i ).

A strategy profile P(t) = (P1(t1), . . . , Pk(tk)) is a Bayesian Nash equilibrium
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(BNE) if for every player i ∈ S with type ti and every strategy P ′i (ti) ∈ Pi(ti),

E
t−i∼D−i

[ci(P(t))] ≤ E
t−i∼D−i

[ci(P−i(t−i), P
′
i (ti))].

9.5 Price of Anarchy

The cost of an outcome P = (P1, . . . , Pk) is defined as c(P) =
∑

e∈∪iPi ce, while

O(t) = O = (O1, . . . , Ok) ∈ arg minP c(P) is an optimum solution. The Price

of Anarchy (PoA) is defined as the worst-case ratio of the cost in a NE over the

optimal cost in the game induced by S. In the adversarial model the worst-case

S is chosen, while in the stochastic and Bayesian models S is drawn from a

known distribution D. Formally, in the adversarial model we define the PoA of

a protocol Ξ on G as

PoA(G,Ξ) = max
S⊆V \{r}

maxP∈ N c(P)

c(O)
,

where N is the set of all NE of the game induced by Ξ and S on G. In the

stochastic and Bayesian models, the PoA of Ξ, given G and D is, respectively,

PoA(G,Ξ, D) =
Et∼D [maxP∈ N c(P(t))]

Et∼D[c(O(t))]
; PoA(G,Ξ, D) = max

P∈BN

Et∼D[c(P(t))]

Et∼D[c(O(t))]
,

where N is the set of all NE of the game induced by Ξ and t on G, and BN
is the set of all BNE of the game induced by Ξ and D on G. In all models the

objective of the designer is to come up with protocols that minimise the above

ratios. Finally, the Price of Anarchy for a class of graph metrics G, is defined for

the adversarial model and for the stochastic (or Bayesian) models, respectively,

as

PoA(G) = max
G∈G

min
Ξ(G)

PoA(G,Ξ); PoA(G) = max
G∈G

min
Ξ(G,D)

max
D

PoA(G,Ξ,Π).

9.6 Graph Notation

For every graph G, we denote by V (G) and E(G) the set of vertices and edges

of G, respectively. For any v, u ∈ V (G), (v, u) denotes an edge between v and

u and dG(v, u) denotes the shortest distance between v and u in G; if G is clear

from the context, we simply write d(v, u). A graph G is an induced subgraph of
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H, if G is a subgraph of H and for every v, u ∈ V (G), (v, u) ∈ E(G) if and only

if (v, u) ∈ E(H). G is a distance preserving (isometric) subgraph of H, if G is a

subgraph of H and for every v, u ∈ V (G), dG(v, u) = dH(v, u).
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CHAPTER 10

Design Against the Adversary

The following sections are dedicated in answering the question of when prior

knowledge of the underlying metric can help in the design against the adversary.

In Section 10.1, we show that for the outerplanar graphs we can design a uni-

versal cost-sharing protocol that dramatically improves the PoA against uniform

protocols that ignore the metric. In Section 10.2, we prove that for general graph

metrics, no universal ordered protocol can outperform the best uniform proto-

cols and then in Section 10.3, we generalise this result to include all universal

protocols.

10.1 Outerplanar Graphs

In this section, we show that there exists a class of graph metrics, prior knowledge

of which can dramatically improve the performance of good network cost-sharing

design. For outerplanar graphs, we provide a universal cost-sharing protocol with

constant PoA. In contrast, we stress that uniform protocols cannot achieve PoA

better than Ω(log k), because the lower bound for the greedy algorithm of the

Online Steiner Tree problem can be embedded in an outerplanar graph (see

Figure 10.1 for an illustration). An outerplanar graph is a planar graph where

all the vertices belong to the outer face. For a biconnected35 outerplanar graph

the outer face forms a (unique) Hamiltonian cycle.

We next define an ordered cost-sharing protocol, Ξtour, and we show that it

has constant PoA. We describe Ξtour only for metric spaces that are defined by

biconnected outerplanar graphs. In order to define Ξtour for an outerplanar graph

35A graph is biconnected if, after removing any vertex, the graph remains connected.
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G that is not biconnected, we first turn it into an equivalent36 biconnected graph

G∗, by appropriately adding edges of sufficiently high cost h; we can set h to be

a value strictly greater than
∑

e∈E(G) ce. Then, equivalence is obvious since we

only add edges that cannot be used in either any NE or the minimum Steiner

tree outcome. Hence, it is w.l.o.g. to consider only biconnected outerplanar

graphs. It is known that every biconnected outerplanar graph admits a unique

Hamiltonian cycle [134] that can be found in linear time [54].

Definition of Ξtour: Ξtour orders the vertices according to the cyclic order

in which they appear in the Hamiltonian tour, starting from r and proceeding in

a clockwise order π. In Figure 10.1, π(r) < π(q8) < π(q4) < π(q9) < . . . < π(q15).

In the following theorem we show that, for outerplanar graphs, the PoA of

Ξtour is constant and more precisely is upper bounded by 2.

Figure 10.1: The figure shows an example of an outerplanar graph where the
order qi < qi+1 results in PoA of Ω(log k).

Theorem 47. The PoA of Ξtour in outerplanar graphs is at most 2.

Proof. Let G = (V,E, r) be any biconnected outerplanar graph and S be the set

of activated vertices. Let T ∗ be the minimum Steiner tree that connects S ∪ {r}
and suppose that is rooted at r. We denote by PT ∗(i, i

′) the unique path from i

to i′ in T ∗ and by T ∗v the subtree of T ∗ rooted at vertex v.

We first show the following claims that will be useful to complete the proof.

Claim 48. For any i, i′, j, j′ ∈ V (T ∗) such that π(i) < π(j) < π(i′) < π(j′), the

paths PT ∗(i, i
′) and PT ∗(j, j

′) are not vertex-disjoint, (i.e. PT ∗(i, i
′) and PT ∗(j, j

′)

share a common vertex) .

36We mean that any NE outcome and the minimum Steiner tree solution remain unchanged
after the transformation and therefore the PoA of G is exactly the same with the one of G∗.
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Proof. Consider the representation of G as a planar graph where the unique

Hamiltonian tour of G is the outer face, meaning that all the edges of PT ∗(i, i
′)

and PT ∗(j, j
′) are either edges of the Hamiltonian tour or chords of it. The

Hamiltonian tour defines two paths between i and i′, one containing j and the

other containing j′. Hence, the paths PT ∗(i, i
′), PT ∗(j, j

′) have either crossing

edges or some common vertex. Due to the planarity of G the first case is excluded

and the claim follows.

Claim 49. For any two vertex-disjoint subtrees T ∗v and T ∗u of T ∗, rooted at vertices

v and u, respectively, either all the vertices of T ∗v precedes all the vertices of T ∗u ,

or the opposite.

Proof. Assume on the contrary that w.l.o.g. there exist i′ ∈ V (T ∗v ) and j, j′ ∈
V (T ∗u ) such that π(j) < π(i′) < π(j′). Since T ∗v and T ∗u are vertex-disjoint

subtrees, first r /∈ V (T ∗v ) and r /∈ V (T ∗u ) and further the paths PT ∗(r, i
′) and

PT ∗(j, j
′) should also be vertex-disjoint. Notice, though, that π(r) < π(j) <

π(i′) < π(j′) and so, by Claim 48 we end up with a contradiction.

Claim 50. For any two vertices v, u ∈ V (T ∗) where v is an ancestor of u, then v

either precedes or follows all the vertices of the subtree T ∗u .

Proof. If v is the root then trivially v precedes all the vertices of T ∗u . Suppose

now that v 6= r and consider the case that v precedes u (the other case is similar).

For the sake of contradiction, assume that there exists a vertex u′ ∈ V (T ∗u ) such

that u′ precedes v and therefore, π(r) < π(u′) < π(v) < π(u). Note that PT ∗(r, v)

and PT ∗(u, u
′) are vertex-disjoint and therefore, by Claim 48 we end up with a

contradiction.

For convenience, we next refer to the set of the activated vertices as S =

{1, 2, ..., k}, based on their order π, from smaller label to larger, i.e. vertex i has

the ith smallest label among S. We further adopt the convention that r = 0.

Consider any NE, P = (Pi)i∈N . We bound from above the cost-share of each

player at vertex i ∈ [k] by the cost of the path in T ∗ that connects her with i−1,

i.e.,

ci(P) ≤ c(PT ∗(i, i− 1)) =
∑

e∈PT∗ (i,i−1)

ce.

Then, by summing over S,

c(P) =
∑
i∈[k]

ci(P) ≤
∑
i∈[k]

c(PT ∗(i, i−1)) =
∑
i∈[k]

∑
e∈PT∗ (i,i−1)

ce =
∑

e∈E(T ∗)

∑
i:e∈PT∗ (i,i−1)

ce.
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We argue next that by Claims 49 and 50 we can infer that, for each edge e of

E(T ∗), there exist at most two paths PT ∗(i, i− 1) containing e, leading to:

c(P) ≤
∑

e∈E(T ∗)

2ce = 2c(T ∗).

To explain the last argument, consider any edge e = (v′, v) ∈ E(T ∗) and let

v be the child of v′ in T ∗. For any vertex u /∈ V (T ∗v ), either T ∗v and T ∗u are

vertex-disjoint, or u is an ancestor of v in T ∗. In either case, by Claims 49 and

50, u either precedes or follows all vertices of T ∗v . Let `, h ∈ [k] be the vertices

of S ∩ V (T ∗v )37 with the lowest and the highest labels, respectively (it is possible

that ` = h). It is easy to see that only the paths PT ∗(`, `− 1) and PT ∗(h+ 1, h)

use edge e (the second path exists only if h < k).

We next demonstrate that our analysis is tight.

Theorem 51. The PoA of Ξtour in outerplanar graphs is at least 2.

Proof. Consider a cycle graph C = (V,E, r) with 2k vertices and unit-cost edges.

Let the vertices V = {r = 0, 1, 2, ..., 2k − 1} be named based on their order π,

from smaller to larger label. We consider the set of the k activated vertices to

be S = {k, k + 1, . . . , 2k − 1}. It is a NE if the player on vertex k connects

with r through the path (0, 1, . . . , k) and each other player on vertex k + i, for

i ∈ {1, . . . , k − 1}, connects with the vertex k + i − 1 and follow their path to

the root. The cost of this NE is 2k − 1.

The optimum solution would be to connect S with r through the path (k, k+

1, . . . , 2k − 1, r) with cost k. Therefore, PoA≥ 2k−1
2k

, which for large k converges

to 2.

10.2 Lower Bound of Ordered Proto-

cols

The main result of this section is that, for general graph metrics, the PoA of any

(deterministic) ordered protocol is Ω(log k) which is tight. We formally define

(Definition 53) the ‘zig-zag’ pattern of the lower bounds of the Greedy Algorithm

of the Online Steiner Tree problem (see Example 45(b) and Figure 10.2). Then

the main technical challenge is to show that for any ordering of the vertices of

37There should exist at least one activated vertex in T ∗v , otherwise e /∈ E(T ∗).
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high dimensional hypercubes, there always exists a distance preserving path, such

that the order of its vertices follows that zig-zag pattern. Finally, by connecting

any two vertices of the hypercube with a direct edge of suitable cost, similar to

the example in Figure 8.1, we get the final lower bound construction.

Definition 52 (Classes). For s > 0, and for a path graph P = (v0, . . . , v2s) of 2s+

1 vertices, we define a partition of the vertices into s+ 1 classes, D0, D1, . . . , Ds,

as follows: Class 0 contains the endpoints of P , D0 = {v0, v2s}. For every

j ∈ {1, . . . , s}, Dj = {vi| (i mod 2s−j) = 0 and (i mod 2s−j+1) 6= 0}.

For better interpretation of the notion of Classes, suppose that we construct

P in s + 1 steps, where at each step j ∈ {0, . . . , s} we introduce the vertices of

class Dj as follows. At step 0 we connect the two endpoints v0, v2s via an edge.

At step 1 we replace the edge (v0, v2s) by a two-length path (v0, v2s−1 , v2s), i.e. we

place the vertex of D1 between the existing vertices. Repeatedly, at each step j

we replace each of the current edges by a two-length path, in the middle of which

we place a vertex of Dj. As an example, consider the path P = (v0, v1, . . . , v8)

of Figure 10.2, where s = 3. Then, D0 = {v0, v8}, D1 = {v4}, D2 = {v2, v6} and

D3 = {v1, v3, v5, v7}. Note that always |D0| = 2 and for j 6= 0, |Dj| = 2j−1.

1

v0

8

v1

6

v2

7

v3

3

v4

5

v5

4

v6

9

v7

2

v8

Figure 10.2: An example of a P3(π) path. The numbers correspond to the labels.

For j > 0 and vi ∈ Dj, we define the parents of vi as {w|dP (vi, w) = 2s−j},
i.e. the closest vertices that belong to lower-labeled classes. In other words, if

we consider the construction of P in s+1 steps as above, the parents of vi are its

neighbours after step j. For example, for the path of Figure 10.2, the parents of

v4, v5, v6 are respectively the sets {v0, v8}, {v4, v6}, {v4, v8}. Remark that for all

v /∈ {v0, v2s}, v has two parents belonging to lower-labeled classes than v and all

vertices between v and any of its parents belong to higher-labeled classes than

v. We are now ready to define the “zig-zag” pattern.

Definition 53 (Zig-zag pattern). We call a path graph, P = (v0, v1, . . . , v2s),

with distinct integer labels π, zig-zag, and we denote it by Ps(π), if for every

v /∈ {v0, v2s}, v has greater label than both its parents w1, w2, i.e. π(v) > π(w1)

and π(v) > π(w2).
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An example of such a path for s = 3 is shown in Figure 10.2. Our main result

of this section is that there exist graphs, high dimensional hypercubes, such that

for any order π, Ps(π) always appears as a distance preserving subgraph. Our

proof is existential and uses Ramsey theory.

Example 54. In order to give some intuition, we will first use a Ramsey-type

result due to Alon et al. [5] to show that, for any π, P2(π) appears as a subgraph.

Alon et al. [5] showed that for any given integer ` ≥ 5, any edge-colouring of a

sufficiently high dimensional hypercube contains a monochromatic cycle of length

2`. Let Qn be the hypercube of [5] for ` = 5, and notice that it is bipartite i.e.

Qn = (A,B,E). For any ordering of vertices of Qn we define a colouring as

follows: for any edge (v, u), with v ∈ A and u ∈ B, if π(v) < π(u), we paint the

edge blue, otherwise we paint it red.

Suppose w.l.o.g. that the monochromatic cycle C10 of length 10 is blue (see

also Figure 10.3 for an illustration). Then, for any v ∈ A ∩ V (C10) (continuous

circles), its neighbours in C10 should have higher label (dashed circles). The

vertices of A ∩ V (C10) can be 1-embedded into a cycle C5 of length 5 (dotted

cycle). We appropriately choose three consecutive vertices of C5, such that the

middle one has higher ranking than the others in π ((5, 8, 1) in Figure 10.3). It

is not hard to see that such a triplet is guaranteed because C5 is a cycle. These

three vertices with their intermediate ones in C10 form a path isomorphic to

P2(π); that path in Figure 10.3 is the (5, 10, 8, 9, 1) .

3

4

2

7
1

9

8

10

5

6

Figure 10.3: An example of P2(π) by using the result of [5].

There are two limitations in using the results of [5] in our proof. a) The

induced monochromatic cycle of any length can only be used in order to prove

the existence of a zig-zag pattern of length 4 and it doesn’t help for paths of higher

lengths as required for our lower bound. b) The induced zig-zag pattern is not
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necessarily distance-preserving, because the monochromatic cycle derived by [5]

is not distance preserving, which is a crucial property for our lower bound to hold.

Therefore, in order to overcome those limits, we prove a similar Ramsey-type

result, but for a different monochromatic subgraph with some special properties

(to be described in Section 10.2.1).

Proof Overview The proof is by induction and in the inductive step our

starting point is the n-th dimensional hypercube Qn. Given an ordering/labelling

π of the vertices of Qn we first show that Qn contains a subgraph W which is

isomorphic to a ‘pseudo-hypercube’Q2
m (m < n) where the labelling of its vertices

satisfies a special property (to be described shortly). Q2
m is defined by replacing

each edge of Qm by a 2-edge path (of length two)38.

Labelling property: For the subgraph W we require that all such newly

formed 2-edge paths, are P1(π) paths, i.e. the label of the middle vertex is greater

than the labels of the endpoints (Figure 10.4(a) shows such a labelling).

Next, we contract all such 2-edge paths of Q2
m into single edges, resulting in

a graph isomorphic to Qm; this is the hypercube used for the next step. Note

that each contracted edge still corresponds to a path in Qn. Therefore, after s

recursive steps, each edge corresponds to a 2s path of Qn. Further, note that

such a path is a Ps(π) path, due to the labelling property that we preserve at

each step. We require that, at the end of the last inductive step, Qm = Q1

(a single edge), and (by unfolding it) we show that this edge corresponds to a

distance preserving subgraph of the original graph/hypercube. At each step, we

have m < n and the relation between n and m is determined by a Ramsey-type

argument.

We next describe the basic ingredients that we use to show existence of W .

We apply a colouring scheme to the edges of Qn that depends on the vertices’

order.

Colouring Scheme: Consider Qn as a bipartite graph Qn = (A,B,E). For

any edge (v, u), with v ∈ A and u ∈ B, if the v’s label is smaller than u’s, we

paint the edge blue, otherwise we paint it red.

By a Ramsey-type argument we show that Qn has a monochromatic subgraph

isomorphic to a specially defined graph Gm; Gm is carefully specified in such a

way that it contains at least two subgraphs isomorphic to pseudo-hypercubes

Q2
m. The special property of those two subgraphs is described next.

38See Q2
m of Definition 57 and Figure 10.4(a) for an illustration

109



Let H1 and H2 be the two half cubes39 of Qn and let V (H1) = A and V (H2) =

B. Observe that if Q2
m is a subgraph of Qn then the corresponding Qm is an

induced subgraph of either H1 or H2. We carefully construct Gm such that it

contains subgraphs W1 and W2 isomorphic to Q2
m, whose corresponding Qm’s

are induced subgraphs of H1 and H2, respectively. The colour of Gm determines

which of the W1 and W2 will serve as the desired W . In particular, if the colour

is blue, then for every edge (v, u), with v ∈ V (H1) and u ∈ V (H2), it should hold

that v’s label is smaller than u’s and therefore the labelling property is satisfied

for W1; similarly, if the colour is red, W2 serves as W .

Proof Roadmap The whole proof of the lower bound proceeds in several

steps in the following sections. In Section 10.2.1 we give the formal definition of

the subgraph Gm. Section 10.2.2 is devoted to show that every 2-edge colouring

of a (suitably) high dimensional hypercube contains a monochromatic copy of

Gm (Lemma 56), by using Ramsey theory. Then, in Section 10.2.3 we show

that, for any ordering of the vertices of Qn, we can define a special 2-edge-

colouring, so that there exists a Q2
m subgraph of Gm that preserves the Labelling

property (Lemma 58). At last, in Section 10.2.4, by a recursive application of the

combination of the Ramsey-type result and the colouring, we prove the existence

of the zig-zag path in high dimensional hypercubes (Theorem 59). We then show

how to construct a graph that serves as lower bound for all ordered protocols

(Theorem 61). This is done by connecting any two edges of the hypercube with

a direct edge of appropriate cost, similar to the example in Figure 8.1.

Definitions and notation on Hypercubes We denote by [a, b]

(for a ≤ b) the set of integers {a, a+ 1, . . . , b− 1, b}, but when a = 1, we simply

write [b]. We follow definitions and notation of [5]. Let Qn be the graph of

the n-dimensional hypercube whose vertex set is {0, 1}n. We represent a vertex

v of V (Qn) by an n-bit string x = 〈x1 . . . xn〉, where xi ∈ {0, 1}. By 〈xy〉 or

xy we denote the concatenation of an a-bit string x with an b-bit string y, i.e.

xy = 〈x1 . . . xay1 . . . yb〉. x = 〈xj〉aj=1 is the concatenation of its a bits. An edge

is defined between any two vertices that differ only in a single bit. We call this

bit, flip-bit, and we denote it by ‘∗’. For example, x = 〈11100〉, y = 〈11000〉
are two vertices of Q5 and (x, y) = 〈11 ∗ 00〉 is the edge that connects them.

The distance between two vertices x, y is defined by their Hamming distance,

39The two half-cubes of order n are formed from Qn by connecting all pairs of vertices with
distance exactly two and dropping all other edges.
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d(v, u) = |{j : xj 6= yj}|. For a fixed subset of coordinates R ⊆ [n], we extend

the definition of the distance as follows,

d(x, y, R) =

{
d(x, y), if ∀j ∈ R, xj = yj

∞, otherwise.

We define the level of a vertex x by the number of ‘ones’ it contains, w(x) =∑n
i=1 xi. We denote by Li the set of vertices of level i ∈ [0, n]. We define the

prefix sum of an edge e = (x, y), where the flip-bit is in the j-th coordinate, by

p(e) =
∑j−1

i=1 xi. We represent any ordering π of V (Qn), by labelling the vertices

with labels 1, . . . , 2n, where label i corresponds to ranking i in π.

10.2.1 Description of Gm

For a positive integer m, we define a graph Gm = (Vm, Em) that is an induced

subgraph of Q4m on Vm = V1 ∪ V2 ∪ V3 ⊆ V (Q4m). A vertex of V1 is defined by

2m− 1 concatenations of pairs 〈01〉 and 〈10〉 and a single pair 〈00〉 that appears

in the second half of the string. A vertex of V2 is defined by 2m concatenations

of 〈01〉 and 〈10〉. A vertex of V3 is defined by 2m− 2 concatenations of 〈01〉 and

〈10〉, one pair 〈11〉 that appears on the first half of the string, and one pair 〈00〉
that appears on the second half. For example, for m = 2, 〈01 10 00 10〉 ∈ V1,

〈01 10 10 10〉 ∈ V2, 〈01 11 10 00〉 ∈ V3. More formally, let A = {〈01〉, 〈10〉}, then

the subsets V1, V2, V3 are defined as follows:

V1 := V1(m) = {〈ajbj〉2mj=1|∃i ∈ [m+ 1, 2m] s.t.

〈aibi〉 = 〈00〉 and ∀j 6= i, 〈ajbj〉 ∈ A},

V2 := V2(m) = {〈ajbj〉2mj=1|∀j, 〈ajbj〉 ∈ A},

V3 := V3(m) = {〈ajbj〉2mj=1|∃i1 ∈ [m],∃i2 ∈ [m+ 1, 2m] s.t.

〈ai1bi1〉 = 〈11〉, 〈ai2bi2〉 = 〈00〉 and ∀j 6= i1, i2, 〈ajbj〉 ∈ A}.

Observe that Gm is bipartite with vertex partitions V1 and V2∪V3, as vertices

of V1 belong to level 2m− 1, while vertices of V2 ∪ V3 to level 2m.

Lemma 55. Every pair of vertices x, x′ ∈ V1(m) with d(x, x′, [2m+ 1, 4m]) = 2,

have a unique common neighbour y ∈ V3(m). Also, every pair of vertices x, x′ ∈
V2(m), with d(x, x′, [2m]) = 2, have a unique common neighbour y ∈ V1(m).

Proof. Recall that (by definition) if d(x, x′, R) 6= ∞ then x, x′ should coincide

in all R coordinates. For the first statement, observe that the premises of the
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Lemma hold only if there exists i ∈ [m] such that x2i−1x2i = 〈10〉 and x′2i−1x
′
2i =

〈01〉 (or the other way around), in which case the required vertex y from V3(m)

has y2i−1y2i = 〈11〉; the rest of the bits are the same among x, x′, y. For the second

statement, the premises of the Lemma hold only if there exists an i ∈ [m+1, 2m]

such that x2i−1x2i = 〈10〉 and x′2i−1x
′
2i = 〈01〉 (or the other way around), in which

case the required vertex y from V1(m) has y2i−1y2i = 〈00〉 and the rest of the bits

are the same among x, x′, y.

10.2.2 Ramsey-type Theorem

Lemma 56. For any positive integer m, and for sufficiently large n ≥ n0 = g(m),

any 2-edge colouring χ of Qn, contains a monochromatic copy of Gm
40.

Proof. The proof follows ideas of Alon et al. [5]. Consider a hypercube Qn, with

sufficiently large n > 6m to be determined later, and some arbitrary 2-edge-

colouring χ : E(Qn) → {1, 2}. Let E∗ be the set of edges between vertices of

L4m−1 and L4m (recall that Li = {v|w(v) = i}).
Each edge e ∈ E∗ contains 4m−1 1’s, a flip-bit represented by ∗ and the rest

of the coordinates are 0. Moreover, e is uniquely determined by its 4m non-zero

coordinates Re ⊆ [n] and its prefix sum p(e) ∈ [0, 4m− 1] (number of 1′s before

the flip-bit). Therefore, the colour χ(e) defines a colouring of the pair (Re, p(e)),

i.e. χ(e) = χ(Re, p(e)). For each subset R ⊂ [n] of 4m coordinates, we denote

by c(R) = (χ(R, 0), ..., χ(R, 4m − 1)) the colour induced by the edge colouring.

The colouring of all subsets R defines a colouring of the complete 4m-uniform

hypergraph of [n]41 using 24m colours.

By Ramsey’s Theorem for hypergraphs [78], there exists n0 = g(m) such that

for any n ≥ n0 there exists some subset U ⊂ [n] of size 6m such that all 4m-

subsets R ⊂ U have the same colour c(R) = c∗. Therefore, for every 4m-subsets

R1, R2 ⊂ U and p ∈ [0, 4m − 1], it is χ(R1, p) = χ(R2, p) = cp. Since p takes

4m values and there are only two different colours, there must exist 2m indices

p0, . . . , p2m−1 ∈ [0, 4m − 1] with the same colour χ(R, pi) = χ∗, for all R ⊂ U ,

|R| = 4m and i ∈ [0, 2m− 1].

It remains to show that the graph formed by those edges contains a monochro-

matic copy of Gm. We will show this by placing the bits of each edges from Em

(the set of edges of Gm) to suitable coordinates of [n] and filling the rest of the

40The result could be extended to any (fixed) number of colours, but we need only two for
our application.

41A k-uniform hypergraph is a hypergraph such that all its hyperedges have size k.
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coordinates suitably by zeros and ones. More precisely, we insert blocks of 1’s of

suitable length among the bits of the edges of Em, and all those bits are placed

at the coordinates of U . The rest of the bits (n− |U |) are set to zero.

Let 1r be a string of r 1’s and define βi = 1pi−pi−1−1 for i ∈ [2m− 1], β0 = 1p0

and β2m = 14m−1−p2m−1 . For any edge e = 〈ajbj〉j ∈ Em, we insert β0 at the

beginning of the string, for j ∈ [m] we insert βj between aj and bj and for

j ∈ [m + 1, 2m] we insert the string βj after bj. The following illustrates these

insertions:

1 . . . 1︸ ︷︷ ︸
p0

a1 1 . . . 1︸ ︷︷ ︸
p1−p0−1

b1 a2 . . . am 1 . . . 1︸ ︷︷ ︸
pm−pm−1−1

bm am+1 bm+1 1 . . . 1︸ ︷︷ ︸
pm+1−pm−1

am+2 bm+2 . . .

. . . a2m b2m 1 . . . 1︸ ︷︷ ︸
4m−1−p2m−1

Recall that each edge of Em contains exactly 2m zero bits and 2m non-zero

bits. Also notice that
∑

j |βj| = p0 +
∑2m−1

i=1 (pi − pi−1 − 1) + 4m− 1− p2m−1 =

−(2m − 1) + 4m − 1 = 2m. Therefore, in total we have 6m bits (same as the

size of U) and 4m non-zero bits (same as the size of R). We place these 6m bits

precisely at the coordinates of U . The rest n − 6m of the coordinates are filled

with zeros.

It remains to show that for such edges the prefix of the flip-bit is always one

of the p0, . . . , p2m−1. This would imply that all these edges are monochromatic.

Furthermore, all but 4m coordinates are fixed and the 4m coordinates form

exactly the sets V1(m), V2(m), V3(m); therefore, the monochromatic subgraph is

isomorphic to Gm.

For any edge e = 〈ajbj〉j ∈ Em, let the flip-bit be at position:

• aj for j ∈ [m]. Its prefix is
∑j−1

i=0 |βi| + (j − 1) = pj−1, where the term

j − 1 corresponds to the number of pairs 〈asbs〉 with s < j, each of which

contributes to the prefix with a single 1.

• bj for j ∈ [m]. Since j ≤ m, aj = 1. Then the prefix equals to
∑j

i=0 |βi|+
(j − 1) + 1 = pj.

• aj or bj for j ∈ [m+ 1, 2m]. For such j, 〈ajbj〉 ∈ {〈0∗〉, 〈∗0〉} and all other

pairs belong to A. Therefore, the prefix is equal to
∑j−1

i=0 |βi|+(j−1) = pj−1.
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10.2.3 Colouring Based on the Labels

This part of the proof shows that for any ordering of the vertices of a hypercube

Qn, there is a 2-edge colouring with the following property: in the monochromatic

Gm, either all the vertices of V1 or all the vertices of V2 have neighbours in

Gm with only higher label. This implies a desired labelling property for a Q2
m

subgraph of Qn, the structure of which is defined next.

Definition 57. We define Qr
n to be a subdivision of Qn, by replacing each edge

by a path of length s. Q1
n is simply Qn. We denote by Z(Qr

n) the set of all pairs

of vertices (x, x′), which correspond to edges of Qn; P (x, x′) is the corresponding

path in Qr
n. For every (x, x′) ∈ Z(Q2

m), we denote by θ(x, x′) the middle vertex

of P (x, x′).
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Figure 10.4: Examples of (a) Q2
3 and (b) Q4

2. The labels on the nodes are
examples of the labelling property, (a) after one inductive step, (b) after two
inductive steps.

In the next lemma we show that for any ordering of the vertices of Qn, there

exists a subgraph isomorphic to Q2
m, such that the ‘middle’ vertices have higher

label than their neighbours (Labelling Property).

Lemma 58. For any positive integer m, for all n ≥ n0 = g(m) and for any

ordering π of V (Qn), there exists a subgraph W of Qn that is isomorphic to Q2
m,

such that, for every (x, x′) ∈ Z(W ), it is π(θ(x, x′)) > max{π(x), π(x′)}.

Proof. Choose a sufficiently large n ≥ n0 = g(m) as in Lemma 56. Partition the

vertices of Qn into sets O, E of vertices of odd and even level, respectively. We

colour the edges of Qn as follows. For every edge e = (z, z′) with z ∈ O and

z′ ∈ E , if π(z) < π(z′), then paint e blue. Otherwise paint it red. Therefore,

for every blue edge, the endpoint in O has smaller label than the endpoint in E .

The opposite holds for any red edge.
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Lemma 56 implies that Qn contains a monochromatic copy (blue or red) of

Gm. Recall that this subgraph is bipartite between vertices of levels L4m−1 and

L4m and that V1 ⊂ L4m−1 ⊂ O and V2 ∪ V3 ⊂ L4m ⊂ E . Let R ⊂ [n] be the

subset of the 4m coordinates that correspond to vertices of Gm. Also let R1 and

R2 be the subsets of the first 2m and the last 2m coordinates of R, respectively.

First suppose that the subgraph isomorphic to Gm is blue. An immediate

implication of our colouring is that for every edge (z, z′) ∈ Em with z ∈ V1, z′ ∈
V2 ∪ V3 it must be π(z) < π(z′). Fix a 2m-bit string, str, that corresponds to a

permissible bit assignment to the R2 coordinates of some vertex in V1 (see Section

10.2.1). Define Wstr as the subset of vertices of V1 where the R2 coordinates are

set to str. Recall that each of the first m pairs 〈ajbj〉, j ∈ [m], of a vertex z ∈
Wstr, may take any of the two bit assignments 〈01〉 and 〈10〉. Hence, |Wstr| = 2m.

Observe that we can embed Wstr into Qm with distortion 1 and scaling factor

1/2, by mapping the first m pairs of bits into single bits; map 〈01〉 to 1 and 〈10〉
to 0. Every two vertices with distance d in Qm, have distance 2d in Qn. For every

x, x′ ∈ Wstr ⊂ V1 with d(x, x′) = 2, it holds that d(x, x′, R2) = 2, since x, x′ have

the same R2 coordinates. Lemma 55 implies that there exists y = θ(x, x′) ∈ V3,

such that d(x, y) = d(x′, y) = 1, and therefore, π(y) > max{π(x), π(x′)}. Take

the union Y = ∪y of all such vertices y, then Wstr ∪ Y induces a subgraph W

isomorphic to Q2
m, that fulfils the labelling requirements.

The case of Gm being red is similar. We focus only on the vertices of V2.

Fix now a 2m-bit string, str, that corresponds to a permissible bit assignment

of the R1 coordinates of a vertex in V2. Define Wstr as the subset of vertices of

V2 where the R1 coordinates are set to str. Similarly, we can embed Wstr into

Qm with distortion 1 and scaling factor 1/2.

For every x, x′ ∈ Ws ⊂ V2 with d(x, x′) = 2, where the R1 coordinates are

fixed to str, Lemma 55 implies that there exists y = θ(x, x′) ∈ V1, such that

d(x, y) = d(x′, y) = 1, and therefore, π(y) > max{π(x), π(x′)}. Take the union

Y = ∪y of all such vertices y, then Wstr ∪ Y induces a subgraph W isomorphic

to Q2
m, that fulfils the labelling requirements.

10.2.4 Lower Bound Construction

Now we are ready to prove the main theorem of this section.

Theorem 59. For every positive integer s, and for sufficiently large n = n(s),

there exists a graph Qn such that, for any (deterministic) ordering π of its ver-
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tices, it contains a zig-zag distance preserving path Ps(π).

Proof. Let g be a function as in Lemma 56. We recursively define the sequence

n0, n1, . . . , ns, such that ns = 1 and ni−1 = g(ni), for i ∈ [s]. We will show that

Qn0 (n0 = n(s)) is the graph we are looking for.

Claim 60. For every i ∈ [0, s], and for any vertex ordering π of Qn0 , Qn0 contains

a subgraph isomorphic to Q2i

ni
, such that for every (x, x′) ∈ Z(Q2i

ni
), P (x, x′) is a

zig-zag path Pi(π).

Proof. The proof is by induction on i. As a base case, Q20

n0
= Qn0 is the graph

itself. An edge is trivially a path P0(π), for any π. Suppose now that Qn0 contains

a subgraph isomorphic to Q2i

ni
, for some i < r, such that for every q ∈ Z(Q2i

ni
),

P (q) is a zig-zag path Pi(π). It is sufficient to show that Q2i

ni
contains a subgraph

isomorphic to Q2i+1

ni+1
, such that for every q ∈ Z(Q2i+1

ni+1
), P (q) is a zig-zag path

Pi+1(π).

For every (x, x′) ∈ Z(Q2i

ni
), if we replace P (x, x′) with a direct edge e = (x, x′),

the resulting graph is a copy of Qni . Applying Lemma 58 on Qni , guarantees the

existence of a subgraph W isomorphic to Q2
ni+1

(ni = g(ni+1)), where for every

(y, y′) ∈ Z(W ), π(θ(y, y′)) > max{π(y), π(y′)}. Each of the edges (y, θ(y, y′))

and (y′, θ(y, y′)) of Q2
ni+1

are replaced by a path Pi(π) in Q2i

ni
. Therefore, W is a

copy of Q2i+1

ni+1
, with P (y, y′) being a zig-zag path Pi+1(π).

We now argue that the resulting Ps(π) is a distance preserving path. Our

analysis indicate a sequence of hypercubes Qn0 , Qn1 , . . . , Qns . Recall that in

Lemma 58, in order to get Qni+1
from Qni we mapped 〈01〉 to 1 and 〈10〉 to 0

and the vertices of Qni+1
did not differ in any other bit but the ones we mapped.

Consider now the two vertices x, x′ of Qnr = Q1 with bit-strings 〈0〉 and 〈1〉,
respectively. Their Hamming distance in their original bit representation (in

Qn0) should be 2s, the same with their distance in Ps(π).

For instance, for s = 4, Table 10.1 shows the bit sequences in Qn3 , Qn2 , Qn1

and Qn0 that correspond to the bits 〈0〉 and 〈1〉 of the vertices x, x′ of Qn4 = Q1.

In any Qni , both bit sequences occupy exactly the same coordinates. The rest of

Table 10.1: Example of unfolding the bit mapping.
Qn4 Qn3 Qn2 Qn1 Qn0

x 〈0〉 〈10〉 〈0110〉 〈10010110〉 〈0110100110010110〉
x′ 〈1〉 〈01〉 〈1001〉 〈01101001〉 〈1001011001101001〉
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the coordinates of x, x′ are occupied by identical bits in all bit representations.

Therefore, dQn0 (x, x′) = 16 = 2s.

Moreover, if any two vertices of Ps(π) are closer in Qn0 than in Ps(π), then

this would contradict the fact that dQn0 (x, x′) = 2s.

Finally we extend Qn so that for any order π of its vertices, a path Ps(π)

exists along with the shortcuts similar to the example of Figure 8.1.

Theorem 61. Any (deterministic) ordered protocol on undirected graphs admits

a PoA of Ω(log k), where k is the number of activated vertices.

Proof. Let k = 2s + 1 for some positive integer s. From Theorem 59, we know

that for any vertex ordering π of Qn(s) there is a distance preserving path Ps(π).

We use Qn(s) as a basis to construct the weighted graph Q̃n(s) with vertex set

V (Q̃n(s)) = Qn(s) ∪ {r}, where r is the designated root. We connect every pair

of vertices x, y with a direct edge of cost ce = 2s, if t is one of its endpoints,

otherwise its cost is ce = dQn(s)(x, y) (similar to Figure 8.1).

The adversary selects to activate the vertices of Ps(π), and the lower bound

follows; in the NE the players choose their direct edges to connect with one of

their parents (see at the beginning of Section 10.2 for the term “parent”).

10.3 Lower Bound for All Universal Pro-

tocols

In this section, we exhibit metric spaces for which no universal cost-sharing

protocol admits a PoA better than Ω(log k). Due to the characterisation of [36]42,

we can restrict ourselves in generalised weighted Shapley protocols (GWSPs). We

follow the notation of [36], and for the sake of self-containment we include here

the most related definitions and lemmas.

42Chen, Roughgarden and Valiant [36] characterise the linear protocols (i.e. for every edge
e of cost ce ≥ 0, a linear protocol assigns the method ce · ξ, where ξ is the method it assigns
to any edge of unit cost) satisfying the three properties of budget-balance, separability and
stability to be the generalised weighted Shapley protocols. They further showed that for any
non-linear protocol, there exists a linear one with at most the same PoA.
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10.3.1 Cost-Sharing Preliminaries

A strictly positive function f : 2N → R+ is an edge potential on N , if it is strictly

increasing, i.e. for every R ⊂ S ⊆ N , f(R) < f(S), and for every S ⊆ N ,

∑
i∈S

f(S)− f(S \ {i})
f({i})

= 1.

For simplicity, instead of f({i}), we write f(i). A cost-sharing protocol is called

potential-based, if it is defined by assigning to each edge of cost c, the cost-sharing

method ξ, where for every S ⊆ N and i ∈ S,

ξ(i, S) = c · f(S)− f(S \ {i})
f(i)

.

Let Ξ1 and Ξ2 be two cost-sharing protocols for disjoint sets of vertices U1

and U2, with methods ξ1 and ξ2, respectively. The concatenation of Ξ1 and Ξ2 is

the cost sharing protocol Ξ of the set U1 ∪ U2, with method ξ defined as

ξ(i, S) =


ξ1(i, S ∩ U1) if i ∈ U1,

ξ2(i, S) if S ⊆ U2,

0 otherwise.

Note that the concatenation of two protocols for disjoint sets of vertices de-

fines an order among these two sets. The GWSPs are concatenations of potential-

based protocols.

Lemma 62. (Lemma 4.10 of [36]). Let f be an edge potential on N and ξ the

induced (by f) cost-sharing method, for unit costs. For k ≥ 1 and a constant α,

with 1 ≤ α2k ≤ 1 + k−3, let S ⊆ N be a subset of vertices with f(i) ≤ αf(j), for

every i, j ∈ S. If |S| ≤ k, then for any i, j ∈ S,

ξ(i, S) ≤ α(ξ(j, S) + 2k−2).

Lemma 63. (Lemma 4.11 of [36]). Let f be an edge potential on N , and

ξ be the cost-sharing method induced by f , for unit cost. For any two vertices

i, j ∈ N , such that f(i) ≥ βf(j), ξ(i, {i, j}) ≥ β/(β+1), and for every S ⊇ {i, j},
ξ(j, S) ≤ 1/(β + 1).
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10.3.2 Lower Bound

The following two technical lemmas will be used in our main theorem.

Lemma 64. Let X be a finite set of size msw2, for some m, s, w > 0, and

X1, . . . , Xm be a partition of X, with |Xi| = sw2, for all i ∈ [m]. Then, for

any colouring χ of X such that no more than w elements have the same colour,

there exists a rainbow subset S ⊂ X (i.e. χ(v) 6= χ(u) for all v, u ∈ S), with

|S ∩Xi| = s for every i ∈ [m].

Proof. Given the partition X1, . . . , Xm of X and the colouring χ, we construct a

bipartite graph G = (A,B,E), where A is the set of colours used in χ. For every

Xi we create a set Bi of size s; then B = ∪Bi. If colour j is used in Xi, we add

an edge (j, l) for all l ∈ Bi.

Each colour j ∈ A appears in at most w distinct Xi sets, and since for each

Xi there are s vertices (Bi), the degree of j is at most sw. On the other hand,

each Xi has size sw2 and hence, it has at least sw different colours. Therefore,

the degree of each vertex of B is at least sw.

Consider any set R ⊆ B, and let E(R) be the set of edges with at least one

endpoint in R. If N(R) denotes the set of neighbours of R, observe that E(R) ⊆
E(N(R)). By using the degree bound on vertices of B, |E(R)| ≥ sw|R| and by

using the degree bound on vertices of A, |E(N(R))| ≤ sw|N(R)|. Therefore,

|R| ≤ |N(R)|. By Hall’s Theorem there exists a matching which covers every

vertex in B. Each vertex in Bi is matched with a distinct colour and therefore

in each Xi there exists a subset with at least s elements with distinct colours; let

Wi be such a subset with exactly s elements. In addition the colours in different

Wi subsets should be distinct by the matching. Then, S = ∪Wi.

Lemma 65. Let X = (X1, . . . , Xm) be a partition of [m2], with |Xi| = m, for all

i ∈ [m]. Then, there exists a subset S ⊂ [m2] with exactly one element from each

subset Xi, such no two distinct x, y ∈ S are consecutive, i.e. for every x, y ∈ S,

|x− y| ≥ 2.

Proof. For every i, let Xi = {xi1, . . . , xim}. W.l.o.g we can assume that the xij’s

are in increasing order with respect to j and in addition that Xi’s are sorted such

that xii < xji, for all j > i (otherwise rename the elements recursively to fulfil

the requirement). Then, it is not hard to see that S = {xii|i ∈ [m]} can serve as

the required set.

119



Now we proceed with the main theorem of this section. We create a graph

where every GWSP has high PoA. At a high level, we construct a high dimen-

sional hypercube with sufficiently large number of potential players at each vertex

(by adding many copies of each vertex connected via zero-cost edges). Moreover,

we add shortcuts among the vertices of suitable costs and we connect each vertex

with the root r via two parallel links with costs that differ by a large factor (see

Figure 10.5). If the protocol induces a large enough set of potential players with

Shapley-like values in some vertex, then it is a NE that all these players follow

the most costly link to r. Otherwise, by using Lemmas 64 and 65 we show that

there exists a set of potential players with ordered-like values, one at each vertex

of the hypercube. Then, by using the results of Section 10.2, there exists a path

where the vertices are zig-zag-ordered.

The separation into these two extreme cases was first used in [36]. The crucial

difference, is that for their problem the protocol is specified independently of

the underlying graph, and therefore the adversary knows the case distinction

(ordered or Shapley) and bases the lower bound construction on that. However,

our problem requires more work as the graph should be constructed in advance,

and should work for both cases.

Theorem 66. There exist graph metrics, such that the PoA of any (determin-

istic) universal cost-sharing protocol is at least Ω(log k), where k is the number

of activated vertices.

Proof. Let k = 2s−1 + 1 be the number of activated vertices with s ≥ 4, (so

k ≥ 9).

Graph Construction. We use as a base of our lower bound construction, a

hypercube Q := Qn, with edge costs equal to 1 and n = n(s) as in Theorem 59.

Based on Q, for M = 16k1223n we construct the following network with N =

2nM vertices, plus the designated root r. We add to Q direct edges/shortcuts

as follows: for every two vertices v, u of distance 2j, for j ∈ [s], we add an

edge/shortcut, (v, u), with cost equal to ĉj = 2j
(
k−1
k

)j
= Ω(2j). Moreover, for

every vertex vq of Q, we create M − 1 new vertices, each of which we connect

with vq via a zero-cost edge. Let Vq be the set of these vertices (including vq).

Finally, we add a root r, which we connect with every vertex vq of Q, via two

edges eq1 and eq2, with costs 2k and 2k · k/6, respectively. We denote this new

network by Q∗ (see Figure 10.5).

We will show that any GWSP for Q∗ has PoA of Ω(log k). Any GWSP

can be described by concatenations of potential-based cost-sharing protocols
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Figure 10.5: An example of Q∗ for Q2 as the base hypercube.

Ξ1, . . . ,Ξh for a partition of the V (Q∗) into h subsets U1, . . . , Uh, where Ξj is

induced by some edge potential fj. Following the analysis of Chen, Roughgar-

den and Valiant [36], we scale the fj’s such that for every i, j, fj(i) ≥ 1. For

nonnegative integers t and for α = (1 + k−3)
1
2k , we form subgroups of vertices

Ajt, for each Uj, as Ajt = {i ∈ Uj : fj(i) ∈ [αt, αt+1]} (note that some of Ajs’s

may be empty).

The adversary proceeds in two cases, depending on the intersection of the

Ajt’s with the Vq’s.

Shapley-like cost-sharing. Suppose first that there exist Ajt and Vq such that

|Ajt ∩ Vq| ≥ k, and take a subset R ⊆ Ajt ∩ Vq with exactly k vertices. The

adversary will request precisely the set R. We argue that there is a NE where

all players follow the edge eq2, with cost 2k · k/6.

Budget-balance implies that there exists some player i∗ ∈ R who is charged

at most 1/k proportion of the cost. Moreover, Lemma 62 implies that, all i ∈ R
are charged at most α(1/k + 2k−2) ≤ 2 · (3/k) = 6/k proportion of the cost.

Therefore, no player’s share is more than 2k and any alternative path would cost

at least 2k. However, the optimum solution is to use the parallel link eq1 of cost

2k. Hence, the PoA is Ω(k) for this case.

Ordered-like cost-sharing. If there is no such R with at least k vertices, then

|Ajt∩Vq| < k for all j, s and q, which means that each Ajt has size of at most k2n.

Recall that there are h potential-based protocols. For every j ∈ [h], we group

consecutive sets Ajt (starting from Aj0) into sets Bjl, such that each Bjl, (except

perhaps from the last one), contains exactly 4k5 nonempty Ajt’s. The last Bjl

contains at most 4k5 nonempty Ajt sets. Consider the lexicographic order among

Bjl’s, i.e. Bjl < Bj′l′ if either j < j′ or j = j′ and l < l′. Rename these sets

based on their total order as Bi’s. The size of each Bi is at most 4k62n.
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Now we apply Lemma 64 on the set N by considering the subsets Vq as the

partition of N and as a colouring scheme, we colour all the vertices of each Bi

with the same colour and use different colours among the sets Bi
43. Lemma

64 guarantees that for each Vq there exists V ′q ⊂ Vq of size 2n, such that every

v ∈ ∪qV ′q = V ′ belongs to a distinct Bi.

The order of Bi’s suggests an order of the vertices of V ′. Since the V ′q ’s form

a partition of V ′, Lemma 65 guarantees the existence of a subset C ⊂ V ′, such

that C contains exactly one vertex from each V ′q and there are no consecutive

vertices in C. This means that C contains exactly one vertex from each set Vq

and all these vertices belong to different and non-consecutive sets Bi.

To summarise, so far we know that:

(i) for any pair of vertices v, u ∈ C, either v and u come from different Uj’s

or their fj(v) and fj(u) values differ by a factor of at least α4k5 ≥ 8k + 1

(since there exist at least 4k5 nonempty Ajt sets between the ones that v

and u belong to).

(ii) C is a copy of Qn (by ignoring zero-cost edges).

Let π be the order of vertices of C (recall that they are ordered according to

the Bi’s they belong to). Theorem 59 guarantees that there always exists at least

one distance preserving path Ps(π) (see Definition 53). Let S be the vertices of

Ps(π) excluding the last class Ds (see Definition 52). The adversary will activate

precisely the set S (|S| = k). It remains to show that there exists a NE, the

cost of which is a factor of Ω(log k) away from optimum. We will refer to these

vertices as S = {s1, s2, . . . , sk}, based on their order π, from smaller label to

larger, and let player i be associated with si.

Let P∗ be the class of strategy profiles P = (P1, . . . , Pk) which are defined as

follows:

• P1 = e11 and P2 = (s1, s2)∪P1, where (s1, s2) is the shortcut edge between

s1 and s2.

• From i = 3 to k, let s` be any of si’s parents in the class hierarchy (we

refer the reader to the beginning of Section 10.2); then Pi = (si, s`) ∪ P`,
where (si, s`) is the shortcut edge between si and s`.

43For the Lemma 64 we set w = 4k62n and s = m = 2n. Recall that |Vq| = M = sw2 as
required and no more than w elements have the same colour, since the size of each Bi is at
most 4k62n = w.
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We show in Claim 67 that there exists a strategy profile P∗ ∈ P∗ which is a NE.

P∗ has cost:

c(P∗) = c(e11) + ĉs +
s−1∑
j=1

|Dj| · ĉs−j = Ω(2s) + Ω(2s) +
s−1∑
j=1

2j−1 ·Ω(2s−j) = Ω(s2s).

However, there exists the solution Ps(π)∪e11, which has cost of O(2s). There-

fore, the PoA is Ω(s) = Ω(log k).

Claim 67. There exists P∗ ∈ P∗ which is a NE.

Proof. We prove the claim by using better-response dynamics. Note that any

GWSP induces a potential game for which better-response dynamics always con-

verge to a NE (see [36, 76]). We start with some P1 ∈ P∗ and we prove that,

after a sequence of players’ best-responses, we end up in P2 ∈ P∗. Proceeding in

a similar way we eventually converge to P∗, which is the required NE.

We next argue that for any P ∈ P∗, players 1 and 2, have no incentive

to deviate from P1 (argument (a)) and P2 (arguments (b)), respectively. We

further show that, given any strategy profile P̂, there exists some P ∈ P∗ such

that: for every player i /∈ {1, 2}, if Pi = (P1, . . . , Pi−1, P̂i+1, . . . , P̂k) are the

strategies of the other players, i prefers Pi to P̂i (arguments (c)-(e)). We define

the desired P recursively starting from P̂ as follows: P1 = e11, P2 = (s1, s2) ∪
P1 and from i = 3 to k, Pi ∈ A = arg minP ′i{ci(P

i, P ′i )|∃(P ′i+1, . . . , P
′
k) s.t.

(P1, . . . , Pi−1, P
′
i , . . . , P

′
k) ∈ P∗}. If P̂i ∈ A then we set Pi = P̂i, otherwise we

choose a path from A arbitrarily.

We first give some bounds on players’ shares.

1. Let R ⊆ S be any set of players that use some edge e of cost ce and let i be

the one with the smallest label. The total share of players R \ {i} is upper

bounded by
∑|R|−1

i=1
1

(8k+1)i+1
· ce < ce

8k
(Lemma 63). Moreover, i’s share is

at least 8k−1
8k

ce.

2. The total cost of any Pi under Pi, is at most 8k. This is true because, for

every player i′ with i′ ≤ i, the first edge of Pi′ is a shortcut to reach one of

si′ ’s parents, with cost at most 2s−j, where Dj is the hierarchical class that

si′ belongs to (we refer the reader to the beginning of Section 10.2 for the

definition of classes). Therefore, the cost of Pi is at most 2k+
∑s−1

l=0 2s−l <

8k.
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3. By combining the above two arguments, under Pi, the total share of player

i for the edges of Pi at which she is not the first according to π, is at most
1
8k
· 8k ≤ 1.

Here, we give the arguments for players 1 and 2.

(a) The share of player 1 under P ∈ P∗ is at most 2k and any other path

would incur a cost strictly greater than 2k.

(b) The share of player 2 under P ∈ P∗ is at most 2s + 1 = 2k − 1 (argument

3), whereas if she doesn’t connect through s1, her share would be at least

2k. Moreover, if she connects to r through s1 but by using any other path

rather than the shortcut (s1, s2), the total cost of that path is at least

2s
(
k−1
k

)s−1
. Player 2 is first according to π at that path and by argument

1, her share is at least 2s 8k−1
8k

(
k−1
k

)s−1
> ĉs.

We next give the required arguments in order to show that Pi is a best response

for player i 6= {1, 2} under Pi. In the following, let si ∈ Dj and let s` be the

parent of si such that Pi = (si, s`) ∪ P`. Also let si′ be the predecessor of si,

according to π, that is first met by following P̂i from si to r.

(c) Suppose that si′ = s`.

• Assume that P̂i doesn’t use the shortcut (si, s`). The subpath of P̂i

from si to s` contains edges at which i is first according to π of total

cost at least 2s−j
(
k−1
k

)s−j−1
. By argument 1, her share is at least

2s−j 8k−1
8k

(
k−1
k

)s−j−1
> ĉs−j.

• Assume that P̂i doesn’t use P`. The subpath of P̂i from s` to r contains

edges at which i is first according to π of total cost at least 2 (the

minimum distance between two activated vertices). By argument 1,

her share is at least 28k−1
8k

> 1, where 1 is at most her share for P`

(argument 3).

In both cases, ci(P
i, Pi) < ci(P

i, P̂i).

(d) Suppose that si′ is si’s other parent. If P̂i 6= (si, si′) ∪ Pi′ , the above argu-

ments still hold and so ci(P
i, Pi) < ci(P

i, P̂i). Otherwise, by the definition

of Pi, either Pi = P̂i, or ci(P
i, Pi) < ci(P

i, P̂i).
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(e) Suppose that si′ is not a parent of si. Player i’s share in Pi is at most ĉs−j

for her first edge/shortcut and at most 1 for the rest of her path (argument

3). Note that any edge that is used by players that precedes i in π has cost

at least ĉs−j. Therefore, in P̂i, player i is the first according to π for edges

of total cost at least ĉs−j+1. This implies a cost-share of at least 8k−1
8k

ĉs−j+1

(argument 1). But for k ≥ 6 and j < s, 8k−1
8k

ĉs−j+1 > ĉs−j + 1.

We now describe a sequence of best-responses from some P̂ ∈ P∗ to P (P

is constructed based on P̂ as described above). We follow the π order of the

players and for each player we apply her best response. First note that players

1 and 2 have no better response, so P1 = P̂1 and P2 = P̂2. When we process

any other player i, we have already processed all her predecessors in π and so,

the strategies of the other players are Pi. Therefore, Pi is the best response for

i (it may be that Pi = P̂i, where no better response exists for i). The order

that we process the vertices guarantees that P ∈ P∗. Best-response dynamics

guarantee that eventually, no player could perform any best-response, resulting

in the desired NE.

This completes the proof of Theorem 66.
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CHAPTER 11

Stochastic Design

In this Chapter, we study the stochastic model, where the activated vertices, or

alternatively the players’ types, are no longer picked adversarially, but instead the

players’ types are drawn from some distribution D. We remind the reader that

the designer is aware of merelyD and not the actual types of the players; however,

the players have full knowledge of the other players’ types, as in Chapter 10. We

design a randomised universal cost-sharing protocol with constant PoA.

Discussion on the Design. We note that in the whole chapter we only

design ordered protocols. The total order is defined by combining an order, π1,

among all the vertices of the graph and a global order, π2, among all players

as following. For any t = {t1, . . . , tk}, π1 defines a partial order of players, i.e.

it defines an order among players of different types, and then a total order is

derived via π2 that induces an order among players of the same type. Then,

if more than one players have the same vertex as their type, the first player

among them, based on π2, is only charged and the rest follow the same path

with zero cost-shares. For the simplicity of the presentation, we only define an

order among the activated vertices, i.e. the order π1. The global order π2 can be

defined arbitrarily based on players ids.

We suppose that the set of the activated vertices, S, is drawn from some prob-

ability distribution Π derived by D. In the stochastic model, D is chosen adver-

sarially, so the same is considered for Π. We next design a randomised ordered

protocol (Section 11.1) with constant PoA. In a slightly different model where

each vertex is activated independently with some probability, by using standard
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derandomisation techniques, we produce a deterministic ordered protocol (Sec-

tion 11.2) that achieves constant PoA. We note that both the randomised and

the deterministic protocols can be determined in polynomial time.

11.1 Randomised Protocol

We show that there exists a randomised ordered protocol that achieves constant

PoA. This result holds even for the black-box model [130], meaning that the

probability distribution is not known to the designer, however she is allowed to

draw independent (polynomially many) samples.

The protocol’s design highly relies on approximation algorithms for the mini-

mum Steiner tree problem and therefore, the resulting PoA upper bound (Corol-

lary 69) depends on known approximation ratios for this problem. More pre-

cisely, given an α-approximate minimum Steiner tree, we show an upper bound

of 2(α + 2) (Theorem 68). The approximate tree is used in our algorithm as a

base in order to construct a spanning tree, which finally determines an order of

all vertices; the detailed algorithm is given in Algorithm 1. This algorithm and

its slight variants have been used in different contexts: rent-or-buy problem [81],

a priori TSP [130] and, stochastic Steiner tree problem [72].

Algorithm 1 Randomised order protocol Ξrand

Input: A rooted graph G = (V,E, r) and an oracle for the probability
distribution Π.
Output: Ξrand.

• Choose a random set of vertices R by drawing from distribution Π and
construct an α-approximate minimum Steiner tree, Tα(R), over R∪{r}.

• Connect all other vertices V \ V (Tα(R)) with their nearest neighbour in
V (Tα(R)) (by breaking ties arbitrarily).

• Double the edges of that tree and traverse some Eulerian tour starting
from r. Order the vertices based on their first appearance in the tour.

Theorem 68. Given an α-approximate solution of the minimum Steiner tree

problem, Ξrand has PoA at most 2(α + 2).

Proof. Let π be the order of V , defined by Ξrand, and S be the random set of

activated vertices that require connectivity with r. For the rest of the proof we
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denote by MST (S) a minimum spanning tree over the vertices S ∪ {r} on the

metric closure44 of G.

Let s1, . . . , sr be the vertices of S as appeared in π and the strategy profile

PR(S) = (P1, . . . , Pr) be a NE of set S. Under the convention that s0 = r,

csi(PR(S)) ≤ dG(si, si−1) for all si ∈ S. We construct a tree TR,S from the Tα(R)

of Algorithm 1, by connecting only all vertices of S \V (Tα(R)) with their nearest

neighbour in V (Tα(R)) (by breaking ties in accordance to Algorithm 1). Note

that, by doubling the edges of TR,S, there exists an Eulerian tour starting from

r, where the order of the vertices S (based on their first appearance in the tour)

is π restricted to the set S.45 Therefore,
∑

si∈S dTR,S(si, si−1) + dTR,S(s0, sr) =

2c(TR,S). By combining the above,

c(PR(S)) =
∑
si∈S

csi(PR(S)) ≤
∑
si∈S

dG(si, si−1)

≤
∑
si∈S

dTR,S(si, si−1) ≤ 2c(TR,S). (11.1)

Let Dv(R) be the distance of v from its nearest neighbour in (R∪ {r}) \ {v}. In

the special case that v = r, we define Dv(R) = 0 Then,

c(TR,S) = c(Tα(R)) +
∑
v∈S\R

Dv(R) ≤ c(Tα(R)) +
∑

v∈S Dv(R). (11.2)

We use an indicator I(v ∈ S) which is 1 when v ∈ S and 0 otherwise; then∑
v∈S Dv(R) =

∑
v I(v ∈ S)Dv(R). By taking the expectation over R and S,

E
R

[E
S

[c(TR,S)]] ≤ E
R

[c(Tα(R))] + E
R

[E
S

[
∑
v∈V

I(v ∈ S)Dv(R)]].

Since S and R are independent samples we can bound the second term as:

E
R

[E
S

[
∑
v∈V

I(v ∈ S)Dv(R)]] =
∑
v∈V

E
S

[I(v ∈ S)]E
R

[Dv(R)]

=
∑
v∈V

E
S

[I(v ∈ S)]E
S

[Dv(S)]

44The metric closure of an undirected graph G is the complete undirected graph on the
vertex set V (G), where the edge costs equal the shortest paths in G between the corresponding
vertices.

45This Eulerian tour matches the tour constructed by shortcutting the Eulerian tour of
Algorithm 1 to contain only the vertices R ∪ S ∪ {r}.
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= E
S

[
∑
v∈V

I(v ∈ S)Dv(S)]

= E
S

[
∑
v∈S

Dv(S)] ≤ E
S

[c(MST (S))]. (11.3)

The third equality holds since Dv(S) is the distance of v from its nearest neigh-

bour in (S ∪ {r}) \ {v} and it is independent of the event I(v ∈ S). For the

inequality, note that Dv(S) is upper bounded by the distance of v from its parent

in the MST (S).

Let T ∗S be the minimum Steiner tree over S ∪ {r}, then it is well known that

c(MST (S)) ≤ 2c(T ∗S). Overall,

E
R

[E
S

[c(PR(S))]] ≤ 2E
R

[E
S

[c(TR,S)]]

≤ 2(E
S

[c(Tα(S))] + E
S

[c(MST (S))])

≤ 2(α + 2)E
S

[c(T ∗S)].

By applying the 1.39-approximation algorithm of [26] we get the following

corollary.

Corollary 69. Ξrand has PoA at most 6.78.

11.2 Deterministic Protocol

We now consider a different model where each vertex v is activated independently

with probability pv, and w.l.o.g. set pr = 1. The set of the activated vertices

is sampled based on pv’s, i.e., the probability that S is activated is Π(S) =∏
v∈S pv ·

∏
v/∈S(1− pv). The pv’s (and therefore Π), are chosen adversarially. We

additionally assume that the probabilities pv’s are known to the designer. We

show that there exists a deterministic ordered protocol that achieves constant

PoA.

Theorem 70. There exists a deterministic ordered protocol with PoA at most

16.

Proof. We use derandomisation techniques similar to [130, 141] and for complete-

ness we give the full proof here. First we discuss how we can get a PoA of 6.78, if

we drop the requirement of determining the protocol in polynomial time. Similar
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to the proof of Theorem 68 we define the tree TR,S for the random activated set

S as follows: we construct TR,S from the Tα(S) of Algorithm 1, by connecting

only all vertices of S \ V (Tα(R)) with their nearest neighbour in V (Tα(R)) (by

breaking ties in accordance to Algorithm 1). We apply the standard derandomi-

sation approach of conditional expectation method on TR,S. More precisely, we

construct a deterministic set R̂ to replace the random set R in Algorithm 1,

by deciding for each vertex of V \ {r}, one by one, whether it belongs to R̂ or

not. The order we process the vertices is chosen arbitrarily. Assume that we

have already processed the set Q ⊂ V and we have decided that for its partition

(Q1, Q2), Q1 ⊆ R̂ and Q2 ∩ R̂ = ∅ (starting from Q1 = {r} and Q2 = ∅). Let v

be the next vertex to be processed. From the conditional expectations and the

independent activations we know that

E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅] =

E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v ∈ R]pv

+ E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v /∈ R](1− pv),

meaning that

either E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v ∈ R]

≤ E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅],

or E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅, v /∈ R]

≤ E
S,R

[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅].

In the first case we add v in Q1 and in the second case we add v in Q2.

Therefore, after processing all vertices, Q1 = R̂ and ES[c(TR̂,S)] ≤ ES,R[c(TR,S)].

If we replace the sampled R of Algorithm 1 with the deterministic set R̂, we can

get the same bound on the PoA with the randomised protocol of Theorem 68.

However, the value of ES,R[c(TR,S)|Q1 ⊆ R,Q2 ∩R = ∅] seems difficult to be

computed in polynomial time; the reason is that it involves the computation of

ER[c(Tα(R))|Q1 ⊆ R,Q2∩R = ∅] which seems hard to be handled. To overcome

this problem we use an estimator EST (Q1, Q2) of ES,R[c(TR,S)|Q1 ⊆ R,Q2∩R =

∅], which is constant away from the optimum ES[c(T ∗S)], where T ∗S is the minimum

Steiner tree over S ∪ {r}.

Following [141, 130], we use the optimum solution of the relaxed Connected
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Facility Location Problem on G in order to construct a feasible solution ȳ of

the relaxed Steiner Tree Problem (STP) for a given set R. We show that the

objective’s value of the fractional STP for ȳ is constant away from ES[c(T ∗S)]

and that its (conditional) expectation over R can be efficiently computed. This

quantity is used in order to construct the estimator EST (Q1, Q2). We apply

the method of conditional expectations on EST (Q1, Q2) and after processing all

vertices, by using the primal-dual algorithm [75], we compute a Steiner tree on

Q1 with cost no more than twice the cost of the fractional solution.

In the rooted Connected Facility Location Problem (CFLP), a rooted graph

G = (V,E, r) is given and the designer should select some facilities to open,

including r, and connects them via some Steiner tree T . Every other vertex is

assigned to some facility. The cost of the solution is M (M > 1) times the cost of

T , plus the distance of every other vertex from its assigned facility. Our analysis

requires to consider a slightly different cost of the solution, which is the cost of

T , plus the distance of every other vertex v from its assigned facility multiplied

by pv. In the following LP relaxation of the CFLP, ze and xij are 0-1 variables

indicate, respectively, if e ∈ E(T ) and whether the vertex j is assigned to facility

i. δ(U) denotes the set of edges with one endpoint in U and the other in V \ U ,

d(i, j) denotes the minimum distance between vertices i and j in G and ce is the

cost of edge e.

LP1: CFLP

min B + C

subject to
∑

i∈V xij = 1 ∀j ∈ V∑
e∈δ(U) ze ≥

∑
i∈U xij ∀j ∈ V, ∀U ⊆ V \ {r}

B =
∑

e∈E ceze

C =
∑

j∈V pj
∑

i∈V d(i, j)xij

ze, xij ≥ 0 ∀i, j ∈ V and ∀e ∈ E

Let (z∗ = (z∗e)e,x
∗ = (x∗ij)ij, B

∗, C∗) be the optimum solution of LP1.

Claim 71. B∗ + C∗ ≤ 3ES[c(T ∗S)].

Proof. Given a set S ⊆ V , for every edge e ∈ T ∗S , let ze = 1 and, for e /∈ T ∗S , let

ze = 0. Moreover, for every j ∈ V , let xij = 1, if i is j’s nearest neighbour in

(S∪{r})\{j}. Set the rest of xij equal to 0. Note that this is a feasible solution

of LP1 with objective value BS + CS ≤ c(T ∗S) +
∑

v∈V pvDv(S). By taking the
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expectation over S,

B∗ + C∗ ≤ E
S

[BS + CS] ≤ E
S

[c(T ∗S)] +
∑
v∈V

E
S

[I(v ∈ S)]E
S

[Dv(S)]

= E
S

[c(T ∗S)] + E
S

[
∑
v∈S

Dv(S)] ≤ E
S

[c(T ∗S)] + E
S

[c(MST (S))] ≤ 3E
S

[c(T ∗S)].

By using the solution (z∗ = (z∗e)e,x
∗ = (x∗ij)ij, B

∗, C∗), we construct a feasible

solution for the following LP relaxation of the Steiner Tree Problem (STP) over

some set R ∪ {r}.

LP2: STP over R ∪ {r}
min

∑
e∈E ceye

subject to
∑

e∈δ(U) ye ≥ 1 ∀U ⊆ V \ {r} : R ∩ U 6= ∅
ye ≥ 0 ∀e ∈ E

We define aij(e) = 1 if e lies in the shortest path between i and j and it is 0

otherwise. For every edge e we set ȳe = z∗e +
∑

j∈R
∑

i∈V aij(e)x
∗
ij.

Claim 72. ȳ = (ȳe)e is a feasible solution for LP2.

Proof. The proof is identical with the one in [141] but we give it here for com-

pleteness. Consider any set U ⊆ V \ {r} such that R∩U 6= ∅ and let ` ∈ R∩U .

It follows that

∑
e∈δ(U)

ȳe ≥
∑
e∈δ(U)

z∗e +
∑
e∈δ(U)

∑
j∈R

∑
i∈V

aij(e)x
∗
ij ≥

∑
i∈U

x∗i` +
∑
e∈δ(U)

∑
i∈V

ai`(e)x
∗
i`

≥
∑
i∈U

x∗i` +
∑
i/∈U

x∗i`
∑
e∈δ(U)

ai`(e) ≥
∑
i∈U

x∗i` +
∑
i/∈U

x∗i` = 1.

For the last inequality, note that ai`(e) should be 1 for at least one e ∈ δ(U)

since i /∈ U and ` ∈ U .

Claim 73. Let c̄ST (R) be the cost of the objective of LP2 induced by the solution

ȳ. Then ER[c̄ST (R)] = B∗ + C∗.

Proof.

E
R

[c̄ST (R)] = E
R

[
∑
e∈E

ce(z
∗
e +

∑
j∈R

∑
i∈V

aij(e)x
∗
ij)] = B∗ + E

R
[
∑
j∈R

∑
i∈V

∑
e∈E

ceaij(e)x
∗
ij]
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= B∗ + E
R

[
∑
j∈R

∑
i∈V

d(i, j)x∗ij] = B∗ +
∑
j∈V

pj
∑
i∈V

d(i, j)x∗ij = B∗ + C∗.

Observe that due to the expression of ȳ we can efficiently compute any con-

ditional expectation

E
R

[c̄ST (R)|Q1 ⊆ R,Q2 ∩R = ∅];

this is because

E
R

[
∑
j∈R

∑
i∈V

aij(e)x
∗
ij|Q1 ⊆ R,Q2∩R = ∅] =

∑
j∈Q1

∑
i∈V

aij(e)x
∗
ij+

∑
j /∈Q1∪Q2

pj
∑
i∈V

aij(e)x
∗
ij.

We further define cC(R) =
∑

v∈V pvDv(R). We can also efficiently compute any

conditional expectation E[cC(R)|Q1 ⊆ R,Q2 ∩ R = ∅] (Claim 2.1 of [141]). We

are ready to define our estimator:

EST (Q1, Q2) = 2E
R

[c̄ST (R)|Q1 ⊆ R,Q2∩R = ∅]+E
R

[c̄C(R)|Q1 ⊆ R,Q2∩R = ∅].

Our goal is to define a deterministic set R̂ to replace the sampled R of Algo-

rithm 1. We process the vertices one by one and we decide if they belong to R̂ by

using the model conditional expectations on EST (Q1, Q2). More specifically, as-

sume that we have already processed the sets Q1 and Q2 (starting from Q1 = {r}
and Q2 = ∅) such that Q1 ⊆ R̂ and Q2 ∩ R̂ = ∅. Let v be the next vertex to be

processed. From the conditional expectations and the independent activations

we know that EST (Q1, Q2) = pvEST (Q1∪{v}, Q2)+(1−pv)EST (Q1, Q2∪{v}).
If EST (Q1 ∪ {v}, Q2) ≤ EST (Q1, Q2) we add v to Q1, otherwise we add v to

Q2. After processing all vertices and by using Claims 71 and 73,

EST (R̂, V \ R̂) ≤ EST ({r}, ∅) = 2E
R

[c̄ST (R)] + E
R

[c̄C(R)]

≤ 6E
S

[c(T ∗S)] +
∑
v∈V

pv E
R

[Dv(R)]

= 6E
S

[c(T ∗S)] + E
R

[
∑
v∈V

I(v ∈ R)Dv(R)]

≤ 6E
S

[c(T ∗S)] + E
R

[c(MST (R))] ≤ 8E
S

[c(T ∗S)].

Let TPD(R̂) be the Steiner tree over R̂ ∪ {r} computed by the primal-dual algo-
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rithm [75]. Then,

EST (R̂, V \ R̂) = 2c̄ST (R̂) +
∑
v∈V

pvDv(R̂) ≥ c(TPD(R̂)) + E
S

[
∑
v∈S

Dv(R̂)].

By combining inequalities (11.1) and (11.2) (after replacing R by R̂ and Tα(R̂)

by TPD(R̂)) with all the above, we have that

E
S

[c(PR̂(S))] ≤ 2

(
c(TPD(R̂)) + E

S
[
∑
v∈S

Dv(R̂)]

)
≤ 2EST (R̂, V \R̂) ≤ 16E

S
[c(T ∗S)].

This finishes the proof of Theorem 70.
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CHAPTER 12

Bayesian Design

In this chapter, we discuss the Bayesian model. We first show that there ex-

ists a lower bound of Ω(
√
k) on the PoA of any universal cost-sharing protocol

(Section 12.1). The lower bound holds even when the players’ types are i.i.d.

meaning that they are drawn from independent and identical prior distributions,

i.e. D is a product distribution of k identical distributions.

Budget-Balance in Equilibrium. One of the axioms of the universal

cost-sharing protocols should satisfy, is budget balance. Although budget balance

is a very natural requirement, apparently it puts considerable restrictions on

the design space. However, since we expect that the players will end up in a

Nash equilibrium, it is not clear why one should be interested to impose budget

balance in non-equilibrium states; the players are going to deviate from such

states anyway. We propose an alternative, relaxed requirement that we call

budget-balance in the equilibrium (BBiE). A BBiE cost-sharing protocol satisfies

ex-post budget-balance in all equilibria; for any non-equilibrium profile we do not

impose this requirement. This natural relaxation, enlarges the design space but

maintains the desired property of balancing the cost in the equilibrium. More

importantly, this amplification of the design space, allows us to design protocols

that dramatically outperform the best possible PoA bounds obtained by budget-

balanced protocols. In Section 12.2.1, we improve the PoA from Ω(
√
n) to O(1)

by designing a BBiE cost-sharing protocol.

Posted Prices. We further examine the use of posted prices. It is a very

common practice, especially in large markets and double auctions, for sellers
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to use posted prices on their items. More closely to cost-sharing games is the

model proposed by Kelly [94] regarding bandwidth allocation. Kelly’s mechanism

processes players’ willingness to pay for the bandwidth and posts a price for the

whole bandwidth. Then, each player pays a price proportional to the portion of

bandwidth she wants to use. This can be seen as pricing an infinitesimal quantity

of the bandwidth and the players, acting as price-takers, choose some number of

quantities to buy. It turns out that it is in the best interest of the players to buy

the whole bandwidth.

Posted prices have also been used for pricing in large markets. Kelso and

Crawford [95] and Gul and Stacchetti [80] proved the existence of prices, for

gross substitute valuations, that clear the market efficiently. Feldamn, Gravin

and Lucier [65] used anonymous posted prices in combinatorial auctions under

the Bayesian setting and showed that when the valuations are fractionally sub-

additive there exist prices that guarantee half of the expected optimum social

welfare. Pricing bundles for combinatorial Walrasian equilibria was introduced

by the same authors [66], who showed that half of the optimum social welfare

can be achieved even for arbitrary valuation functions. Dynamic pricing schemes

have been used by Cohen, Eden, Fiat and Jez [51] in several online settings to

induce the same performance as the best online algorithm, and by Cohen-Addad,

Eden, Feldman and Fiat [52] in matching markets in order to achieves the optimal

social welfare, for any tie breaking rule.

The use of posted prices to serve as cost-sharing mechanism, is highly de-

sirable, but not always possible to achieve; a price is posted for each resource

and then the players behave as price takers, picking up the cheapest possible

resources that satisfy their requirements. Such a mechanism is desirable because

it is extremely easy to implement and also induces dominant strategies. The

same constant bound achieved by a BBiE protocol can be further achieved by

using ex-ante BBiE posted prices (Section 12.2.2). We stress that our results are

implemented by anonymous posted prices. In Section 12.2.2, we further discuss

the necessity of BBiE being satisfied ex-ante, i.e. in expectation, rather that

ex-post like the BBiE protocols.

12.1 Fully Budget-Balance

In this section we show that the PoA of any universal cost-sharing protocol can

be very high.
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Theorem 74. The Bayesian PoA of any (deterministic or randomised) universal

protocol, for the multicast game with Θ(n) vertices, is Ω(
√
n), even for i.i.d.

players.

Proof. We assume that the players’ types are drawn independently and iden-

tically from some distribution D∗. We consider the graph of Figure 12.1 and

we define D∗ by drawing each of the {v1, . . . , vn} with probability p, v with

probability 0 and r with probability 1− pn.

We set p = 1−
(

1− 1√
n

) 1
n
, such that the probability that vertex vi is drawn

as the type of at least one player is qi = 1 − (1− p)n = 1√
n
. We claim that, for

any budget-balanced protocol, it is a Bayes-Nash equilibrium if any player with

type vi uses the direct edges (vi, t).

r pr = 1− np

v1p v2p v3p vn−1 p vn p

v pv = 0

1

1√
n

1

1√
n

1

1√
n

1

1√
n

1

1√
n

Figure 12.1: Lower bound on the PoA of any budget-balanced protocol.

Indeed, if player i uses any other path (vi, v, vj, t) her cost-share will be at

least 2√
n

+ (1− qj) = 1 + 1√
n
, which is greater than her current cost-share of at

most 1. The expected social cost and optimum are: E[SC] =
∑

i qi =
√
n and

E[Opt] ≤
∑

i qi ·
1√
n

+ 1 = n 1
n

+ 1 = 2. So, the Bayes PoA is at least 1
2

√
n.

12.2 Budget-Balance in Equilibrium

In this section we drop the requirement of budget balance and instead we consider

a more general class of cost-sharing protocols C, where the requirement is to

preserve the budget balance in the equilibrium (BBiE).
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BBiE: In any pure (Bayesian) Nash equilibrium profile, the cost shares of the

players choosing edge e should cover exactly the cost of e.

To show our results we will use an oblivious algorithm of the corresponding

optimisation problem and we will enforce its solution by applying appropriate

cost-sharing protocols and posted prices, e.g. choices, not consistent with this

solution, are highly expensive.

The underlying optimisation problem of the multicast cost-sharing game is

the minimum Steiner tree. The type of each player corresponds to an input

component of the optimisation problem, i.e. some requested vertex, and the

domain of her strategy space corresponds to the set of the paths connecting that

requested vertex with the root r. An oblivious algorithm assigns an action for

each input component, based on the prior distribution, and independently of the

realisation of all other input components. In our case, an oblivious solution, maps

each vertex to some path that connects it to r, and is used in any realisation of

the input that contains this vertex.

12.2.1 BBiE Protocols

The following theorem associates the PoA of some cost-sharing game with the

approximation ratio of an oblivious algorithm of the underlying optimisation

problem. The theorem doesn’t merely apply to the multicast cost-sharing game

but it is more general and have been also used in the set cover cost-sharing

game [42].

Theorem 75. Let G be any cost-sharing game and Π the underlying optimisa-

tion resource allocation problem. Suppose that the input of Π is chosen stochas-

tically by the distribution π1 × π2 × . . . × πk, where πi is the distribution from

which the ith input component is drawn from. Further suppose that the types of

the players are drawn from D = ×iDi, where Di = πi for all i. Then, given any

oblivious algorithm of Π with approximation ratio ρ, there exists a cost-sharing

protocol Ξ ∈ C for G with PoA= O(ρ).

Proof. Suppose that Ei is the set of the resources allocated by the oblivious

algorithm to the the input component that serves as the type of some player i.

Even though it is not quite correct, we will say that Ri is the resources allocated

to player i. Let Se be the set of players that resource e is allocated to them.

We denote by h a very high value with respect to the parameters of the

game. h should be larger than the total cost-share of any player by using any
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budget-balanced protocol. Regarding the multicast game, it is safe to assume

that h >
∑

e∈E ce.

Then Ξ assigns the following cost-share to any player i for choosing any

resource e, when the set of players choosing e is S,

ξe(i, S) =


ce/|S| if i ∈ Se
h if i /∈ Se
0 otherwise

Note that Ξ assigns equal shares restricted to Se and a high value h for

other players. In fact, instead of equal shares we could use any budget-balanced

protocol restricted to Se, for instance any generalised weighted Shapley protocol.

Note that any player i using a resource e /∈ Ei should pay h. By the definition

of h, this is strictly more than
∑

e′∈Ei ce′ , which is the maximum she may pay

if she deviates to Ei. Therefore, the only Nash equilibria are for each player i

to choose some subset of Ei, i.e follow the oblivious solution. This results to a

PoA which is at most the same with the approximation ratio of the oblivious

algorithm, so PoA=O(ρ). Moreover, by the construction of Ξ, BBiE holds.

The spanning tree produced by Algorithm 1 provides an oblivious (ran-

domised) algorithm with constant approximation. For completeness we restate

the Algorithm here, adjusted in order to clearly extract an oblivious solution.

Algorithm 2 Randomised Oblivious Algorithm Aobl
Input: A rooted graph G = (V,E, r) and an oracle for D.
Output: Mapping of each vertex v ∈ V to a path from v to r.

• Choose a random set of vertices R by drawing the types from distribution
D and eliminating the duplicates. Construct an α-approximate minimum
Steiner tree, Tα(R), over R ∪ {r}.

• Form a spanning tree T by connecting all other vertices V \ V (Tα(R))
with their nearest neighbour in V (Tα(R)) (by breaking ties arbitrarily).

• Map each vertex v ∈ V to the path connecting v with r in T .

By following the proof of Theorem 68, Aobl results in a constant approxima-

tion of the expected minimum Steiner tree. Therefore, the following theorem

holds, where E[c(Aobl(S))] is the expected cost induced by algorithm Aobl under

input S, where the expectation is over the randomisation of the algorithm, T ∗S
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is the minimum Steiner tree on S ∪ r and α is an approximation ratio for the

minimum Steiner tree problem.

Theorem 76. The approximation ratio of Aobl when the input is drawn from D

is α + 2, i.e. ES∼D[E[c(Aobl(S))]] ≤ (α + 2)ES∼D[c(T ∗S)].

By combining Theorems 75 and 76 and applying the best known approxima-

tion of the minimum Steiner tree [26], where α = 1.39, we derive the following

corollary:

Corollary 77. In the multicast game, there exists Ξ ∈ C (computed in polyno-

mial time) with PoA ≤ 3.39.

Garg et al. [72] showed a constant approximation on the online Steiner tree

problem with stochastic input by using an oblivious algorithm. Their oblivious

solution is the same with one derived by algorithm Aobl. However, in their work

they sampled the input set S from a distribution πk, meaning that by using

their result as it is, we could construct a BBiE protocol for i.i.d. players’ types.

Nevertheless, their algorithm holds for more general distributions π1×π2×. . .×πk
as we state in this thesis.

12.2.2 BBiE Posted Prices

In this section, we show how to set anonymous prices for the edges. Strict BBiE

cannot be obtained by using anonymous posted prices, as we illustrate in Exam-

ple 78. Instead, we require ex-ante budget-balance, meaning budget-balance on

expectation. Similar bounds with the BBiE protocols can be shown here. But

first, we argue that other natural variations of budget balance cannot be very

promising: a) BBiE with “high” probability, b) bounded possible excess and

deficit. Example 78 indicates that any anonymous posted prices may result in

BBiE with probability at most O(1/
√
k). The same example serves to demon-

strate that no posted prices can guarantee good bounds on possible excess and

deficit, i.e. for any posted prices, there are cases where the total shares for some

resource are either at least
√
k or at most 1/

√
k of the resource’s cost. We stress

that those restrictions holds even for i.i.d. types.

Example 78. Consider a graph with only three vertices v, u, r, where r is the

designated root, and there are only two edges (v, t) and (u, t), of unit cost.

Further, consider k i.i.d. players whose type is the uniform distribution over the
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two vertices v, u. The question that arises is how to set a price on an edge of

unit cost, when each player may use it with probability 1/2.

Let q be the price for edge e. If 1/q is not an integer in [k], then budget-

balance appears with zero probability. So, suppose that 1/q = a ∈ [k], then

budget-balance appears only when a players use e and this happens with prob-

ability

P[# players = a] =

(
k

a

)(
1

2

)a(
1− 1

2

)k−a
≤
(

k

bk/2c

)
1

2k
<

1√
k
.

Furthermore, for any price q for edge e, if q ≥ 1/
√
k then, in the case that all

players use e, the total shares sum up to at least k · 1/
√
k =
√
k. On the other

hand, if q < 1/
√
k then, in the case that only one player uses e, her share is at

most 1/
√
k. This means that we cannot guarantee good bounds on any possible

excess and deficit.

Next we state our main theorem for this section, which is the existence of

anonymous posted prices that are ex-ante BBiE.

Theorem 79. In the multicast game, there exist prices (computed in polynomial

time) with PoA= 3.39.

Proof. We define, for any subset of types A, kA to be the expected number of

players having type in A and k1
A to be the expected number of players having

type in A, given there exists at least one such player:

kA = E
t
[|i : ti ∈ A|] = k

∑
i∈A

πi;

k1
A = E

t
[|i : ti ∈ A| given |i : ti ∈ A| ≥ 1] =

k
∑

i∈A πi

1−
(
1−

∑
i∈A πi

)k .
Let T be the spanning tree constructed by Aobl (Algorithm 2). We use T to

set the posted prices. For each edge e ∈ E(T ), let V (e) be the set of vertices

that are disconnected from r in T \{e}. We set the posted price pe for each edge

e as following:

If e ∈ E(T ), pe = ce/k
1
V (e),

if e /∈ E(T ), pe = h >
∑
e∈E

ce.
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In the Bayes-Nash equilibrium each player will choose the unique path that

connects her terminal with the root in T . The constant PoA follows by Theo-

rem 76. Note that the expected sum of the prices for edge e is k1
V (e) ·ce/k1

V (e) = ce,

whenever e is used and 0 otherwise; therefore the ex-ante BBiE is preserved.
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Conclusion

In this thesis, we answered several questions in regards to mechanisms’ efficiency

in Auctions and Network Design and we further posed new open questions.

Auctions. The simultaneous first-price auction appears to be the best auc-

tion so far in terms of the PoA. We provided tight lower bounds which com-

plement the current knowledge about the first-price auction for two important

classes of valuation functions, namely fractionally subadditive and subadditive.

For valuations without complementarities, i.e. subadditive valuations, the tight

bounds hold for a more general class of auctions that includes all-pay auctions,

and it is further extended to multi-unit auctions and divisible resources, like

bandwidth.

Roughgarden [124] presented a very elegant methodology to provide PoA

lower bounds for all simple auctions. One consequence is the indication that the

simultaneous first-price auction is the most efficient (i.e. has the lowest PoA) sim-

ple auction for valuations without complementarities. However, a combination

of [124] and this thesis’ results indicates that the question of the most efficient

auction remains, regarding the more specialised class of submodular valuations;

either a different approach than the one in [124] is needed in order to prove op-

timality of the first-price auction or there is another auction that improves the

PoA.

Network Design. Designing protocols for network cost-sharing games has

drawn a lot of attention lately. In this thesis we posed and partially answered

the following question: to what extent can prior knowledge of the underlying

metric help in the design? For the general case of arbitrary metric spaces, we

answered this question negatively. On the bright sight, it seems that there are

cases, such as the outerplanar graphs, where prior knowledge of the metric can

dramatically improve the design. However, the design question still remains for
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other significant metrics such as the Euclidean and planar graphs. Moreover,

very few is known with respect to randomised protocols. It is possible that

randomisation may help in the design and we have some serious indications that

a randomised protocol may lead to a great improvement on the PoA in Euclidean

metrics.

Of high interest, due to its simplicity and fairness, is the protocol where the

cost of each edge is equally split among its users. Anshelevich et al. [6] showed

that the quality of equilibria can be really poor, meaning that the PoA is very

high. However, the Price of Stability of this game is not well-understood. It is an

interesting open question to determine its exact value that is between constant

and a sublogarithmic value [103].
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[55] José R. Correa, Andreas S. Schulz, and Nicolás E. Stier Moses. The price

of anarchy of the proportional allocation mechanism revisited. In Proceed-

ings of the 9th International Conference on Web and Internet Economics,

WINE 2013, Cambridge, MA, USA, December 11-14, 2013, pages 109–120,

2013.

[56] Bart de Keijzer, Evangelos Markakis, Guido Schäfer, and Orestis Telelis.
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