
Issue 2016-2

December 2016

The Newsletter of the

Formal Aspects of Computing Science

(FACS) Specialist Group

ISSN 0950-1231

FACS

A

C

T

S

FACS FACTS Issue 2016-2 December 2016

2

About FACS FACTS

FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on

Formal Aspects of Computing Science (FACS). FACS FACTS is distributed in

electronic form to all FACS members.

Submissions to FACS FACTS are always welcome. Please visit the newsletter area

of the BCS FACS website (for further details see

http://www.bcs.org/category/12461).

Back issues of FACS FACTS are available for download from:

http://www.bcs.org/content/conWebDoc/33135

The FACS FACTS Team

Newsletter Editors: Tim Denvir timdenvir@bcs.org

 Brian Monahan brianqmonahan@googlemail.com

Editorial Team: Jonathan Bowen, Tim Denvir, Brian Monahan,

 Margaret West.

Contributors to this Issue

Troy Astarte, Jonathan Bowen, Muffy Calder, Tim Denvir, Michael Fisher,

Sofia Meacham, Greg Michaelson, Simon Thompson, Margaret West.

BCS-FACS websites

BCS: http://www.bcs-facs.org

LinkedIn: http://www.linkedin.com/groups?gid=2427579

Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255

Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS

If you have any questions about BCS-FACS, please send these to Paul Boca:

paul.boca@gmail.com.

http://www.bcs.org/category/12461
http://www.bcs.org/content/conWebDoc/33135
mailto:timdenvir@bcs.org
mailto:brianqmonahan@googlemail.com
http://www.bcs-facs.org/
http://www.linkedin.com/groups?gid=2427579
http://www.facebook.com/pages/BCS-FACS/120243984688255
http://en.wikipedia.org/wiki/BCS-FACS
mailto:paul.boca@googlemail.com

FACS FACTS Issue 2016-2 December 2016

3

Editorial

Welcome to FACS FACTS issue 2016-2 and, as I am writing this at the very end

of 2016, a happy 2017 to all our readers.

Without any specific intention to orchestrate it on our part, there is something

of an Alan Turing theme running through this issue of the newsletter. A rather

unusual letter to the editor claims to recall a conversation that the

correspondent's great-uncle had with Turing in 1936, in which the latter

recounts a theory of the harmonica, remarkably reminiscent of Turing's

machine. Another article by one of your editors suggests that what we have left,

after eliminating Turing's computable numbers and the rest of the numbers we

can define, are akin to dark matter in the universe of the reals. Thirdly on the

Turing theme, we have an announcement of a book, The Turing Guide, co-

authored by Jonathan Bowen, chair of FACS, with Jack Copeland, Robin Wilson

and Mark Sprevak. A detailed and positive review of this book has appeared in

New Scientist, see https://www.newscientist.com/article/mg23331072-700-

the-turing-guide-last-words-on-an-enigmatic-codebreaker/, describing it as

“pretty much the last word on the subject”.

We start, however, with the Chair's Report on the past year, presented at the

FACS AGM on 12th December 2016. Then a number of reports on FACS and

other events held throughout the year: Troy Astarte reports on a talk given by

Joe Stoy, Christopher Strachey, Pioneer of FACS. Margaret West reports on Ada

Lovelace's 200th Birthday Celebration at Oxford, December 9th - 10th 2015.

Margaret West also reports on a series of talks given by Dana Scott around the

UK, with a more detailed summary of his delivery of the Löb Lecture at Leeds on

18th May 2016, Why Mathematical Proof?.

Jonathan Bowen reports on the joint FACS-LMS seminar given by Muffy Calder

on Probabilistic formal analysis of software usage styles in the wild, held at the

London Mathematical Society, de Morgan House, London. While Muffy Calder is

well known in the field of computer science, possibly less well known is that

she has recently finished a spell as Chief Scientific Advisor to the Scottish

Government. It is heartening to see a computer scientist in such a rôle.

https://www.newscientist.com/article/mg23331072-700-the-turing-guide-last-words-on-an-enigmatic-codebreaker/
https://www.newscientist.com/article/mg23331072-700-the-turing-guide-last-words-on-an-enigmatic-codebreaker/

FACS FACTS Issue 2016-2 December 2016

4

Sofia Meacham and Jonathan Bowen report on the annual BCS-FACS Peter

Landin Semantics seminar, on Building Trustworthy Refactoring Tools, given by

Professor Simon Thompson of the University of Kent. Jonathan Bowen reports

on the Strachey Centenary conference in Oxford, 18-19 November 2016, with

photos. Michael Fisher from the University of Liverpool announces a network on

verification and validation of autonomous systems.

Events that we plan to hold during 2017 include:

 A joint FME/BCS-FACS seminar by Prof. Dr. Reiner Hähnle, TU Darmstadt,

Germany, who will speak on "The KeY Formal Verification Tool" on 4th

May at the BCS, London. See http://www.bcs.org/content/ConWebDoc/57115.

 The regular Refinement Workshop in June

 The annual joint seminar with the LMS in November

 The FACS AGM and annual Peter Landin Semantics Seminar in December.

Also, arrangements for evening seminars are already well in hand for February,

March, April, September and October.

Most FACS seminars take place in the offices of the British Computer Society in

the Davidson Building, Southampton Street. These excellent facilities are

conveniently situated in Central London close to Covent Garden and we would

like to thank the BCS for making these available to us. We look forward to

seeing you there!

Tim Denvir

http://www.bcs.org/content/ConWebDoc/57115

FACS FACTS Issue 2016-2 December 2016

5

BCS-FACS 2016 AGM

Chair’s Report

Venue: BCS London Offices,

5 Southampton Street, London WC2E 7HA

Monday, 12th December 2016

Prof. Jonathan P. Bowen
London South Bank University

First let me thank the FACS treasurer Prof. Jawed Siddiqi and the FACS secretary

Paul Boca, for acting at the group’s executive officers during 2016, as well as

the rest of the FACS committee. Most business during the year is undertaken

using email and the AGM is an opportunity to discuss future plans with the

FACS committee and others interested in FACS activities.

During 9–10 March 2015, last year, we held a major two-day

international ProCoS Workshop on Provably Correct Systems at the BCS London

office with sponsorship from LERO – the Irish Software Research Centre. This

was well attended by delegates and speakers from around the world, including

Prof. Sir Tony Hoare, Prof. Dines Bjørner (from Denmark), and others who were

members of or influenced by the ESPRIT ProCoS projects of the early 1990s,

around 25 years ago. The event has resulted in a post-proceedings “Provably

Correct Systems” (ISBN 978-3319486277), to be published in the Springer

NASA Monographs in Systems and Software Engineering series in early 2017,

edited by Prof. Mike Hinchey (University of Limerick, Ireland, and FACS

committee member), me, and Prof. Dr Ernst-Rüdiger Olderog (University of

Oldenburg, Germany).

FACS has held a number of its traditional evening seminars during 2016.

On 17 May 2016, Jan Tretmans, Senior Research Fellow of TNO – Embedded

Systems Innovation, Eindhoven, and of Radboud University, Nijmegen, in The

http://www.bcs.org/upload/pdf/london-office-guide.pdf

FACS FACTS Issue 2016-2 December 2016

6

Netherlands, spoke on “Model-Based Testing: There is Nothing More Practical

than a Good Theory”. Thank you to FACS committee member Prof. Rob Hierons

for suggesting the speaker and chairing this event. On 29 September 2016,

Prof. Ana Cavalcanti, of the University of York and the new chair of FME, asked

“Can robots ever be safe?”, considering the software engineering involved with

robots.

On 3 November 2016, the annual joint event with the London

Mathematical Society (LMS) at De Morgan House in central London was

organized again by FACS committee member and LMS liaison officer John

Cooke. Prof. Muffy Calder of the University of Glasgow spoke on “Probabilistic

formal analysis of software usage styles in the wild”. I have written a separate

report for the FACS FACTS newsletter, with corrections and improvements by

Muffy!

Most recently, on 15 November 2016, Joe Stoy of Bluespec Inc., USA,

formerly at the Oxford University Computing Laboratory’s Programming

Research Group, gave a delightfully reminiscent talk on his Oxford colleague

“Christopher Strachey – Pioneer of FACS”, who was also a colleague of Alan

Turing, on the day before the centenary of Strachey’s birthday. Troy Astarte,

working with Prof. Cliff Jones at Newcastle University and investigating the

Strachey Archive in the Bodleian Library at Oxford, has provided a beautifully

written and very apt report of the talk for the FACS FACTS newsletter.

I give a special thank you to FACS secretary Paul Boca for yet again

organizing the Annual Peter Landin Semantics Seminar later today. This is to be

delivered by Prof. Simon Thompson of the University of Kent on “Building

Trustworthy Refactoring Tools”.

BCS-FACS depends on members proposing events, especially evening

seminars. Currently 2017 is relatively wide open for possible FACS events and I

would encourage FACS members to make suggestions and offer help in

organizing meetings. We are entirely dependent on members volunteering in

this regard, although there is good support from the BCS with an effectively

free venue at the very centrally located BCS London office for FACS meetings.

Meetings elsewhere in the United Kingdom can also be supported f there is

local interest in supporting such events, perhaps in association with a BCS

FACS FACTS Issue 2016-2 December 2016

7

Branch group for example. I as chair can also offer support and advice in

organizing a meeting if you have not done one before. It is a good learning

experience and you get a free dinner with the speaker for your efforts and

travel expenses if you chair the meeting as well. We try to have a maximum of

one meeting per month (January to June and September to October, since we

normally have the joint LMS event in November organized by John Cooke and

the Landin Seminar in December organized by Paul Boca). I look forward to

hearing your ideas and suggestions, especially if you can volunteer to organize

or even give an evening seminar in 2017.

We do have a FACS evening seminar planned for 4 May 2017, in

association with Formal Methods Europe (FME), to be delivered by Prof. Dr

Reiner Hähnle of TU Darmstadt, Germany, on “The KeY Formal Verification

Tool”. FME will sponsor the air travel and will also hold a board meeting and

their AGM at the BCS London office before the talk. Thanks go to FACS

committee member Prof. John Fitzgerald for being the FME liaison officer as

Chair of FME over the years. Recently, Prof. Ana Cavalcanti has become Chair of

FME and has agreed to replace John as the FME liaison officer on the FACS

committee. We thank John for his sterling efforts for FACS, FME, and formal

methods in general for many years. Through Ana, we aim to continue the long

association of FACS and FME.

I would also like to thank FACS committee members Tim Denvir and Brian

Monahan for their work on co-editing the FACS FACTS newsletter. I know from

experience what a mammoth effort this is for little or no reward, but it is very

worthwhile to have it as a continuing record of FACS activities and interests.

Volunteers to write reports on talks, trip reports, book reviews, short technical

submissions, or anything of potential interest to FACS members are greatly

appreciated at any time. Submissions of photographs (with captions, humorous

or otherwise) are also encouraged.

I hope you enjoy the rest of the day. Happy Christmas to you all and I

look forward to seeing you again in 2017, hopefully at a FACS event.

Jonathan Bowen

Chair, BCS-FACS

FACS FACTS Issue 2016-2 December 2016

8

LETTER TO THE EDITOR

Dear Editor

As an academic Computer Scientist, I occasionally receive missives from members

of the general public claiming to have cracked seemingly imponderable problems,

for example how to achieve hyper-computability. In such cases, I feel it is my civic

duty to offer them some gentle but firm refutation. Very rarely, however, I receive

suggestions with which I can find no significant flaw, despite their seeming

eccentricity.

Thus, as I approach retirement, I feel honour bound to bring the following

correspondence to wider attention:

Dear Sir

Having received short shrift from numerous IT historians, and

browsed your fascinating book on computability, I would

appreciate your thoughts on the enclosed fragment of my late

Great Uncle’s memoir. If I understand it correctly, it appears to

shed new light on the early contributions that Allan[sic] Turing

made to Computer Studies.

Thank you for your consideration.

Yours etc …

… Dining at High Table was largely a bore. Dons are such

self centred creatures, with little practical understanding

of how the world works.

A notable exception was the mathematician Dr Alan

Turing, whom I met on my last visit to Cambridge in

November 1936. As I recall, Dr Turing, who was seated

FACS FACTS Issue 2016-2 December 2016

9

immediately to my right, was silent for much of the meal.

We were finishing the main course when some Socialist

minded fellow, or should I say Fellow, began to maunder

on about the Jarrow Marches and how they were led by a

harmonica ensemble playing popular tunes. Foolishly, I

remarked on what a poor substitute a harmonica ensemble

was for, say, a works brass band.

At this, Dr Turing became quite animated. He opined

that, on the contrary, the harmonica was an eminently

sensible choice for men walking any distance, and that, in

any case, it was fascinating instrument in its own right.

He had been tormented by harmonica players in the dorm

at his prep school, and had sought relief by analysing its

many curious aspects.

Recalling a diabolical craze for the kazoo at my crammer, I

expressed sympathy and asked Dr Turing to expostulate

further.

Dr Turing told me that harmonicas all share the same

basic characteristics. The reeds are laid out beneath a row

of holes, such that one hole is above the reeds for two

notes. One’s mouth is positioned over some hole, and

one’s tongue, or lips, are shaped to isolate it from its

neighbours. Then, one note is played by sucking and the

other by blowing.

Dr Turing next took off his napkin, and borrowing my

fountain pen, drew the following diagram:

FACS FACTS Issue 2016-2 December 2016

10

He observed that he had drawn a C harmonica, but that

the principle was the same for any key. Starting with

one’s mouth over the hole corresponding to the base

note, in this case for the leftmost C, a scale is played as:

blow suck blow suck blow suck suck blow

I was puzzled by the irregularity in sucking and blowing

but Dr Turing assured me that this was of no

consequence.

He further explained that, to be more precise, the

direction in which the harmonica is moved across the lips

should also be indicated:

blow suck left blow suck left blow suck left suck

blow.

Thus, one might right down a tune as series of rules of

the form:

(breath, direction),

where “breath” may be “blow” or “suck” or “pause”, and

“direction” may be “left” or “right” or “rest”. In fact,

FACS FACTS Issue 2016-2 December 2016

11

Dr Turing used some Germanic script, but I am now

unable to reproduce it.

Engaged by Dr Turing’s whimsy, I hazarded that the first

bar of “Twinkle Twinkle Little Star” might be written

down as:

(blow, rest) (blow, left)

(blow, rest) (blow, rest)

(suck, rest) (suck, rest)

(blow, rest) (pause, right)

Dr Turing commended me on my acumen. I then quizzed

him as to what practical purpose this might serve, as the

rules seemed far less general than stave notation, and of

little use other than for teaching beginners.

Dr Turing replied that he had long speculated about

constructing an automatic machine to play the harmonica.

The instrument might be mounted on a ratchet, driven by

a motor, that passed it over the nozzle of a bellows. The

rules could be punched as patterns on cards, and read by a

mechanism like that for a street organ.

I applauded Dr Turing’s vision but was puzzled as to why

this was of any interest to a mathematician. Dr Turing

patiently explained that he believed it possible to devise

some sort of calculus that could tell whether or not his

machine could play an arbitrary tune, just by looking at

the rules.

FACS FACTS Issue 2016-2 December 2016

12

He pointed out that the machine could only move the

harmonica left or right by one hole for each note, so it

could only play tunes that were composed of notes that

were at most one hole apart. Otherwise, there would be

unacceptable pauses in between the notes sounding.

Furthermore, my rendering of “Twinkle Twinkle Little

Star” was inaccurate. The sequence should be:

(blow, rest) (blow, left) (pause, left)

(blow, rest) (blow, rest)

(suck, rest) (suck, rest)

(blow, rest) (pause, right)

The third note was actually two holes away from the

second, so this was an example which the machine could

not play.

I expressed my admiration for this bravura display of the

higher mathematics. However, Dr Turing said that that

the matter was somewhat more complicated than at first

appearance. We know that the machine is unable to play

this tune because we already know what it should sound

like, so we can tell that the pause should not be there.

But arbitrary tunes may have arbitrary pauses, so the

calculus needs to capture some notion of what the tune

should sound like. Then it might be possible to

demonstrate that the rules for the machine corresponded

exactly to the tune.

FACS FACTS Issue 2016-2 December 2016

13

Fortified by the College’s excellent claret, and taking a

wild punt, I suggested that perhaps the stave notation

might be a good starting point. Dr Turing concurred, and

expressed a wish that arithmetic might be so easy to

mechanise. Surely, I riposted, arithmetic could be done by

any fool with a pencil and squared paper.

At this point, pudding was served and the conversation

turned to other matters.

Shortly thereafter, I received my first posting from the

Colonial Office, to Waziristan, as I shall next relate, and

never encountered Dr Turing again. If only I had kept the

napkin.

I have held my peace about this extraordinary reminiscence for quite some time.

Of course, I am well aware that Turing’s path breaking entscheidungsproblem

paper went to press much earlier in 1936, and that he left for Princeton that

September. These salient facts lead me to suspect that a prank is being played on

me by some playful colleague.

Nonetheless, there is a ring of naïve veracity to my correspondent’s Great Uncle’s

recollections. If any of your readers has any corroborative evidence for these

curious assertions, then I would be delighted to hear from them.

Yours sincerely

<signature unreadable>

FACS FACTS Issue 2016-2 December 2016

14

Invisible Numbers: Turing's Dark Matter?

Tim Denvir

Eight of us were having tea after a sociable day's walk along the Fife Coastal

path. Someone observed that four of us were mathematicians; the others were

in various occupations, a physiotherapist, a social scientist, a primary school

teacher. The conversation briefly, but inevitably veered to mathematics. “I never

understood those invisible numbers”, said Anna. Amid good-humoured

chuckles we said, “You probably mean imaginary numbers”. No doubt we have

all been in conversations like this from time to time, but I recalled this one a

little later when thinking about Turing's computable numbers. We have real,

rational, computable and transcendental numbers, and imaginary and complex,

including algebraic, numbers, not to mention integers and their complex

counterparts, Gaussian integers.

The recent centenary of Alan Turing's birth has propelled him into the public, as

well as the specialist eye for the last few years. Most computer scientists, and

surely all of FACS FACTS readers (!) will know of his canonical 1936 paper, On

Computable Numbers, with an Application to the Entscheidungsproblem, but I

suspect that only a minority may have read it.

In his introduction Turing writes: “The ʻcomputableʼ numbers may be described

briefly as the real numbers whose expressions as a decimal are calculable by

finite means. Although the subject of this paper is ostensibly the computable

numbers, it is almost equally easy to define and investigate computable

functions of an integral variable or a real or computable variable, computable

predicates, and so forth. The fundamental problems involved are, however, the

same in each case... According to my definition, a number is computable if its

decimal can be written down by a machine.” Computable functions are relevant

to formal semantics of programming languages because we can soon get into

difficulties of we assume that the functions expressible in programming

languages can be modelled by the full gamut of mathematical functions. While

that particular paper of Turing's does not go into the connection between

computable numbers and functions in any great detail, I think it is reasonably

easy to see it intuitively: a computer program which is designed to generate the

FACS FACTS Issue 2016-2 December 2016

15

decimal expansion of a number, √2 say, is tantamount to a function whose

argument is internalised. Computable numbers are of interest at more than the

extreme theory end of the spectrum spanning the theory and practice of

computer science.

In his 1936 paper, in order to define computable numbers, Turing first defines

the Computing Machine, which we know now as the Turing machine. He does

this by progressively elaborating notations for the configurations (states) of the

machine and the symbols written on its tape, which effectively constitutes its

store. He then defines the Universal Computing Machine (Universal Turing

Machine), which can input a codification of the configuration of a computing

machine and act accordingly. This is computationally equivalent to a

conventional computer which can execute a program stored within it. The detail

of the exposition and examples of computing machines over the first twelve

pages in the paper is painful in its intensity and I do not pretend to have

followed it all down to the last symbol. But it is all very reminiscent of certain

lectures in mathematical logic which I attended many years ago in my last

undergraduate year. Turing also acknowledges that Alonzo Church in a

previous paper had defined “Effectively Calculable” numbers, though in a very

different way.

In section 8 of the paper, Turing shows that the set of computable numbers is

enumerable (or countable). This seems almost obvious, since the computable

numbers are those precisely which can be generated by a computing machine,

and those computing machines in turn are representable by finite sequences of

symbols, which comprise a countably infinite set. Nonetheless, Turing goes to

some further intensely detailed pages to prove the matter. In section 9 he

attempts to show that computable numbers include numbers which a human

computer with pen and paper etc. can compute by normal calculating

processes. I must confess that at first for a moment I thought that Turing was

anthropomorphising his machine by referring to it as “he”, and “his state of

mind”, but of course in 1936 there were no computers as we know them; a

computer was a person who carried out calculations. So Turing is comparing

the computations which his computing machine can perform with those that a

human “computer” can.

FACS FACTS Issue 2016-2 December 2016

16

In section 10 he shows, and in some cases proves, that various other numbers

and functions are computable:

A computable function of a computable function is computable;

Any function of an integral variable defined recursively in terms of computable

functions is computable;

Although a bounded sequence of computable numbers does not necessarily

have a computable limit, one can devise a definition of computable

convergence where the limit of a computably convergent series is computable;

From the above, it is shown that numbers expressible as the sum of a suitable

series are computable, such as π and e.

Further, all the real algebraic numbers are computable (an algebraic number is

any, possibly complex, number which is the root of a polynomial in one variable

with rational (or equivalently, integer) coefficients);

We might term any number which can be defined as the value of some formula

as a definable number. Of course algebraic numbers are definable, but so are

plenty of others: trigonometric functions (of definable numbers) and sums of

some series and limits of other parametrised formulae for example. Many of

these are computable. Turing showed that the computable numbers are a

countable set, and I would claim that the real definable numbers are also

countable.

Any formula is finite in length and expressed in some finite alphabet. The set of

finite sequences of characters from a finite alphabet is a countable set. (You can

express the characters as a fixed-length sequence of 0-1 bits and then each

formula is a unique binary integer, although not every integer translates into a

meaningful formula). However, you might retort that there is an unlimited

number of possible notations with unwritten conventions in which we might

define such numbers and functions; the whole gamut of these as yet to be

imagined notations may not be countable! I would reply that, yes, we cannot

predict how many such notations might be imagined in the future, but, even if

they are boundless, there are surely not more than a countable infinity of these

possible notations; and the union of a countably infinite set of countably

FACS FACTS Issue 2016-2 December 2016

17

infinite sets is still a countable set. A bit of a hand-waving proof perhaps, but I

hope convincing enough.

Thus, within the real numbers, the rationals, the computable numbers, the

definable numbers, are all countable subsets. That leaves the rest, numbers

that we cannot define at all, that we have no means of identifying. Since the

reals are uncountable, that means these undefinable numbers are also

uncountable, for they are what remains after we have removed all those other

countable subsets.

I was explaining this to a friend who said, “Aren't they the transcendental

numbers?” No, the transcendental numbers are simply those which are not

algebraic; they include π and e for example. Thus the transcendentals include

some definable, indeed some computable numbers. The undefinable numbers

are a subset of the transcendentals. So these undefinable numbers, which we

cannot define or identify in any way, infinitely outnumber all the rest. They put

me in mind of dark matter, which cosmologists deduce permeates the universe,

but which no-one has ever seen or found. For this reason, and to acknowledge

Anna's accidental nomenclature, I would like to call them invisible numbers.

Finally, I feel I must say a word about the Entscheidungsproblem. German for

“decision problem”, this was posed by David Hilbert in 1928. Crudely put, it

asks if an algorithm can be devised which, given some axioms and a statement,

can determine whether the statement can be deduced from the axioms using

the rules of formal logic. Alonzo Church and Alan Turing independently, and at

about the same time in 1936, proved that this was not possible. Church

produced his solution shortly before Turing, which Turing acknowledged in his

Entscheidungsproblem paper. Church's solution relied on reformulating the

problem in his λ-calculus. Many FACS FACTS readers will notice an intuitive

similarity between Hilbert's problem and Gödel's incompleteness theorem, and I

read that both Church and Turing were influenced by Gödel's earlier work.

Hilbert's Entscheidungsproblem was the third of three problems posed by him

at a conference in 1928, and these were a continuation of his “programme” of

23 problems which he initially posed in 1900.

Oh, and “finally, finally”, it seems generally accepted that a machine

constructed following a von Neumann architecture is computationally

FACS FACTS Issue 2016-2 December 2016

18

equivalent to a Turing machine, that is, they can both perform the same

computations. So “computable” in all the foregoing can be taken to mean

computable by modern machines.

Alan Turing was just 24 when he published his Entscheidungsproblem paper.

References

Turing, A.M. (1936), "On Computable Numbers, with an Application to the

Entscheidungsproblem", Proceedings of the London Mathematical Society, Series 2.

David Hilbert and Wilhelm Ackermann (1928). Grundzüge der theoretischen Logik (Principles of

Mathematical Logic). Springer-Verlag, ISBN 0-8218-2024-9.

Alonzo Church, "A note on the Entscheidungsproblem", Journal of Symbolic Logic, 1 (1936), pp

40–41.

FACS FACTS Issue 2016-2 December 2016

19

Christopher Strachey, Pioneer of FACS

Joseph E. Stoy

Bluespec

Venue: BCS, Southampton Street, London

Tuesday 15th November 2016

Reported by Troy Kaighin Astarte

Newcastle University

The first thing I encountered upon being introduced to Joe Stoy prior to the talk

was his collection of wonderful props. In quick succession, I was shown a photo

of 45 Banbury Road, the erstwhile location of the Programming Research Group

in Oxford, where Strachey worked in the final decade of his life with Joe as his

right-hand man; a box of glass ‘magic lantern’ slides of the output of

Strachey’s famous draughts playing program; two books on programming

language theory and semantics which Joe indicated had been his introduction to

the topic; and, best of all, a copy of a timeline, hand drawn by Strachey, of the

membership of the PRG, given to Joe as ‘memorabilia’ when he left Oxford in

2001. These were of great interest to me, as they related directly to my

research, and clearly drew the attention of many of the other guests as well.

The second thing I noticed about Joe (the reader will forgive the familiarity; I

feel I got to know Joe quite well during the succeeding week) was the effusive

and charming manner with which he conducted himself. He chatted easily with

me and many of the other guests as we awaited, with growing excitement, his

talk.

Once it began, Joe’s talk swept along at pace. He skilfully weaved one tale after

another into a coherent narrative, and painted for us a picture of Christopher

Strachey, a man who Joe clearly admired deeply. His pure white hair bouncing

as he gesticulated, Joe would stop himself mid-anecdote to tell us with a

twinkle in his eye another story; but the coherence of his talk didn’t suffer for

FACS FACTS Issue 2016-2 December 2016

20

this and I left with a deeper understanding of both Strachey the scientist and

Strachey the man.

Joe began by describing Strachey’s characteristic flamboyant and didactic style

(I couldn’t help but wonder how much of Joe’s lecturing style was learnt from

Strachey), relaying the story of how a five-year-old Christopher was found

explaining to his nanny the meaning of a one in five gradient, and took us

through a roughly chronological journey through the man’s life.

A strong thread was Strachey the originator and innovator: Strachey

programmed Canada’s first computer with one of the most technical

engineering calculations in the St. Lawrence Seaway project; Strachey wrote the

largest program written at the time for the Ferranti Mark I at Manchester with

his draughts program (and displayed the results using the CRT which had

previously only been used for memory); Strachey was among the first to present

work on time-sharing, though in the multi-programming sense in contrast to

McCarthy’s view of a multi-user system.

Another theme was Strachey’s interest in both the theory and practice of

computing: Joe would explain the work being undertaken at the PRG at a few

points in time, and separate these into theoretical and practical—but he would

carefully point out the links between the two, and the fact that most people

appeared on both lists. This was also supported by the quotation from

Strachey:

“It has long been my personal view that the separation of practical and

theoretical work is artificial and injurious. Much of the practical work done in

computing, both in software and in hardware design, is unsound and clumsy

because the people who do it have not any clear understanding of the

fundamental design principles of their work. Most of the abstract mathematical

and theoretical work is sterile because it has no point of contact with real

computing. One of the central aims of the Programming Research Group as a

teaching and research group has been to set up an atmosphere in which this

separation cannot happen.”

FACS FACTS Issue 2016-2 December 2016

21

This also led to Joe explaining a few times that Strachey was not, despite his

interest in the application of mathematics to computing, a mathematician. This

was illustrated by a letter sent to the CACM by Strachey about the halting

problem which contained a hidden but important error, as well as the confident

way Strachey used lambda notation to model programming languages well

before a formal model was constructed by Dana Scott.

A theme from which Joe clearly (albeit quietly) derived some pleasure was the

PRG as a location for the origins of many important concepts in computing. The

obvious one is Christopher’s darling programming language CPL, a subset of

which was implemented by Martin Richards as BCPL, which was used by

Thomson and Ritchie to write their earliest versions of UNIX (they subsequently

developed a smaller language which used the same ideas and called it B; the

next iteration was called C), but Joe also told us about the link from David

Turner’s attempt to implement Christopher’s Pedagogic Algorithmic Language

(PAL), which led to SASL, KRC, and ultimately Miranda, a language which

inspired the freer Haskell. Back on the UNIX theme, Doug McIlroy visited the

PRG for one year (to learn of denotational semantics direct from the source, as

he later wrote), and during that time came up with the concept of pipes,

although the syntax was different.

A final theme that came through about Strachey was his sense of humour, and

love of literary allusion. This was illustrated beautifully when Joe showed the

first page of Strachey’s (1973, but published only in 1997) paper ‘The Varieties

of Programming Language’, which came “with apologies to Professor William

James, Miss Stella Gibbons and the late Herr Baedeker.” This, Joe explained, was

a reference to James’ paper ‘The Varieties of Religious Experience’, singular,

which explained the singular ‘Language’; and with the air of one who knew a

great punchline was coming, he touched a button and a little less than half of

the prose of the first page of the paper lit up yellow. “The yellow parts,”

explained Joe, “are Strachey. The rest are James.” The room rumbled with

laughter. The other apologies were in reference to the two asterisks which

preceded the first paragraph, as Gibbons had marked sections of her novel Cold

Comfort Farm with a number of asterisks conformant with their level of purple

prose, and Baedeker had used a system of asterisks in his guide books to

FACS FACTS Issue 2016-2 December 2016

22

indicate how worth visiting a particular point of interest was. Two asterisks

meant “rather purple” and “worth a detour” respectively.

Altogether Joe’s talk was enjoyable, informative, and amusing. I cannot have

been only person in the audience who was surprised to notice when Jonathan

Bowen stood up to call the end that nearly one hundred minutes had elapsed.

Throughout the talk, Joe’s style had engaged and absorbed us all: clearly he is a

man used to holding and working an audience. It is a testament to Joe’s skill

that although I saw him deliver a subset of the same talk less than a week later

at the Strachey 100 centenary event in Oxford, it was just as fun and interesting

the second time around.

Joe Stoy is the author of Denotation Semantics: The Scott-Strachey Approach to

Programming Language Theory, published by MIT Press in 1977.

Joe Stoy with a slide of Christopher Strachey during the talk.

(Photograph by Jonathan Bowen)

FACS FACTS Issue 2016-2 December 2016

23

Ada Lovelace’s 200th Birthday Celebration at Oxford

December 9th - 10th 2015

Reported by Margaret West

On Thursday 10th December 2015, Ada Lovelace, the first programmer, would

have been 200 years old. I attended a Symposium In honour of this event at

Oxford University which took place on 9th and 10th December. The symposium

which was interdisciplinary included lectures from scholars from the Humanities

as well as from Computer Scientists. On the evening of December 9th there was

a Dinner at Balliol College where the Earl of Lytton proposed a toast to Ada

Lovelace (his Great Great Grandmother) and on December 10th a cake was

shared by all.

An account of the Symposium written by Ursula Martin (the organiser) is here:

http://blogs.bodleian.ox.ac.uk/adalovelace/

I see that many messages of appreciation were received with which I most

thoroughly concur for this was a most interesting and thought provoking event.

The lectures from the Symposium are now online in the Oxford Podcast Series:

http://podcasts.ox.ac.uk/series/ada-lovelace-symposium-celebrating-

200-years-computer-visionary

NB: Doron Swade’s talk is currently unavailable, pending resolution of a

permissions issue

Photographs from the event are available here:

https://www.flickr.com/photos/computerscienceoxford/sets/721576623

71814411

Follow-up articles and other comments through twitter can be tracked at the

hashtag #LovelaceOxford

https://twitter.com/search?f=tweets&vertical=default&q=%23lovelaceoxf

ord&src=typd

http://blogs.bodleian.ox.ac.uk/adalovelace/
https://staffmail.hud.ac.uk/owa/redir.aspx?REF=DIowYMWcWo_pgq8w6hpZE48R40Nyu6Md5mCvh5HQYNsj3TJWPhrUCAFodHRwOi8vcG9kY2FzdHMub3guYWMudWsvc2VyaWVzL2FkYS1sb3ZlbGFjZS1zeW1wb3NpdW0tY2VsZWJyYXRpbmctMjAwLXllYXJzLWNvbXB1dGVyLXZpc2lvbmFyeQ..
https://staffmail.hud.ac.uk/owa/redir.aspx?REF=DIowYMWcWo_pgq8w6hpZE48R40Nyu6Md5mCvh5HQYNsj3TJWPhrUCAFodHRwOi8vcG9kY2FzdHMub3guYWMudWsvc2VyaWVzL2FkYS1sb3ZlbGFjZS1zeW1wb3NpdW0tY2VsZWJyYXRpbmctMjAwLXllYXJzLWNvbXB1dGVyLXZpc2lvbmFyeQ..
https://staffmail.hud.ac.uk/owa/redir.aspx?REF=Qg5dDpT66-6XlCXbMR5oiKZlSDARRM3hPPKFD9x4JC0j3TJWPhrUCAFodHRwczovL3d3dy5mbGlja3IuY29tL3Bob3Rvcy9jb21wdXRlcnNjaWVuY2VveGZvcmQvc2V0cy83MjE1NzY2MjM3MTgxNDQxMQ..
https://staffmail.hud.ac.uk/owa/redir.aspx?REF=Qg5dDpT66-6XlCXbMR5oiKZlSDARRM3hPPKFD9x4JC0j3TJWPhrUCAFodHRwczovL3d3dy5mbGlja3IuY29tL3Bob3Rvcy9jb21wdXRlcnNjaWVuY2VveGZvcmQvc2V0cy83MjE1NzY2MjM3MTgxNDQxMQ..
https://staffmail.hud.ac.uk/owa/redir.aspx?REF=7Y0TchhZZjU6Vq7SrkCmHNAGvU6kjK7oOpiuQBUZIWUj3TJWPhrUCAFodHRwczovL3R3aXR0ZXIuY29tL2hhc2h0YWcvTG92ZWxhY2VPeGZvcmQ_c3JjPWhhc2g.
https://staffmail.hud.ac.uk/owa/redir.aspx?REF=gyd_J1mL2E8w1IGMx4RblarRz4sbvd_qu2SxJL8wgWcj3TJWPhrUCAFodHRwczovL3R3aXR0ZXIuY29tL3NlYXJjaD9mPXR3ZWV0cyZ2ZXJ0aWNhbD1kZWZhdWx0JnE9JTIzbG92ZWxhY2VveGZvcmQmc3JjPXR5cGQ.
https://staffmail.hud.ac.uk/owa/redir.aspx?REF=gyd_J1mL2E8w1IGMx4RblarRz4sbvd_qu2SxJL8wgWcj3TJWPhrUCAFodHRwczovL3R3aXR0ZXIuY29tL3NlYXJjaD9mPXR3ZWV0cyZ2ZXJ0aWNhbD1kZWZhdWx0JnE9JTIzbG92ZWxhY2VveGZvcmQmc3JjPXR5cGQ.

FACS FACTS Issue 2016-2 December 2016

24

Prof. Dana Scott - Talks in the UK

Reported by Margaret West

Professor Dana S. Scott (Prof. Emeritus, Carnegie Mellon University and Visiting

Scholar in Mathematics, UC Berkeley) gave a number of talks during his visit to

the UK during 2016. Professor Scott is a Turing Award-winner and recipient of

many other international awards. He is a distinguished mathematical logician

with a long career who has made fundamental contributions to set theory,

model theory and the theory of computation. In particular Scott worked with

Christopher Strachey at Oxford University on providing a mathematical

foundation for the semantics of programming languages: the Scott-Strachey

approach to Denotational Semantics.

Talks given in the UK included:

 Leeds University, 17th May: Logic Seminar "Types and Type-Free Lambda Calculus"

 Leeds University, 18th May: Löb Lecture "Why Mathematical Proof".

 University of Cambridge, 20th May: "Why Mathematical Proof?"

 Imperial College, London, 26th May: "Stochastic Lambda-Calculus"

 British Computer Society, London, 26th May: "Lambda Calculus: Then & Now"

 University College London, 27th May: "Types and Type-free Lambda Calculus "

 Queen Mary University of London, London, 1st June: Joint Maths Colloquium/EECS

Distinguished Seminar "Why Mathematical Proof?"

Further details can be obtained:

https://www.maths.leeds.ac.uk/home/news/lob-lecture.html

http://talks.cam.ac.uk/talk/index/65188

https://verificationinstitute.org/2016/05/talks-by-dana-scott-acm-a-

m-turing-award-1976-thursday-26-may-friday-27th-may-and-

wednesday-1-june/

The following is a summary of the Löb Lecture at Leeds on 18th May 2016:

https://www.maths.leeds.ac.uk/home/news/lob-lecture.html
http://talks.cam.ac.uk/talk/index/65188
https://verificationinstitute.org/2016/05/talks-by-dana-scott-acm-a-m-turing-award-1976-thursday-26-may-friday-27th-may-and-wednesday-1-june/
https://verificationinstitute.org/2016/05/talks-by-dana-scott-acm-a-m-turing-award-1976-thursday-26-may-friday-27th-may-and-wednesday-1-june/
https://verificationinstitute.org/2016/05/talks-by-dana-scott-acm-a-m-turing-award-1976-thursday-26-may-friday-27th-may-and-wednesday-1-june/

FACS FACTS Issue 2016-2 December 2016

25

Why Mathematical Proof?

The lecture was introduced by Professor Stanley Wainer - who explained that

the talk had been originally arranged with the help of Professor Barry Cooper.

However Professor Cooper had sadly died while arrangements were still being

made. Tribute was paid to Barry Cooper by Stanley Wainer and - later - by the

speaker.

The talk was is in honour of Martin Hugo Löb (1921-2006), the founder of the

Leeds Logic Group - a refugee from Nazi Germany who arrived in the UK just

before World War 2. In 1940 he was deported to Australia as an "enemy alien" -

where he was taught mathematics in the internment camp by other internees.

He was allowed to return to the UK in 1943 where he continued his studies –

eventually becoming a research student with Reuben Goodstein at the

University of Leicester. After he had gained his PhD he was appointed as a

lecturer at the University of Leeds where he developed the mathematical logic

group. He is best known for formulating Löb's theorem in 1955. He became

Professor of Mathematical Logic at Leeds in 1967 where he remained until the

early 1970s when he became professor at the University of Amsterdam.

Professor Wainer then introduced the distinguished speaker.

Professor Scott remarked in his introduction that during his first visit to Leeds

he had met Professor Löb. He commenced the "entertainment", as he termed

his talk, with a timeline for Geometry commencing with Thales (in 600BC) and

Euclid (300BC). The timeline finished with modern geometry - including Eliptic

and Fractal Geometries.

It is notable that Euclid authored the most successful text book ever produced.

The speaker questioned why Euclidean Geometry was so successful and

thought that it was because our naive feeling is Euclidean and also there is a

connection between (visual) intuition and proof.

He presented the most common proof of Pythagoras' Theorem and pointed out

that "auxiliary lines" or "constructions" have to be added to enable some proofs.

The three-dimensional extension of Pythagoras viz "Eulers Brick" was then

discussed relating the relationship of the diagonals with the dimensions of the

FACS FACTS Issue 2016-2 December 2016

26

brick (a, b, c), where:

a2 + b2 = d2

a2 + c2 = e2

c2 + b2 = f2

a2 + b2 + c2 = g2

Given the above, is it possible to have all digital a, b, c, d, e, f, g? This general

result is still unknown. It was however shown in 1719 that the smallest solution

for all except g digital is (a = 117, b = 240, c = 44) and exhaustive computer

searches indicate that if such a brick exists there is no solution smaller than

values of the order of 10^10.

Professor Scott recommended a series of books: "Proofs Without Words" -

featuring diagrams which enable the reader to see why a theorem might be

true. The diagrams (or pictures) also help the reader to intuit a proof. The

speaker went on to discuss the proofs of irrationality of the square roots of 2,3,

5 by the use of diagrams. The speaker wondered if we really needed proofs.

Padua (Langlands, 1937) remarked that logic is not in a particularly fortunate

position:

"On the one hand, philosophers prefer to speak of logic without using it

while on the other hand mathematicians prefer to use it without speaking

of it – and even without desiring to hear it spoken of."

David Gale thought "mathematics was about ideas which explain and thus

enable us to understand" and that appreciating mathematics means "learning to

recognise and appreciate beautiful things."

The speaker returned to the discussion on the use of "proof by diagram" by a

further example, a tiling problem, filling a hexagonal "box" with a set of

rhombi. There are three possible orientations of the rhombi and if these are

coloured it can be seen that there are equal numbers of each orientation.

(However Djikstra rejected this as a form of proof and produced a more

rigorous one.)

The speaker spoke of the beauty of mathematics and went on to quote Galileo -

who said that the book of the Universe is written in the mathematical language

FACS FACTS Issue 2016-2 December 2016

27

comprising triangles, circles and other geometrical figures - without which it is not

possible to comprehend it. Sir Michael Atiyah has commented (in Nature, December

2005) on the remarkable use of string theory in Physics in explaining the Universe and

that the theory has a number of applications in areas which are far removed from

mathematics. Atiyah further states: "To many this indicates that string theory must be

on the right track. ... Time will tell."

After further presentation of results in some interesting areas of mathematics

including the stereographic projection of the globe and knot theory Professor Scott

asked the question "Is mathematics discovered or invented?" This was discussed by

Paul Ernest (1996) who remarked that the "absolutist" view (shared by Roger Penrose

among others) sees mathematical truths as "discovered" by the mathematician and

then established by proof. The remarkable thing is that mathematics provides a

surprisingly useful framework for modelling the Universe and the feeling is that it must

be woven into the fabric of the world.

The speaker went on to discuss Clifford algebras which can be thought of as a possible

generalisation of complex numbers and quaternions. The theory of these algebras has

important applications in geometry, computer graphics and theoretic physics.

Towards the end of the talk the speaker asked "When does a Proof become a PROOF"

and the answer is when it has been socially accepted as such. The ideal is unchanged

since Euclid where proof is obtained by a series of deductions from a series of proven

assertions.

Scott further suggested that at this time of computer based reasoning it is a good time

for seminars and discussion groups on proofs and logic. He quoted from Wolfram's

blog as to what the mathematician Ramanujan would have done if the Mathematica

tool had been available when he was engaged with his experiments. He thought

Ramanujan would have enjoyed experimenting with the tool and that a lesson should

be learned. In other words it is good for mathematicians to be adventurous and

experiment - even if the broader context is not understood at the time.

Questions included several on computer-assisted versions of proofs and their

implications. Professor Scott thought that at the least they helped in re-organising and

simplifying proofs.

FACS FACTS Issue 2016-2 December 2016

28

BCS-FACS/LMS Evening Seminar

Joint event with the London Mathematical Society

Probabilistic formal analysis of software usage styles

in the wild

Prof. Muffy Calder

(University of Glasgow)

Venue: The London Mathematical Society, De Morgan House,

57–58 Russell Square, London WC1B 4HS.

Thursday 3rd November 2016, 6:00pm

Reported by Jonathan Bowen

Abstract: Discrete mathematics and logics are used to analyse the intended behaviour

of software systems. Statistical methods are used to analyse the logged data from

instrumented systems. So what happens when we instrument software: can we bring

the two techniques together to analyse how people actually use software?

But users are difficult – they adopt different styles at different times! What

characterises usage style, of a user and of populations of users, how should we

characterise the different styles, how do characterisations evolve over an individual

user trace, and/or over a number of sessions over days and months, and how do

characteristics of usage inform evaluation for redesign and future design? Can we

formalise these concepts and construct effective procedures?

Professor Calder outlined a novel mathematical/computational approach that

aims to answer all these questions. The approach is based on discrete space stochastic

models, statistical inference of those models, and stochastic temporal logics and

model checking for investigating hypotheses about use, all applied to longitudinal sets

of logged usage data. The approach is the result of a five-year collaboration between

software developers, statisticians, HCI, and formal methods experts. She will illustrate

by way of a mobile app that is used by tens of thousands of users worldwide; a new

version of the app, based on the analysis and evaluation, has just been deployed. This

is formal analysis in the wild!

FACS FACTS Issue 2016-2 December 2016

29

(Photograph by Jonathan Bowen)

Professor Muffy Calder of the University of Glasgow gave a talk to members of

the BCS and LMS at De Morgan House on the evening 3rd November 2016 in the

annual LMS/BCS-FACS evening seminar, organized and chaired by John Cooke,

the liaison officer between the LMS and BCS-FACS Specialist Group.

The talk was based on collaborative work with Oana Andrei, Matthew Chalmers,

Alistair Morrison, and Mattias Rost. It covered statistical methods, as used to

analyse logged data from instrumented systems (e.g., for smart cities, etc.), and

discrete mathematics, specifically temporal logics, as employed to analyse the

intended behaviour of software at design time (i.e., formal methods). But what

if software applications are already implemented? Can statistical and formal

methods be used to analyse how users actually navigate applications? The work

was motivated by the need to evaluate and redesign user-intensive apps in

supporting the user’s style of interaction, based on actual usage. It was noted

that this is a very dynamic situation, with different users having different styles

at different times, and not static (e.g., the user’s age, location, gender, etc., all

play their role).

The talk considered the problems of what characterises usage, how to model

usage style in a population of users, how to identify different styles of usage,

and how these styles evolve. Characterisation of usage was modelled with user

traces, consisting of sequences of actions. Activity patterns can model the

usage style in a population. There are different types of model, all probabilistic

Markov models. Specifically, discrete time Markov chains (DTMC) were used in

FACS FACTS Issue 2016-2 December 2016

30

the modelling. Different treatments of inferred variables in the model permit

various questions to be considered.

Usage style in a population can be modelled where each trace is an “admixture”

of a number of activity patterns (DTMCs) shared within the population of users.

Admixture models derive from genetic analysis of populations where

individuals have mixed ancestry: each individual inherits a fraction of his/her

genome from ancestors in a population. Here, each trace does not have one

fixed trait, but has an (inferred) probability distribution over the different usage

styles.

Different styles can be identified by hypothesising temporal logic properties.

Styles evolve over days, weeks, or months. The approach is novel in that it does

not use design-time analysis of the functional behaviour of what a user could

do, but rather analyses actual usage after deployment of what the users actually

did. It is a scientific approach to studying an artefact that has been engineered.

Here the software system usage is an object of study (after performing a

scientific “experiment”) and temporal logic is used as the means of performing

this study. The work presented was in the context of applications (apps) on

mobile phones, but is appropriate for any system with user interaction.

Analysis is in five steps. First, events on a user’s phone are sent as a batch of

logged timestamped events to the developer’s server. Next, the raw logged

data is cleaned and prepared. User traces are based on selected state

abstractions. The session data is segmented (e.g., by day) and a transition-

occurrence matrix is computed from each trace in each data set. Each user

trace is characterised as an admixture of K activity patterns through a process

of inference.

Consider K discrete-time Markov chains (or activity patterns). Φk[i,j] is the

probability of moving from one state i to another state j while in Φk. For each

user trace, there is a weight vector (Θ1, …, ΘK) where Θk is the probability of

using the kth activity pattern. Inferences are drawn from the user traces, and the

goal is a model that explains that data set, it is not for prediction. An

FACS FACTS Issue 2016-2 December 2016

31

expectation–maximization (EM) algorithm is run to learn the activity patterns

and their probability distribution.

Questions are asked about the patterns using probabilistic temporal properties

with rewards, based on Probabilistic Computation Tree Logic (PCTL). For

example, what is the probability of reaching a state for the first time within a

certain number of steps? Or what is the expected number of steps to reach a

state from another state? Is it more likely to change activity pattern after

visiting a given state? And so on. Such questions can be formulated and posed

in the formal logic. The answers provided are quantitative and proved using the

PRISM model checking tool. Tractability depends on the high-level states of the

application, not the size of user trace data. The results can be discussed with

the software app developers to evaluate styles as well as aiding redesign and

future designs. If results are unexpected, further properties can be considered.

The AppTracker app was used as case study. It provides “personal informatics”,

recording the opening and closing of apps on a smartphone, as well as the

locking and unlocking of the device, running in the background. It provides

charts and statistics about the usage of the device and has had over 35,000

downloads.

For the AppTracker app, there are 15 high-level states. Values of K between 2

and 5 were considered, with seven intervals between 0 and 90 days. For

example, for K=2, there are two styles based on overall and in-depth activities.

The session length indicated short glancing interactions by users. It was

hypothesised that styles follow the main menu; however, this was quickly

disproved by considering the results for K=3. One novel outcome was how

activity patterns can inform the development of glancing widget extensions.

As a result of the analysis, and discussions with the developers, the high level

menu structure, and underlying functionality (including glancing) of AppTracker

was changed and a new release issued in May 2016. This release was

instrumented and user data logged – analysis on this new data set is in

progress. Stay tuned to hear whether the new design better supports user styles

of interaction.

FACS FACTS Issue 2016-2 December 2016

32

The speaker concluded by noting the contributions. User populations are

characterised by inferred temporal behaviours rather than static user attributes.

In particular, inference of Markov models of usage patterns from logged user

sessions is possible and activity patterns can be characterised by probabilistic

temporal properties using model checking. Analysis of a real mobile app

informs developers about actual use and helps with future redesign. The

process of redesign/implementation, logging, and analysis can be repeated as

necessary.

For further BCS-FACS information on the talk, including a copy of the slides,

see:

http://www.bcs.org/content/ConWebDoc/56315

For further LMS information on the talk, including details of previous LMS/BCS-

FACS talks since 2008, see:

https://www.lms.ac.uk/events/lectures/lms-bcs-facs-evening-seminars

Acknowledgement: Thank you to Muffy Calder for checking, correcting, and

augmenting the original draft of this report.

http://www.bcs.org/content/ConWebDoc/56315
https://www.lms.ac.uk/events/lectures/lms-bcs-facs-evening-seminars

FACS FACTS Issue 2016-2 December 2016

33

 BCS-FACS Annual Peter Landin Semantics Seminar

Building Trustworthy Refactoring Tools

Prof. Simon Thompson

(University of Kent)

Venue: BCS London office

Monday 12th December 2016, 6:00pm

Reported by Sofia Meacham and Jonathan Bowen

Abstract: Refactorings are program transformations that are intended to change the

way that a program works without changing what it does. Refactoring is used to make

programs more readable, easier to maintain and extend, or to improve their efficiency.

These changes can be complex and wide-ranging, and so tools have been built to

automate these transformations.

Because refactoring involves changing program source code, someone who uses

a refactoring tool needs to be able to trust that the tool will not break their code. In

this talk I'll explore what is meant by "preserving meaning" in practice, and how we

provide various levels of assurance for refactorings, ranging from testing to full,

machine assisted, verification. While the context is tools for functional programming

languages like Haskell, Erlang and OCaml, the conclusions apply more widely, for

instance to object-oriented languages.

(Photograph of Simon Thompson during the talk, by Jonathan Bowen)

FACS FACTS Issue 2016-2 December 2016

34

This talk had as a main theme refactoring tools and their trustworthiness and

how this relates to Peter Landin’s functional programming influence. Presented

by Simon Thomson, University of Kent, the research was supported by UK

EPSRC and the European Commission. Throughout the talk, an attempt to

address the following important question from the coder’s point of view was

made: “Why should I trust your refactoring tool on my code?”

From the start, the speaker addressed the following: What does refactoring

mean? It means changing how a program works without changing what it does.

Why Refactor? Refactoring is undertaken to extend and reuse code (e.g.,

function calls), increase comprehension, and counteract software decay.

How to Refactor? There are two ways to refactor: firstly, by hand, using an

editor which is a flexible but error-prone approach, but is infeasible for large

programs; secondly, using tools, which is scalable to large programs,

integrated with tests and macros, handling transformation and analysis.

Recent literature is not very encouraging with regard to refactoring by tools.

Specifically, the following are stated: “up to 90% of refactorings are done by

hand and some 40% of refactorings performed using tools are done in batches.

Automated refactoring is highly unlikely to replace the ‘human in the loop’.”

At the University of Kent, the Wrangler refactoring tool is being used

extensively. Wrangler is an interactive refactoring tool for Erlang (a functional

programming language for concurrent distributed systems) where simple

aspects are automated and decision support tools are provided otherwise. It is

embedded in common IDEs (Integrated Development Environments) such as

Emacs and Eclipse.

An important question to be answered is: Shall we trust refactoring tools or do

we need to provide verification for the refactoring process? There is literature

that supports the view that refactoring tools are trustworthy enough as well as

FACS FACTS Issue 2016-2 December 2016

35

literature supporting the position that trust must be earned. Both approaches

are supported by reasonable arguments.

In looking at what coders might require, the speaker identified a range of views.

Some – the most pragmatic, perhaps – would be happy if the refactoring tool

would hit 95% of the cases … and they had to fix the last 5% by hand (and the

compiler) … beats doing them all by hand. On the other hand, some not only

require that the code does the same thing, but also that it will have the same

layout as before, including getting the layout right for any new code that is

produced.

Between these two positions, and relating to Peter Landin's work on semantics,

is the view that refactorings should preserve meaning. The speaker then argued

that this idea itself needed clarification: does just the meaning of the main

program need to be preserved, or more of the structure; does meaning extend

to test suites, makefiles, and so on?

If we assume fixed context and scope, assurance of meaning preservation

consists of testing and verification of instances of the refactoring – that is the

result of applying the refactoring to a particular program – and of the

refactoring itself, i.e. every possible instance of it. Four combinations are

relevant: testing instances, testing the refactoring, verifying instances, and

verifying the refactoring. For the testing approach, regression tests represent

the state of the art, but the speaker showed that randomly test data – including

random programs – can provide effective testing. For the verification approach,

SMT (Satisfiability Modulo Theories) solvers have been shown in principle to

work for some cases of instance verification, whereas proof assistants, such as

Isabelle and HOL are the direction proposed by the speaker for verifying

refactorings in general.

Future plans include a trustworthy refactoring project. The overall goal of this

project is to investigate the design and construction of trustworthy refactoring

FACS FACTS Issue 2016-2 December 2016

36

tools. It uses CakeML (a substantial subset of ML with a semantics specified

using higher-order logic) for fully formally verified refactorings of a certified

language and compiler as well as the use of SMT solving for high-assurance

refactoring. For more information, visit:

https://www.cs.kent.ac.uk/projects/trustworthy-

refactoring/Trustworthy_Refactoring/Home.html

Acknowledgement: Thank you to Simon Thompson for checking, correcting,

and augmenting the original draft of this report.

FACS FACTS Issue 2016-2 December 2016

37

FACS FACTS Issue 2016-2 December 2016

38

UK Network on the Verification and Validation of

Autonomous Systems

Prof. Michael Fisher

(Department of Computer Science, University of Liverpool)

Autonomous Systems. By “autonomy” we mean the ability of a system to make

its own decisions about what to do and when to do it, without needing human

intervention. So far, most of the systems deployed, such as robot vacuum

cleaners, aircraft autopilots and automated parking systems in your car, are just

pre-programmed to adapt to environmental stimuli. However, we can expect

that many household/business/industrial systems will become increasingly

autonomous.

There are many situations where humans cannot (due to large distances,

danger, or very fast moving entities) or choose not to (due to the mundane,

dirty, or repetitive nature of tasks) control these systems directly. Obvious

examples are space vehicles that must operate in distant environments or

unmanned air vehicles that must fly safely in crowded skies. Such vehicles must

move, navigate, avoid dangers, and safely land/dock, usually without

intervention from a human operator. Similar vehicles are soon to be deployed in

many, less exotic, areas: environmental monitoring; surveillance; (freight)

transport; etc. Examples of systems carrying out tasks that humans choose not

to undertake include autonomous cleanup systems, robotic assistants (at both

home and work), and health-care robots. Here, the main focus is often on

interaction and cooperation, either with other autonomous systems (perhaps in

swarms) or with humans.

This future may be exciting, but the thought of truly autonomous systems can

also be uncertain and unappealing, not only to members of the public, but to

engineers and to regulators. Even partial autonomy invokes these reactions.

How can we be sure such autonomous systems are safe? When they can act

autonomously, how can we be sure they will do what we require? How can we

be sure they are legal, usable, and unthreatening?

FACS FACTS Issue 2016-2 December 2016

39

Network Focus. Clearly with such advanced technologies, we must invoke

techniques for analysis that provide much higher confidence than usual.

Consequently, the Verification and Validation (V&V) processes used for

traditional systems must be enhanced to provide increased confidence in the

next wave of autonomous systems. Although scientists in the UK have made

some key advances, there has been no organisation to focus on what still needs

to be done and how the different approaches might be combined.

EPSRC has now funded a UK Network on the Verificaiton and Validation of

Autonomous Systems1 to bring together researchers working on the novel V&V

techniques required for autonomous systems. It is important to note that many

issues remain unchanged as we move towards autonomy. For example, the

materials used in the construction of autonomous systems might well be

identical to those used in human-controlled systems. Consequently, we are

concerned with the V&V of the new aspects that come to the fore in dealing

with autonomy. Primarily, these centre on the autonomous control, decision-

making, adaptation, and even learning, that the system might undertake when

replacing a human controller, driver or operator.

This step change in the way V&V is carried out is both complex and inter-

disciplinary — it clearly re-quires expertise from Engineering, on the

predictability and resilience of control, from Electronics, on the reliability of

sensors and communication, and from Computer Science, on formal methods,

software engineering and software testing. However, especially where human

interaction is involved, the collaboration with experts from Psychology, Law,

and Sociology is important: through social robotics, human-machine

interaction, legality and liability, etc. The Network also involves these legal and

societal areas to provide a more comprehensive view of the potential for

autonomous systems.

Impact. While this is a specifically academic network, it clearly has importance

and relevance to industrial and regulatory contexts. To give an indication of this

breadth, we can at least expect that new verification and validation techniques

will be needed for human-robot teamwork, both in work and home contexts,

1 http://vavas.org

FACS FACTS Issue 2016-2 December 2016

40

Safe (and road-worthy) driverless cars, autonomous robotics in

nuclear/chemical/biological processes, certification of unmanned air vehicles,

autonomous ocean surface monitoring and exploration, and Robotic diagnosis,

rehabilitation, or surgery.

Formal Methods. The aim of Verification is to ensure that our system matches

its requirements. These requirements may be informal, in which case it is hard

to assess if, or how, our system does indeed cor-respond to them, or the

requirements may be explicitly formal. The formal variety is often given in a

clear, precise language with unambiguous semantics. Formal Verification takes

this further, not only having precise formal requirements in a mathematical

form, but carrying out a comprehensive mathematical analysis of the system to

‘prove’ whether it corresponds to the formal specification of these

requirements. Formal verification is particularly used for systems that are

safety, business, or mission critical, and where errors can have severe

consequences. While formal verification, via model checking, is widely used

especially for the analysis of critical systems, its use in autonomous software is

relatively recent [1, 4], while application to the verification of practical

autonomous systems is still at an early stage [3, 2].

Network Implementation. The Network is open to any academic and its primary

aim is to stimulate, coordinate, promote, and disseminate research on the

verification and validation of autonomous systems.

The Network is funded by EPSRC for 3 years from 1st September, 2015. It has a

web-site, vavas.org, and currently over 70 academic members. It mainly funds

events (typically workshops) to stimulate different research and exploitation

themes and activities. For example, we have so far organised:

Sep. 2015: workshop on “Agent Verification” in Liverpool;

Feb. 2016: workshop on “Legal/Regulatory Aspects and V&V” in London;

Jul. 2016: workshop on “Industrial Perspectives on the V&V of

Autonomous Systems” in Sheffield; and

Nov. 2016: workshop on “Verification and Validation of Autonomous

Road Vehicles” in London.

FACS FACTS Issue 2016-2 December 2016

41

Details of all these, and presentations provided within them, are available at

vavas.org

The Network also promotes education and dissemination and so supported the

“Winter School on Verification of Mobile and Autonomous Robots” at York in

Dec. 2015.

All the above activities are not purely academic. We are keen to engage with

stake-holders not only from industry, but across other academic disciplines,

and involving public/policy-makers.

Summary. Robots, driverless cars, unmanned air vehicles, etc, can all be built

now. Yet the main barriers holding back the widespread use of autonomous

robotics can be seen as societal: what should the legal framework be for such

systems; how can the public come to trust these systems; how can we ensure

they are safe; and how do we know such a system will make the decisions we

would expect of it? Increasingly, the key problem is not just to construct an

autonomous system or robot, but to construct its software in such a way that it

is (certifiably) safe, reliable, and trustworthy. All these problems surely require

strong V&V techniques, including formal methods. Constructing autonomous

systems without behaviour guarantees can lead to serious outcomes, and may

consequently hold back the adoption of truly autonomous systems.

To join the Network, see http://vavas.org

References:

[1] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying Multi-Agent Programs by

Model Checking. J. Autonomous Agents and Multi-Agent Systems, 12(2):239–256, 2006.

[2] L. Dennis, M. Fisher, N. Lincoln, A. Lisitsa, and S. Veres. Practical Verification of Decision-

Making in Agent-Based Autonomous Systems. Automated Software Engineering 23(3):305–

359, 2016.

[3] M. Fisher, L. Dennis, and M. Webster. Verifying Autonomous Systems. Comm. ACM,

56(9):84–93, 2013.

[4] F. Raimondi and A. Lomuscio. Automatic Verification of Multi-agent Systems by Model

Checking via Ordered Binary Decision Diagrams. J. Applied Logic, 5(2):235–251, 2007.

FACS FACTS Issue 2016-2 December 2016

42

Author. Michael Fisher is a Professor of Computer Science and Director of the

multi-disciplinary Centre for Autonomous Systems Technology at the University

of Liverpool2. His research concerns formal verification for the certification,

safety, ethics, and reliability of autonomous systems. He is a Fellow of both the

BCS and the IET, is on the editorial boards of both the J. Applied Logic and

Annals of Mathematics and Artificial Intelligence, is a corner editor for the J.

Logic & Computation, and is a member of the British Standards Institution

committee on Robots and Robotic Devices.

2
 www.liv.ac.uk/cast

http://www.liv.ac.uk/cast

FACS FACTS Issue 2016-2 December 2016

43

Photographs of FACS evening seminars, 2016

Jonathan Bowen

Jan Tretmans, 17 May 2016 Ana Cavalcanti, 29 September 2016

Muffy Calder, with John Cooke,

3 November 2016
Joe Stoy, 15 November 2016

FACS FACTS Issue 2016-2 December 2016

44

Strachey 100 Centenary Conference

Photographs of Strachey 100

Department of Computer Science, University of Oxford

18–19 November 2016

Jonathan Bowen

Chair, BCS-FACS Specialist Group

Christopher Strachey (1916–1975) was a pioneering computer scientist and the

founder of the Programming Research Group, now part of the Department of

Computer Science at Oxford University. Although Strachey was keenly

interested in the practical aspects of computing, it is in the theoretical side that

he most indelibly left his mark, notably by creating with Dana Scott the

denotational (or as he called it, ‘mathematical’) approach to defining the

semantics of programming languages. Strachey also spent time writing

complex programs and puzzles for various computers, such as a draughts

playing program for the Alan Turing’s Pilot ACE in 1951. He developed some

fundamental concepts of machine-independent operating systems, including an

early suggestion for time-sharing, and was a prime mover in the influential CPL

programming language. Strachey came from a notable family of intellectuals

and artists, perhaps most famous for Christopher’s uncle Lytton, a writer and

member of the Bloomsbury group.

The occasion of a hundred years since Christopher Strachey's birth on 16

November 1916, was marked three days after his birthday, with a symposium

of invited speakers. The morning looked back at Strachey’s life and works from

a historical and technical perspective and the afternoon concerned continuing

research themes in computer science inspired by Strachey, at Oxford and

elsewhere. There was also be a display of related archival material at the

Weston Library, part of the Bodleian Library, Oxford University’s main library,

on the afternoon before the conference and a dinner was held at Hertford

College during the evening. The following is a selection of photographs taken

during the event.

FACS FACTS Issue 2016-2 December 2016

45

The above is adapted from the Strachey 100 website under

https://www.cs.ox.ac.uk/strachey100/

The event was organized by Cliff Jones and Troy Astarte (Newcastle University)

and Samson Abramsky, Bernard Sufrin, Alex Kavvos, and Karen Barnes (Oxford

University).

Note: Peter Landin (1930–2009), after whom the BCS-FACS Annual Peter Landin

Semantics Seminar is named, was Strachey’s assistant from 1960 to 1964, when

Strachey was an independent computer consultant in London.

https://www.cs.ox.ac.uk/strachey100/

FACS FACTS Issue 2016-2 December 2016

46

Friday, 18 November 2016

Strachey papers, Weston Library,

Bodleian Library, University of Oxford

Peter Mosses, Joe Stoy, Cliff Jones, Samson

Abramsky, and Martin Campbell-Kelly

FACS FACTS Issue 2016-2 December 2016

47

══════════════

Saturday, 19 November 2016

Department of Computer Science,

University of Oxford

Morning: Historical Talks

Samson Abramsky and Joe Stoy

Michael Wooldridge: Introduction

Michael Wooldridge (Head of Department,

Department of Computer Science,

University of Oxford)

Chair: Cliff Jones

Martin Campbell-Kelly: "Strachey: the
Bloomsbury Years"

Martin Campbell-Kelly (historian of computing)

Martin Cambell-Kelly, Cliff Jones,

Samson Abramsky, and Troy Astarte

FACS FACTS Issue 2016-2 December 2016

48

Break

Martin Richards: "Strachey and the
development of CPL"

Martin Richards

(Cambridge colleague of Strachey)

Panel: Roger Penrose, David Hartley, Michael

Jackson. Chair: Bernard Sufrin

Bernard Sufrin (chair)

Joe Stoy: "Strachey and the Oxford

Programming Research Group"

Joe Stoy (Oxford colleague of Strachey)

Peter Mosses: "SIS, a semantics
implementation system"

Peter Mosses (doctoral student of Strachey)

Robert Milne: "Semantic relationships: reducing
the separation between practice and theory"

Robert Milne (colleague of Strachey)

FACS FACTS Issue 2016-2 December 2016

49

Penrose, Hartley, Sufrin, and Jackson

Bernard Sufrin (chair) and Michael Jackson

(taught by Strachey at Harrow School)

Roger Penrose (Strachey family friend)

and David Hartley

(Cambridge colleague of Strachey)

Jill and Tony Hoare (who took over as head

of the Programming Research Group

at Oxford from Strachey in 1975)

with others in the audience

Afternoon: Forward-Looking Session

Philip Wadler, Samson Abramsky, Alex Kavvos,

Troy Astarte, and Jane Hillston

Chair: Samson Abramsky

FACS FACTS Issue 2016-2 December 2016

50

Philip Wadler: "Christopher Strachey, First-
Class Citizen"

Jane Hillston: "A modelling language
approach to defining mathematical structures
via semantics"

Dana Scott (address read by Joe Stoy)

David Turner (doctoral student of Strachey)

and others in the audience

Uday Reddy: "Parametric Polymorphism and
models of storage"

Hongseok Yang: "Probabilistic Programming"

FACS FACTS Issue 2016-2 December 2016

51

For further Strachey 100 information, see: https://www.cs.ox.ac.uk/strachey100/

For information on Strachey himself, see: https://en.wikipedia.org/wiki/Christopher_Strachey

For Strachey’s doctoral students, see: http://www.genealogy.ams.org/id.php?id=75007

See also:
Campbell-Kelly, M. (1985) “Christopher Strachey, 1916–1975: A Biographical Note”. IEEE
Annals of the History of Computing, 7(1):19–42. DOI: 10.1109/MAHC.1985.10001

Jeremy Gibbons: "What are types for?"

End

Robert Milne, Joe Stoy, Samson Abramsky,

and Christopher Wadsworth

(doctoral student of Strachey)

https://www.cs.ox.ac.uk/strachey100/
https://en.wikipedia.org/wiki/Christopher_Strachey
http://www.genealogy.ams.org/id.php?id=75007
http://dx.doi.org/10.1109/MAHC.1985.10001

FACS FACTS Issue 2016-2 December 2016

52

FACS FACTS Issue 2016-2 December 2016

53

FACS Committee

Jonathan Bowen

FACS Chair; BCS Liaison

Jawed Siddiqi

FACS Treasurer

Paul Boca

FACS Secretary

Roger Carsley

Minutes Secretary

John Cooke

LMS Liaison

Ana Cavalcanti

FME Liaison

Margaret West

BCS Women Liaison
Rob Hierons

Chair, Testing

Subgroup

John Derrick

Chair, Refinement

Subgroup

Eerke Boiten

Chair, Cyber Security

Subgroup

Sofia Meacham

Meetings Coordinator

Mike Hinchey

International

Coordinator

Tim Denvir

Co-Editor, FACS FACTS

Brian Monahan

Co-Editor, FACS FACTS

FACS FACTS Issue 2016-2 December 2016

54

FACS is always interested to hear from its members and keen to recruit

additional helpers. Presently we have vacancies for officers to help with fund

raising, to liaise with other specialist groups such as the Requirements

Engineering group and the European Association for Theoretical Computer

Science (EATCS), and to maintain the FACS website. If you are able to help,

please contact the FACS Chair, Professor Jonathan Bowen at the contact points

below:

BCS-FACS

c/o Professor Jonathan Bowen (Chair)

London South Bank University

Email: jonathan.bowen@lsbu.ac.uk

Web: www.bcs-facs.org

You can also contact the other Committee members via this email address.

Please feel free to discuss any ideas you have for FACS or voice any opinions

openly on the FACS mailing list <FACS@jiscmail.ac.uk>. You can also use this list

to pose questions and to make contact with other members working in your

area. Note: only FACS members can post to the list; archives are accessible to

everyone at http://www.jiscmail.ac.uk/lists/facs.html.

mailto:jonathan.bowen@lsbu.ac.uk
http://www.bcs-facs.org/
mailto:FACS@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs.html

