
Series I Vol. 3, No. 4, Winter 1998- FACS Europe 1

The Newsletter of the BCS Formal Aspects of Computing Science Special

Interest Group and Formal Methods Europe.

Series I Vol. 3, No. 4, Winter 1998 ISSN 1361-3103

1 Editorial

Apologies to all our readers for the interruption in publication. Hopefully,

we are now back on track, with a new editorial team taking over from the

next issue.

However, this, along with various problems in staging events last year,

has really brought home to FACS committee how overstretched we are at

times, and how much in need of new active committee members. The will

is there, but often the time is not...

So please, if YOU can help FACS make a good start into the next 20

years, get in touch with us and make an o�er of help! Our main needs are

for: event organizers; newsletter contributors; and above all, thinkers and

2 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

movers with good ideas and time/energy to bring them through to e�ect.

We tend to work mainly by e-mail, and meet a couple of times a year face

to face.

1.1 FACS is 20!

The theme for this issue is `20 Years of BCS-FACS'. We have two special

pieces: a guest piece from a long-time contributor from earlier years, F X

Reid, and also a parting (alas!) piece from Dan Simpson, who is resigning

from the committee after many long years of much appreciated support.

We also have an overview of the standardization activity for Z (con-

tributed early 1997 - apologies to John Wordsworth that it has taken so

long to bring it to print). This standardization is a welcome sign that

formal techniques are becoming part of the accepted toolkit for software

engineeirng, albeit in pretty restricted domains.

Of course, this is part of a wider picture. This issue's events listing

has two events dedicated to formal techniques in, respectively, CAD and

security; and formal modelling of requirements has gained a much increased

following, and now feels part of `requirements engineering' rather than `for-

mal aspects'. This has been clearly re
ected in FACS events: in 1992 we

had a FACS Xmas workshop on Formal Aspects of Requirements; in 1996 we

had a joint Xmas workshop with the BCS Requirements Engineering SIG.

This suggests to me that one of FACS's jobs is �nding and tending new

shoots of Formal Aspects, perhaps in unexpected places - as well as some

steady gardening, eg in Re�nement and Tools for formal methods. Please

write your thoughts to us|via the new Newsletter Editor, Tim Denvir (see

back page for contact details).

Over & out . . .Ann Wrightson

2 Why FACS and not TACS?

Contributed by Dan Simpson, School of Computing and Mathematical Sci-

ences, University of Brighton.

When we were considering starting FACS we had a number of discussions

on what it should be called. Should we be Formal Aspects of Computing

Science or Theoretical Aspects; and should it be computing or computer? I

have also been asked this question by some of the FACS younger members.

It is a sobering thought that when FACS held its �rst meeting some of our

current members were in infant school!

Series I Vol. 3, No. 4, Winter 1998- FACS Europe 3

I was reminded of the question when recently reading Brooks (1996)

acceptance lecture on receiving the ACM Allen Newell Award. Brooks thesis

is that computer scientists should see themselves as tool makers in the service

of "Application Areas". In 1977 I held a similar view; computer scientists

were tool providers to application builders, but my view of tool was fairly

broad and included mental tools as well as pieces of software. If this view

is correct where does it leave the FACS constituency?

From the start the putative FACS Group was seen as bringing together

providers and users of whatever we decided was our area, we knew that the

area would be loosely based on "theory". The early ideals are described

in Simpson (1984) and rea�rmed in Cooke and Simpson (1989). It rapidly

became apparent that the kinds of tools the user end of our constituency

wanted were working pieces of software. Even the providers wished to em-

body their ideas in practical code. And that solved the naming problem.

Any theory we considered had to be expressible as a computable algorithm

and so we became FACS.

In the 80's the term formal methods came along and I �nd that problem-

atic. By then we had done some good work on formal notations and even

had formal theories; but not many formal methods. We have some work

on automatic theorem proving, some on re�nement calculi, and even some

tools to manipulate them but we still have little on real formal methods of

system development. In the Alvey directorate I saw this term as slogan and

still hold this view. But we should not let it grab too much of our attention

and divert valuable brain power from the original view of FACS.

1. Brooks Jr. Fredrick P (1996) "The Computer Scientist as Toolsmith

II" ComACM 39, 3, pp 61 - 68

2. Cooke D J & Simpson D (1989) "FACS at 10" BulEATCS 37, pp 52

- 58

3. Simpson D (1984) "BCS-FACS the �rst Six Years BulEATCS 23, pp

116 - 129

3 The Apotheosis of Formalism

Note: This article is edited from the text of an invited lecture to celebrate

the 20th anniversary of the founding of the Institute for the Production and

Application of Ostensibly Useless Mathematics, presented by F. X. Reid.

Your Royal Highnesses, your Holiness, distinguished colleagues, friends,

disciples and Morag.

4 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

Who would have thought, twenty years ago, that anyone could �nd any-

thing at all useful to do with Category Theory? Indeed, in those days,

Category Theory was known to most working mathematicians as Gener-

alised Abstract Nonsense. And to those for whom the word 'theory' meant

'irrelevant speculation', Category Theory, as a theory of theories (including

itself), was the embodiment of everything that was useless and obscure.

How circumstances have changed! And it is institutions such as this,

for the celebration of whose twentieth anniversary we are met, that have

played the leading role in this revolution. I mentioned Category Theory,

but it is merely one of many examples of Ostensively Useless Mathematics

that are now deemed to have some practical application, however tenuous.

Category Theory is not even the most unlikely such branch of the subject.

Modal Logic, for example, was at one time thought merely to be the happy

hunting ground of a small number of mad philosophers. Nowadays, it is the

the subject of unnumerable (not to say, unreadable) Ph.D, theses.

[At this stage, Reid launched into a diatribe concerning the handwrit-

ing, grammar, general awareness of great works of literature and so on of

the contemporary research student, pointing out that in his day, to be un-

acquainted with the complete works of Goethe would have disquali�ed even

Engineers from taking higher degrees.]

As you all know, I myself have made not inconsiderable contributions to

this �eld. Some of these, though to be sure not the most important, have

been the result of collaboration with personnel in this very institution. The

culmination of these researches, shortly to be published in a work of many

expensive volumes, is my General Theory of Abstraction.1 This theory is so

abstract and self-referential, that it consists almost entirely of an analysis

of the relationship between itself as theory and content. Such a work relies

heavily on every branch of Mathematics that this institution has attempted

to popularise - as well as branches that nobody had ever heard of. In this

respect, the General Theory of Abstraction constitutes a triumphant uni�-

cation of the whole �eld of Production and Application of Ostensibly Useless

Mathematics.

I did consider giving a brief exposition of my General Theory, but af-

ter sober re
ection, decided against doing so. Any theory that could be

explained in two hours would hardly be worth the name, and the general

Theory of Abstraction is certainly worth its name. Indeed, the General The-

1The term 'general' is used here is a technical sense, meaning, in this case, very speci�c.

Series I Vol. 3, No. 4, Winter 1998- FACS Europe 5

ory is so powerful that it is dangerous to contemplate it in a legal state of

mind.

[At this point, Reid told a joke, the understanding of which required an

intimate acquaintance with the works of James Joyce, particularly Finnegans

Wake, of which Reid extolled the joys of translating into Old Icelandic. The

Pope was observed to have di�culty in suppressing his laughter.]

So instead, I shall give a brief example of its applications. If you wish to

know more of the General Theory (and who in their right mind would not?)

I strongly suggest that you buy the book when it comes out and attend the

course on the Mathematics of tripartite functions, (which underlies some of

the more obscure part of the General Theory), which is to be held somewhere

in the Home Counties in the not too distant future.

I trust that we are all aware of the statement and proof of Godel's in-

completeness theorem. Here is a proof based on the General Theory (GTA)

This and the following three lines constitute a syntactically cor-

rect proof in GTA

So of the statement of the Incompleteness Theorem is false, then

Mathematics is inconsistent.

But then the statement of the Incompleteness Theorem would be

true, a contradiction.

Hence the statement of the Incompleteness Theorem is true.

The high degree of self referentiality is typical of the General Theory and

has caused some of our more brainless colleagues to accuse me of assuming

what I am trying to prove.

[At this point Reid embarked on a series of reminiscences about his brief

time as a Mathematics lecturer, with special reference to the teaching of

Structural Induction. The Pope was observed to nod sagely.]

But to resume. The correctness of the above argument rests on the

Fundamental Theorem of GTA, which is too technical to state now, but

which is a trivial consequence of what is generally and inappropriately known

as the little REID LEMMA and whose statement is as follows.

Any proof which is GTA syntactically valid and only moderately

self- referential is weakly syntactically valid.

6 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

The key terms here, of course, are 'GTA syntactically valid', 'weakly self-

referential' and 'weakly syntactically valid' and a great deal of work was

needed to develop the concepts to which these terms apply. In fact, I had to

use an electronic computer (the so called- 'Hackin' an Apple' approach) for

some of the more obscurely conceptual (or do I mean conceptually obscure?)

parts of the work. Unlike the usual 'Hackin' an Apple' devotees, however, I

gave a formal proof of my program - not too di�cult, as it was written in

my own programming language, Caliban.

[We omit Reid's description of Caliban, a language allegedly designed

sideways-on, beginning with the proof rules, then the semantics, then the

syntax and �nally, the User Manual. Reid's claim that it made the Church-

Turing Thesis look 'decidely dodgy' failed to impress any of the Crowned

Heads in the audience, alt hough the Pope was observed to look concerned

and speak into a mobile phone.]

I shall now sketch a proof of the lemma. For the bene�t of those of you

who lack a postgraduate-level understanding of Mathematics, I will use a

pictorial approach.

[Several of the Crowned Heads were seen to give a sigh of relief and one

of them was observed to open his laptop.]

Now on this �rst slide, the green disc represents the universe of re
exive,

neo-Kripke frames with the self-injective property - this last is the reason

why I've drawn the red circle around the disc. The purple square represents

an arbitrary GTA syntactically valid proof which is only moderately self

referential. The blue arrows are there to remind us that the upward Lurk

Theorem applies in this case.

Applying a type three bisimulation transform to the underlying hybrid

transition system generates a structure which is represented by this second

slide. You will notice that the green disc now has a series of yellow blobs

in the middle and that the blue arrows have disappeared. We now use the

hypothesis that the purple square is GTA syntactically valid to rotate it

through 90 degrees.

[At this point, the lightbulb in the OHP failed. Reid continued to lecture,

nevertheless. The conluding parts of the talk were reminiscent of the �nale

of Haydn's Farewell Symphony.]

Series I Vol. 3, No. 4, Winter 1998- FACS Europe 7

4 FACS events

Here is our current forward plan for events, run by FACS alone or in asso-

ciation with other bodies. The �rst four events are con�rmed, the rest are

being planned.

� 1998

{ March: Theory and Practice of Tools for Formal Methods 23rd-

24th March at Imperial College. Contact Tim Denvir,

t-denvir@dircon.co.uk

{ Sept: FAHCI - Formal Aspects of Human-Computer Interfaces

She�eld. Contact Chris Roast, C.R.Roast@shu.ac.uk

{ Sept: FMNorth - Formal Methods North. Contact David Duke,

duke@minster.york.ac.uk

{ Sept/Oct: Canberra: Re�nement (Oz). Contact John Cooke,

D.J.Cooke@lboro.ac.uk

� 1998

{ May: The A.G.M., London.

{ Winter: FACS at 21 FACS will be 21 years old this year and

we intend to mark this with a special one day event of esteemed

invited speakers and a meal in a prestigious location.

� 1999

{ Spring: `Are FMs Making Software Safer?' A joint event with

the Centre for Software Reliability.

{ Summer: High Integrity Technical Documentation

{ Winter: Systems Integration

� 2000

{ Spring: Re�nement Workshop

If you have any comments on these or would like to be involved in their

preparation then please contact a member of the committee (see FACS ad-

dress and committee e-mails on back page).

We are planning some smaller events but would welcome additional ideas,

particularly for tutorials and seminars and activities outside London.

8 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

5 Some Other Events

5.1 FMCAD'98

Palo Alto, CA, USA, 4 { 6 November 1998 (just before ICCAD '98).

The International Conference on Formal Methods in Computer-Aided

Design '98 (FMCAD'98) covers all relevant formal aspects of work in computer-

aided system design including veri�cation, synthesis and testing. Further

information from http://lal.cs.byu.edu/fmcad/

5.2 Workshop on Formal Methods and Security Protocols

Thursday, 25 June, 1998 Indianapolis, Indiana (following LICS'98)

This event is intended to bring together the formal methods and security

communities. Further information available from

http://www.cs.bell-labs.com/�nch/fmsp

6 Book Review

Formal Methods for Industrial Applications: Specifying and Programming

the Steam Boiler Control. J-R Abrial, et al. LNCS 1165, Springer Verlag,

1996. Reviewed by Kevin Lano.

This book presents 21 solutions to the speci�cation and implementation

of a system for controlling a steam boiler: these were selected from submis-

sions for a `competition' between di�erent formal methods for the treatment

of this real-world problem. A CD with the book includes full details of the

solutions. The speci�cation approaches were evaluated on the extent to

which the scope of the original problem had been covered, the time needed

to produce or to understand the solution, and the extent of testing against

a simulator of the boiler.

Whilst the competition format is not ideal as a way of promoting for-

mal approaches (it could strengthen the outsiders impression that we are

more concerned with �ghting amongst ourselves over which slight variant

of mathematical notation is `best' than with �nding ways to integrate any

su�cient notation into current industrial practice), the result is an inter-

esting collection of speci�cations and implementations. These range from

classical model-based speci�cations in Z and VDM to algebraic approaches,

synchronous languages, temporal logic and process algebras. A surprising

omission from the printed book is any speci�cation in the B or VDM++

languages: such speci�cations have been subsequently developed.

Series I Vol. 3, No. 4, Winter 1998- FACS Europe 9

Of particular interest are the FOCUS/LUSTRE contribution using prob-

ability theory to evaluate the e�ectiveness of the system in detecting and

reacting to failures; the PLUSS contribution which makes incremental spec-

i�cation via `sketches' an integral part of the development method, and the

Statecharts/Z contribution which presents an elegant integration of these

two notations.

Perhaps more valuable than the individual speci�cations are general prin-

ciples for the use of formal methods for control problems which arise from

them:

� the separation of an abstract set of control rules from the detection

or deduction of events, and from protocols of communication with

physical devices;

� the use of re�nement to incorporate more concrete requirements at

levels subsequent to a highly abstract speci�cation;

� the need to consider the desired behaviour of the overall system at

the most abstract level, before partitioning into a speci�cation of the

controller and a speci�cation of the plant to be controlled;

� the importance of connecting formal development work to established

work in control theory.

There is limited consideration of reuse: only one speci�cation explicitly

produces modules for further adaption and reuse, and there is no use made

of existing modules for control. Indeed, the highly speci�c nature of control

problems may render attempts at reuse ine�ective.

Overall, the book makes a useful contribution to the demonstration of the

e�ectiveness of formal methods on a real application. Further case studies

are being compiled on a web site

http://www.informatik.uni-kiel.de/�procos/dag9523/, providing
an ongoing international resource for formal methods.

7 The emerging Z standard: A guide to what to

expect

Prepared for publication in the BCS/FACS/FME newsletter by John Wordsworth,

jbwords@vnet.ibm.com. c
Copyright IBM Corporation, 1997

John Wordsworth works in Information Development at IBM United

Kingdom Laboratories, Hursley Park, Winchester, Hants SO21 2JN. He is

10 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

chairman of the ISO panel SC22/WG19 (Rapporteur Group for Z), which

is developing an international standard for the Z notation.

7.1 Introduction

The Z notation originated in work done by J-R Abrial and others at the

Programming Research Group of the Oxford University Computing Labo-

ratory in the late 1970s. Abrial showed how set theory could be used to

write precise speci�cations of software systems. His work was the starting

point for two formal notations, Z and AMN (abstract machine notation).

The Z notation was further developed in the Programming Research Group,

and it was used in several industrial projects in the 1980s. The interaction

between the PRG and their industrial collaborators led to the introduction

of more facilities for writing speci�cations, and for re�ning them. It also led

to a demand for a rigorous de�nition of the notation and semantics of the

language. The work on an international standard for Z rose out of continued

pressure from a growing number of industrial users.

The rest of this paper is organised as follows:

� \Development of the standard" reviews how the work on the standard

has progressed since the Z notation became of interest to industrial

users.

� \What the standard is for" explains the bene�ts and scope of the

standard.

� \How the standard does its work" outlines the way in which the stan-

dard assigns meanings to Z speci�cations.

� \Contents of the standard" reviews the clauses and annexes that make

up the standard.

� \Acknowledgments" lists the people who have helped in the prepara-

tion of this paper.

� \References" lists the books and papers referred to, and explains where

the reader can �nd more information about Z.

This paper contains examples of notation to illustrate the approach used in

the standard. Readers should note the following:

� Only the simplest examples have been chosen to illustrate the approach

used in the standard.

Series I Vol. 3, No. 4, Winter 1998- FACS Europe 11

� The notations used here are not necessarily those that will appear in

the standard; they are at best provisional, and in some cases purely

experimental.

� The contents of the standard, and the method of presenting them, are

still under revision.

The reader is expected to have some familiarity with the Z notation and its

use in writing speci�cations.

7.2 Development of the standard

For some years the main source of information about Z was the notes pro-

duced by lecturers and teachers such as Ib Sorensen, Bernard Sufrin, and

Ian Hayes. The �rst book about Z was a collection of speci�cations edited

by Ian Hayes(1). It incorporated a number of case studies developed in the

industrial projects. The �rst connected account of the language was writ-

ten by Mike Spivey(2), and a version of his doctoral thesis gave the �rst

published account of a formal semantics for the Z notation(3).

One of the industrial projects produced its own concrete and abstract

syntax of the Z notation(4).

The �rst moves towards an international standard for the Z notation were

made in a UK government Information Engineering Directorate project. The

project was called \ZIP - a uni�cation initiative for Z standards methods

and tools", and was sta�ed by people from universities and industry. The

ZIP committee working on standardisation became a panel of the British

Standards Institution in 1992, and became a panel of the International Stan-

dards Organisation in 1993.

The panel published its �rst committee draft in September 1995(5). This

draft was approved by ISO, subject to comments by many of the member

organisations. Since then the panel has been working to rewrite the �rst

committee draft and produce a �nal committee draft. The �nal committee

draft, subject to comments, should become a draft international standard.

7.3 What the standard is for

The publication of an international standard for the Z notation is expected

to have the following bene�ts:

� Availability: The publication of a standard will make a precise def-

inition of the Z notation widely available. Buyers and sellers of Z

12 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

speci�cations will be able to rely on an agreed notation with an indis-

putable mathematical meaning.

� Quality: A proposed standard has to have the informed assent of the

international community of Z users before it can be accepted.

� Stability: Change to the standard can only be made by approved

procedures that involve the international community of Z users.

The standard de�nes what notations constitute a Z speci�cation, and how to

determine whether a Z speci�cation has a meaning, and what that meaning

is. It also de�nes the acceptable behaviour of analysis tools for Z speci�ca-

tions.

7.4 How the standard does its work

One purpose of the standard is to explain whether a collection of marks

on paper constitutes a meaningful Z speci�cation. To achieve this purpose,

the standard imposes on potential Z speci�cations a structure. Roughly

speaking, a speci�cation is a hierarchy of sections, and a section is a se-

quence of paragraphs interspersed with commentary in a natural language.

A paragraph must be one of the following:

� A given set de�nition, for instance

[Student]

� A de�nition (including axiomatic descriptions and schema de�nitions),

for instance

Class == [enrolled ; tested : PStudent j tested � enrolled]

� A generic de�nition, for instance

[X] ? == fx : X j falseg

� A conjecture

� A generic conjecture

The last two kinds of paragraph add no information to a speci�cation, but

the �rst three contain the substance of any speci�cation. Each of the �rst

three kinds of paragraph is built up from expressions and predicates. An

Series I Vol. 3, No. 4, Winter 1998- FACS Europe 13

expression is a piece of text that is intended to denote some value. For

instance, in many Z speci�cations a schema is an expression that is intended

to specify a state or an operation. Thus in the de�nition

Class == [enrolled ; tested : PStudent j tested � enrolled]

the expression

[enrolled ; tested : PStudent j tested � enrolled]

is intended to denote the state of a system that records which students are

enrolled on a class and which have done the class exercises.

A predicate is a piece of text that is intended to put constraints on the

values that an expression can denote. Thus in the de�nition of the schema

Class , the predicate

tested � enrolled

puts a constraint on the values of enrolled and tested that is observed in all

instances of a class.

The standard uses progressive abstraction to reduce the number of en-

tities whose meaning has to be de�ned. The levels of abstraction are as

follows:

� The lexis describes the possible appearance of Z speci�cations on the

page, or other media.

� The concrete syntax de�nes a language that is a �rst abstraction from

the physical appearance of the speci�cation. The concrete syntax pre-

serves enough of the notation to be still recognisable as Z.

� The abstract syntax is a further abstraction that crystallises Z nota-

tions ready for semantic analysis. Each element of the concrete syntax

can be transformed into an element of the abstract syntax.

Using the lexis, concrete syntax, and transformation rules, we can produce

an abstract view of a given Z speci�cation.

7.5 Types

The standard divides the process of determining the meaning of a Z speci-

�cation into two stages. The �rst stage is the analysis of type, which is an

important concept in Z. Speci�cations, sections, paragraphs, predicates, and

14 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

expressions can be well-typed or not well-typed. Only well-typed elements

can have meanings. For each expression in a speci�cation it must also be

possible to determine its type.

The type system of Z is built on given set names by the operations of

power set, Cartesian product, and binding. A binding, which is used in

expressing the type of a schema, is an association between names and types.

(The use of generic types is omitted in this discussion, though it is dealt

with in the standard.)

In the standard, type inference rules are used to determine whether

each speci�cation, section, paragraph, predicate, or expression is well-typed,

and to determine what the type of a well-typed expression is. A typical type

inference rule is the type inference rule for the equality predicate.

� ` E1 o
o � � ` E2 o

o �

� ` E1 EQUALS E2
p
PRED

Informally this rule says that in order to establish that the equality between

E1 and E2 is well-typed in the speci�cation �, it is necessary to establish

that the expressions E1 and E2 are well-typed and of the same type.

The following example of a type inference rule (for function application)

illustrates how the type of an expression is determined.

� ` E1 o
oP(�1 � �2) � ` E2 o

o �1

� ` E1E2 o
o �2

Informally this rule says that in order to establish that the application of

function E1 to argument E2 is well-typed in the speci�cation �, it is necessary

to establish that:

1. E1 is a well-typed expression, and its type is a power set of a product

of types �1 and �2.

2. E2 is a well-typed expression of type �1.

With these properties of the expression established, the type inference rule

tells us that the function application of E1 to E2 is an expression of type �2.

The standard completely separates the notion of type from the notion of

meaning. The well-typedness of the function application has nothing to do

with whether either of the expressions has a meaning, or whether the �rst

expression is a function (it could be a more general relation), or whether the

second expression is in the domain of the �rst.

Series I Vol. 3, No. 4, Winter 1998- FACS Europe 15

7.6 Meanings

The standard de�nes the meaning of a speci�cation in terms of constructs in

an untyped set theory that is based on the Zermelo-Frankel axiomatisation.

The meaning of a speci�cation depends on the meanings of its sections, and

the meaning of a section depends on the meanings of its paragraphs. The

meaning of a paragraph depends on the meanings of the predicates and

expressions in it. For each abstract syntax element, the standard de�nes

the meaning in terms of the meaning of its component elements.

The values of the elements of a Z speci�cation are all supposed to be

in a large set W . The exact nature of W is not �xed in the standard,

but the standard places some requirements on its structure. For instance it

must be closed under the operations of taking subsets and forming Cartesian

products.

A Z speci�cation is parametrised by its given sets, so the �rst step in

�nding the meaning of a Z speci�cation is to choose an assignment, which

is a function relating the given set names to members of W .

Each type of a speci�cation also corresponds to a member of W con-

structed in the manner suggested by the type names, so the power set type

of a given set type corresponds to the set theoretic power set of the set

corresponding to the given type under the assignment.

The elements of an assignment are all the members of W that are

members of a set of W that corresponds to a type.

An environment is a function that maps names to elements. An envi-

ronment must be compatible with the assignment on which it is based, that

is it must map the given set names to the corresponding sets of W . (The

possibility of generic elements is ignored in this discussion.)

The meanings of the various elements of a speci�cation are as follows:

� The meaning of a speci�cation is the set of environments that it es-

tablishes. A speci�cation begins with an empty environment, and at

its end an environment is established in which the names of the spec-

i�cation are mapped to elements.

� The meaning of a section or of a paragraph is a relation between

preexisting environments and the environments that the section or

paragraph establish.

� The purpose of predicates in Z speci�cations is to constrain the envi-

ronments that a speci�cation generates, so the meaning of a predicate

is a set of environments.

16 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

� The meaning of an expression is a function that relates environments

to elements.

In the standard, semantic equations are used to de�ne the meaning of a

speci�cation, section, paragraph, predicate, or expression.

A typical semantic equation is the semantic equation for the disjunction

predicate.

f[P1 OR P2]g = f[P1]g [f[P2]g

In this semantic equation, P1 OR P2 is an abstract representation of the

Z disjunction construction for Z predicates, and f[and]g are the semantic
brackets for predicates. The sign [is the union construction of the untyped

set theory in which the meanings of Z are expressed.

Informally this equation says the set of environments denoted by a dis-

junction of two predicates is the union of the sets of environments denoted

by each of the predicates.

The following example of a semantic equation (for the power set con-

struction) illustrates how the meaning of an expression is determined.

[[POW E]] = P[[E]]

In this semantic equation, POW E is an abstract representation of the Z

power set construction, and [[and]] are the semantic brackets for expressions.

The sign P is the power set construction of the untyped set theory in which

the meanings of Z are expressed, and the notation [[E]] is the meaning in

the untyped set theory of the expression E.

7.7 Contents of the standard

International standards consist of a number of clauses. Each clause can

be normative, providing information that is essential to establishing the

standard, or informative, providing additional explanations or justi�cations.

The main clauses of the standard are as follows:

� \Introduction"

� \Scope"

� \Conformance" provides a statement about how artifacts are to be

recognised as conforming with the standard. Artifacts might be spec-

i�cations on paper, or in the interchange format, or analysis or proof

tools.

Series I Vol. 3, No. 4, Winter 1998- FACS Europe 17

� \Normative references" lists the references whose contents are consid-

ered to be a normative part of the standard.

� \Symbols and notation" explains the metalanguage that is used to

de�ne the Z notation in the rest of the standard.

� \Expression" de�nes the abstract syntax of expressions, and for each

kind of expression gives its type inference rules and meaning.

� \Predicate" de�nes the abstract syntax of predicates, and for each

kind of predicate gives its type inference rules and meaning.

� \Paragraph" de�nes the abstract syntax of paragraphs, and for each

kind of paragraph gives its type inference rules and meaning.

� \Section" de�nes the abstract syntax of sections, and for each kind of

section gives its type inference rules and meaning.

� \Speci�cation" de�nes the abstract syntax of speci�cations, and for

each kind of speci�cation gives its type inference rules and meaning.

The annexes of the standard are as follows:

� \Abstract syntax" summarises the productions of the abstract syntax

that is the basis for the language de�nition in the body of the standard.

This is a normative annex.

� \Concrete syntax" summarises the productions of the concrete syntax.

This is a normative annex.

� \Lexis" presents the rules for interpreting various physical manifes-

tations of a Z speci�cation as concrete syntax. This is a normative

annex.

� \Mathematical toolkit" presents a Z speci�cation of many mathemat-

ical symbols found in Z speci�cations. This is a normative annex.

� \Interchange format" presents a method of representing Z using only

ASCII characters. This is a normative annex.

� \Logical theory of Z" presents a logical system that can be used for

reasoning about Z speci�cations. The standard does not prescribe

a logical system for reasoning about Z speci�cations, so this is an

informative annex rather than a normative annex.

18 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

� \Type inference rules" presents the rules used to determine well-typedness

of elements of Z speci�cations, and the types of Z expressions.

� \Semantic equations" presents the equations that determine the mean-

ings of well-typed Z elements as elements of the semantic domain.

� \Transformation rules" presents the rules that transform the elements

of the concrete syntax into elements of the abstract syntax.

� \Conventions for state-based descriptions in Z" presents the conven-

tions for the use of undashed and dashed names in describing states,

and the use of ? and ! for inputs and outputs.

� \De�nitions" is a glossary of the technical terms used in the standard.

8 Acknowledgments

I am grateful to the following people for help in preparation of this article:

Jon Hall, Sam Valentine, Ian Toyn, Randolph Johnson, Steve King.

I also owe much to the many other people who have worked on the Z

standard over the last ten years.

8.1 References

For an extended list of publications on Z, please refer to the following URL

on the World Wide Web:

http://www.comlab.ox.ac.uk/archive/z.html

Publications referred to:

(1) Hayes, I. J. (editor),

Speci�cation case studies,

Prentice-Hall, 1987

(2) Spivey, J. M.,

The Z notation: A reference manual,

Prentice-Hall, 1987, 2nd ed 1992

(3) Spivey, J. M.,

Understanding Z:

A speci�cation language and its formal semantics,

Cambridge University Press, 1988

Series I Vol. 3, No. 4, Winter 1998- FACS Europe 19

(4) King, S., Sorensen, I. H., and Woodcock, J. C. P.,

Z: Grammar and concrete and abstract syntaxes,

OUCL PRG Monograph 68 (1988)

(5) Nicholls, J. E. (editor),

Z Notation: Version 1.2,

available on the World Wide Web at the URL given above.

John Wordsworth

MP 211, IBM UK Laboratories, Hursley Park, Winchester, Hants SO21

2JN, UK

Tel: 44-(0)1962 815700

Fax: 44-(0)1962 842327

Email: jbwords@vnet.ibm.com

20 FACS Europe - Series I Vol. 3, No. 4, Winter 1998

9 FACS Co-ordinates

9.1 FACS Central

BCS FACS

Department of Computer Studies

Loughborough University of Technology

Loughborough, Leicestershire

LE11 3TU

UK

Tel: +44 1509 222676

Fax: +44 1509 211586

E-mail: FACS@lboro.ac.uk

FACS O�cers

Chairman David Till till@soi.city.ac.uk

Treasurer David Blyth Dblyth@btinternet.com

Committee Secretary Roger Carsley roger@westminster.ac.uk

Membership Secretary John Cooke D.J.Cooke@lboro.ac.uk

Newsletter Editor Tim Denvir t-denvir@dircon.co.uk

Liaison with BCS Margaret West m.m.west@hud.ac.uk

Liaison with FME Tim Denvir t-denvir@dircon.co.uk

Contributions to the Newsletter on any relevant topic are welcome.

Please send them by email if possible, in LATEX MS Word (attached �le)

or plain text, to the Editor.

FACS/FME Newsletter

c/o Tim Denvir

Translimina Ltd.

55A Compton Road

Winchmore Hill

LONDON

N21 3NU

UK

