
Issue 2015-1

March 2015

The Newsletter of the

Formal Aspects of Computing Science

(FACS) Specialist Group

ISSN 0950-1231

FACS

A

C

T

S

FACS FACTS Issue 2015-1 March 2015

2

About FACS FACTS

FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on

Formal Aspects of Computing Science (FACS). FACS FACTS is distributed in electronic

form to all FACS members.

Submissions to FACS FACTS are always welcome. Please visit the newsletter area of

the BCS FACS website for further details (see http://www.bcs.org/category/12461).

Back issues of FACS FACTS are available for download from:
http://www.bcs.org/content/conWebDoc/33135

The FACS FACTS Team

Newsletter Editors Tim Denvir timdenvir@bcs.org
 Brian Monahan brianqmonahan@googlemail.com

Editorial Team Jonathan Bowen, Tim Denvir, Brian Monahan,
 Margaret West.

Contributors to this Issue

Jonathan Bowen, Eerke Boiten, Tim Denvir, Brian Monahan, Margaret West.

BCS-FACS websites

BCS: http://www.bcs-facs.org

LinkedIn: http://www.linkedin.com/groups?gid=2427579

Facebook: http://www.facebook.com/pages/BCS-

FACS/120243984688255

Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS

If you have any questions about BCS-FACS, please send these to Paul Boca

<paul.boca@googlemail.com>

http://www.bcs.org/category/12461
http://www.bcs.org/content/conWebDoc/33135
mailto:timdenvir@bcs.org
brianqmonahan@googlemail.com
http://www.bcs-facs.org/
http://www.linkedin.com/groups?gid=2427579
http://www.facebook.com/pages/BCS-FACS/120243984688255
http://www.facebook.com/pages/BCS-FACS/120243984688255
http://en.wikipedia.org/wiki/BCS-FACS
mailto:paul.boca@googlemail.com

FACS FACTS Issue 2015-1 March 2015

3

Editorial

Welcome to issue 2015-1 of FACS FACTS.

The FACS AGM was held on 8th December 2014 and was followed by the Peter Landin

Annual Semantics Seminar, given by Professor Peter Mosses. An abstract and brief

report of his talk can be found below.

This issue of FACS FACTS also contains a report by Margaret West on the Lovelace

Lecture given by Professor Samson Abramsky, “Contextual Semantics: From Quantum

Mechanics to Logic, Databases, Constraints, Complexity, and Natural Language

Semantics” on 5th June 2014; and an abstract of the BCS-FACS Evening Seminar:

“Decision Problems for Linear Recurrence Sequences”, a joint event with the London

Mathematical Society held on: Wednesday 22nd October 2014, given by Professor Joel

Ouaknine.

An article by Eerke Boiten, “It’s possible to write flaw-free software, so why don’t we?” is

reproduced with permission. This article is aimed at a more general audience, but is a

good example of the kind of formal methods dissemination piece that readers of FACS

FACTS are encouraged to emulate.

The Forthcoming Events includes an announcement of the BCS-FACS ProCoS

Workshop on 9-10 March 2015, and a detailed programme is also provided. This is now

of course no longer “forthcoming”; time has, regrettably, overtaken us.

Brian Monahan has written an “opinion piece”: “The Future of High-precision

Programming”, in which he relates the programming of complex systems to engineering,

specification and composition of subsystems. Two book reviews follow, on Paul

Butcher’s “Seven Concurrency Models in Seven Weeks” and Richard Bird’s “Thinking

Functionally with Haskell”, both again by Brian Monahan.

Most FACS seminars take place in the offices of the British Computer Society in the

Davidson Building, Southampton Street. These excellent facilities are conveniently

FACS FACTS Issue 2015-1 March 2015

4

situated in Central London close to Covent Garden and we would like to thank them for

making these available to us.

FACS FACTS Issue 2015-1 March 2015

5

Forthcoming Events

Forthcoming events from the Formal Aspects of Computing Science (FACS) Group are

listed below:

Date Details

9-10 March

2015

Title: BCS FACS - ProCoS Workshop on Provably Correct

Systems

Venue: BCS, London

22 June

2015

Title: BCS FACS - Refinement Workshop

Venue: Oslo

16

September

2015

Title: BCS FACS - an evening Seminar with Prof. Ian Hayes

Venue: BCS, London

3 November

2015

Title: Joint FACS/LMS seminar - speaker: Professor

Roland Backhouse, Nottingham University

Details to follow

(See: Forthcoming Events for up-to-date information.)

http://www.bcs.org/content/ConWebDoc/53939
http://www.bcs.org/content/ConWebDoc/53939
http://www.bcs.org/content/ConWebDoc/53941
http://www.bcs.org/content/ConWebDoc/53940
http://www.bcs.org/category/12468

FACS FACTS Issue 2015-1 March 2015

6

Lovelace Lecture

Contextual Semantics: From Quantum Mechanics to

Logic, Databases, Constraints, Complexity, and

Natural Language Semantics

5 June 2014

Imperial College, London

Professor Samson Abramsky

(University of Oxford)

Reported by: Margaret West

Introduction

The lecture commenced with a welcome by Professor Jeff Magee of Imperial

College, the chair of the BCS Academy. The BCS Lovelace Medal was first

presented in 1998 and is named after Ada Lovelace, a mathematician and

scientist who worked with Charles Babbage. The medal is for individuals who

have made an outstanding contribution to the understanding or advancement

of Computing.

He then introduced us to the 2013 winner of the medal - Professor Samson

Abramsky who is Christopher Strachey Professor of Computing and a Fellow of

Wolfson College, Oxford University.

A brief resume of the academic achievements of Samson Abramsky followed

which included his LiCS Test-of-Time award for his 1987 paper Domain Theory

in Logical Form . He had played a leading role in the field of game semantics

and its application to programming language semantics. In addition he had

worked on the lazy lambda calculus, strictness analysis, concurrency theory,

interaction categories and geometry of interaction. His recent work involves

http://www.cs.ox.ac.uk/people/samson.abramsky/

FACS FACTS Issue 2015-1 March 2015

7

high-level methods for quantum computation and in 2007 he was awarded an

EPSRC Senior Research Fellowship on Foundational Structures and Methods for

Quantum Informatics and in 2013 was awarded the BCS Lovelace Medal.

The medal was presented by Professor Philippa Gardener of Imperial College

who chaired the BCS Academy Awards Committee.

Professor Bill Roscoe of the University of Oxford was the next speaker and he

spoke briefly about the award winner’s involvement with the subject of the

lecture. He said that when he first took up his post at Oxford his colleagues

thought they were getting a classical Computer Scientist “so who would have

thought that they were getting a theoretical quantum scientist as well”. Samson

Abramsky would also participate in the University’s bid for EPSRC funding in the

field of Quantum Technologies and Bill Roscoe remarked on the tremendous

bravery with which Samson would subsequently invade the territory of the

established quantum theorist.

Note: On November 26th the results of the competitive peer reviewed process

were announced – and the University of Oxford was one of the Universities

selected as one of the Quantum Technology Hubs, that will explore the

properties of quantum mechanics and how they can be harnessed for use in

technology. See http://www.epsrc.ac.uk/newsevents/news/quantumtechhubs/

Talk

The talk commenced with an acknowledgement: such an award recognizes the

research community which makes work of this kind possible. Samson also

made the point that it was pleasing that the BCS (via the award) rewards

scientific discipline in its own right and not just for its applications. He next

provided a brief career history, and in so doing recognised the communities

which were an important part of it.

He then noted that one of the first axioms of Computer Science was that

computers might as well be made out of green cheese. Thus device physics is

immaterial once we understand the logical computer model. For many purposes

this is very useful in that we do not need to worry about physics/hardware and

can abstract away from it. However this now cannot be assumed when we

consider the interplay between computer science and physics in, for example,

http://www.epsrc.ac.uk/newsevents/news/quantumtechhubs/

FACS FACTS Issue 2015-1 March 2015

8

cyber computation. Thus there is an exciting two way interplay between Physics

and Computer Science which extends to the foundations of both, as well as to

more practical matters. The talk then focussed on some non intuitive

phenomena of Quantum Informatics: viz contextuality, entanglement and non-

locality which have profound consequences for an understanding of the very

nature of physical reality.

In order to illustrate, an example was provided of two agents, Alice and Bob

who each have two local bit registers from which to extract information. Alice

reads from a1 or a2 and Bob reads from b1 or b2, where each register from

{ a1, a2, b1, b2 } can contain a 1 or a 0 . The contents of their read is then

combined and focussed on some Target.

These registers are loaded randomly – so it is not known beforehand what Bob

or Alice might read from the registers. However if this is repeated we might

extract some statistics from the outcomes. Thus a probability table (or Bell

model) of the experiment might look like this:

A B (0,0) (1,0) (0,1) (1,1)

a1 b1 1/2 0 0 1/2

a1 b2 3/8 1/8 1/8 3/8

a2 b1 3/8 1/8 1/8 3/8

a2 b2 1/8 3/8 3/8 1/8

A possible explanation of this in a classical sense would be a probabilistic

source writing to the registers where it chooses which values to write from

maybe the tossing of several coins or from sampling some probability

distribution.

However there is another and much simpler way we can represent this - by

replacing the probabilistic model with a possibilistic model. In the

corresponding possibility table which follows there is just a binary distinction

between the outcomes where a “1” indicates there is a possibility of that

FACS FACTS Issue 2015-1 March 2015

9

combination and a “0” indicates there is none and in addition much of the

information from the first table is thrown away. The registers can now be

regarded as measurements.

A B (0, 0) (0, 1) (1, 0) (1, 1)

a1 b1 1

a1 b2 0

a2 b1 0

a2 b2 0

Can we explain this using a classical source? Objective properties for registers

are independent of our choice of which measurement to perform and these are

what we would assume for such a source. However such non-contextuality of

measurement is found to be untrue if actual measurements are taken in

experimental micro-physics. Samson Abramsky remarked that this fact is both

a challenge and an opportunity.

This is reflected in the possibility table (or Hardy model) for if we examine the

first two elements of column one of the table plus the element in the last row

and column and attempt to assign values to registers { a1, a2, b1, b2 } we see

that the only possible assignment is:

a1 0, a2 0, b1 1, b2 1

However if we check further we see that this assignment of values to registers

in the classical sense is inconsistent with the value zero in column 1, row 3 for

it precludes the outcome (0, 0) for measurements (a2, b1). Thus Hardy models

are contextual and cannot be explained by a classical source and this is known

as the Hardy Paradox.

If we use quantum resources as opposed to classical resources this

configuration can be achieved. Registers are replaced by a suitable entangled

state of two qbits and spin measurement directions a1, a2 for Alice and b1, b2

for Bob where directions have a binary choice - up or down. Further, Alice and

FACS FACTS Issue 2015-1 March 2015

10

Bob may be a distance apart. It is then possible to replicate the above table and

extensive experimentation has confirmed this. In quantum mechanical terms

even if particles are spatially separated measuring one has an effect on the

state of the other.

Samson remarked that this proves a strong version of Bells Theorem, the word

strong indicating that possibilities are considered as opposed to probabilities.

The speaker went on to discuss the mathematics of possibility tables and

further developed this into a Contextual Geometry. He explained how non-

locality and contextuality fitted into this geometrical model. Further, there was

an isomorphism between these formal descriptions and basic definitions and

concepts in relational database theory. Thus databases can be considered as

possibility tables and a dictionary can be developed between relational

databases and measurement scenarios. Examples include attribute which

corresponds to measurement and database schema which corresponds to

measurement cover. It seems that the phenomenon of contextuality is pervasive

and once we look for it we can find it everywhere.

Further work in contextual semantics was then briefly discussed with some

current developments in quantum information and foundations. This was

followed by an outline of some current research in contextual semantics in

classical computation where this was related both to constraint satisfaction and

to natural language semantics. Samson Abramsky then introduced us to some

of the other people involved in contextual semantics – his “comrades in arms” –

and also to the Oxford University Quantum Group.

The speaker concluded with some enduring thoughts: the fact that Computer

Science is a fundamental discipline among the sciences which both illuminates

and interacts with them. It is important both for its modes of thought, and for

its subject matter. Samson concluded by saying we should not limit ourselves,

but dare to think BIG.

FACS FACTS Issue 2015-1 March 2015

11

Q and A

This was chaired by Professor Jeff Magee of Imperial College. The session

included a query and further discussion about the “strong” version of Bells

theorem and there was a question about Natural Language: Are our brains

contextual agents because of our ability to interpret?

Samson Abramsky was also asked if he drew any conclusions about the

teaching of Computer Sciences given the nature of Quantum Informatics. He

remarked that the development of Computer Science over the years presented a

challenge to teaching as to what kind of mathematics is relevant or useful? This

has now grown to include probability theory and continuous mathematics. He

thought it a positive result in that people from varied backgrounds achieve a

common language and he thought we should aspire in our teaching.

The vote of thanks was given by Professor Adam Brandenburger of the

University of New York in which he included an appropriate quotation from The

Moonstone (Wilkie Collins) by one of the narrators, Gabriel Betteridge:

"I arose the next morning with the objective subjective and the subjective

objective inextricably entangled together in my mind".

He added that the novel was a mood altering and mind bending piece of art

influenced by laudanum but there was no mention of Quantum Mechanics in it.

However in spite of this he believed there was no better way of summing up the

lecture than that tomorrow morning we would all rise with the objective

subjective and the subjective objective inextricably entangled in our minds but

entangled in the most wonderful and educational manner.

He addressed Samson directly: “You are an intellectual colossus standing

astride disciplines and fields. You see more than almost anybody else and you

see it, write it down and even more can communicate it in such an effective and

educational forum and thank you for that.”

He further thanked both Imperial College and the BCS Academy for their

arrangements in putting on the lecture and in particular the Society for its

excellent judgment in choosing Samson as an awardee.

FACS FACTS Issue 2015-1 March 2015

12

He ended (in the traditional manner) by announcing the 2014 Lovelace Medal

winner - Professor Steve Furber of Manchester University who will give the next

lecture in spring 2015

The talk is available at https://www.youtube.com/watch?v=lE0WyhSy7lg

https://www.youtube.com/watch?v=lE0WyhSy7lg

FACS FACTS Issue 2015-1 March 2015

13

 It’s possible to write flaw-free software,

 so why don’t we?

by Eerke Boiten

(University of Kent)

Legendary Dutch computer scientist Edsger W Dijkstra famously remarked that

“testing shows the presence, not the absence of bugs”. In fact the only

definitive way to establish that software is correct and bug-free is through

mathematics.

It has long been known that software is hard to get right. Since Friedrich L

Bauer organised the very first conference on “software engineering” in 1968,

computer scientists have devised methodologies to structure and guide

software development. One of these, sometimes called strong software

engineering or more usually formal methods, uses mathematics to ensure

error-free programming.

As the economy becomes ever more computerized and entwined with the

internet, flaws and bugs in software increasingly lead to economic costs from

fraud and loss. But despite having heard expert evidence that echoed Dijkstra’s

words and emphasises the need for the correct, verified software that formal

methods can achieve, the UK government seems not to have got the message.

If Spock would not think it illogical, it’s probably good code. Alexandre Buisse, CC BY-SA

http://www.cs.kent.ac.uk/people/staff/eab2/
http://www.cs.utexas.edu/users/EWD/
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
http://computer.org/computer-pioneers/pdfs/B/Bauer.pdf
http://computer.org/computer-pioneers/pdfs/B/Bauer.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/
http://users.ece.cmu.edu/~koopman/des_s99/formal_methods/
http://commons.wikimedia.org/wiki/File:Agda_proof.jpg
http://creativecommons.org/licenses/by-sa/4.0/

FACS FACTS Issue 2015-1 March 2015

14

Formal software engineering

The UK has always been big in formal methods. Two British computer scientists,

Tony Hoare (Oxford 1977-, Microsoft Research 1999-) and the late Robin

Milner (Edinburgh 1973-95, Cambridge 1995-2001) were given Turing

Awards – the computing equivalent of the Nobel Prize – for their work in formal

methods.

British computer scientist Cliff B Jones was one of the inventors of the Vienna

Development Method while working for IBM in Vienna, and IBM UK and Oxford

University Computing Laboratory, led by Tony Hoare, won a Queen’s Award for

Technological Achievement for their work to formalise IBM’s CICS software. In

the process they further developed the Z notation which has become one of the

major formal methods.

The formal method process entails describing what the program is supposed to

do using logical and mathematical notation, then using logical and

mathematical proofs to verify that the program indeed does what it should. For

example, the following Hoare logic formula describing a program’s function

shows how formal methods reduce code to something as irreducibly true or

false as 1 + 1 = 2.

Taught at most UK universities since the mid-1980s, formal methods have seen

considerable use by industry in safety-critical systems. Recent advances have

reached a point where formal methods' capacity to check and verify code can be

applied at scale with powerful automated tools.

Hoare logic formula: if a program S started in a state satisfying P takes us to a state satisfying Q, and

program T takes us from Q to R, then first doing S and then T takes us from P to R.

http://www.cs.ox.ac.uk/people/tony.hoare/
http://research.microsoft.com/en-us/news/features/hoare-080411.aspx
http://www.cl.cam.ac.uk/archive/rm135/
http://www.cl.cam.ac.uk/archive/rm135/
http://amturing.acm.org/
http://amturing.acm.org/
http://homepages.cs.ncl.ac.uk/cliff.jones/
http://overturetool.org/method/
http://overturetool.org/method/
https://www.gov.uk/queens-awards-for-enterprise
https://www.gov.uk/queens-awards-for-enterprise
http://www.bcs.org/upload/pdf/advprog-apr06.pdf
http://formalmethods.wikia.com/wiki/Z_notation
http://math.berkeley.edu/~hutching/teach/proofs.pdf
http://math.berkeley.edu/~hutching/teach/proofs.pdf
http://www.inrialpes.fr/vasy/fmics/

FACS FACTS Issue 2015-1 March 2015

15

Government gets the message

Is there any impetus to see them used more widely, however? When the Home

Affairs Committee took evidence in its E-crime enquiry in April 2013, Professor

Jim Norton, former chair of the British Computer Society, told the committee:

We need better software, and we know how to write software very much better

than we actually do in practice in most cases today… We do not use the formal

mathematical methods that we have available, which we have had for 40 years,

to produce better software.

Based on Norton’s evidence, the committee put forward in recommendation 32

“that software for key infrastructure be provably secure, by using mathematical

approaches to writing code.”

Two months later in June, the Science and Technology Committee took

evidence on the Digital by Default programme of internet-delivered public

services. One invited expert was Dr Martyn Thomas, founder of Praxis, one of

the most prominent companies using formal methods for safety-critical

systems development. Asked how to achieve the required levels of security, he

replied that:

Heroic amounts of testing won’t give you a high degree of confidence that

things are correct or have the properties you expect… it has to be done by

analysis. That means the software has to be written in such a way that it can be

analysed, and that is a big change to the way the industry currently works.

The committee sent an open letter to cabinet secretary Francis Maude in asking

whether the government “was confident that software developed meets the

highest engineering standards.”

Trustworthy software is the answer

The government, in its response to the E-crime report in October 2013 , stated:

The government supports Home Affairs Committee recommendation 32. To this

end the government has invested in the Trustworthy Software Initiative, a

public/private partnership initiative to develop guidance and information on

secure and trustworthy software development.

http://www.publications.parliament.uk/pa/cm201314/cmselect/cmhaff/70/70.pdf
http://www.profjimnorton.com/
http://www.profjimnorton.com/
http://www.bcs.org/
http://www.publications.parliament.uk/pa/cm201314/cmselect/cmsctech/uc252-i/uc25201.htm
http://www.publications.parliament.uk/pa/cm201314/cmselect/cmsctech/uc252-i/uc25201.htm
https://www.gov.uk/service-manual/digital-by-default
http://www.thomas-associates.co.uk/
http://www.altran.co.uk/
http://www.parliament.uk/documents/commons-committees/science-technology/130709-Chair-to-Francis-Maude.pdf
http://www.parliament.uk/documents/commons-committees/home-affairs/E-crime-Government-Response-Cm-8734.pdf
http://uk-tsi.org.uk/

FACS FACTS Issue 2015-1 March 2015

16

This sounded very hopeful. Maude’s reply to the Science and Technology

committee that month was not published until October 2014, but stated much

the same thing.

So one might guess that the TSI had been set up specifically to address the

committee’s recommendation, but this turns out not to be the case. The TSI

was established in 2011, in response to governmental concerns over (cyber)

security. Its “initiation phase” in which it drew from academic expertise on

trustworthy software ended in August 2014 with the production of a guide

entitled the Trustworthy Security Framework, available as British Standards

Institute standard PAS 754:2014.

This is a very valuable collection of risk-based software engineering practices

for designing trustworthy software (and not, incidentally, the “agile, iterative

and user-centric” practices described in the Digital by Default service manual).

But so far formal methods have been given no role in this. In a keynote

address at the 2012 BCS Software Quality Metrics conference, TSI director Ian

Bryant gave formal methods no more than a passing mention as a “technical

approach to risk management”.

So the UK government has been twice advised to use mathematics and formal

methods to ensure software correctness, but having twice indicated that the TSI

is its vehicle for achieving this, nothing has happened. Testing times for

software correctness, then - this is something that will continue for as long as

it takes for Dijkstra’s message to sink in.

Editors’ Note

FACS readers are very much encouraged to follow this example and spread the word

by writing similar articles that are aimed at a wider audience.

http://www.parliament.uk/documents/commons-committees/science-technology/Correspondence/131031MaudeDigitalbyDefault.pdf
http://www.parliament.uk/documents/commons-committees/science-technology/Correspondence/131031MaudeDigitalbyDefault.pdf
https://twitter.com/CommonsSTC/status/527074057515446272
http://www.uk-tsi.org/?page_id=1175
http://shop.bsigroup.com/ProductDetail/?pid=000000000030284608
https://www.gov.uk/service-manual/digital-by-default
http://ssdri-web.s3-website-eu-west-1.amazonaws.com/TSI_2012_165_SQM_2012_Keynote_Web.pdf
http://ssdri-web.s3-website-eu-west-1.amazonaws.com/TSI_2012_165_SQM_2012_Keynote_Web.pdf
http://www2.warwick.ac.uk/fac/sci/wmg/research/csc/people/
http://www2.warwick.ac.uk/fac/sci/wmg/research/csc/people/

FACS FACTS Issue 2015-1 March 2015

17

 BCS FACS – ProCos Workshop on

Provably Correct Systems

http://www.bcs.org/content/ConWebDoc/53939

Talks on YouTube

https://www.youtube.com/channel/UC_S0VLVAAomm05otUi4_onQ

Date/Time: Monday 9 March - Tuesday 10 March 2015

Venue: BCS, 1st Floor, The Davidson Building, 5 Southampton Street, London,

WC2E 7HA | Map

Cost: £60.00 for BCS Members & Students; £120.00 for Non-members

Book Online

Book Online for the dinner

Co-chairs:

Prof. Jonathan Bowen, Birmingham City University, UK

Prof. Mike Hinchey, LERO, University of Limerick, Republic of Ireland

Prof. Dr Ernst-Rüdiger Olderog, Carl von Ossietzky Universität Oldenburg ,

Germany

The years 2014 and 2015 mark 25 years and 20 years, respectively, since the

start and end of the European ESPRIT ProCoS projects on Provably Correct

Systems, inspired by the CLInc project in the US. The ProCoS I/II projects and

the associated ProCoS-US initiative ran from 1989-1995, followed by the

ProCoS-WG Working Group of 25 partners. The projects aimed to perform

research in the fundamental technical aspects of a development process for

critical embedded systems, from the original capture of requirements all the

way down to the computers and special purpose hardware on which the

programs run. The projects were significant in their contributions to provably

correct systems, and led directly to a better general understanding of the

relationship between a range of theories, and how their combination can be

used in the planning and development of critical software tasks. This event

http://www.bcs.org/content/ConWebDoc/53939
https://www.youtube.com/channel/UC_S0VLVAAomm05otUi4_onQ
https://www.bcs.org/upload/pdf/london-office-guide.pdf
https://events.bcs.org/book/1364/
https://events.bcs.org/book/1426/

FACS FACTS Issue 2015-1 March 2015

18

marks these 20th and 25th anniversaries of ProCoS to look back at its

achievements and to identify key research that will contribute to the next

generation of provably correct systems, with invited talks by leading

international computer science researchers, many directly involved with the

original ProCoS projects.

Sponsored by Lero (The Irish Software Research Centre)

 Programme

Monday 9 March 2015 (Whence)

09.00-09.30 Registration

09.30-11.00 Session 1 (Introduction) - Chair: Prof. Dr Ernst-Rüdiger Olderog,

Carl von Ossietzky Universität Oldenburg , Germany

How it all Began: As seen from Denmark - Prof. Dines Bjørner, Technical

University of Denmark, Denmark

Provably Correct Systems: Whence and whither? - Prof. Jonathan P. Bowen,

Birmingham City University, UK

Algebraic Proof of Consistency of Operational and Verification Semantics - Prof.

Tony Hoare, Microsoft Research Cambridge, UK

11.00-11.30 Coffee/tea break

11.30-13.00 Session 2 (Hybrid systems) - Chair: Prof. Jonathan Bowen,

Birmingham City University, UK

Hybrid Systems from the ProCoS Gas Burner to Highway Traffic - Prof. Anders P.

Ravn, Aalborg University, Denmark

Engineering Arithmetic Constraint Solvers for Automatic Analysis of Hybrid

Discrete-continuous Systems - Prof. Dr Martin Fränzle, Carl von Ossietzky

Universität Oldenburg , Germany

Hybrid Relation Calculus - Prof. Jifeng He, East China Normal University, China

13.00-14.00 Lunch break

http://www.lero.ie/

FACS FACTS Issue 2015-1 March 2015

19

14.00-16.00 Session 3 (Reasoning, Analysis & Refinement) - Chair: Prof. Mike

Hinchey, LERO, University of Limerick, Republic of Ireland

Reasoning Abstractly about Concurrency - Prof. Cliff Jones, Newcastle

University, UK

From ProCoS to Space and Mind-models - Prof. Dr Bettina Buth, HAW Hamburg,

Germany

Refinement Algebra and Applications - Prof. Augusto Sampaio, Universidade

Federal de Pernambuco, Brazil

Space for Traffic Manoeuvres - Prof. Dr Ernst-Rüdiger Olderog, Carl von

Ossietzky Universität Oldenburg , Germany

16.00-16.30 Coffee/tea break

16.30-18.30 Session 4 (Mechanization) - Chair: Prof. Dr Debora Weber-Wulff,

Hochschule für Technik und Wirtschaft Berlin, Germany

Model Checking Duration Calculus: The DCVALID story - Dr Paritosh Pandya,

Tata Institute of Fundamental Research, India

Automatic Verification of Infinite-state Systems - Prof. Dr Markus Müller-Olm,

Westfälische Wilhelms-Universität Münster, Germany

Commercial Use of the ACL2 System - Prof. Warren Hunt, University of Austin,

Texas, USA

Managing Large Terms Representing Realistic Machine States - Prof. J Strother

Moore, The University of Texas at Austin, USA

18.30-20.00 Reception

Following the BCS-FACS SG "ProCoS Workshop" - you are invited to dinner at

Carluccio's, Covent Garden

Book Online for the dinner

Tuesday 10 March 2015 (Whither)

9.00-10.30 Session 1 (Assertions & Testing) - Chair: Prof. Michael R. Hansen,

Technical University of Denmark, Denmark

https://events.bcs.org/book/1426/

FACS FACTS Issue 2015-1 March 2015

20

Run-time Assertion Checking of Data- and Protocol-oriented Properties of Java

Programs - Prof. Frank de Boer, CWI, Netherlands

Assertions for Hardware - Prof. Wayne Luk, Imperial College London, UK

Combining Testing and Verification - Prof. Dr Heike Wehrheim, University of

Paderborn, Germany

10.30-11.00 Coffee/tea break

11.00-12.30 Session 2 (Proof) - Chair: Dr Hans Rischel, Technical University of

Denmark, Denmark

Proof with Event-B/Rodin - Prof. Michael Butler, University of Southampton, UK

Are We There Yet? Twenty years of industrial theorem proving with SPARK - Dr

Rod Chapman, Protean Code Ltd, UK

What have we Learned about Proof? - Prof. Ursula Martin, University of Oxford,

UK

12.30-13.30 Lunch break

13.30-15.00 Session 3 (Models & ATP) - Chair: Dr Huibiao Zhu

Model-checking Extended Linear Duration Invariants - Prof. Naijun Zhan,

Institute of Software, Chinese Academy of Sciences, China

A Model of Cyber-physical Component Systems - Prof. Zhiming Liu,

Birmingham City University, UK

Advances in Connection-based Automated Theorem Proving - Prof. Dr

Wolfgang Bibel, Darmstadt University of Technology, Germany and Prof. Dr Jens

Otten, Potsdam University, Germany

15.00-15.30 Coffee/tea break

15.30-16.30 Session 4 (Correctness) - Chair: Prof. Jim Woodcock, University of

York, UK

Synthesis of Provably Correct Systems - Prof. Dr Bernd Finkbeiner, Saarland

University, Germany

Linearizability and Correctness for Weak Memory Models - Prof. John Derrick,

University of Sheffield, UK

FACS FACTS Issue 2015-1 March 2015

21

16.30-16.35 Close

FACS FACTS Issue 2015-1 March 2015

22

BCS-FACS Evening Seminar

Decision Problems for Linear Recurrence Sequences

Joint event with the London Mathematical Society

(held on: Wednesday 22nd October 2014)

Professor Joel Ouaknine
(University of Oxford)

Linear recurrence sequences (LRS), such as the Fibonacci numbers, permeate

vast areas of mathematics and computer science. In this talk, Professor

Ouaknine considers three natural decision problems for LRS, namely the Skolem

Problem (does a given LRS have a zero?), the Positivity Problem (are all terms of

a given LRS positive?), and the Ultimate Positivity Problem (are all but finitely

many terms of a given LRS positive?). Such problems (and assorted variants)

have applications in a wide array of scientific areas, such as theoretical biology

(analysis of L-systems, population dynamics), economics (stability of supply-

and-demand equilibria in cyclical markets, multiplier-accelerator models),

software verification (termination of linear programs), probabilistic model

checking (reachability and approximation in Markov chains, stochastic logics),

quantum computing (threshold problems for quantum automata), discrete

linear dynamical systems (reachability and invariance problems), as well as

combinatorics, statistical physics, formal languages, etc.

Perhaps surprisingly, the study of decision problems for LRS involves advanced

techniques from a variety of mathematical fields, including analytic and

algebraic number theory, Diophantine geometry, and real algebraic geometry.

The slides from this talk can be found here; various relevant papers are:

 On termination of integer linear loops @ SODA 15

 Ultimate Positivity is decidable for simple linear recurrence sequences @ ICALP 14

(Best Paper Award)

 On the Positivity Problem for simple linear recurrence sequences @ ICALP 14

 Positivity problems for low-order linear recurrence sequences @ SODA 14

http://www.cs.ox.ac.uk/people/joel.ouaknine/home.html
http://www.cs.ox.ac.uk/joel.ouaknine/lms14.pdf
http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/termination-integer-loops15abs.html
http://www.siam.org/meetings/da15/
http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/ultimate_positivity14abs.html
http://icalp2014.itu.dk/
http://www.cs.ox.ac.uk/people/joel.ouaknine/publications/simple_positivity14abs.html
http://icalp2014.itu.dk/
http://www.cs.ox.ac.uk/joel.ouaknine/publications/positivity13abs.html
http://www.siam.org/meetings/da14/

FACS FACTS Issue 2015-1 March 2015

23

BCS FACS - Annual Peter Landin Semantics Seminar 2014

On correspondences between programming

languages and semantic notations

(held on: Monday 8 December 2014)

Professor Peter Mosses

(Swansea University)

Abstract

50 years ago, at the IFIP Working Conference on Formal Language Description

Languages, Peter Landin presented a paper on “A formal description of ALGOL

60”. In it, he explained “a correspondence between certain features of current

programming languages and a modified form of Church’s λ-notation”, and

suggested using that as the basis for formal semantics. He regarded his formal

description of ALGOL 60 as a “compiler” from ALGOL abstract syntax to λ-

notation.

10 years later, denotational semantics was well established, and two

denotational descriptions of ALGOL 60 had been produced as case studies: one

in the VDM style developed at IBM-Vienna, the other in the continuations-based

style adopted in Christopher Strachey’s Programming Research Group at

Oxford.

After recalling Landin’s approach, I’ll illustrate how it differs from denotational

semantics, based on the ALGOL 60 descriptions. I’ll also present a recently

developed component-based semantics for ALGOL 60, involving its translation

to an open-ended collection of so-called fundamental constructs. I’ll assume

familiarity with the main concepts of denotational semantics.

http://www.cs.swan.ac.uk/~cspdm/index.html

FACS FACTS Issue 2015-1 March 2015

24

This seminar presented by Professor Peter Mosses was introduced by Professor

Tony Clark, Middlesex University. Tony Clark writes:

Peter Landin

——————

I was Peter Landin’s last PhD student 1989-1996 studying the

semantics of Object-Oriented Programming Languages. After a while

we settled in to regular fortnightly meetings and, despite digital

evidence to the contrary, I was always aware that Peter was engaged

with what was going on in Programming Language Research and

generally active.

As the PhD progressed, I started to detect an approach that has made

a lasting impression on me. Peter would always engage with a

problem by trying to identify the essential features of a concept: what

is this thing if it is shorn of all modish adornments? Taking this

approach, my PhD broadened into a series of lengthy discussions on

subjects including how to embed Prolog in Lambda (without

continuations), exploring the inside of environment structures during

program execution, and how to draw out the machinations of a type-

checker using a modification of Cuisenaire Rods.

Peter is known for lambda, program transformation, algebraic

foundations, SECD, continuations, and perhaps less well known for

influencing VDM and Scheme. A quote from John Reynolds (Theories

of Programming Languages, Cambridge University Press, 1998)

captures my experience of Peter: “Peter Landin remarked long ago

that the goal of his research was “to tell beautiful stories about

computation”. Since then many researchers have told many such

stories. This book is a collection of my favorites in the area of

languages for programming and program specification”.

Peter produced some seminal papers during the 1960s that I am sure

we all know. When preparing for this introduction, I recalled a paper

that exemplified the beautiful stories, but had great difficulty tracking

it down. I eventually found it in Samson Abramsky’s introduction to

his contribution to the special issue of Higher Order and Symbolic

FACS FACTS Issue 2015-1 March 2015

25

Computation in honour of Peter. It turns out to be the last paper Peter

published before his interests broadened and is well worth tracking

down.

In 1969, Peter is recorded as saying: For some years I have aspired to

‘language-free programming’. He seemed to return to this again

during the years that I studied with him.

During our meetings he would discuss a new course he was

developing on first year programming. Around 2000 he sent me a

copy (330 pages) of notes for a text-book that he hoped to publish.

Sadly this did not happen, but it would be great if we could

collectively find a way of publishing them.

Peter’s final work appears to return to the notion of a basis for

language-free programming. These took the form of some

(unfinished as far as I know) extensive notes on what he called

Calculations. (Calculations, Peter J. Landin, in Higher Order and

Symbolic Computation, (2009) 22: 333-359).

From his notes Peter listed his motivations as including: ‘being

persuasive about the intuitions that guide small design choices; to

explore the elementary concepts of computing without mentioning

programs; to explain something full of implications regarding algebra

without actually resorting to it; to present, paradoxically, a wholly

textual, picture free explanation of a highly pictorial concept’. Peter

sent me a version of these notes and they appear as part of the

special issue honouring him.

To sum up, Peter had an enormous effect on me as I am sure he did

on many people that he worked with professionally. His work

continues to have influence today, and, as I have mentioned there are

a few little known gems to be discovered in the archive. Although we

would consider much of his work to be foundational: as he

paraphrased to me, ‘There are still many more tunes left to be played

in C’.

Tony Clark then introduced the speaker, Peter Mosses:

FACS FACTS Issue 2015-1 March 2015

26

 Professor in Computer Science, Swansea University.

 DPhil from Oxford

 Basic Research in Computer Science (BRICS), Denmark.

 Computer Science, Swansea.

 Member of several IFIP working groups including Chair of IFIP 1.3

Foundations of System Specification 98-2003.

 Editorial/Advisory Board member of several leading journals including

Science of Computer Programming and Higher-Order and Symbolic

Computation.

 Key Contributions:

 Action Semantics.

 Modular approaches to Programming Languages and SOS.

 Current Project: Programming Language Components: partners RHUL,

City University and Microsoft, funded by EPSRC.

In his seminar, Peter Mosses dwelt on the developing history of semantics,

starting in the 1960s, moving to the 1970s, and finally outlining work in the

current PlanCompS project. We were at the 50th anniversary of the first IFIP TC2

Working Conference on Formal Language Description Languages, held in 1964

with proceedings published in 1966. There were 50 invited participants and

seminal papers by Peter Landin, Christopher Strachey and many others.

In 1964-1966 Peter Landin published several significant papers on the formal

description of languages:

 The mechanical evaluation of expressions

 A correspondence between ALGOL 60 and Church's lambda-notation

 A formal description of ALGOL 60

 A generalization of jumps and labels

 The next 700 programming languages

FACS FACTS Issue 2015-1 March 2015

27

The mechanical evaluation of expressions (Computer Journal (1964) 6) employed

Applicative Expressions (AEs) which generally have values in a given environment E. In

1964-65 Landin published a two-part paper in Communications of the ACM on a

Correspondence between ALGOL 60 and Church’s lambda notation. This employed

Imperative Applicative Expressions (IAEs) and drew a correspondence between ALGOL

abstract syntax and IAEs via semantic functions. Landin was an advisor on the official

language definition for ALGOL 60 and in the proceedings of IFIP TC2 above published

A Formal Description of ALGOL 60.

Peter Mosses then compared Christopher Strachey’s approach to language semantics

(the language in this case being CPL) with that of Landin, showing the virtues and

drawbacks of each.

The 1970s saw work beginning on denotational semantics at Oxford by Dana Scott,

Christopher Strachey, Peter Landin, John Reynolds and many others. Scott and

Strachey’s Oxford Technical Monograph PRG-6 Towards a mathematical semantics for

computer languages paved the way. It showed the correspondence between program

phrases and their denotations in Scott-domains (originally lattices, later CPOs). The

least fixed-point operator Y was no longer, in Strachey;s words, “paradoxical”. Peter

Mosses himself published Technical Monograph PRG-12 The mathematical semantics

of ALGOL 60, exploiting a continuations style. Then in 1974 H. Bekić, D. Bjørner, W.

Henhapl, C. B. Jones, P. Lucas from the IBM Vienna Laboratory published A formal

definition of a PL/I subset (Tech. Rep. TR 25.139, IBM Lab. Vienna, Dec. 1974). In the

late 1970s W. Henhapl and C. B. Jones published A formal definition of ALGOL 60 in

“The Vienna Development Method: The Meta-Language”, LNCS 61: 305–336, 1978, and

Chapter 6 of “Formal Specification & Software Development”, Prentice-Hall, 1982.

Further reading can be found in P. D. Mosses: VDM semantics of programming

languages: combinators and monads in Formal Aspects of Computing (2011) 23: 221–

238 and C. B. Jones: Semantic descriptions library

homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/

Finally Peter Mosses described a current project: Component-based semantics. The

aim is to have reusable components corresponding to program constructs with fixed

notation behaviour and algebraic properties, “specified and proved once and for all!”.

This is part of the PlanCompS project, which is running from 2011 to 2015.

Slides of Peter Mosses’ seminar can be found at:

http://www.plancomps.org/landin-seminar-2014/

http://homepages.cs.ncl.ac.uk/cliff.jones/semantics-library/
http://www.plancomps.org/landin-seminar-2014/

FACS FACTS Issue 2015-1 March 2015

28

The future of high-precision programming?

by Brian Monahan

Programming is an important form of engineering – it’s about creating and

running systems that behave in some well-defined manner and that ideally

always achieve the goals they were designed for. However, it is often not

feasible or simply too costly in various ways to design and build systems that

always behave perfectly under all reasonable circumstances – in which case, we

instead want systems to achieve their design goals as well as possible under the

prevailing circumstances, whatever that turns out to be.

All in all, we describe our systems in terms of a series of often already-known

algorithms that typically only meet some of our goals and will therefore need to

be skilfully composed together to make systems that do meet our required

goals as best they can. This idea of putting various sub-systems together to

somehow achieve the overall goal is essentially what programming is all about.

This remains true at whatever scale one is working, be it assembly-level

programming and hardware, all the way up to Big Data processing systems and

beyond.

The overall complexity of all these systems working together as well as possible

quickly becomes somewhat daunting – the complexity of systems and what is

expected of them is only set to increase. A number of implications follow:

 In order to compose sub-systems together, it is clearly important to

understand somehow what each sub-system can provide and also in what

way it might fail due to resource limitations and constraints on inputs.

 Availability is an important requirement of most systems – and knowing

what time/resources are needed for each operational situation is often

critically important for manageability. Designs and systems should

behave as predictably as possible.

 Parallel and concurrent sub-systems present all sorts of challenges –

memory management, communication bandwidth, data throughput and

management, resilience in the presence of failure, etc.

FACS FACTS Issue 2015-1 March 2015

29

Many readers might now be thinking that this argument is clearly leading

towards a call for improved mathematical specification techniques and the like.

Far from it – the problem with such ambitious approaches in practice is that

software specifications tend to get at least as complicated as the software they

are describing, making it very challenging to meaningfully gain practical

assurance that given programs meet some required specification – unless of

course the specification and program just happen to be mostly structurally

identical in any case!

Instead, perhaps a better approach would be to exploit exactly this observation

above and provide ways to meaningfully construct our programs so that

particular system properties of interest become mostly self-evident from the

actual structure of the program itself, thereby making separate software

specification less of a necessity. Knowing such properties would help ensure

that our sub-systems become more compositional, and that overall, systems

also become more resilient and durable, leading to improved confidence that

systems will behave as they are designed and constructed to have.

Of course, specifications still have an important role to play within the realm of

requirements and in clarifying what the high-level architecture might look like.

Specification would still contain precise statements of important characteristics

and invariant properties of the system. It’s more that they need to address

user-level expectations, perhaps in terms of describing the overall API and what

it would provide.

With improvements like these, programming might then be able to become

synonymous with the design and engineering of reliable, high-precision

systems.

FACS FACTS Issue 2015-1 March 2015

30

Book Review

Seven Concurrency Models in Seven Weeks:

When Threads Unravel

Paul Butcher, Pragmatic Programmers Bookshelf, 2014

Computing and IT are complicated, detailed and intricate, with fast moving

developments and new emerging ways of approaching age-old fundamental

issues, such as parallel and concurrent processing at scale. Paul Butcher’s

recent book bravely tackles this area in the popular “Seven in Seven” series

format.

I have to say I was surprised to see a title involving “Concurrency Models” in this

series and more than a little intrigued to see how such a varied and complicated

topic could possibly be brought usefully and pragmatically into focus. But this

book largely achieves its ambitious goal of doing exactly that – presenting a

broad overview of modern pragmatic approaches to parallelism and

concurrency.

A nice point here is that the common confusion between parallelism and

concurrency is dealt with straightaway in the first chapter by quoting Rob Pike:

Concurrency is about dealing with lots of things at once.

Parallelism is about doing lots of things at once.

This chapter continues to set the scene by outlining what the seven concurrency

models are: Threads and Locks, Functional Programming, The “Clojure1” Way,

Actors, Communicating Sequential Processes (CSP), Data parallelism, and finally

The Lambda Architecture. Subsequent chapters then pragmatically deal with

each of these models in turn, using appropriately common problems to provide

examples, such as the deceptively simple sounding task of computing word-

count over Wikipedia in its entirety. Each chapter then contains three example

themes that illustrate and exercise the main features of each model, typically

1
 Clojure: A Lisp-like programming language, compiling down to JVM (see: http://clojure.org)

http://clojure.org/

FACS FACTS Issue 2015-1 March 2015

31

with the aim of pragmatically showing what works – and also what doesn’t. As

one would expect, each of these models works well at some scales and not so

well at others – and this point is well conveyed through the kinds of examples

that are tackled.

Apart from general interest in all of these models, what will particularly attract

the attention of readers of this newsletter is the inclusion of topics here such as

functional programming, actors and CSP that will hopefully confirm what many

readers have probably thought were long ready for the commercial prime-time.

It seems that today’s commercial needs for Big Data processing and real-time

analytics really are urgently presenting plenty of technology opportunities for

applying ideas like these.

What is shown here is a broad overview of these concurrency models with a

surprisingly useful amount of detail, given the length of the book (275 pages,

incl. index). As such, it succeeds at cutting through to the essential aspects of

each model in a pragmatic and down-to-earth manner via actual examples.

Additionally, there is an awareness of the obvious limitation that coverage of

any interesting sub-topics must necessarily be brief or even non-existent – but

generally, this is covered as one would hope by giving URLs to further

discussion/documentation. Overall, a well-written modern account of a difficult

and demanding area that will continue being relevant for some time to come.

Reviewed by Brian Monahan

FACS FACTS Issue 2015-1 March 2015

32

Book Review

Thinking Functionally with Haskell

Richard Bird, Cambridge, 2015

It is very refreshing to see the essence of a entire subject covered in a single

text – but that is what Richard Bird set out to do, and is largely achieved in his

recent book. As he says in the preface, the best thing in his view about

functional programming is the ability to think about programs in a

mathematical way. I must say that I entirely agree with this point and why I

would imagine the book will be potentially of great interest to readers of this

newsletter.

The functional language Haskell provides the canvas for expressing the overall

message. Haskell should by now be pretty well-known to many readers – it

began in the late 80’s, with its most recent revision in 2010; the language itself

and its compilers (e.g. GHC) have been thoroughly described and exhaustively

explained in many online sources, countless blogs, and various other books.

Here such material is concisely dealt with via simple examples in the first

couple of chapters or so. In particular, the big strengths of Haskell such as its

use of (parametric) polymorphism combined with type classes (e.g. Eq, Ord,

Show, etc.) to provide an elegant form of overloading are all demonstrated early

on.

A significant strength here is that little (if anything) is required in the way of

previous programming experience to understand what is going on – it is aimed

as a textbook for a general undergraduate audience and begins relatively

gently. The ideas behind Haskell are introduced gradually in sufficient depth

for readers to tackle with confidence the exercises given at the end of each

chapter. A further nice touch is that answers are provided as well, making it

useful for self-study and giving explicit reinforcement of the points made.

Mostly, the text goes straight to the heart of the matter and tackles the more

basic issue of how to think about programs and solving problems effectively

using the functional approach. Case study examples in later chapters, such as

FACS FACTS Issue 2015-1 March 2015

33

a Sudoku puzzle solver and an equational calculator (i.e. symbolic interpreter)

nicely illustrate various ways to solve problems in the functional style.

A question that does arise with using Haskell is how to introduce its approach

to actions and effects in terms of “imperative functional programming” (i.e.

monads). This is wisely discussed late in the book in Chapter 10, in an entire

chapter dedicated to this topic. By then, the reader will have been thoroughly

exposed to the richness and power of pure functional programming and should

have then understood that much can be achieved without any resort to effects.

The price of delaying this treatment is that something needs to be said earlier

on how to print values generally – and this is paid for with a brief section in

Chapter 2 where IO is explained in terms of simple commands. Overall, the

explanation of the monadic programming style is nicely done and is easily one

of the most natural tutorial accounts I have seen.

I can wholeheartedly recommend this textbook as an excellent starting place

for exploring functional programming using Haskell. Even for experienced

programmers, the book serves as a reminder of how to write clearly and

organize material to convey a message, namely: programs can be explained

elegantly, simply and directly.

Reviewed by Brian Monahan

FACS FACTS Issue 2015-1 March 2015

34

FACS Committee

Jonathan Bowen

Chairman

ZUG Laison

Jawed Siddiqi

FACS Treasurer

Paul Roca

FACS Secretary

Roger Carsley

Minutes Secretary

John Cooke

BCS Liaison

Publications

Rob Hierons

Chair, Formal Methods

And Testing Subgroup

John Derrick

Chair, Refinement

Subgroup

John Fitzgerald

FME Liaison

Margaret West

BCS Women Liaison

Eerke Boiten

CryptoForma Liaison

Tim Denvir

Co-Editor, FACS

FACTS

Brian Monahan

Co-Editor, FACS

FACTS

FACS FACTS Issue 2015-1 March 2015

35

FACS is always interested to hear from its members and keen to recruit additional

helpers. Presently we have vacancies for officers to help with fund raising, to liaise with

other specialist groups such as the Requirements Engineering group and the European

Association for Theoretical Computer Science (EATCS), and to maintain the FACS

website. If you are able to help, please contact the FACS Chair, Professor Jonathan

Bowen at the contact points below:

 BCS-FACS

c/o Professor Jonathan Bowen (Chair)

Birmingham City University

Email info@bcs-facs.org.uk

Web www.bcs-facs.org

You can also contact the other Committee members via this email address.

Please feel free to discuss any ideas you have for FACS or voice any opinions openly

on the FACS mailing list <FACS@jiscmail.ac.uk>. You can also use this list to pose

questions and to make contact with other members working in your area. Note: only

FACS members can post to the list; archives are accessible to everyone at

http://www.jiscmail.ac.uk/lists/facs.html.

mailto:info@bcs-facs.org.uk
http://www.bcs-facs.org/
mailto:FACS@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs.html

