
FACS
Issue 2006-1

March 2006
A
C
T
S

The Newsletter of the Formal Aspects of
Computing Science (FACS) Specialist Group

ISSN 0950-1231

http://www.bcs-facs.org/

FACS FACTS Issue 2006-1 March 2006

2

About FACS FACTS

FACS FACTS [ISSN: 0950-1231] is the newsletter of the BCS Specialist
Group on Formal Aspects of Computing Science (FACS). FACS FACTS is
distributed in electronic form to all FACS members.

FACS FACTS is published four times a year: March, June, September and
December. Submissions are always welcome. Please see the
advertisement on page 11 for further details or visit the newsletter area of
the FACS website [http://www.bcs-facs.org/newsletter].

Back issues of FACS FACTS are available to download from:

http://www.bcs-facs.org/newsletter/facsfactsarchive.html

The FACS FACTS Team

Newsletter Editor Paul Boca [editor@facsfacts.info]

Editorial Team Jonathan Bowen, Judith Carlton, John Cooke

Columnists Dines Bjørner (Train Domain)

Contributors to this Issue

Paul Boca, Jonathan Bowen, Michael Butler, Greg Reeve (via Steve
Reeves), F.X. Reid, Victor Zemantics

mailto:editor@facsfacts.info?subject=FACS%20FACTS
http://www.bcs-facs.org/newsletter/facsfactsarchive.html
http://www.bcs-facs.org/newsletter

FACS FACTS Issue 2006-1 March 2006

Contents

Editorial 4

On the Verified-by-Construction Approach 6

Obituary: F.X. Reid 12

Conference Announcements 15

On the Formal Semantics of the COMEFROM Statement 18

Book Announcement 22

PhD Abstracts 23

FACS Committee 26
The activities of FACS (i.e. sponsoring conferences and workshops,
offering student bursaries and hosting evening seminars) are funded
solely from membership subscriptions. The more paid-up FACS members
we have, the more we can do. ☺

If you would like to become a FACS member – or renew your lapsed
membership – please complete the membership form on page 25 of this
issue of FACS FACTS.

If you have any questions about FACS, please send these to Paul Boca
[Paul.Boca@virgin.net]
3

mailto:Paul.Boca@virgin.net?subject=Question%20about%20FACS

FACS FACTS Issue 2006-1 March 2006

4

Editorial
Paul Boca & Jonathan P. Bowen, BCS-FACS

Welcome to the first Issue of FACS FACTS of 2006. As usual we thank all of
the contributors for their support – without them there would be no newsletter.
Submissions are always welcome, so please do feel free to contact the editor,
Paul Boca [Paul.Boca@virgin.net].

This is a somewhat sombre time for the editorial board of the newsletter,
as we have recently learned that F. X. Reid
[http://en.wikipedia.org/wiki/F._X._Reid], long-term contributor to the FACS
newsletter, has unexpectedly passed away. An obituary, written by Victor
Zemantics, appears on page 12. Reid authored several articles over the years,
and has been responsible for “educating” many PhD students as a result. As a
tribute to him, we will reprint some of his “gems”, starting with an article on the
semantics of the COMEFROM statement (see page 18).
 On a happier note, we can report that the FACS Evening Seminars are
still proving to be very popular. We began the year with a panel discussion,
entitled Formal Methods in the Last 25 Years; more than 70 people attended.
The event was organized together with Formal Methods Europe (FME), chaired
by John Fitzgerald. We would like to thank FME and the Centre for Software
Reliability, University of Newcastle upon Tyne for co-sponsoring the event with
FACS. We are hoping to bring you a report on the event in the next issue of the
newsletter, together with a reprint of the classic “Magic Roundabout” article.
 Peter Mosses gave the second seminar in the series this year, entitled
Programming Language Description Languages: From Scott and Strachey to
Semantics Online. The seminar was attended by almost 40 people – an
excellent turnout for a Friday evening. At the time of writing this editorial, we are
organizing the third seminar in the series, to be given on 24 April 2006 by Cliff
Jones, entitled Specifying Systems that Connect to the Physical World. We
expect this to be equally successful, and once again it is an opportunity for
people to hear an address from another pioneer in formal methods.

The seminar programme for the rest of the year is available on the BCS-
FACS website [http://www.bcs-facs.org/events/EveningSeminars] and in the
advertisement on page 14. Slides from previous seminars are available to
download from this website too. We hope you will find the programme of
interest and will be able to attend – the seminars are free of charge, funded
from membership subscriptions (see page 25 for a membership form).

FACS held its AGM on 3 March 2006, and a report on the meeting will
appear in a future issue of the newsletter. FACS welcomes two new committee
members: John Derrick (University of Sheffield) to coordinate activities relating
to refinement and Mark D’Inverno (University of Westminster) to coordinate
model-based specification events (on topics such as B, VDM, Z, etc.). Please
do liaise with John or Mark if you are interested in being involved with events in
these areas. Unfortunately, FACS has lost two of its officers, Ali Abdallah and
Kevin Lano. On behalf of all the members, we would like to thank them for all
their efforts over the years. In particular, Ali organized two major and very
successful events for FACS, FASec in 2002 on formal aspects of security and
CSP 25 in 2004 to celebrate a quarter of a century of FACS and

http://www.bcs-facs.org/events/EveningSeminars
http://en.wikipedia.org/wiki/F._X._Reid
mailto:Paul.Boca@virgin.net

FACS FACTS Issue 2006-1 March 2006

Communicating Sequential Processes activities. In no small measure, these
helped rejuvenate FACS and both proceedings appeared as Springer LNCS
volumes.

We hope you will enjoy reading the current issue and again encourage
you to contribute as well. █

Joining Other Societies and Groups

London Mathematical Society
http://www.lms.ac.uk/contact/membership.html

Formal Methods Europe
http://www.fmeurope.org/fme/member.htm

European Association for Theoretical Computer Science
http://www.eatcs.org/organization/membership.html#how_to_join

Association for Computing Machinery
https://campus.acm.org/Public/QuickJoin/interim.cfm

IEEE Computer Society
www.computer.org/join/
The British Computer Society
www.bcs.org/bcs/join/
`

5

http://www.acm.org/
http://www.bcs.org/bcs/join/
http://www.computer.org/join/
https://campus.acm.org/Public/QuickJoin/interim.cfm
http://www.eatcs.org/organization/membership.html#how_to_join
http://www.fmeurope.org/fme/member.htm
http://www.lms.ac.uk/contact/membership.html
http://www.lms.ac.uk/
http://www.eatcs.org/
http://www.fmeurope.org/

FACS FACTS Issue 2006-1 March 2006

6

On the Verified-by-Construction Approach
Michael Butler, University of Southampton

Introduction

At the VSTTE (Verified Software: Theories, Tools, Experiments) conference
[http://vstte.inf.ethz.ch/] held in ETH Zürich in October 2005, Tony Hoare and
Jay Misra presented a vision of an international Grand Challenge to construct a
program verifier. This vision appears to be having a very powerful catalysing
effect on getting researchers in all manner of formal development approaches
to pool resources and work towards more common goals. This is borne out by
the large gathering of top researchers at the VSTTE conference and by the
subsequent establishment of working groups set up to refine the challenge
further. This article is my attempt at making the case for the so-called
verification-by-construction approach to formal development and the
contribution it can make to the challenge of verified software.

Why verification-by-construction is important

Much discussion on the need for a powerful program verifier seems to contain
the following underlying assumptions:

• That a program verifier will be used mostly to verify programs
• That when verification fails it is because the program contains errors

While a powerful program verifier is a very valuable tool for programmers, it
does not help them construct a verifiable program in the first place. Equally, the
quality of any verification is dependent on the validity of the formal properties
against which a program is checked. The verification-by-construction approach
helps developers who want to construct reliable software systems by
addressing the following questions:

• How do we construct properties against which to verify our software?
• How do we construct our software so that the verification will succeed?

The verification-by-construction approach is about providing design tools

that help developers produce reliable software. It broadens the focus away from
just being analysis of the finished product and addresses better the
development process.

How can verification-by-construction be achieved?

Verification by construction can be achieved by having a formal framework in
which models are constructed at multiple levels of abstraction and related by

http://vstte.inf.ethz.ch/

FACS FACTS Issue 2006-1 March 2006

7

refinement1 relations. The highest levels of abstraction are used to express the
required behaviour in terms of the problem domain. The closer it is to the
problem domain, the easier it is to validate against the informal requirements,
i.e., ensure that it is the right specification. The lowest level of abstraction
corresponds to an implementation or to a specification from which an efficient
implementation can be derived automatically. Also critical in this framework are
mechanisms for composing and decomposing models. Composition can be
useful for building up specifications by combining models incorporating different
requirements. Decomposition is important for relating system models to
architectures of subsystem models and subsequent separate refinement of
subsystems.

Ensuring that two models, M1 and M2, are in a refinement relation may
be achieved in one of two ways:

1) Posit-and-Prove: The developer provides both M1 and M2 and uses tools to
verify that M1 is refined by M2. In some cases this might be possible using a
model checker. Alternatively a tool will generate proof obligations which can be
verified using powerful theorem provers or possibly checked using model
checkers. Typically this approach requires properties such as invariants and
variants to be provided by the developers.

2) Transformational Approach: The developer provides M1 and applies a
transformation that automatically constructs M2 in a way that guarantees
refinement. This might result in the generation of side conditions that will need
to be verified but discharging these should be a lot less effort than proving that
M1 is refined by M2 in the posit-and-prove way.
 One can immediately see how the transformational approach helps
developers to construct software such that the verification will succeed.
Unfortunately a fully transformational approach for a broad range of problems
and solutions is far from being realised so that the posit-and-prove approach will
rule for the foreseeable future. It might not appear immediately clear how the
posit-and-prove approach helps developers to construct software for which the
verification will succeed since the developer is expected to provide M2 as well
as M1. This is where having multiple levels of abstraction is important. Typically
there is a large abstraction gap between a good formal specification, i.e., one
that is easy to validate against the requirements, and an efficient
implementation. This gap means it is more difficult to be guided by the
specification when constructing an implementation. By having smaller
abstraction gaps between a model M1 and its intended refinement M2, it is
more natural to be guided by M1 when constructing M2. Typically a refinement
step incorporates a design decision about how some effect is achieved or
represents an optimization of the design. With a small abstraction gap, the
construction of M2 is driven by both M1 and the desired design decision or
optimization. When the construction of M2 is guided by M1, then the verification
that M2 refines M1 is more likely to succeed.

1 According to dictionary.com, ‘to refine’ means ‘to reduce to a pure state’. Ironically our use of the term has the exact
opposite meaning. The term ‘reify’ (as used by Cliff Jones and others) is perhaps more appropriate for what we do but is
far less widespread. I expect we are stuck with ‘refine’.

FACS FACTS Issue 2006-1 March 2006

8

A halfway house between transformational and posit-and-prove can be
envisaged, where certain patterns of model and refinement can be captured
and used in the construction of refinements. This is a more pragmatic idea than
transformational refinement in that the pattern might not guarantee the
correctness of the refinement2. Instead M2 would be constructed from M1 by
application of a pattern and the correctness of the refinement would be proved
in the usual posit-and-prove way. Ideally the pattern should provide much of the
ancillary properties (e.g., invariants, tactics) required to complete the proof.

Models versus Properties

In a refinement approach one does not necessarily distinguish between
properties and models. Essentially we are working with models in a modelling
language and the important property to be proved of some model M2 is that it is
a refinement of some other model M1. In doing this, we may need ancillary
properties like invariants, variants and assertions. Good tools can help us
discover these ancillary properties as part of the effort of trying to prove a
refinement. So the answer to the question ‘what properties should we prove of a
model?’ is ‘those properties that allow us to show that it is a refinement of its
abstraction’. For the most abstract models, the important property is that they
satisfy the requirements of the problem domain. This is an informal check which
can sometimes be aided by ancillary properties. Within a particular framework
there may be differing strengths of refinement. A weaker notion might capture
the preservation of safety behaviour, while stronger notions might capture
preservation of liveness and/or fairness.

With a refinement approach the 'creative' input in a development is a
collection of explicit models at different levels of abstraction. The invention of
ancillary properties is dictated by the need to prove refinement between these
explicit models. From an engineering perspective, I would argue that an explicit
model is a fairly natural thing to have to create because one can easily get a
feeling of 'completeness' of the model (at a certain level of abstraction). When
creating properties rather than models I find it is more difficult to achieve that
sense of 'completeness'.

In my experience, refinement is never purely top down from most to least
abstract. The reason is that it is difficult to get the abstract model precisely right.
One usually starts with an idealistic abstract model because that is easy to
define. As refinement proceeds and more architectural and environmental
details are addressed it often becomes clearer how the ideal abstract model
needs to be modified to reflect reality better. Modifications to some level of
abstraction will ripple up and down the refinement chain. This is not a weakness
of the refinement approach per se, rather a reflection of the reality of
engineering of complex systems.

It goes without saying that the refinement relation should enjoy some
form of transitivity. I say ‘some form of transitivity’ because refinement is based
on comparing some notion of what can be observed about a model and it is
useful to be able to modify what can be observed at different levels of
abstraction. In particular, the interface to a system is usually described

2 A refinement M2 is correct with respect to some model M1 when M2 refines M1.

FACS FACTS Issue 2006-1 March 2006

9

abstractly and may need to be made much more concrete at decomposition or
implementation levels. In such cases, the observable behaviour is not directly
comparable, but needs to be compared via some mapping and transitivity of
refinement is via composition of mappings.

Other points in favour of verification-by-construction

The verification-by-construction approach encourages verification of designs
and not just verification of programs. From an engineering perspective, it is
possible that there is a greater payoff from verifying designs rather than
programs. Does it not seem more likely that a design error would have a
detrimental impact on system reliability than a programming error?

As well as supporting verification of designs and implementations, good
formal modelling languages encourage a rational design process. The use of
good abstractions and simple mathematical structures in modelling can lead to
cleaner, more rational system architectures that are easier to understand and
evolve than architectures developed using less disciplined approaches. Being
able to verify a system is not enough. It is also important to be able to test,
maintain and evolve it. This is facilitated by rational design.

The inclusion of annotations such as invariants and assertions in
programming languages (e.g., Eiffel, Spark Ada, JML, Spec#), along with
associated analysis tools, provide powerful support for programmers. However,
this approach is not enough on its own as these annotations are designed to
specify properties about programs but do not easily allow for reasoning about
the contribution an individual program makes to the overall reliability of a
system. Control systems, interactive systems and distributed systems involve
multiple agents (users, environments, new programs, legacy components) all of
which contribute to the reliability of a system. Individually the agents may be
very complex so reasoning about compositions of agents in all their gory detail
may be infeasible. Instead, there is evidence that it will be feasible to reason
about complex systems through good use of abstraction, refinement and
decomposition.

When verifying a program directly one is having to reason about a
number of issues simultaneously; the problem to be solved, the data structures
used in the solution and the algorithmic structures used in the solution. If these
issues can be factored out and dealt with separately as much as possible, the
proof obligations can be simplified and the reasoning made more manageable.
Abstraction and refinement supports this factorisation. It is often possible to
model and reason about how a strategy solves a problem in an abstract way
using abstract algorithmic and data structures. This abstract solution can then
be optimized by introducing more concrete algorithmic and data structures
through refinement. Reasoning about these optimizing refinements no longer
requires reasoning about the original problem as this will have been dealt with
by the earlier refinement. By keeping the models as abstract as possible at
each level, we will have simpler proof obligations to discharge. At higher levels
of abstraction we focus the reasoning more on the problem domain and less on
the details of the particular solution.

FACS FACTS Issue 2006-1 March 2006

10

Further questions

Which notations should be used? My own experience is that one can go a
long way with set theory and logic as used, for example, in Z, VDM and B.
Dealing with reactive and distributed systems in these notations requires richer
notions of refinement and decomposition, but not necessarily major extensions
to the notations. In cases it is appropriate to augment set theory and logic with
notations such as process algebra and temporal logic.

What type of systems should we work on in the grand challenge? I am
especially interested in multi-user, distributed systems and in control systems
involving an environment and believe these will provide many interesting
challenges.

What about the link to programming languages? To some extent, the
choice of particular programming language is not so important in the
verification-by-construction approach. What matters is that a sound mapping
can be made between the lower level abstractions used in verification-by-
construction and the constructs of target programming languages. There is
however an interesting overlap between this mapping and important research in
programming language design which tries to improve programming abstractions.
In particular I am thinking of:

• Declarative styles of programming
• Atomicity and transactional support for concurrent programming
• Abstractions for structured data (e.g., abstractions of XML messages,

abstractions of pointer structures)

Clearly, better programming abstractions will make it easier to bridge the gap
between models and programs.

The challenge

To a large extent the required theory to support verification-by-construction
already exists. The challenge is to provide a powerful set of tools to support
abstraction, refinement and decomposition. In achieving this, we should strive to
achieve as much integration as possible and avoid silos. We should also exploit
as much of the existing and future advances in theorem proving and model
checking as possible, as well as advances in programming language design,
program verification and automated program generation. As they evolve, the
support tools should be applied to the development of interesting software-
based systems. No doubt interesting theoretical advances will be identified and
achieved along the way as well. █

FACS FACTS Issue 2006-1 March 2006

11

FACS FACTS Issue 2006-2

Call for Submissions

Deadline 19 May 2006

We welcome contributions for the next issue of FACS FACTS, in
particular:

• Letters to the Editor
• Conference reports
• Reports on funded projects and initiatives
• Calls for papers
• Workshop announcements
• Seminar announcements
• Formal methods websites of interest
• Abstracts of PhD theses in the formal methods area
• Formal methods anecdotes
• Formal methods activities around the world
• Formal methods success stories
• News from formal methods-related organizations
• Experiences of using formal methods tools
• Novel applications of formal methods
• Technical articles
• Tutorials
• Book announcements
• Book reviews
• Adverts for upcoming conferences
• Job adverts
• Puzzles and light-hearted items

Please send your submissions (in Microsoft Word, LaTeX or plain text) to
Paul Boca [editor@facsfacts.info], the Newsletter Editor, by 19 May 2006.

If you would like to be an official FACS FACTS reporter or a guest columnist,
please contact the Editor.

mailto:editor@facsfacts.info

FACS FACTS Issue 2006-1 March 2006

12

Obituary: F.X. Reid
Victor Zemantics

The world of theoretical computer science was devastated last night by the
announcement of the death of that great pioneer, teacher, raconteur, bon vivant
and serial philanderer, Professor F. X. Reid. Speaking from Reid’s villa in
Marsascala, his physician, Dr. de Bono, told reporters:

‘Not since the death of Jean Parisot de la Vallette have the
people of Malta so mourned a resident alien. Professor
Reid fought his infirmity with the implacability with which,
so I’m told, he was notorious.’

He was then observed to shed a small tear.
Tributes have been coming in from all over the world3. A special mass

has been announced in St Peter’s in Rome and a number of prominent Anglican
cathedrals have already begun a somewhat unseemly wrangle over the
possession of his bones. Poet’s Corner has yet to put in a bid.

Details of the great man’s life are not so much hard to come by as
impossible to verify, or, at least, believe. Born ‘in the early 1930s’ in Przemsyl
and christened Francis Xavier Rzyzryrd (‘a bad hand at Scrabble’, as he
quipped later in life), he was educated privately (‘Despite my name, my parents
were dismissive of the Jesuits – name one Jesuit mathematician!’), before
entering the University of Vienna (‘at a remarkably early age’), to study
philosophy. He quickly transferred to Gottingen (‘Wittgenstein or somebody
made a heavy pass at me.’), where he soon attracted the attention of David
Hilbert, among others. At this point, the record becomes obscure. Rzyzryrd
claims that his exposure to the Abstract Algebraists at Gottingen prompted him,
not only to invent Universal Algebra (‘a rather obvious generalization’) but to
see an application for it in the theory of abstract data types and algebras of
processes (‘My first attack on the formalization of computability preceded those
of Church and Turing and was remarkably prophetic, given the later
development of strongly typed procedural languages.’) Unfortunately,
Rzyzryrd’s PhD thesis, if it ever existed, was destroyed during the firebombing
of Dresden4.

By this time, Rzyzryrd, who now styled himself Reid, was in Bletchley
Park. Again, due to the top secret nature of the decryption work going on there,
there are no records to back up his claim that: ‘If it were not for me, the Bismark
would still be afloat’ nor his accusation that ‘Alan Turing or somebody made a
heavy pass at me’.

It was at Bletchley that Reid first encountered electronic computers. I
think we can discount his claim to have written a primitive version of Pacman for
the Colossus machine, but it was certainly from this period that his principal
research effort originates. ‘My first inkling as to how recursive procedures could
be implemented came in the canteen at Station X, watching trays being stacked
and unstacked; anything to take my mind from Spam fritters!’) His first major

3 Except Oxford, of course, where they affect not to have heard of him, or, indeed, anybody else.
4 Just why all copies of the thesis were in Dresden has yet to be explained.

FACS FACTS Issue 2006-1 March 2006

13

discovery (unattributed), the wash-rinse cycle is said to date from his time at
Bletchley (‘It took weeks from the laundry to come back; fortunately I had two
pairs of socks’).

At the conclusion of hostilities in Europe, Reid sought to join Turing in
Manchester at the ACE project, but apparently Turing ‘felt nervous in my
company, for some reason.’ Instead, Reid began a peripatetic existence,
moving (and being moved on) from University to University seeking and
occasionally finding academics with whom to collaborate. Karl Adam Petri,
Dana Scott, Christopher Strachey, Donald Knuth, Robin Milner, Tony Hoare,
Cliff Jones, David Turner and Antoni Mazurkiewicz are just some of the leading
theoreticians who found an urgent need to be elsewhere when he turned up on
their doorsteps.

Nevertheless, he pursued his work, publishing his celebrated ‘Redundant
Sock Theorem’ (an application of Shannon’s information theory to Laundry
Science) in 1949, his study of the stochastics of mis-delivered mail (a profound
influence of the development of the notion of packet-switching), in 1953 and in
the period from 1961 to 1985, a series of ground-breaking papers culminating in
the publication of his General Theory of Generality (a marriage of Scott’s
recursive domains and non-standard logic). This work is still not fully
understood and, indeed, probably never will be.

Reid’s acting career is much less widely known, probably for good
reasons. While I am not convinced that he did actually stand in for William
Hartnell in the first series of Dr. Who, his height (not to mention his somewhat
precise mode of speech) would have made him ideal as a Dalek. His sequence
of commercials for a well known brand of haemorrhoid ointment is now,
thankfully, forgotten.

His non-scientific writings have also been unnoticed. His first novel
‘Legless in Gozo’, written shortly after moving to Malta, ‘to avoid the Yob culture
of Hampstead and such places’, remains unpublished, although Reid’s literary
agent, Tony Bowdler, maintains that it is

‘a masterpiece – a synthesis of Proust, J. K. Rowling and the
Marquis de Sade…it is not fully understood and probably never will
be.’

A thinly disguised autobiography, it inevitably contains a variety of passages in
which various eminent people make heavy passes at the narrator.
 But it is to Malta that we owe a resurgence in Reid’s scientific creativity.
Writing always for obscure publications, such as the FACS newsletter, FACS
FACTS, he continued to extend and elaborate his work on non-Bayseian
probabilistic cube-complex automata, asynchrony theory and deadlock
taxonomies. His magnum opus, the as yet unpublished Principia Informatica, a
work not fully understood, etc., was produced during this period. There are
rumours, some ugly, of a second novel and a concertino for oboe and string
orchestra.
 And what of Reid’s legacy? This is a difficult question to answer, or even
contemplate5. Was he, as he claimed, the embodiment of the Zeigeist always at
the front line of the burgeoning discipline of informatics, always anticipating the

5 At least with a straight face.

FACS FACTS Issue 2006-1 March 2006

work of others and modestly declining to take the credit? Or was he merely the
figment of a warped imagination? Time may tell, but I certainly won’t. █

BCS-FACS Evening Seminar Programme (2006)

9 November Professor Ursula Martin
 Queen Mary, University of London

4 September Professor Peter Ryan
 University of Newcastle

The Computer Ate my Vote (starts at 6pm)

21 June Dr Anthony Hall
 Independent Consultant

Realising the Benefits of Formal Methods

24 April Professor Cliff Jones
 University of Newcastle

Specifying Systems that Connect to the Physical
World

All seminars are held at the BCS London Offices, near Covent
Garden:

BCS London Offices

First Floor, The Davidson Building
5 Southampton Street

London WC2E 7HA

If you would like at attend any of these seminars, please contact
Paul Boca [mailto:Paul.Boca@virgin.net]. Unless otherwise
stated, all seminars start at 5.45pm, with refreshments served
from 5.15pm.

See http://www.bcs-facs.org/events/EveningSeminars for further
details.
14

http://www.bcs-facs.org/events/EveningSeminars
mailto:Paul.Boca@virgin.net
http://www.bcs-facs.org/events/EveningSeminars/

FACS FACTS Issue 2006-1 March 2006

15

Conference Announcements

The following are sponsored by BCS-FACS and/or considered of special
interest to BCS-FACS members:

April 2006
BCTCS 2006 – 22nd British Colloquium for Theoretical Computer Science
4–7 April
Swansea, UK
http://www.cs.swan.ac.uk/BCTCS2006

ZUM 2006 – 16th International Z User Meeting
25 April
Columbia, USA
http://www.zuser.org/zum2006/

June 2006
WADT 2006 - 18th International Workshop on Algebraic Development
1–3 June
Submission: 15 April
La Roche en Ardenne, Belgium
http://www.info.fundp.ac.be/~pys/WADT06

DisCoTec 2006 – Distributed Computing Techniques
13–16 June
Bologna, Italy
http://www.discotec06.cs.unibo.it/satellite.htm

CiE 2006 - Computability in Europe 2006. Logical Approaches to
Computational Barriers.
30 June – 5 July
Swansea, Wales
http://www.cs.swan.ac.uk/cie06

July 2006
CORDIE 06 – 1st International Symposium on Concurrency, Real-Time and
Distribution in Eiffel-Like Languages
4–5 July
York, UK
http://www-users.cs.york.ac.uk/~paige/cordie06.htm

http://www-users.cs.york.ac.uk/~paige/cordie06.htm
http://www.cs.swan.ac.uk/cie06/
http://www.discotec06.cs.unibo.it/satellite.htm
http://www.info.fundp.ac.be/~pys/WADT06/
http://www.zuser.org/zum2006/
http://www.cs.swan.ac.uk/BCTCS2006/

FACS FACTS Issue 2006-1 March 2006

16

August 2006
MFCSIT 2006 – 4th Irish Conference on Mathematical Foundations of
Computer Science and Information Technology
1–5 August
Submission: 17 April
Cork, Ireland
http://www.ucc.ie/info-mfcsit

FTSAS 2006 – Formal Techniques for Specification and Analysis and
Security
20 – 25 August
Santiago de Chile, Chile
http://www.fing.edu.uy/inco/eventos/ftsas06/index.html

FM2006 – Formal Methods 2006
21–27 August
Submission: 24 February
Ontario, Canada
http://fm06.mcmaster.ca

SAS 06 – 13th International Static Analysis Symposium
29 – 31 August
Submission: 14 May
Seoul, Korea
http://ropas.snu.ac.kr/sas06/

September 2006
SEFM 2006 – 4th IEEE International Conference on Software Engineering and
Formal Methods
11–15 September
Pune, India
http://www.iist.unu.edu/SEFM06/

JMLC 2006 – Joint Modular Languages Conference 2006
13–15 September
Submission: 7 April
Oxford, UK
http://cms.brookes.ac.uk/computing/JMLC2006

ICFP 2006 – 11th ACM SIGPLAN International Conference on Functional
Programming
18–20 September
Submission: 7 April
Oregon, USA
http://icfp06.cs.uchicago.edu/

http://icfp06.cs.uchicago.edu/
http://cms.brookes.ac.uk/computing/JMLC2006
http://www.iist.unu.edu/SEFM06/
http://ropas.snu.ac.kr/sas06/
http://fm06.mcmaster.ca/
http://www.fing.edu.uy/inco/eventos/ftsas06/index.html
http://www.ucc.ie/info-mfcsit/

FACS FACTS Issue 2006-1 March 2006

17

September 2006
FDL06 – Forum on specification and Design Languages
19–22 September
Submission: 10 April
Darmstadt, Germany
http://www.ecsi-association.org/ecsi/fdl/fdl06/

October 2006
ICFEM 2006 – 8th International Conference on Formal Engineering Methods
30 October – 3 November
Submission: 12 May
Macao, China
http://www.iist.unu.edu/icfem06

November 2006
FMCO 2006 – 5th International Symposium on Formal Methods for Objects
and Components
7–10 November
Submission: 5 September
CWI, Amsterdam
http://fmco.liacs.nl/fmco06.html

IsoLA 2006 – 2nd International Conference on Leveraging Applications of
Formal Methods, Verification and Validation
15–19 November
Submission: 2 June
Cyprus
http://sttt.cs.uni-dortmund.de/isola2006/

ICTAC 2006 – 3rd International Colloquium on Theoretical Aspects of
Computing
20–24 November
Submission: 1 May 2006
Gammart/Tunis, Tunisa
http://www.iist.unu.edu/ICTAC2006

December 2006
BCS-FACS Christmas Meeting on Teaching Formal Methods
15 December
London, UK
http://www.bcs-facs.org/events/xmas2006.html

For further conference announcements, please visit the Formal Methods
Europe (FME) website [http://www.fmeurope.org], the EATCS website
[http://www.eatcs.org] and the Virtual Library Formal Methods website
[http://vl.fmnet.info/meetings].

http://vl.fmnet.info/meetings
http://www.eatcs.org/
http://www.fmeurope.org/
http://www.bcs-facs.org/events/xmas2006.html
http://www.iist.unu.edu/ICTAC2006
http://sttt.cs.uni-dortmund.de/isola2006/
http://fmco.liacs.nl/fmco06.html
http://www.iist.unu.edu/icfem06
http://www.ecsi-association.org/ecsi/fdl/fdl06/

FACS FACTS Issue 2006-1 March 2006

18

On the Formal Semantics of the COMEFROM
Statement
F.X. Reid

[Editors’ note: Surprisingly, some of the early work of F. X. Reid has been
almost entirely ignored and the following paper, reprinted here from the
Proceedings of the Huddersfield Philosophical Society, is no exception. In his,
as yet unpublished Autobiography ‘Biographia Informatica’, which we have been
privileged (or to be more accurate, badgered) to examine, Reid writes:

I confess to have been disappointed by the reception of the
Huddersfield paper. Its originality and importance can surely not be
exaggerated extending as it did conventional notions of control flow
and introducing at one blow, a combination of backtracking and
non-determinism. Although developed in the spirit of the Floyd flow-
diagram paradigm, it was quite capable of an extension to the more
block-structured approach. However, my paper on the while P
undo S odnu construct failed to appeal to the Zeigeist and had to
be withdrawn. Such was the short-sightedness of my erstwhile
colleagues.

… and so on. We sought permission from Huddersfield to print the following
extract but learned that the Society was no longer extant, as shortly after the
publication of the paper it broke up following what one survivor described as ‘a
most un-philosophical punch-up in the Rat and Feathers’, adding darkly,
‘publish the wretched thing – if you dare!’

Our temerity thereby challenged – here it is. We skip the introduction, as we
found it somewhat verbose.]

2 The Basic model

We consider a program in the abstract as consisting of:

1. A finite set V of variable names. For simplicity, we assume all variables
to take values from the set Z of integers.

2. A finite set N of lines and a total order NNR ×⊆ . Write on for the
unique element of N such that 0nn ≤ all Nn∈ and write ∞n for the
unique element of N such that nn ≤∞ all Nn∈ . We define)(nsucc to be
the unique line covered by n , unless ∞= nn and we define ∞∞ = nnsucc)(.

3. A labelling function StatN →:λ , where Stat is a set of statements.
Statements have one of the following three forms.

FACS FACTS Issue 2006-1 March 2006

19

Skip Statements: There is only one of these taking the form skip .

Assignment Statements: these take the form Ev = , where Vv∈ and E is an
arithmetic expression as in the programming language FORTRAN.

Comefrom Statements: these take the form nB comefromif where Nn∈ and
B is a Boolean expression as in FORTRAN.

[Editors’ note: In Reid’s original paper, expressions were defined syntactically,
using what he subsequently described as RBNF. The paper was, in fact, written
before the publication of the ALGOL report. At least it is dated before that
publication.]

3 Operational Semantics

We define a configuration of the program to be a pair][),(⊥→×∈ ZVNn ε ,
where }{⊥∪=⊥ ZZ , where ⊥ represents the totally undefined value. If

),(εσ n= , then we define nn =σ and εεσ = . Denote the set of all
configurations by Conf .

If][⊥→∈ ZVε and E is an arithmetic expression, then we define)(εE to be
the value obtain by substituting)(vε for each variable v appearing in E . If

=⊥)(vε for some v appearing in E , then =⊥)(εE . We make analogous
definitions for Boolean expressions.

If][⊥→∈ ZVε , ⊥∈Zz and Vv∈ , then we define





′
=′

=′
otherwise

if
)(

)](\[
v

vvz
vzv

ε
ε

If Conf∈′σσ , , then we define σσ ′−| as follows.

Skip. If)(σλ n is skip , then)(σσ nsuccn =′ and σσ εε =′ .

Assignment. If)(σλ n is Ev = , then)(σσ nsuccn =′ and)](\[σσσ εεε Ev=′ .

Comefrom. If true=)(εB , then)(nsuccn =′σ and))(,(σσσ λεε nundo∈′ ;
otherwise)(σσ nsuccn =′ and σσ εε =′ . Here }{))(,(ελεσ =nundo if)(σλ n is not
an assignment. Otherwise if)(σλ n is Ev = , then

})(:][{))(,(σσ εεελε =′→∈′= ⊥ EVnundo Z .

FACS FACTS Issue 2006-1 March 2006

20

A partial execution of a program is a sequence nσσ L1 such that 1σ is of the
form),(0 εn and 1| +− ii σσ , 1,,1 −= ni L . It is a total execution if in addition nσ is
of the form),(ε∞n and iσ is not of this form ni <<1 .

[Editors’ note: At this point, Reid explains that the program fragment

nxn

statementn
n

comefromif

skip

0

1

=′

+
L

has exactly the same effect as

nxn

statementn

gotoif 0

1

=′

+
L

As he makes rather a meal out of this rather obvious point, we omit it, together
with his remarks on what he calls the Reid-Church-Turing Thesis, which might
cause distress to those of a nervous or choleric disposition.]

Programs compute relations not functions. The relation computed by a program

][][⊥⊥ →×→⊆ ZZ VVF

is defined as follows. F∈′),(εε if and only if there exists a total execution

nσσ L1 such that),(01 εσ n= and),(εσ ′= ∞nn .

The following is an example program, in which }4,3,2,1{=V

skip
comefromif

4
103

:2
11

≠
=

=

x
xy

x

Applying the semantics, and representing a configuration by a triple),,(yxn , we
have possible executions

),0,4(|),0,2(|),,3(|)1,,2(|)1,1,3(|),1,2(|),,1(zzzzz −−−−−⊥−⊥⊥ .

Hence Fz ∈⊥⊥)),0(),,((for all Z∈z . In other words, the program acts as a
random number generator.

[Editors’ note: To return to ‘Biographia Informatica’, Reid writes:

FACS FACTS Issue 2006-1 March 2006

I regret not having included a section in which I demonstrated how
comefrom programs may be used to solve what are now called Sudoku
puzzles. It is a simple enough matter to Gödelise a Sudoku grid and to
construct a primitive recursive predicate done(n) with the property that
done(n) is true if and only if n is the Gödel number of a successfully
completed puzzle. However, the chairman of the Society, a Mr. Bauls,
convinced me (no easy task) that such puzzles would never enjoy any
popularity and I reluctantly omitted the section in question. A pity.

Reid finally summaries the paper at unnecessary length, and concludes with a
discussion of implementation. As this involves a detailed description of
Hermitian operators on Hilbert spaces, and as life is short, we have omitted it.
Of course, Reid now claims to have invented quantum computing.] █
BCS-FACS/FME Evening Seminar
Specifying Systems that Connect to the Physical World

Professor Cliff Jones

University of Newcastle

24 April 2006

5.45pm

We all know about developing programs from formal specifications. For
"closed" systems, such methods offer a gold standard against which less
formal approaches can be measured. But there is an increasing demand for
"open systems" which interact with the physical world. The overall system
might include sensors and actuators whose signals flow to and from some
control program. The task of obtaining a specification for the control program
can be more challenging than that of deriving a program from that
specification. This talk argues that recording an initial specification of the
behaviour of the whole system in the physical world gives a way to derive a
specification of a control system and also to record precisely the
assumptions being made about those components which sit outside the
computer.

Refreshments will be served from 5.15pm

The seminar is free of charge and open to everyone. If you would like to
attend, please email Paul Boca [Paul.Boca@virgin.net] your name by 19
April 2006. Pre-registration is required, as security at the BCS Offices is
tight.
21

mailto:Paul.Boca@virgin.net

FACS FACTS Issue 2006-1 March 2006

22

Book Announcement

Modern Formal Methods and Applications
Gabbar, Hossam A. (Ed.)
2006, XXIII, 197 p., Hardcover
ISBN: 1-4020-4222-1

Formal methods is a robust approach for problem solving. It is based on logic
and algebraic methods where problems can be formulated in a way that can
help to find an appropriate solution. This book shows the basic concepts of
formal methods and highlights modern modifications and enhancements to
provide a more robust and efficient problem solving tool.

Applications are presented from different disciplines such as engineering where
the operation of chemical plants is synthesized using formal methods.
Computational biology becomes easier and systematic using formal methods.
Also, hardware compilation and systems can be managed using formal
methods.

This book will be helpful for both beginners and experts to get insights and
experience on modern formal methods by viewing real applications from
different domains.

Written for:

Undergraduate and graduate students, industrial professionals in engineering
systems

Keywords:

Formal approach for biological systems
Formal approach for engineering systems
Formal methods
Language specifications
Software and hardware specifications

Paid-up FACS members are entitled to a 30% discount on Springer
titles. If you are interested in claiming this discount, please contact
Springer directly on journalslondon@springer-sbm.com .

mailto:journalslondon@springer-sbm.com

FACS FACTS Issue 2006-1 March 2006

23

PhD Abstracts

Name Greg Reeve

Title A Refinement Theory for µ-Charts

Supervisor Prof. Steve Reeves
Institute University of Waikato

Examiners Prof. Martin Henson & Prof. Jonathan Bowen

Awarded December 2005

URL http://www.cs.waikato.ac.nz/pubs/2005/pdfs/reeve-thesis.pdf

Keywords State charts, µ-Charts, Z, Logic, Refinement

The language µ-Charts is one of many Statechart-like languages, a family of
visual languages that are used for designing reactive systems. We introduce a
logic for reasoning about and constructing refinements for µ-charts. The logic
itself is interesting and important because it allows reasoning about µ-charts in
terms of partial relations rather than the more traditional traces approach. The
method of derivation of the logic is also worthy of report. A Z-based model for
the language µ-Charts is constructed and the existing logic and refinement
calculus of Z is used as the basis for the logic of µ-Charts. As well as describing
the logic we introduce some of the ways such a logic can be used to reason
about properties of µ-Charts and the refinement of abstract specifications into
concrete realisations of reactive systems.

A refinement theory for Statechart-like languages is an important
contribution because it allows us to formally investigate and reason about
properties of the object language µ-Charts. In particular, we can conjecture and
prove general properties required of the object language. This allows us to
contrast possible language design decisions and comment on their
consequences with respect to the design of Statechart-like languages.

This thesis gives a comprehensive description of the µ-Charts language
and details the development of a partial relations based logic and refinement
calculus for the language. The logic and refinement calculus are presented as
natural deduction style proof rules that allow us to give formal proofs of
language properties and provide the basis for a formal program development
framework. The notion of refinement that is encoded by the refinement rules is
also extensively investigated. █

http://www.cs.waikato.ac.nz/pubs/2005/pdfs/reeve-thesis.pdf

FACS FACTS Issue 2006-1 March 2006

Preliminary Announcement

BCS-FACS Christmas Meeting on

Teaching Formal Methods – Practice and Experience

15 December 2005

BCS London Offices
First Floor, The Davidson Building

5 Southampton Street
London WC2E 7HA

http://cms.brookes.ac.uk/tfm2006/
http://www.bcs-facs.org/events/xmas2006.html

This workshop will give teachers of formal methods an opportunity to discuss
their experiences in this area, to share successes and failures, to identify
issues in teaching formal methods and discuss how they might be
addressed. Topics to be covered include:

• How to motivate the study of formal methods;
• Techniques for teaching formal methods;
• Handling students with limited mathematical backgrounds;
• Linking formal methods and software development;
• Tools for teaching formal methods (including demonstrations);
• How to assess formal methods.

For more information, and registration details (discounts for BCS-FACS
members), please visit either of the web pages above, or e-mail Professor
David Duce [daduce@brookes.ac.uk].
24

mailto:daduce@brookes.ac.uk
http://www.bcs-facs.org/events/xmas2006.html
http://cms.brookes.ac.uk/tfm2006/

FACS FACTS Issue 2006-1 March 2006

FACS membership application/renewal (2006)

Title (Prof/Dr/Mr/Ms) _____ First name _____________ Last name____________

Email address (required for options * below)________________________________

BCS membership No. (or sister society name + membership number)

__

Address ___

Postcode ______________ Country ____________________________

I would like to take out membership to FACS at the following rate:
� £15 (Previous member of BCS-FACS now retired, unwaged or a student)
� £15 (Member of BCS or sister society with web/email access)*
� £30 (Non-member or member of BCS or sister society without web/email access)

ALL MEMBERS WILL RECEIVE FREE ELECTRONIC ACCESS TO THE FORMAL
ASPECTS OF COMPUTING JOURNAL UNTIL THE END OF DECEMBER 2006

I would like to subscribe to Volume 18 of the FAC journal (paper copy) at the following rate:
� £48

The total amount payable to BCS-FACS in pounds sterling is £ 15 / 30 / 63 / 78
(delete as appropriate). I am paying by:

� Cheque made payable to BCS-FACS (in pounds sterling)
� Credit card via PayPal (instructions can be found on the BCS-FACS website)
� Direct transfer (in pounds sterling) to:

 Bank: Lloyds TSB Bank, Langham Place, London
 Sort Code: 30-94-87
 Account Number: 00173977
 Title of Account: BCS-FACS

If a receipt is required, please tick here � and enclose a stamped self-addressed
envelope.

Please send completed forms to:

Dr Paul P Boca
PO BOX 32173
LONDON N4 4YP
UK
25

For FACS use only

Received by FACS Date: Initials:

Sent to Springer Date: Initials:

Actioned by Springer Date: Initials:

http://www.bcs-facs.org/
http://www.bcs-facs.org/paymentoffees.html
http://www.bcs-facs.org/sister_organisations.html

FACS FACTS Issue 2006-1 March 2006

FACS Committee
Executive Offivers

Jonathan Bowen
FACS Chair
ZUG Liaison

Roger Carsley
Minutes

Secretary

Judith Carlton
Industrial Liaison

Mark D’Inverno
Model-based
specification
26

Jawed Siddiqi
Treasurer

John Cooke
FAC Journal

Liaison

Paul Boca
 Secretary and
 Newsletter Editor

Margaret West
BCS Liaison

John Derrick
Refinement
John Fitzgerald
 FME Liaison
 SCSC Liaison
Rick Thomas
LMS Liaison
Executive Officers
Rob Hierons
Formal methods

and testing

FACS FACTS Issue 2006-1 March 2006

FACS is always interested to hear from its members and keen to recruit
additional helpers. Presently we have vacancies for officers to liaise with other
specialist groups such as the Requirements Engineering group and the
European Association for Theoretical Computer Science (EATCS), and to
maintain the FACS website. If you are able to help, please contact Professor
Jonathan Bowen, the FACS Chair, at the contact points below:

You can also co

Please feel free
openly on the F
list to pose que
area. Note: only
everyone at http
BCS FACS
c/o Professor Jonathan Bowen (Chair)
London South Bank University
Faculty of BCIM
Borough Road
London SE1 0AA
United Kingdom

T +44 (0)20 7815 7462
F +44 (0)20 7815 7793
E info@bcs-facs.org.uk
W www.bcs-facs.org
ntact the other officers via this email address.

 to discuss any ideas you have for FACS or voice any opinions
ACS mailing list [FACS@jiscmail.ac.uk]. You can also use this
stions and to make contact with other members working in your
 FACS members can post to the list; archives are accessible to
://www.jiscmail.ac.uk/lists/facs.html.
Coming Soon in FACS FACTS….

And More…

TRain Column Conference reports

Details of upcoming FACS Evening Seminars

Report on GC6 activities

Report on History of Formal Methods Panel

Book Reviews
27

http://www.bcs-facs.org/
mailto:info@bcs-facs.org.uk
http://www.jiscmail.ac.uk/lists/facs.html
mailto:FACS@jiscmail.ac.uk

	Contents
	Editorial
	On the Verified-by-Construction Approach
	Obituary: F.X. Reid
	Conference Announcements
	On the Formal Semantics of the COMEFROM Statement
	Book Announcement
	PhD Abstracts
	FACS Committee

