BCS Higher Education Qualifications

Level 4 Certificate in IT

Computer and Network Technology Syllabus

Version 4.1

July 2020

This qualification is regulated by one or more of the following: Ofqual, Qualifications Wales, CCEA Regulation or SQA.
Contents

1. Rationale .. 3
2. Aims .. 3
3. Objectives ... 3
4. Prior Knowledge Expected .. 4
5. Format and Duration of the Examination 4
6. Syllabus Detail ... 5
7. Recommended Reading List ... 6
8. Contact Points .. 6
1. **Rationale**

This module provides a foundation for all professional computer personnel in computer technology and related topics, in particular the areas of: number systems, hardware, operating systems, systems software, networks and system performance measurement.

2. **Aims**

- To develop an understanding of the principles underlying the architecture and organisation of computer systems.
- To introduce the fundamental building blocks of all digital computers and the operating principles of computer peripherals.
- To evaluate critically the performance data quoted for computer systems.
- To appreciate how computers communicate with each other across networks.

3. **Objectives**

Upon successful completion of this module, candidates will be able to demonstrate their competence in, and their ability to:

- Use Boolean algebra and other digital design techniques to construct simple digital circuits such as adders used to build computers.
- Understand different computer architectures.
- Use low-level instructions and addressing modes to construct a simple program.
- Read the technical specification of a PC and network systems, interpret the performance indicators, and explain their significance to non-computer personnel.
- Appreciate the importance of the memory hierarchy of a computer system and its peripherals.
- Describe the operating principles of commonly used peripheral devices, their characteristics and performance.
- Understand the role of system software.
- Use the Internet to find information on the performance of computer systems and trends in computer systems.
- Understand the way in which digital information is transmitted across networks, the characteristics of data paths and the need for modulation.
4. **Prior Knowledge Expected**

There are no specific entrance requirements for the Certificate in IT, however it is strongly recommended that all candidates register with an approved centre. Studying with an approved centre will deliver significant benefits.

Candidates are required to become a member of BCS, The Chartered Institute for IT to sit and be awarded the qualifications. Candidates may apply for a four year student membership that will support them throughout their studies.

5. **Format and Duration of the Examination**

The examination is a two hour closed book examination (no materials can be taken into the examination room) based on the syllabus in this document.

Examinations are held twice a year and are undertaken in normal examination conditions with one or more duly appointed invigilators.

The pass mark is 40%.
6. Syllabus Detail

<table>
<thead>
<tr>
<th>Category</th>
<th>Ref</th>
<th>Content</th>
</tr>
</thead>
</table>
| 1 FUNDAMENTALS | 1.1 | Representation of decimal integers (e.g. binary, hexadecimal) and the conversion of integers from one base to another
Representation of negative numbers, fractional numbers, and floating point numbers in binary form
Decimal to floating point conversion and vice versa, floating-point addition, limitations of floating point arithmetic |
| | 1.2 | Gates: AND, OR, NAND, NOR, EOR, inverter
Boolean algebra, simplification of logic equations, truth tables
Use Boolean algebra to construct digital circuits |
| | 1.3 | Sequential logic elements: D flip-flops, RS flip-flops, JK flip-flops
Simple logic circuits: Full adder, multiplexer, shift register, counter |
| | 1.4 | Current trends in digital design including use of programmable logic elements |
| 2 PROCESSOR ARCHITECTURE | 2.1 | The family of computers (mainframe, desktop, laptop, embedded, and tablet)
The concept of a stored program and the fetch/execute cycle
Structure of the CPU at the level of registers, buses, and functional units |
| | 2.2 | Instruction formats (one-, two-, three-address; register-to-register machines and load/store machines)
Computer instructions (data movement, arithmetical and logical, flow control)
The stack and its use in implementing subroutines and exceptions, local storage and recursion |
| | 2.3 | Trends in processor technology; pipelining, multicore processors, the limits of Moore's law
Information storage: The memory hierarchy from cache to secondary storage
The operation of solid state, magnetic and optical storage devices, their performance and characteristics |
| | 2.4 | The characteristics and performance of peripherals; for example, display devices, printers, keyboards etc Input/output techniques: peripheral polling, DMA, interrupt driven I/O |
| 3 INTRODUCTION TO OPERATING SYSTEMS AND SYSTEM SOFTWARE | 3.1 | The human interface; the operating principles and characteristics of printers, display devices, input devices, biometric devices, etc
Multitasking: interrupts, concurrency, scheduling, memory management and virtual memory |
| | 3.2 | System software: Internet browsers, email systems, security products (e.g. anti virus software)
System performance and its evaluation: definition, measurement and benchmark |
| 4 NETWORKS | 4.1 | Communication principles: characteristics of transmission media, LAN, WAN, Wi-Fi and wireless technologies
Protocols for data transmission: ISO 7-layer model for OSI, TCP/IP
The data link layer and typical protocols |
| | 4.2 | Communications equipment: modems, routers and bridges
The Internet
Malware: viruses, worms, Trojan horses, spyware and their effect on system reliability and performance |
| | 4.6 | Emerging trends and technologies in computer communications including the cloud |
7. **Recommended Reading List**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Texts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Tanenbaum, Andrew, S., Modern Operating Systems, Prentice Hall (4th Ed), 2014.</td>
<td>013359162X</td>
<td>978-0133591620</td>
</tr>
<tr>
<td>• Tanenbaum A. S., Computer Networks, Pearson (5th Ed), 2013. Pbk.</td>
<td>1292024224</td>
<td>978-1292024226</td>
</tr>
<tr>
<td>Other Texts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Reading

Students are expected to access a wide range of sources of information on IT hardware/software including journals, popular computer magazines, and the internet.

8. **Contact Points**

Email:
Customer Service team via www.bcs.org/contact

Phone:
UK: 01793 417424 or 0845 300 4417 (lo-call rate)
Overseas: +44 (0)1793 417424
Lines are open Monday to Friday, 08.15 a.m. to 5.45 p.m. UK time.

Website:
www.bcs.org/heq

Post:
BCS, The Chartered Institute for IT
3 Newbridge Square, Swindon, SN1 1BY
United Kingdom