Al Testing and Assurance

Bryan Jones

QAT Architect 2i

How do we test Al?

Challenges

- The Oracle Problem
 - No Expected Results
 - Non-Deterministic
 - Probabalistic Answers
- The code doesn't represent the algorithm
- Data Complexity & Volume
- Self-Optimising
- System Complexity
- Attempting to Mimic Human Abilities
- Bias
- Hallucinations/Confabulation
- Test Coverage?

Test Levels

Familiar

- Unit or Component testing,
- Integration testing
- End-to-End testing
- UAT

New

- Model Testing
- Data Testing
- Monitor in live

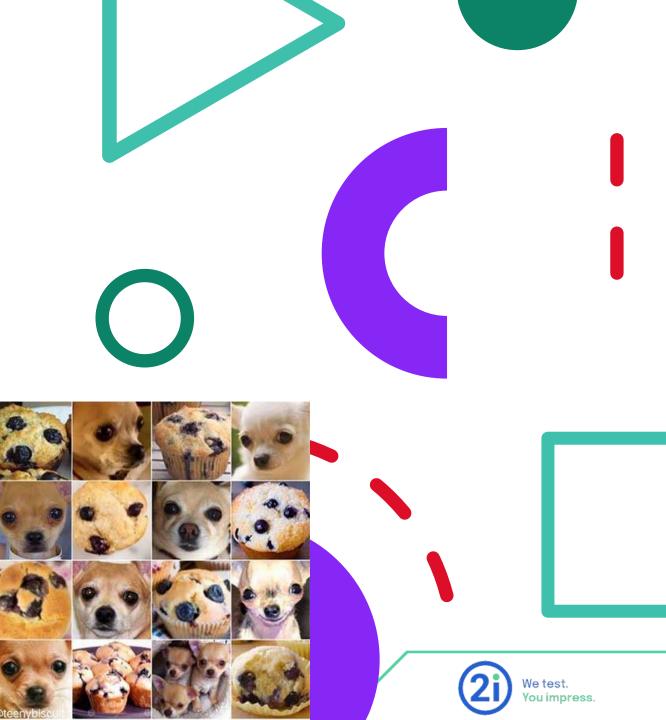
Component Test

"Automation without Requirements"

Data Test

"The code is not the algorithm."
The data defines the behaviour."

- Bias & Fairness
 - Don't forget Proxies
- Data Diversity and Representativeness
- Data Labelling and Annotation
- Data Splitting Problems
- Statistical Analysis

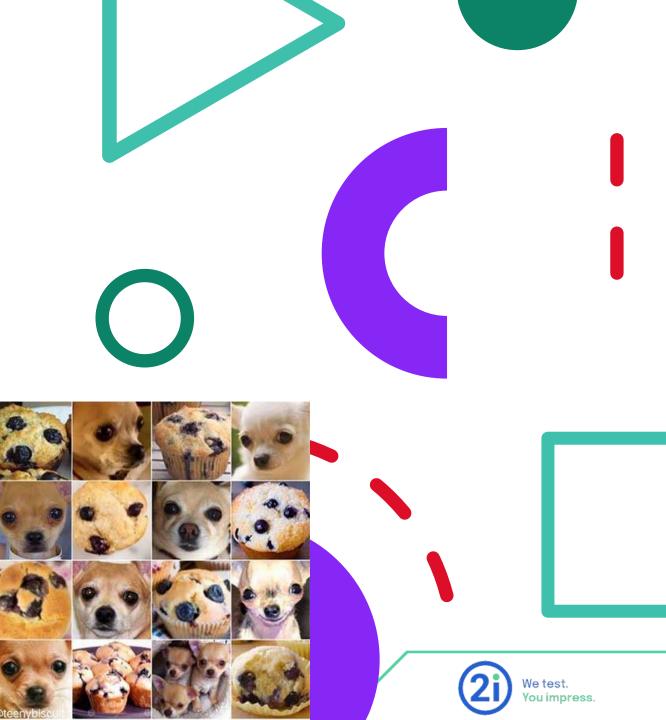

Integration Test

Familiar but ...

Probabilistic!

Chained Probabilities multiply

35% cat, 55% dog, 15% blueberry muffin


Integration Test

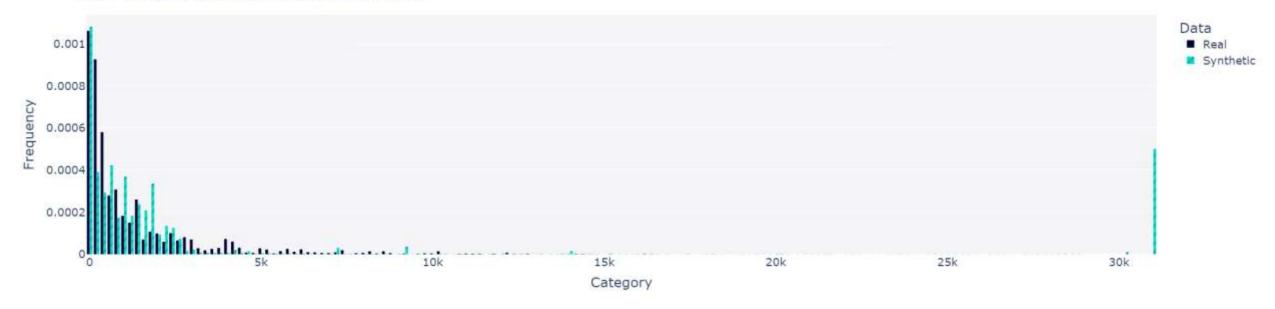
Familiar but ...

Probabilistic!

Chained Probabilities multiply

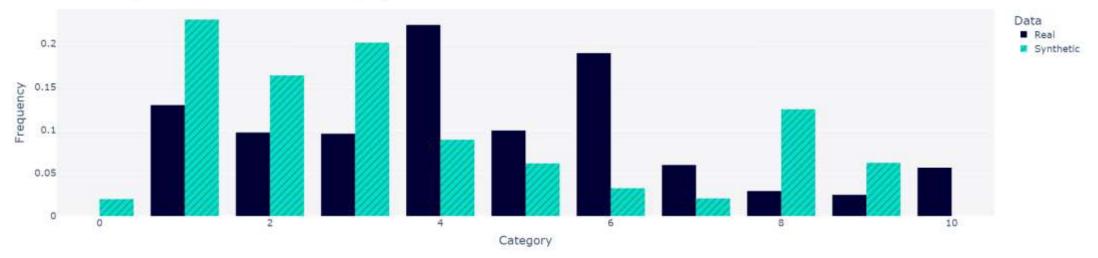
35% cat, 55% dog, 15% blueberry muffin

Model Testing

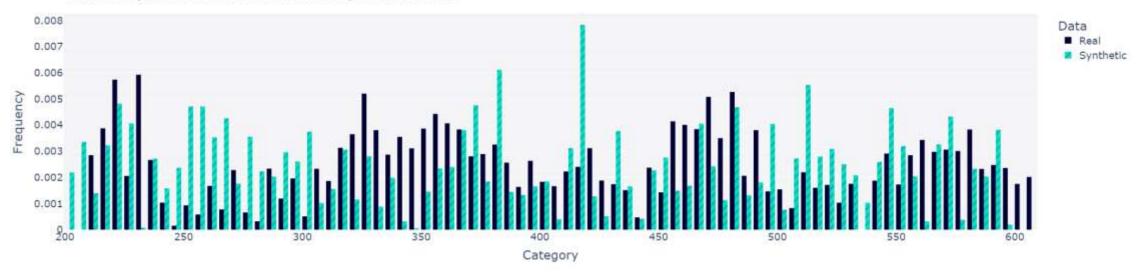

- Statistical in nature
- Large data volumes
- Complex to interpret
- Data Scientists are our friends

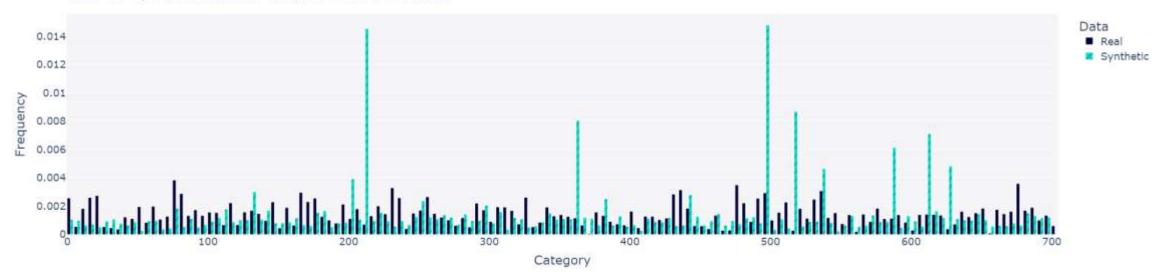
Still benefits from a Tester's curiosity, critical thinking, system thinking, and Question Asking!

Evaluating the Synthetic Data



Real vs. Synthetic Data for column 'Balance'


Real vs. Synthetic Data for column 'CountryKey'

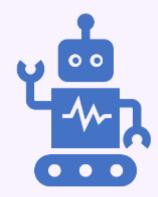


Real
Synthetic

Real vs. Synthetic Data for column 'RecipientAccountID'

Real vs. Synthetic Data for column 'SenderAccountID'

End-to-End


- Very Familiar
- Beware of complexity!
- Involve Experts to help decide what is a "Right" answer

UAT

Pretty much the same

But watch out for Automation Bias!

Monitor in Live

- Performance
- Drift
 - Context, Concept or Model Drift
 - Data Drift

- A11y
- Usability
- Security Check out Adversarial Testing
- Performance but ...

e.g. *Accuracy, Precision, Recall, F1-Score, Confusion Matrix, ROI (or value add), Programmability, Energy/Power, Throughput/latency, GOPS, frame rate, delay, cost, footprint

^{*}Accuracy measures how well your AI model performs on new or unseen data. Precision indicates the relevance of results to your target audience or problem. Recall shows how comprehensive the results are. F1-score is a measure of the balance between precision and recall.

Test Techniques

Explainability

A/B Testing

Parallel Testing

Statistical Analysis

Exploratory Testing

Use Experts

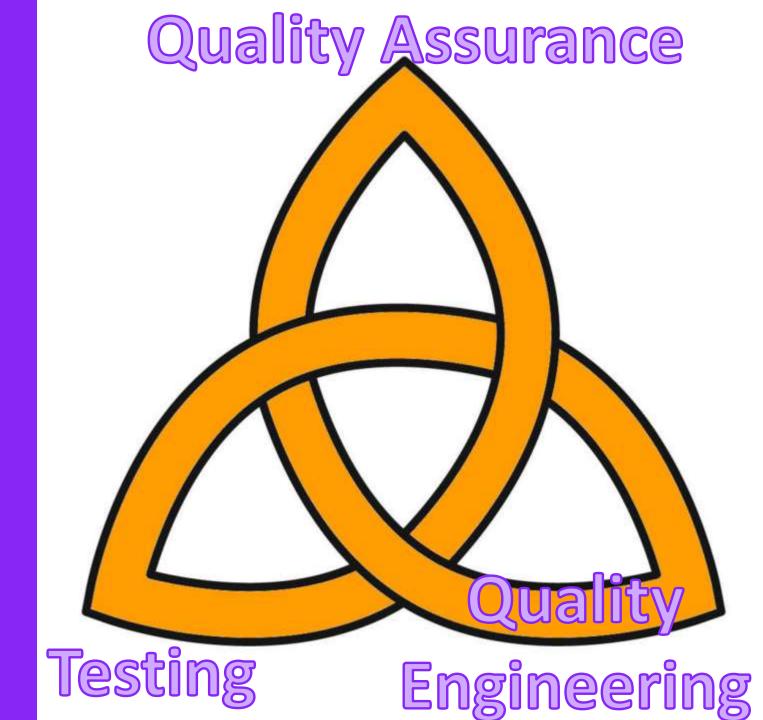
Pairwise/Orthogonal Testing

More Test Techniques

Metamorphic Testing

Adversarial Testing

Model Backtesting


Dual Coding/Algorithm Ensemble

Coverage Data

Cross Validation

Affordances Modelling

The Holy
Trinity

The 4 Factors of the AssureAi Quality Score

Accuracy

Ensuring AI systems produce accurate, reliable outputs that meet user requirements.

- Data Integrity
- Model Validation
- Continuous Monitoring
- Feedback Loops
- Compliance and Standards

Robustness

Ability of AI systems to maintain performance under varying conditions and against adversarial attacks.

- Adversarial Testing
- Data Diversity
- Fault Tolerance
- Scalability
- Security Measures

Explainability

Making AI decisions understandable to humans, including how and why decisions are made.

- Transparent Algorithms
- Feature Importance
- User-Centric Design
- Audit Trails
- Documentation

Performance

The speed of AI systems in executing tasks.

- Benchmarking
- Optimization
- Scalability Testing
- Latency Reduction
- Resource Management

Quality Assurance of AI - Accuracy

Definition of Quality: Ensuring AI systems produce accurate, reliable outputs that meet user requirements.

Data Integrity

Rigorous
 evaluation of
 the data and
 governance
 to ensure
 the quality of
 training
 datasets.

Model Validation

 Metrics and crossvalidation to assess the model's ability.

Continuous Monitoring

Establish
 monitoring
 systems to
 track AI
 performance
 and identify
 degradation
 over time.

Feedback Loops

Incorporate
 user
 feedback to
 continuously
 improve Al
 system
 outputs and
 user
 satisfaction.

Compliance and Standards

 Adhere to industry standards and regulations to ensure quality and build trust.

Quality Assurance of AI - Robustness

Definition of Robustness: Ability of AI systems to maintain performance under varying conditions and against adversarial attacks.

Adversarial Testing

 Evaluate the Al's resilience to adversarial attacks.

Data Diversity

Ensure
 training data
 encompasses
 a wide range
 of scenarios
 to improve
 model
 robustness.

Fault Tolerance

 Mechanisms for Al systems to handle errors gracefully and maintain functionality.

Scalability

 Design Al systems to be scalable, maintaining robustness as workload or data volume increases.

Security Measures

 Apply security best practices to protect Al systems from external and internal threats.

Quality Assurance of AI - Explainability

Definition of Explainability: Making AI decisions understandable to humans, including how and why decisions are made.

Transparent Algorithms

 Evaluate how transparent the model is for their decisionmaking processes.

Feature Importance

Highlight
 which
 features are
 most
 influential in
 the Ai's
 decision making
 process.

User-Centric Design

 Develop explanation interfaces that cater to the target audience's level of expertise.

Audit Trails

 Maintain logs of AI decisions to facilitate review and analysis for continuous improvement.

Documentation

 Document the design choices, data sources, interfaces and known issues

Quality Assurance of AI - Performance

Definition of Performance: The speed of AI systems in executing tasks.

Benchmarking

 Compare Al system performance against industry benchmarks or competitor systems.

Scalability Testing

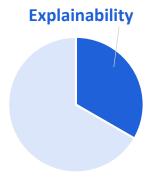
 Evaluate the Al system's ability to handle increased loads effectively.

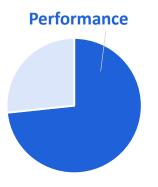
Resource Management

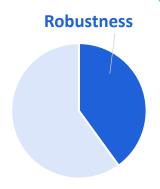
 Use of hardware and software resources to ensure high performance.

Optimisation

 Techniques to enhance computational efficiency without compromising output quality.


Latency Reduction


 Strategies to minimize response times, improving user experience.



AssureAi Scores

Parameters	Score
Data Integrity	Silver
Model Validation	NPR
Continuous Monitoring	NPR
Feedback Loops	NPR
Compliance and Standards	Gold

Parameters	Score
Transparent Algorithms	Bronze
Feature Importance	Silver
User-Centric Design	NPR
Audit Trails	NPR
Documentation	Silver

Parameters	Score
Benchmarking	Bronze
Optimisation	Gold
Scalability Testing	Gold
Latency Reduction	Silver
Resource Management	Silver

Parameters	Score
Adversarial Testing	Bronze
Data Diversity	NPR
Fault Tolerance	Bronze
Scalability	Bronze
Security Measures	Silver

Useful Resources & Tools

- HuggingFace
- Fairlearn
- Al Fairness 360
- What-If-Tool
- Google Vertex Al
- Amazon SageMaker
- MLflow

- Neptune.ai
- MonkeyLearn
- AWS Comprehend
- Scikit Learn
- SciPy
- Tensorflow Extended (TFX)
- PyTorch

Contact Us

Bryan JonesBryan.Jones@2itesting.com

LinkedIn: /bryan-jones-mbcs-96953/

www.2itesting.com

#EuroSTARConf