Verifying System-Level Properties of Neural-Network Robotic Controllers

Ziggy Attala, Ana Cavalcanti, Jim Woodcock

robostar.cs.york.ac.uk

28th May 2024
Outline

Overview
Motivation
RoboStar Vision
Modelling ANNs
Specifying ANNs
Conclusions
Overview

- Verifying learning-enabled robotic systems is challenging.
- Existing techniques and tools for verifying ANNs: component-level properties.
- **Our work**: Verifying robotic systems with ANN control components.
- Model and verify entire control software with system-level properties.
- Focus on trained, fully connected, ReLU neural networks for control.
- Combine behavioural models and ANN models.
- Combine traditional and ANN-specific verification tools.
- We use RoboChart: a domain-specific robot modelling and verification framework.
- Strategy for automated proof using Isabelle/HOL and Marabou.
The Paper and the Thesis

Outline

- **Overview**
- **Motivation**
- RoboStar Vision
- Modelling ANNs
- Specifying ANNs
- Conclusions
Motivation

- Robots are leaving their cages.
- **Trustworthiness requires verification.**
- Current approach to software engineering: ad hoc, code centric.
- Domain-specific modelling languages.
- Tractable mathematical models.
- **Challenge:** integrated reasoning.
- Systems engineering.
- Heterogeneous models.
- Verification tools: focused on ANN.
- Neural networks for control.
Example 1: Controller for Robot Motor

- **Neural network controller.** Single sensor input: \(\text{floor gradient} \).
- **Goal:** adjust the motor to maintain robot speed.
- **Input Layer:** single neuron representing the sensor reading.
- **Output Layer:** single neuron converts gradient to motor input voltage.
- Gradient voltage (0–1V) needs to be scaled and mapped to motor voltage (0–6V).
- Multiply by scaling factor 5 to map into motor voltage range.
- **Requirement:** motor requires a minimum voltage of 1V to start moving.
- Add bias of 1V could be added to the scaled neuron output.
- Scaled and biased neuron output converted to actual voltage signal by DAC.
Example 2: Controller for Robotic Arm

- **Neural network controller**: robot arm for sorting objects based on their weight.
- **Hidden layer**: two neurons to capture different features of the input.
- The two neurons capture **different weight ranges**.
- Allows network to make more accurate sorting decisions.
Example 3: Controller for Robot with Autonomous Navigation

- **Robot controller**: steering angle based on distance to nearest sensed obstacle.
- Two hidden layers compute different features from the input data.
- **Hidden Layer 1**: Responsible for low-level feature distance to nearest obstacle.
 - Identifying different distance ranges (e.g., near, medium, far).
 - Recognising changes or gradients in the distance values.
 - Extracting simple features related to the obstacle’s proximity.
- **Hidden Layer 2**: Compute higher-level representations from low-level features.
 - Map distance to angle ranges: sharp turn, moderate turn, slight turn, straight.
 - Identify patterns that need obstacle avoidance or course correction.
 - Learn non-linear map between distance and required angle adjustment.
Example 4: Neural Network with Probabilistic Output

- **Robot arm** Grasp and manipulate objects of different shapes, sizes, and materials.
- **Predict probability distribution over different grasping strategies or configurations.**
- Use input information about the object and its environment.
- **Input Layer** 3D point cloud data: depth sensors or cameras.
- Information about the robot’s current state: arm joint angles, gripper position.
- **Hidden Layers** Extract spatial features and patterns.
- **Output Layer** Multiple neurons, each representing a different grasping strategy.
- **Strategies:** top grasp, side grasp, pinch grasp, etc.
- **Output** Predicted probability for corresponding grasping strategy.
- **Activation Function:** Softmax. Normalises scores.
Why use Neural Networks for Control?

- **Handling complex and non-linear environments**: Robot control in dynamic, unstructured environments. Learn complex, non-linear mappings from data.

- **Adaptability and generalisation**: New situations not explicitly covered in training data. Operating environments with changing conditions and novel scenarios.

- **Learning from Experience**: Training with reinforcement learning to improve behaviour. Continuously adapt to changing conditions and new tasks.

- **Handling High-dimensional Data**: Process and integrate high-dimensional data from sensors. Extract relevant features. Challenging for traditional algorithms.

- **End-to-End Control**: Training maps raw sensor data directly to control outputs. Enables end-to-end control without feature engineering or state estimation.

- **Parallel Processing**: Real-time control tasks require low latency and high throughput. Use GPUs and specialised hardware accelerators.

- **Scalability and Modularity**: Modular and scalable ANNs. Integrate new sensors, control outputs, and task-specific modules. No control system redesign.
Why not use Neural Networks for Control?

- Replacing traditional controller with ANNs is challenging.
- It needs large amounts of training data.
- The controller is potentially unstable.
- There are correctness and safety concerns.
- There are difficulties in interpreting and explaining the learned control policies.
- In practice, many robotic systems use a hybrid approach.
- ANNs: specific tasks or modules. Perception, motion planning, low-level control.
- Traditional controllers handle higher-level decision-making.
- Usually task planning and safety-critical operations.
- Engineering decisions: choice between traditional and ANN controllers.
- Depends on specific robot application requirements, constraints, trade-offs.
Outline

Overview
Motivation
RoboStar Vision
Modelling ANNs
Specifying ANNs
Conclusions
RoboStar Vision

1. Simulation with **commercial** tools.
2. Coding in **practical** languages.
3. **Tests**: simulation, deployment.
4. **Proof**: model checking, theorem proving.
5. Evidence of properties.
6. Safety, security, more.
7. Significant asset: **RoboTool**.
8. Application agnostic.
Core Notation: RoboChart

1. Statecharts for behaviour.
2. Parallel execution of statecharts.
3. Simple component model.
4. Synchronous or asynchronous.
5. Platform independent.
6. Capabilities: events and operations.
7. Timed behaviours.
Deriving Value: RoboChart

1. **Simulation model**: cyclic mechanism.
2. **Simulation code**: CoppeliaSim, Gazebo, Drake, RT-Tester.
3. Deployment code.
4. **Automatic test generation**.
5. **RoboWorld**: operational requirements.
6. **Model checking**: FDR and PRISM.
7. **Theorem proving**: Isabelle/UTP.
8. **RoboCert**: property specification.
9. **Ongoing work**: neural networks, human behaviour, safety cases.
RoboChart Modelling Stack

- RoboChart module
 - RoboArch
 - RoboSim
 - Control software
 - inputs
 - outputs
 - Platform mapping
 - Physical model
 - p-model
 - physical model
 - environment mapping
 - s-model
 - scenario model
 - environment mapping
 - inputs of sensors
 - outputs of sensors
 - links joints sensors actuators
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - Neural networks
 - mapping
 - obstacle left (→)
 - move (1) (→)
 - voltage (→)
 - desired speed (→)
 - sensor equation
 - infrared light (→)
 - torque (→)
 - how object properties affect infrared light
 - sensor equation
 - voltage (→)
 - desired speed (→)
 - assumptions
 - how voltage maps to identification of obstacle
 - voltage (→)
 - desired speed (→)
 - sensor equation
 - infrared light (→)
 - torque (→)
 - how object properties affect infrared light
 - sensor equation
 - voltage (→)
 - desired speed (→)
 - Humans
 - operational requirements
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
 - position of objects and robot
 - effect on inputs of sensors
 - effect of actuators
 - effect on quantities and events of interest
RoboStar: Comprehensive Support

System testing

Model checkers

Theorem provers

RoboCert properties

No

Automatic
generation

RoboSim model

No

Automatic
generation

Robotics
simulator

Conversion

Test cases

System testing

Deployment code

valid?

Test cases

Automation

generation

RoboChart

RoboWorld model

Proof model

Model checkers
Theorem provers

valid?

GUARANTEED
TRUSTWORTHINESS

Automatic generation

Code Proofs
Test results
Assumptions
Environment restrictions

correct?

Yes

No

Ziggy Attala, Ana Cavalcanti, Jim Woodcock

robostar.cs.york.ac.uk

18/38
Neural Networks in RoboChart

- Trained
- Feed forward
- Fully connected
- ReLU or linear activation
Example: A Segway
Outline

- Overview
- Motivation
- RoboStar Vision
- Modelling ANNs
- Specifying ANNs
- Conclusions
RoboChart with ANN: Verification

- CSP semantics
- UTP laws
- Reachability conditions
- Verification conditions
- Isabelle/UTP
- Marabou

Sequentialisation

CSP semantics
- UTP laws
- Deterministic function
- Trace-based specification

application-specific events

conf(ε)

Ziggy Attala, Ana Cavalcanti, Jim Woodcock
CSP Models of ANNs

- **Neurons as Processes** Each neuron is represented as a concurrent process. Processes communicate through channels, representing weights between neurons.

- **Communication and Synchronisation** Modelled using CSP’s primitives. This formalises information flow and computation within the neural network.

- **Parallel and Distributed Computation** Multiple neurons execute simultaneously.

- **Formal Verification** Theorem proving in Isabelle/UTP, model checking in FDR4. Check for convergence, stability, robustness, and specific properties.

- **Compositionality** Scaling analysis and verification of larger ANNs.

- **Active research area** to provide formal foundations for ANNs.
CSP Dataflow Architecture for ANNs

- Model an ANN as a recurrent dataflow network with transforming-buffer nodes.
- Implement this model in CSP. Analyse it in Isabelle/UTP and FDR4.
- Transformation totality ensures network totality.
- Dataflow architecture ensures network deadlock-freedom.
- Dataflow architecture ensures network divergence-freedom.
- Architecture and transformations ensure network determinism.
Overview
Motivation
RoboStar Vision
Modelling ANNs
Specifying ANNs
Conclusions

Simple Example: Generic ANN

- Consider an ANN with one input layer, \(N_h \) hidden layers, and one output layer.
- Layers are indexed between 0..layerNo, where \(\text{layerNo} = N_h + 2 \).
- Nodes are connected with communication channels.
- Layer \(l \), node \(n \) has inputs on \(\text{layerRes.(}l-1).n \) and outputs on \(\text{layerRes.}l.n \).
- Consider one input node, one hidden layer with two nodes, and one output node.
- There are four channels: \(\text{layerRes.}0.1, \text{layerRes.}1.1, \text{layerRes.}1.2, \text{layerRes.}2.1 \).
- Three processes: \(\text{Node}(1,1), \text{Node}(1,2), \text{Node}(2,1) \), two hidden, one output.
- There is no material behaviour in the input node.
- Process behaviour: \(\text{Inputs ; Outputs} \). Network is recurrent, left implicit.

\[
\text{layerRes.}1.2?x \rightarrow \text{layerRes.}1.1?y \rightarrow \text{layerRes.}2.1!\text{ReLU}(wt \ast (x + y) + bs) \rightarrow \text{SKIP}
\]
CSP Model of an ANN: 1–1–1 Layers

Node(1,1)
layerRes.0.1?x
→ layerRes.1.1!ReLU(x * wt + bs)
→ SKIP

Node(2,1)
layerRes.1.2?x
→ layerRes.1.1?y
→ layerRes.2.1!ReLU(wt * (x + y) + bs)
→ SKIP

layerRes.0.1

layerRes.1.1

layerRes.1.2

layerRes.2.1
CSP Model for ANN

\[ANN = ((\text{HiddenLayers} \, [\{ \text{layerRes.(layerNo - 1)} \}]) \, \text{OutputLayer}) \, \backslash \, \text{HiddenEvts} \triangle \text{end} \, \text{Skip}) ; \, ANN \]

\[\text{HiddenEvts} = \sum \, \{\text{layerRes.0, layerRes.layerNo, end}\} \]

\[\text{HiddenLayers} = \]
\[\mid i : 1 \ldots \text{layerNo} - 1 \bullet [\{\text{layerRes.(i - 1), layerRes.i}\}] \text{HiddenLayer}(i, \text{layerSize}(i), \text{layerSize}(i - 1)) \]

\[\text{HiddenLayer}(l, s, \text{inpSize}) = \mid i : 1 \ldots s \bullet [\{\text{layerRes.(l - 1)}\}] \text{Node}(l, i, \text{inpSize}) \]

\[\text{Node}(l, n, \text{inpSize}) = \]
\[(\mid i : 1 \ldots \text{inpSize} \bullet \text{NodeIn}(l, n, i) \mid) \{\text{nodeOut.l.n}\} \, \text{Collator}(l, n, \text{inpSize}) \} \, \text{\backslash} \{\text{nodeOut}\} \]

\[\text{NodeIn}(l, n, i) = \text{layerRes.}(l - 1).i?x \rightarrow \text{nodeOut.l.n.i!}(x \ast \text{weight}) \rightarrow \text{Skip} \]

\[\text{Collator}(l, n, \text{inpSize}) = \text{let } C(l, n, 0, \text{sum}) = \text{layerRes.l.n!}(\text{ReLU}(\text{sum} + \text{bias})) \rightarrow \text{Skip} \]
\[C(l, n, i, \text{sum}) = \text{nodeOut.l.n.i?x} \rightarrow C(l, n, (i - 1), (\text{sum} + x)) \]
\[\text{within } C(l, n, \text{inpSize}, 0) \]

\[\text{OutputLayer} = \]
\[\mid i : 1 \ldots \text{layerSize}(@\text{layerNo}) \bullet \]
\[[\{\text{layerRes.}(\text{layerNo} - 1)\}] \text{Node}(@\text{layerNo}, i, \text{layerSize}(\text{layerNo} - 1)) \]
Marabou

- SMT-based neural network verification tool from Stanford University and Galois.
- Gives formal guarantees about properties and outputs.
- **Robustness** Verify behaviour wrt input perturbations and adversarial attacks.
 Determine maximum perturbation for unchanged output wrt specified threshold.
- **Output Range Analysis** Possible output values for given input range.
- **Input-Output** Check if input patterns always lead to specific output patterns.
 Check if certain output classes are never produced for a given set of inputs.
- **Safety Properties** Ensure output doesn’t exceed certain thresholds.
 Ensure certain inputs never lead to unsafe outputs.
- **Can be used as part of end-to-end verification.** RoboStar!
Outline

Overview
Motivation
RoboStar Vision
Modelling ANNs
Specifying ANNs
Conclusions
Reactive Contracts in UTP

- Contract extension for semantics of state-rich CSP processes.
- Provides a rich set of algebraic laws for process verification.

- **Observational variables:**
 - \(st, st' \) : \(\text{Var} \rightarrow \text{Val} \) - program state
 - \(ok, ok' \) : \(\text{Bool} \) - initiation and termination
 - \(tr, tr' \) : \(\text{seq Event} \) - event traces
 - \(tt' \) : \(\text{seq Event} \) - process’s event trace \(tr' \rightarrow tr \)
 - \(\text{wait}, \text{wait}' \) : \(\text{Bool} \) - quiescence
 - \(\text{ref}, \text{ref}' \) : \(\mathbb{P} \text{Event} \) - refusal sets
Reactive Contracts

- **Syntax:** \([P[st] \vdash Q[tt', st, ref'] | R[tt', st, st']]\).
- **Semantics:** ok \(\land P[tt, st] \Rightarrow ok' \land (Q[tt', st, ref'] \bowtie wait' \bowtie R[tt', st, st'])\).

- **Precondition** \(P\): condition on pre-state \(st \).
- **Postcondition** \(R\): relation on state \(st \), update \(st' \), event trace \(tt' \).
- **Pericondition** \(Q\): relation on quiescent but not final observations.

 Relation on pre-state \(st \), event trace \(tt' \), refusals \(ref' \).
Reactive Contracts

- Simple pattern for contracts: $\text{PERI}[t, E]$ and $\text{POST}[t]$.
- CSP processes without state variables.
- Pericondition $\text{PERI}[t, E]$: Event trace t observed. Event set E not refused.
 \[
 \text{PERI}[t, E] \equiv t t' = t \land ref' \cap E = \emptyset
 \]
- Postcondition $\text{POST}[t]$: Event trace t has been observed.
 \[
 \text{POST}[t] \equiv t t' = t.
 \]
- Channel set $\{c\}$: all events communicable on channel c.
Conformance

\[Q \text{ conf}(\varepsilon) P \iff \exists s : \text{seq Event}; a : \mathbb{P} \text{ Event} | tt \text{ seqapprox}(\varepsilon) s \land (\alpha P \setminus \text{ref'}) \text{ setapprox}(\varepsilon) a \bullet P[s, (\alpha P \setminus a) / tt, \text{ref'}] \sqsubseteq Q \]

- \(s \): approximation of traces
- \(a \): approximation of acceptances

Only outputs are approximated.
Outline

Overview
Motivation
RoboStar Vision
Modelling ANNs
Specifying ANNs
Conclusions
Contributions

- **Method** for robotic software with reliable, white-box ANN components.
- Deductive **guarantees** on the behaviour of **system-level properties**.
- Platform-independent models for **validation, simulation, and verification**.
- **Metamodel**: trained, feed-forward, fully connected ANNs. Any size or shape.
- General, extensible, formal representation of **ReLU ANNs**.
- **Validation** using **FDR4 model checker. Simulation** using **JCSP**.
- **Reactive contract theory** enables verification using **Isabelle/UTP**.
Contributions

- ANN property proof method based on refinement.
- Numerical instability of ANNs. Provides worst-case error bound.
- **Substitutability**: ANN for RoboChart controller. Guaranteed error bound.
- **Example case study**: inverted pendulum PID controller.
- Translate reactive contract to multiple input/output reachability properties.
- Integrated approach to reason about ANN, using a variety of techniques
- **Simulation**: Java and standard tools. **Proof**: Isabelle/UTP + Marabou.
Future Work

- More case studies.
- Challenge problems.
- Timed models.
- Probabilistic models.
- Simulation models.
- Perception.