
Formal Methods:
Whence and Whither?

Prof. Jonathan P. Bowen FRSA FBCS

Emeritus Professor of Computing
London South Bank University, UK

Adjunct Professor, Southwest University, Chongqing, China

Chairman, Museophile Limited, Oxford, UK

www.jpbowen.com
LSBU create a connected and Customisable Research Experience with Cayuse

http://www.jpbowen.com/
https://www.lsbu.ac.uk/

Introduction

• Subjects: Mathematics, art, engineering, computer science,

software engineering, formal methods, museum informatics,

history of computing, digital culture

• Academia: Imperial College London, Oxford University

Computing Laboratory, University of Reading,

London South Bank University, Birmingham City University

• Visitor: UNU-IIST (Macau), King’s College London, Brunel Univ.,

Westminster (UK), Waikato Univ. (Hamilton, New Zealand),

Pratt Institute (New York, USA), East China Normal Univ.

(Shanghai, China), Institute for Advanced Studies (IIAS,

Jerusalem, Israel), Southwest University (Chongqing, China)

• Industry: Marconi Instrument, Logica, Silicon Graphics

(California, USA), Altran Praxis (now Capgemini)

Babbage Difference

Engine at the Science

Museum, London (c.1980)

Peter Landin (1930–2009)

• FACS Seminar Series

Robin Milner,

Tony Hoare,

Joe Stoy, and

Peter Landin

Science Museum,

London,

5 June 2001

Co-organized with

Cliff Jones

Peter Landin (1930–2009)

• FACS Seminar Series

Why are things so complicated?

Background

• Academics vs. industrial practitioners

• Formal methods still little used in practice

(except for safety/security)

• Misconceptions

• Guidance

• Technology transfer issues

• Future – effect of Artificial Intelligence?

Software…

Failure is not an option…

It comes bundled with the software!

— From a fridge magnet!

Safety and reliability

The Flat Earth Society

Cf. formal methods community…

 — Gerard J. Holzmann

https://www.tfes.org/

Logic

Aristotle’s logic – highly influential on

Western thought.

— Aristotle (384–322 BC)

Aristotle’s Lyceum, rediscovered

in Athens (1997)

http://www.utm.edu/research/iep/a/aristotl.htm

Proof

• Mathematics – simple theorems, deep proofs

• Cf. software – complicated specifications &

programs, shallow proofs

Fermat’s Last Theorem (c.1637):

an + bn ≠ cn (integer n > 2)

— Pierre de Fermat (1607–1665)

Proved 358 years later by Andrew Wiles, 1994/5.

Not a timescale acceptable for software!

http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Fermat.html
http://www-groups.dcs.st-andrews.ac.uk/~history/HistTopics/Fermat's_last_theorem.html

Theory and practice

“It has long been my personal view that the
separation of practical and theoretical work is
artificial and injurious. Much of the practical work
done in computing, both in software and in hardware
design, is unsound and clumsy because the people
who do it have not any clear understanding of the
fundamental design principles of their work. Most of
the abstract mathematical and theoretical work is
sterile because it has no point of contact with real
computing.”

— Christopher Strachey (1916–1975)

Computer Pioneers - Christopher Strachey

https://en.wikipedia.org/wiki/Christopher_Strachey

First formal methods paper?

Checking a Large Routine, Paper for the EDSAC Inaugural

Conference, 24 June 1949. In Report of a Conference on High Speed

Automatic Calculating Machines, pp 67–69.

Reprinted with corrections and annotations in:

An early program proof by Alan Turing, L. Morris and C.B. Jones, IEEE Ann. Hist.

Computing 6(2):129–143, 1984.

See also: Turing and Software Verification, C.B. Jones. Tech. Report CS-TR-1441,

Newcastle University, UK, 2014.

— Alan Turing (1912–1954)

Arguably the first “formal methods” paper ever:

Turing and program proving

• A.M. Turing, “Checking a large routine” (1949)

• F.L. Morris & C.B. Jones, An Early Program

Proof by Alan Turing, IEEE Annals of the

History of Computing, 6(2):139–143, 1984.

“assertions”

“verification”

“dashed” after states

Checking a large routine (1949)

• “In order to assist the checker, the programmer should make

assertions about the various states that the machine can reach.”

• “The checker has to verify that the … initial condition and the

stopped condition agree with the claims that are made for the

routine as a whole.”

• “He has also to verify that each of the assertions … is correct.”

• “Finally the checker has to verify that the process comes to an

end.”

Turing and program proving

• A.M. Turing, “Checking a large routine” (1949)

• F.L. Morris & C.B. Jones, An Early Program

Proof by Alan Turing, IEEE Annals of the

History of Computing, 6(2):139–143, 1984.

Turing and program proving

• A.M. Turing, “Checking a large routine” (1949)

• F.L. Morris & C.B. Jones, An Early Program

Proof by Alan Turing, IEEE Annals of the

History of Computing, 6(2):139–143, 1984.

Dashed variables

for after states

Turing and program proving

Modernized flow diagram, with assertions

Mathematics and programming

In 1951, Christopher Strachey wrote a letter to
Alan Turing on his programming plans:

 “... once the suitable notation is decided, all that
would be necessary would be to type more or
less ordinary mathematics and a special
routine called, say, ‘Programme’ would convert
this into the necessary instructions to make the
machine carry out the operations indicated. This
may sound rather Utopian, but I think it, or
something like it, should be possible …”

Computer Pioneers - Christopher Strachey

https://en.wikipedia.org/wiki/Christopher_Strachey

Turing’s influence on program proving

• Aad van Wijngaarden was at the Cambridge meeting –

but no known influence (1949…)

• Robert Floyd rediscovered ideas similar to those of Turing

(published 1967)

• Tony Hoare developed these further (published 1969)

• Had Turing lived longer, perhaps formal methods (in

particular program proving) would have developed more

rapidly, rather than being rediscovered

Turing and

program

proving
F.L. Morris & C.B.

Jones (1984), An

Early Program

Proof by Alan

Turing, IEEE

Annals of the

History of

Computing,

6(2):139–143.

1947

1949

1963

1976

1967

1969

1966

Assertions

An Axiomatic Basic for Computer Programming.
Communications of the ACM, October 1969

— Sir Tony Hoare (b.1934)

[Photograph]

Hoare logic: {pre} prog {post}

Program proving with pre- and post-conditions as

“assertions” (logical statements about the program)

30 years later … assertions widely used by programmers

for testing and debugging rather than proof

http://www.research.microsoft.com/~thoare/

Formal …

“After great pain, a formal feeling comes—”

— Emily Dickinson (1862)

formal /fm()l/ a. LME. [L formalis, f. forma: see FORM n., -AL.] 1
a Philos. Of or pertaining to the form or constitutive essence of a thing; essential. LME.
b Pertaining to the specific form of an animal or plant. LME-L17. c Of or pertaining to
the outward form, shape, appearance, arrangement, or external qualities of a thing.

Formerly also (of knowledge), theoretical. M17. d Logic. Concerned with the
form, not the matter, of reasoning. M19.

http://www.vdash.org/formal/

… Methods

“By different methods different men excel;
 But where is he who can do all things well?”

— Charles Churchill (1731–1764)

method /methd/ n. LME. [L methodus f. Gk methodos pursuit of

knowledge, mode of investigation, f. meta (see META-) + hodos

way.] I Procedure for attaining an object. 1 ... 2 A mode of procedure; a

(defined or systematic) way of doing a thing, esp. (w. specifying wd or wds) in accordance

with a particular theory or as associated with a particular person. L16. ... II Systematic

arrangement, order. 3 The branch of logic that deals with the

description and arrangement of arguments or propositions for

the investigation or exposition of a truth. M16. 4 Order in thinking or

expressing thoughts; the orderly arrangement of ideas; gen. orderliness, regularity, or

planning in doing anything. M16.

Formal Methods:
An Introduction to Symbolic Logic

and to the Study of Effective

Operations in Arithmetic and Logic

(1962)

Evert Willem Beth (1908–1964),

Dutch philosopher and logician

Earliest book with

“formal methods”

in the title?

https://en.wikipedia.org/wiki/Evert_Willem_Beth

Formal methods

• Term established by late 1970s

– Next stage from structured design

– Mathematical basis

• Formal specification and (optionally) proof:

– Validation (correct specification)

– Verification (correct implementation wrt spec.)

• But engineers calculate rather than prove

undefined

undefined

https://encyclopedia.pub/entry/44342
https://encyclopedia.pub/entry/44342

Some formal methods approaches
• Abstract Interpretation: approximating program

behaviour to prove correctness or detect errors.

• Model-Based Testing: generating test cases

from a formal model.

• Model Checking: exhaustively verifying system

behaviour against a formal specification.

• Proof Assistants: tools for interactively

constructing and verifying mathematical proofs.

• Refinement: systematically refining a high-level

specification into a correct implementation.

• Static Analysis: analyzing program code

meaning to detect errors or enforce constraints.

• Verification: proving the correctness of a

program using logical inference rules.

2019

2019

Formal methods levels
0. Formal Specification:

– Requirements only

– No analysis or proof

– Can be used to aid testing

– Cost-effective

1. Formal Verification:
– Program produced in a more formal way

– Use of proof or refinement based on a formal specification

– More costly

2. Theorem Proving:
– Use of a theorem prover tool

– Formal machine-checked proofs

– Proof of entire system possible but scaling difficult

– Expensive and hard

2022

Formal specification

1. A specification written and
approved in accordance
with established standards

2. A specification written in a
formal notation, often for
use in proof of correctness.

— IEEE glossary

Seven Myths of Formal Methods

1. Formal Methods can

guarantee that software is

perfect.

2. Formal Methods are all about

program proving.

3. Formal Methods are only

useful for safety-critical

systems.

4. Formal Methods require highly

trained mathematicians.

5. Formal Methods increase the

cost of development.

6. Formal Methods are

unacceptable to users.

7. Formal Methods are not used

on real, large-scale software.

– J.A. Hall, IEEE Software,
September 1990

ProCoS: Provably Correct Systems

• Requirements

• Specification

• Design

• Programming

• Compilation

• Hardware

European projects and Working Group (early 1990s)

Stop press:

Retrospective multi-author

paper accepted for the

Formal Aspects of

Computing journal

Levels of abstraction/complexity

• 15k lines of (informal) requirements

• 150k lines of (formal?) specification

• 1.5 million lines of design description

• 15 million lines of (formal!) high-level program code

• 150 million machine instructions of object code

• 1.5 billion transistors in hardware!

The later a mistake is detected, the more costly it is!

Ten Commandments of Formal Methods

I. Thou shalt choose an

appropriate notation

II. Thou shalt formalize but not

over-formalize

III. Thou shalt guestimate costs

IV. Thou shalt have a formal

methods guru on call

V. Thou shalt not abandon thy

traditional development

methods

VI. Thou shalt document sufficiently

VII. Thou shalt not compromise thy

quality standards

VIII. Thou shalt not be dogmatic

IX. Thou shalt test, test, and test

again

X. Thou shalt reuse

– J.P. Bowen & M.G. Hinchey

IEEE Computer, April 1995

Applications of Formal Methods

Examples:

• Tektronix (Z) – oscilloscopes

• STV algorithm (VDM) – voting

• IBM CICS (B) – transaction processing

• AAMP5 microprocessor (PVS) – hardware

• GEC Alsthom (B) – railway software

• A300/340 (Z) – airplane software

Prentice Hall, International Series in Computer Science,
1995

Seven More Myths of Formal Methods

8. Formal Methods delay the

development process.

9. Formal Methods do not have

tools.

10. Formal Methods mean

forsaking traditional

engineering design methods.

11. Formal Methods only apply

to software.

12. Formal Methods are not

required.

13. Formal Methods are not

supported.

14. Formal Methods people

always use Formal Methods.

– J.P. Bowen & M.G. Hinchey

IEEE Software, July 1995

Examples:

• Motorola CAP DSP (ACL2)

• Radiation Therapy Machine (Z)

• ATC system (VDM)

• Railways (Prover Technology)

And later: Microsoft

Industrial-Strength Formal Methods in Practice

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Springer, FACIT series, 1999

Software Specification Methods

Using a selection of formal methods:

Z, SAZ, B, OMT, Action Systems,
UML, VHDL, Estelle, SDL, E-LOTOS,
JSD, CASL, Coq, Petri Nets.

Marc Frappier & Henri Habrias (eds.)
Springer-Verlag, FACIT series, 2001

The process of producing a formal

specification…

http://ecx.images-amazon.com/images/I/51QtsF%2B5WAL._SS500_.jpg

http://ecx.images-amazon.com/images/I/51v4rGc0LwL._SS500_.jpg

Further books

• Boulanger, J.-L., ed. 2012.

Formal Methods: Industrial Use from Model

to the Code.

ISTE, Wiley.
ISBN 978-1848213623.

• Gnesi, S. and Margaria, T. 2012.

Formal Methods for Industrial Critical

Systems: A Survey of Applications.

IEEE Computer Society Press, Wiley.
ISBN 978-0470876183.

http://www.amazon.com/Formal-Method-Industrial-Used-Model/dp/184821362X
http://www.amazon.com/Formal-Methods-Industrial-Critical-Systems/dp/0470876182

Education

• Resistance by students

• Resistance even by
academics

• Support by professional
societies (e.g., BCS
accreditation)

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Choosing a formal method – difficult

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Tools –

difficult

to use

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Technology transfer

• Courses (academia & industry)

• Textbooks (good choice)

• Tools (type-checkers, provers, …)

• Web resources (including Wikipedia)

• Mailing lists (e.g., JISCmail)

• Meetings (conference series)

• Standards (international)

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Standards mandating formal methods

• In highest level of safety and security applications

• From 1990s*

• Also, for formal notations themselves...

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

*See:

Bowen, J.P. & Stavridou, V. (1993),

Safety-critical systems, formal methods

and standards. Software Engineering

Journal, 8(4):189–209. DOI:

https://doi.org/10.1049/sej.1993.0025

https://doi.org/10.1049/sej.1993.0025

Example: Z Standard

• ISO/IEC 13568

– Long process (1990s)

– Inconsistencies found!

• Final Committee Draft

– accepted in 2001

• May help tools & industrial application

http://web.comlab.ox.ac.uk/oucl/research/groups/zstandards/images/zed.gif

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

http://web.comlab.ox.ac.uk/oucl/research/groups/zstandards/

• 2.5 million flights per year (pre-Covid), covering the UK

and eastern North Atlantic.

• 250 million passengers per year in UK airspace.

• Among the busiest & most complex airspace in the world.

• Provides air traffic control from its centres at Swanwick,

Hampshire (England) and Prestwick, Ayrshire (Scotland).

• Also provides air traffic control services at 15 UK airports

including Heathrow, Gatwick, Stansted, Birmingham,

Manchester, Edinburgh, and Glasgow, together with air traffic

services at Gibraltar Airport.

Case study: National Air Traffic Services

File:Nats logo 2006.png

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

http://upload.wikimedia.org/wikipedia/en/f/fa/Nats_logo_2006.png

National Air Traffic Services, UK

www.nats.co.uk

File:Nats logo 2006.png

Swanwick

southern England

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

http://www.nats.co.uk/
http://upload.wikimedia.org/wikipedia/en/f/fa/Nats_logo_2006.png

Flight strips on paper

Last flight of Concorde C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

European

airspace
Source: Wikipedia

London:

England

& Wales

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

FlightRadar24
www.flightradar24.com

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

http://www.flightradar24.com/

National Air Traffic Services

• Advertisement at Heathrow Airport →

• Air Traffic Management (ATM)

• Single European Sky ATM Research

(SESAR)

• SESAR Joint Undertaking

• www.sesarju.eu

• SESAR project (2004–c.2030!)

• European ATM Master Plan

File:Nats logo 2006.png

http://www.sesarju.eu/
http://www.sesarju.eu/
http://upload.wikimedia.org/wikipedia/en/f/fa/Nats_logo_2006.png

Copyright © Altran Praxis

Formal Methods in Air Traffic Control

(Original slides by Neil White)

www.slideshare.net/AdaCore/white-open-do

www.youtube.com/watch?v=IQMWVqQfm5A

(Capgemini Engineering since 2019)

NATS, the UK’s leading air traffic services provider, has

pioneered research and development of advanced air

traffic control tools for several years from its simulator

and research centre.

The iFACTS project provides a subset of these tools onto

the system at the company’s main en-route Control

Centre at Swanwick.

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

https://automation.forthillgroup.com/story/iFACTS

UK Air Traffic Control

Copyright © Altran Praxis

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

Planner Tactical Assistant

(in/out) (controller) (flight strips)

ATC team

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

What is iFACTS?

• iFACTS – Interim Future Area Control Tools Support

• iFACTS provides tools to support the controllers

– Electronic flight strips replace the paper flight strips.

– Trajectory tools – including prediction, deviation alerts,

and conflict detection – are added.

• iFACTS not an Air Traffic Control (ATC) system

– Integrated with, but sits alongside, the existing system.

Medium Term Conflict Detection: Separation Monitor

Separation Monitor

Cancel Alert Lines LabelsGreenSeparation (NM)

0

5

10

15

Time to Interaction (mins)
0 155 10

SAS123

BAW43BE

DLH4695
AMM1077

AZA292

BAL547

BAW028
ANZ001

UAL2

SAA321

BAW225
UAL3

Copyright © Altran Praxis limited 2010

Copyright © Altran Praxis

The complete iFACTS specification

• The functional specification

– Z notation

• The algorithm specification

– Mathematics (Mathematica)

• The Human-Machine Interface (HMI) specification

– State tables

• The rest of the specification

– English!
C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

The Z specification

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

Z training

• Z reader training

– 3-day course; fluency then comes after 1 week on the job.

– Trained 75 people to read Z.

– Engineers, domain experts, ATCOs.

• Z writer training

– 3-day course, fluency then comes after 3 months on the job.

– Trained 11 people to write Z.

– All engineers.

Copyright © Altran Praxis

Z tools

• Z written in Microsoft Word

– To get acceptance, you need to work

with what people know.

– Supported by Word Add-ins.

• A Z character set.

• A simple interface to the fuzz type checker.

• A graphical representation tool.

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

Z tools
• Advantages

– Easy to develop commentary and Z together.

– Hyperlinking of fuzz errors back to source.

– Cross-referencing of Z names in final document.

• Disadvantages

– All the problems of large Word documents.

– Tools can be slow on 1,000 page documents.

– Merging branches (for different releases) painful.

• Possible future

– Open Office XML C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

The state machine specification

 Button 1 Checkbox 1

State 1 State 2 N/A

State 2 State 1 State 3

State 3 State 1 State 2

Transition Actions

 State 1 -> State 2 : De-select Checkbox 1
C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

State machine training & tools

• Training

– So trivial that we don’t train!

– People “just get it”.

• Tools

– Err …. None.

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

The SPARK implementation

• SPARK Ada

– An annotated subset of Ada.

• 150 KSLOC (Logical)

• RTE (Run-Time Exception) Proof

– Formal partial correctness proof against

specification not considered cost-effective.

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Code

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

SPARK training and tools

• 57 people trained in SPARK

– Mostly contractors and clients.

– Diverse programming background.

– All SPARK coders also Z readers.

• Effective as SPARK coders immediately

• Picking up RTE proof takes longer.

– About 2 months.

• How long to pick up formal correctness proofs?

– No data, but suspect longer again.

The SPARK toolset:

– Examiner.

– Proof Simplifier.

– Proof Checker.

• See me later!

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Test Design

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

The challenge of test design

How many potential tests for this fragment?
C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

The challenge of test design

• If you just turn the handle there are 1134

conditions to test.

• But if you work at it hard enough you can cover

the required subset in just 6 test scripts.

• Formal methods are not a substitute for

initiative.

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Copyright © Altran Praxis

Mathematica tools & training

• Algorithms are specified in pure mathematics.

• Generate test cases as usual.

• Create a test reference implementation in Mathematica.

• Small team – only 5 trained.

• Reference model has similar defect density to SPARK

implementation.

• Limited conclusions to draw from such a small activity.

Copyright © Altran Praxis

Case study conclusions

• Formal methods are applicable to all phases of the lifecycle.

• Training engineers is not a barrier

– It’s a one-off cost

– Data shows that training is easy and cheap.

• Tool support is vital

– The Achilles heel of formal methods

•Except the SPARK Examiner!
C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Tracing

• Completeness of coverage

– e.g., testing all parts of a Z specification

• DOORS tool

– Dynamic Object-Oriented Requirements System

• Link all specification components with test case(s

– or argument for safety case

• Flag unlinked components

• Also, visualization of schema structure C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Subsequent iFACTS developments

• iFACTS in operation (2011) – 18 minutes of prediction,

up to 40% capacity increase in some sectors

• Traffic Load Prediction Device (TLPD):

– Forecast air traffic load up to 4 hours ahead

– Plan workloads for optimum traffic flows

• iFACTS – winner of the Duke of Edinburgh Navigation

Award for Technical Achievement (2013)

• MoD use for military air traffic control (2014)

• FourSight, successor to iFACTS (2017) for

Swanwick/Prestwick – European SESAR compliant

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

How Important is mathematics to the

software practitioner?

Some consider it unimportant … !

— Robert L. Glass
IEEE Software, Nov./Dec. 2000

Mathematics debates

Some consider it important …

— William W. McMillan et al., Letters
IEEE Software, Jan./Feb. 2001

 The debate has continued …

SETSS: Engineering Trustworthy

Software Systems

• Annual Spring School at Southwest University,

Chongqing, China, & now ISCAS, Beijing, China

• Held 2014–2019, restarted after COVID in 2024

• Week-long tutorials by international experts, for

graduate students from China and elsewhere

• Tutorial proceedings in Springer LNCS

• State of the art in formal methods & related research

• Cf. annual Marktoberdorf Summer School in Europe

(6–15 August 2025)

Lightbox view of the cover for Engineering Trustworthy Software Systems

https://link.springer.com/book/10.1007/978-981-96-4656-2

SETSS
15–21 April 2024

• SWU, Chongqing, China

• Seven tutorials over 5 days

• Workshop over 2 days

www.rise-swu.cn/SETSS2024

http://www.rise-swu.cn/SETSS2024
http://www.rise-swu.cn/SETSS2024
http://www.rise-swu.cn/SETSS2024

SETSS
17–23 April 2025

• ISCAS, Beijing, China

• 2 days of workshop talks

• 5 days of longer tutorials

tis.ios.ac.cn/SETSS2025

https://tis.ios.ac.cn/SETSS2025/

Formal Methods and AI – questions

Explainable AI, etc. C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

A
I
–

 l
a

rg
e
 “

le
a
rn

e
d

”
 m

o
d

e
ls

“Correct by construction” vs. “dog trained” C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Formal methods and correctness
Rigorous specification C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet

Files\Content.IE5\8PADLV2L\MC900432679[1].png

F
o

rm
a
li
z
e
d

 m
a
th

e
m

a
ti

c
s

Precise language,

correctness checkable

by proof assistants

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

M
a

c
h

in
e
 l
e
a
rn

in
g

Human intuition

combined with AI

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

D
e
e
p

 N
e

u
ra

l
N

e
tw

o
rk

s
 (

D
N

N
)

Multiple layers

between input

and output,

explainable AI
C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Coverage

criteria

for AI

Test coverage

for DNNs
C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Formal

methods

and

testing

Formal approach for testing whether a sampling

subroutine generates a desired distribution

Reliance on

probability

distributions

Predictions dangerous

“ . . . these formal methods are the key to writing much

better software. Their widespread use will revolutionise

software writing, and the economic benefits will be

considerable – on a par with those of the revolution in

civil engineering during the last century.”

— Brian Oakley (1927–2012),

Alvey Achievements, June 1987

Computer Resurrection Issue 60

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Compare AI!

https://en.wikipedia.org/wiki/Brian_Oakley

Future developments

• An engineering approach

• Proof vs. calculation

• “Light” approach (specification)

• Improved tools (Moore’s law helps)

• International standards

• Education / training (for all personnel)

• Unification of approaches?
C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Unified theory? Cf. physics

“The construction of a single mathematical model

obeying an elegant set of algebraic laws is a significant

intellectual achievement; so is the formulation of a set of

algebraic laws characterising an interesting and useful

set of models.”

— Sir Tony Hoare, 1993

[Photograph]

Operational, Denotational, Algebraic semantics
C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

http://www.research.microsoft.com/~thoare/

Unifying Theories

of Programming

• Tony Hoare & Jifeng He

• Prentice Hall, 1998

• http://www.unifyingtheories.org

A book with a red and blue cover

Description automatically generated

• UTP international symposium

• First symposium 2006, UK

• Springer LNCS proceedings

http://www.unifyingtheories.org/
http://www.unifyingtheories.org/
https://en.wikipedia.org/wiki/Unifying_Theories_of_Programming

Future developments

• Safety-critical systems

• Security (e.g., smartcards)

• Harmonization of engineering practices

• Practical experience

• Assessment and measurement

• Technology transfer investment

• Use with AI, LLMs, etc… perhaps most promising! C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Ronald Ross to ChatGPT:
The birth and strange life of a

random walk

Mathematical Institute, Oxford,
26 June 2024

— Jordan Ellenberg, Univ. of

Wisconsin–Madison (b. 1971)

youtube.com/watch?v=08FGB5x090M

• Computer science uses decades-old,

even centuries-old mathematics

• So, see what mathematicians are

doing now for the future

https://www.youtube.com/watch?v=08FGB5x090M
https://www.youtube.com/watch?v=08FGB5x090M
https://www.youtube.com/watch?v=08FGB5x090M
https://en.wikipedia.org/wiki/Jordan_Ellenberg

Mathematical discoveries from program

search and large language models

Nature, vol. 625,

pp. 468–475 (2024)

nature.com/articles/s41586-023-06924-6

• Prospect: AI could suggest

outline proofs with human

interactive help for detail

• Could this approach work for

program generation/proof?

https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6

The Potential for AI in

Science and Mathematics

Science Museum, London, 17 July 2024

(c/o Oxford Mathematics)

— Terence Tao FAA FRS,

UCLA (b. 1975)

2006 Fields Medalist

Oxford Mathematics London Public Lecture: The Potential for AI in Science and Mathematics - Terence Tao. SOLD OUT | Mathematical Institute

Terence Tao - Wikipedia

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

youtube.com/watch?v=_sTDSO74D8Q

https://www.maths.ox.ac.uk/node/68242
https://en.wikipedia.org/wiki/Terence_Tao
http://www.youtube.com/watch?v=_sTDSO74D8Q

Science Museum, London, 17 July 2024

(c/o Oxford Mathematics)

The Potential for AI in

Science and Mathematics

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Maths Olympiad proof vs. arithmetic

Proof tools reliable vs. LLMs unreliable

The Potential for AI in

Science and Mathematics

Science Museum, London, 17 July 2024

(c/o Oxford Mathematics)

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

Verify AI mathematical output

Reliable proof tools vs. unreliable LLMs

The Potential for AI in

Science and Mathematics

Science Museum, London, 17 July 2024

(c/o Oxford Mathematics)

C:\Users\Jonathan\AppData\Local\Microsoft\Windows\Temporary Internet
Files\Content.IE5\8PADLV2L\MC900432679[1].png

…maths …and also programs?

Use AI to fill in maths proof steps… …for program proofs too?

Proof assistants for formalization

Mathematics in the Age of AI

• Jeremy Avigad, Carnegie Mellon University

• Online FACS/LMS talk, 4 November 2025

Online FACS/LMS talk

Mathematics in the Age of AI

• Jeremy Avigad, Carnegie Mellon University

• Online FACS/LMS talk, 4 November 2025

Proof assistant &

functional programming

language

lean-lang.org

https://lean-lang.org/
https://lean-lang.org/
https://lean-lang.org/

Mathematics in the Age of AI

• Jeremy Avigad, Carnegie Mellon University

• Online FACS/LMS talk, 4 November 2025
International

Mathematical

Olympiad

Mathematics in the Age of AI

• Jeremy Avigad, Carnegie Mellon University

• Online FACS/LMS talk, 4 November 2025

… and formal methodists!

SETTA 2025

• 11th International Symposium on Dependable

Software Engineering Theories, Tools and Applications

• St Catherine’s College, Oxford, 1–3 December 2025

• Cristina David,

Bristol University

• Automated translation of

real-world codebases

Theorem Proving and AI in 2025

• Huang, S., et al. (Feb. 2025). LeanProgress: Guiding

Search for Neural Theorem Proving via Proof Progress

Prediction. arXiv. doi:10.48550/arXiv.2502.17925

• Lu, J., et al. (Oct. 2025). Lean Finder: Semantic Search

for Mathlib That Understands User Intents. arXiv.

doi:10.48550/arXiv.2510.15940

• DeepSeek releases DeepSeek-Math-V2 (Nov. 2025)

• Rapid AI-related developments with monthly updates…

• … perhaps a reinvigouration of formal methods!

Cf. AI winter

• Period of reduced funding between hype cycles

• Two major “winters” approximately 1974–1980

and 1987–2000

• Fifth Generation Computer Systems (FGCS):

10-year initiative launched in 1982 by Japan's

Ministry of International Trade and Industry

(MITI)

• Now a period of AI boom again with GenAI

• Perhaps something similar for formal methods!

FORMAL METHODS .

Blackwell’s, Oxford

“Vibe coding”* …

AI program generation

Vibe coding Program code

Vibe specifying Formal specification

Vibe

proving

Vibe

calculating

* Collins Dictionary Word of the Year for 2025

Reflection

Oui, l'ouvre sort plus belle

D'une forme au travail

Rebelle,

Vers, marbre, onyx, émail.

[Yes, the work comes out more beautiful

from a material that resists the process,

verse, marble, onyx, or enamel.]

— Théophile Gautier (1811–1872) L’Art

http://mercator.ens.fr/home/letourne/gautier/gautier_demi.gif

http://mercator.ens.fr/home/letourne/gautier/gautier.html
http://www.mta.ca/faculty/arts-letters/mll/french/gautier/

Reflection:

Jean-Raymond Abrial (1938–2025)

• Originator of three important formal methods:

Z notation, B-Method, and Event-B

• FACS FACTS newsletter tributes planned for

January 2026

• Cf. Tony Hoare @ 90 tributes in FACS FACTS

July 2024 issue, pp. 5–42

• LNCS Festschrift volume also planned

Formal Methods:
Whence and Whither?

Prof. Jonathan P. Bowen FRSA FBCS

Emeritus Professor of Computing
London South Bank University, UK

Adjunct Professor, Southwest University, Chongqing, China

Chairman, Museophile Limited, Oxford, UK

www.jpbowen.com
LSBU create a connected and Customisable Research Experience with Cayuse

http://www.jpbowen.com/
https://www.lsbu.ac.uk/

The End

	Slide 1: Formal Methods: Whence and Whither?
	Slide 2: Introduction
	Slide 3: Peter Landin (1930–2009)
	Slide 4: Peter Landin (1930–2009)
	Slide 5: Background
	Slide 6: Software…
	Slide 7: Safety and reliability
	Slide 8: The Flat Earth Society
	Slide 9: Logic
	Slide 10: Proof
	Slide 11: Theory and practice
	Slide 12: First formal methods paper?
	Slide 13: Turing and program proving
	Slide 14: Checking a large routine (1949)
	Slide 15: Turing and program proving
	Slide 16: Turing and program proving
	Slide 17: Turing and program proving
	Slide 18: Mathematics and programming
	Slide 19: Turing’s influence on program proving
	Slide 20: Turing and program proving
	Slide 21: Assertions
	Slide 22: Formal …
	Slide 23: … Methods
	Slide 24: Formal Methods: An Introduction to Symbolic Logic and to the Study of Effective Operations in Arithmetic and Logic (1962)
	Slide 25: Formal methods
	Slide 26: Some formal methods approaches
	Slide 27: Formal methods levels
	Slide 28: Formal specification
	Slide 29: Seven Myths of Formal Methods
	Slide 30: ProCoS: Provably Correct Systems
	Slide 31: Levels of abstraction/complexity
	Slide 32: Ten Commandments of Formal Methods
	Slide 33: Applications of Formal Methods
	Slide 34: Seven More Myths of Formal Methods
	Slide 35: Industrial-Strength Formal Methods in Practice
	Slide 36: Software Specification Methods
	Slide 37: Further books
	Slide 38: Education
	Slide 39: Choosing a formal method – difficult
	Slide 40: Tools – difficult to use
	Slide 41: Technology transfer
	Slide 42: Standards mandating formal methods
	Slide 43: Example: Z Standard
	Slide 44: Case study: National Air Traffic Services
	Slide 45: National Air Traffic Services, UK
	Slide 46: Flight strips on paper
	Slide 47: European airspace
	Slide 48: FlightRadar24
	Slide 49: National Air Traffic Services
	Slide 50: Formal Methods in Air Traffic Control
	Slide 51: UK Air Traffic Control
	Slide 52: ATC team
	Slide 53: What is iFACTS?
	Slide 54: Medium Term Conflict Detection: Separation Monitor
	Slide 55: The complete iFACTS specification
	Slide 56: The Z specification
	Slide 57: Z training
	Slide 58: Z tools
	Slide 59: Z tools
	Slide 60: The state machine specification
	Slide 61: State machine training & tools
	Slide 62: The SPARK implementation
	Slide 63: Code
	Slide 64: SPARK training and tools
	Slide 65: Test Design
	Slide 66: The challenge of test design
	Slide 67: The challenge of test design
	Slide 68: Mathematica tools & training
	Slide 69: Case study conclusions
	Slide 70: Tracing
	Slide 71: Subsequent iFACTS developments
	Slide 72: How Important is mathematics to the software practitioner?
	Slide 73: Mathematics debates
	Slide 74: SETSS: Engineering Trustworthy Software Systems
	Slide 75: SETSS 15–21 April 2024
	Slide 76: SETSS 17–23 April 2025
	Slide 77: Formal Methods and AI – questions
	Slide 78: AI – large “learned” models
	Slide 79: Formal methods and correctness
	Slide 80: Formalized mathematics
	Slide 81: Machine learning
	Slide 82: Deep Neural Networks (DNN)
	Slide 83: Coverage criteria for AI
	Slide 84: Formal methods and testing
	Slide 85: Predictions dangerous
	Slide 86: Future developments
	Slide 87: Unified theory? Cf. physics
	Slide 88: Unifying Theories of Programming
	Slide 89: Future developments
	Slide 90: Ronald Ross to ChatGPT: The birth and strange life of a random walk
	Slide 91: Mathematical discoveries from program search and large language models
	Slide 92: The Potential for AI in Science and Mathematics
	Slide 93: The Potential for AI in Science and Mathematics
	Slide 94: The Potential for AI in Science and Mathematics
	Slide 95: The Potential for AI in Science and Mathematics
	Slide 96: Mathematics in the Age of AI
	Slide 97: Mathematics in the Age of AI
	Slide 98: Mathematics in the Age of AI
	Slide 99: Mathematics in the Age of AI
	Slide 100: SETTA 2025
	Slide 101: Theorem Proving and AI in 2025
	Slide 102: Cf. AI winter
	Slide 103: “Vibe coding”* … AI program generation
	Slide 104: Reflection
	Slide 105: Reflection: Jean-Raymond Abrial (1938–2025)
	Slide 106: Formal Methods: Whence and Whither?
	Slide 107: The End

