Formal Methods:
Whence and Whither?

Prof. Jonathan P. Bowen FRSA FBCS

Emeritus Professor of Computing
London South Bank University, UK

Adjunct Professor, Southwest University, Chongqging, China

Chairman, Museophile Limited, Oxford, UK

WWW.|pbowen.com

o
O~
so
|_
)
LL]

e

=

http://www.jpbowen.com/
https://www.lsbu.ac.uk/

Introduction

« Subjects: Mathematics, art, engineering, computer science,
software engineering, formal methods, museum informatics,
history of computing, digital culture

« Academia: Imperial College London, Oxford University
Computing Laboratory, University of Reading,
London South Bank University, Birmingham City University

Babbage Difference

Engine at the Science Visitor: UNU-IIST (Macau), King's College London, Brunel Univ.,
Museum, London (¢.1980) \Westminster (UK), Waikato Univ. (Hamilton, New Zealand),

Pratt Institute (New York, USA), East China Normal Univ.
(Shanghai, China), Institute for Advanced Studies (lIAS,
Jerusalem, Israel), Southwest University (Chongging, China)

/ | * Industry: Marconi Instrument, Logica, Silicon Graphics

(California, USA), Altran Praxis (now Capgemini)

Program Verification and Semantics:
The early work

Robin Milner,
Tony Hoare,

Joe Stoy, and
Peter Landin

Teresa Numerico and Jonathan Bowen

On Tuesday 5 June 2001, a seminar on Program Verification @ |
and Semantics: The early work was held in the Director’s
Suite at the Science Museum, London. The seminar was :
organized with the co-operation of the British Computer Society (BCS) and the Computer
Conservation Society (CCS). It was an instructive and enjoyable afternoon for the hundred or so .
people that attended the meeting. SC|ence M useum,
Participating in the meeting were some of the pioneers and most important scientists in the
fields of program verification and semantics and some of the most important historians of computing London,
in Great Britain. It was a unique occasion that allowed the mingling of these two groups of people
with an interest in computer science. 5 June 2001
The organization of Prof. Jonathan Bowen, Prof. Cliff Jones and George Davis created a very
good rapport between the audience and the speakers that presented their experiences in the field of
formal methods. Presentations ranged from formal lectures to personal reminiscences. It was a
historical event in itself: the special atmosphere allowed the audience to participate with interesting CO_O rgan ized W|th
guestions and reminiscences of their own.
After an introductory speech by Chris Burton on the aims of the CCS, Jonathan Bowen Cllff Jones
outlined very briefly the history of formal methods from Aristotle’s logic to the use of Tony Hoare’s
assertions method in present debugging techniques, via Alan Turing’s and Christopher Strachey’s
achievements.

Peter Landin (1930-2009)

Why are things so complicated?

Peter Landin gave the last talk with the provocative title of “Why are things so complicated?” It
was a very personal recollection of thoughts about the beginnings of his scholarly career, started at
the end of the 1950s. He was much influenced by McCarthy and started to study LISP when the
most common language was FORTRAN. LISP was very different from the other contemporary
languages because it was based on a functional calculus rather than being procedural in nature. He

reminded the audience of Marvin Minsky’s hostility against A-calculus and ALGOL, while he was
writing some theoretical papers related to them. He remembered how difficult it was to deal with
delay lines and drums and gave the flavor of the past times. The audience had the impression that a
piece of the computing history was dancing in front of them.

At the end of the meeting, Cliff Jones, who was cited by some of the main speakers as one of
the major scientists in the field, drew some conclusions. The ability to prove mathematically that a
program correctly implements its specification is increasingly important, even if there is still a lot to
do in order to guarantee that security and safety-critical applications perform correctly.

Background

Academics vs. industrial practitioners

Formal methods still little used in practice
(except for safety/security)

Misconceptions

Guidance

Technology transfer issues

Future — effect of Artificial Intelligence?

M

| |

V7 At

Software...

Failure is not an option...

It comes bundled with the software!

©
-I-I-H_ — From a fridge magnet!

Safety and reliability

Captain, what does,

“Global reconfigurationin progess—- ; -----
Please Stand By ™. o

mean?

The Flat Earth Society

Cf. formal methods community...

— Gerard J. Holzmann

The

HAT EARTH

SOCIETY

https://www.tfes.org/

Logic

Aristotle’s logic — highly influential on
Western thought.

— Aristotle (384-322 BC)

Aristotle’s Lyceum, rediscovered
in Athens (1997)

http://www.utm.edu/research/iep/a/aristotl.htm

Proof

« Mathematics — simple theorems, deep proofs

» Cf. software — complicated specifications &
programs, shallow proofs

Fermat’s Last Theorem (c.1637):
a’+ b" # ¢" (integer n > 2)
— Pierre de Fermat (1607-1665)

Proved 358 years later by Andrew Wiles, 1994/5.

Not a timescale acceptable for software!

http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Fermat.html
http://www-groups.dcs.st-andrews.ac.uk/~history/HistTopics/Fermat's_last_theorem.html

Theory and practice

“It has long been my personal view that the
separation of practical and theoretical work is
artificial and injurious. Much of the practical work
done in computing, both in software and in hardware
design, is unsound and clumsy because the people
who do it have not any clear understanding of the
fundamental design principles of their work. Most of
the abstract mathematical and theoretical work is
sterile because it has no point of contact with real
computing.”

— Christopher Strachey (1916-1975)

https://en.wikipedia.org/wiki/Christopher_Strachey

First formal methods paper?

Arguably the first “formal methods” paper ever:

Checking a Large Routine, Paper for the EDSAC Inaugural
Conference, 24 June 1949. In Report of a Conference on High Speed
Automatic Calculating Machines, pp 67—69.

Reprinted with corrections and annotations in:
An early program proof by Alan Turing, L. Morris and C.B. Jones, IEEE Ann. Hist.
Computing 6(2):129-143, 1984.

See also: Turing and Software Verification, C.B. Jones. Tech. Report CS-TR-1441,
Newcastle University, UK, 2014.

— Alan Turing (1912-1954)

Priday, 24th June, |
/g.oklg A large routlise. by D, A, Turing.
Mow can one chack & routine in the sense of smeking sure that it Lo right?

In ordor that the man W cheacks say pot have too ¢1fficult « task the
progranses should mako a mmber of definite assortions which can be chocked

individually, and froa which the correcinces of the whole progromos easlly
follows,

Conaider the wnalogy of oheoking an addition, If Lt 1s glwen s

07,
5906
619
L3537
7758

26104
one must Sleck the whole at one eltting, becauas of the cxrrics,

Hat A7 the totala for the various oolizne are given, as below:

137
5906
6719
a337
7768

397
213

—_—

26108,

the chzckar's work 1w much easior balag aplit up into the checking of the
Vorivis axaestions 3 ¢ T o T o 3 o 7 =29 ete, wad the muall addition

3T,

This principle can be applisd to
But we »ill fllustrate the zethod by =o.
obtaln o without the use of a multiplier,
by repoatet addition,

o0ase of oheckiag a lurge routine
» wsall routioe vie, ons W
lication being carried cut

At & typioal t of the p wo bave recorded r
¥, 8. We can ohange & r to {sel) » by sddition of r.
W can change r to Te! by a transfor, Unfortunately there ia no
oystos sufricleatly generally kaown to Justily glving the routine for

procesa in full, but the Mow dlagraa given ia Plg.1 will be surflolent
for 1lluasration.

aF for . aoze
- red

Each 'box of the flow disgras represents a straight aoquence of
ioatructions withgut changes of coatrol. The following convention is used:

(1) & Gashwd lottor tndicates the valus at the ond of the process
ropronsntod by the box:
{11) an undashed letter represents tho inith

One cennot equats aimilar letters sppearing in dirferent baxssy
13 latenisd that the following fdentificaticas be valid throughout

&7.

P

content of lipe 27 of atore

¥ - « = 25" =
A - el PYgm. ®
“ . a = e -
v - Ao 3 -

It 4a also fntendad that u be w ¢ Or sasethipg of tho #0rt o0.g. it =ight be
{set) r or a r-1 but et a.g. 82 + x?,

& rm 4 make sasertions
order to asslst the chesker, the programis sl
Abo:: the various statva that tho echine cen rench, These unruohn;w
Le tubulated s in £ig.2. Axsortions are only muls for the utsjes ; 4
cestadn partioilar qusntitles are in control, uurroa,_;ordln; %o r“f::
lottars in the {Jow diagrea, One coluan of the '.:-!no 15.00041 o"’ :unnh.
situation of the control, Uther quantitica are -.uoin.:;;du:‘ t.:o o

. . 1‘ a

23 ¢ the machine cosplessly; 1o our oaso

:Oi:n;‘-:\m om upper part of the table gilves She various coutenjm ot"t:u atore
PRUEL) 1; the vorious conditions of the moecliiae, -n!‘ru'.rifu o: ok
sansitioe a, * (wilch we puy call dntuitive varistiles}. The p
:-n- us whicth of Sho oumiitions will ba the oext O oLour.

4 onding tof she Lnitial

by hecker has to verify that the coluany corresy 8

cun;'l‘:l:na:s the stoppocondition sgree with v.h: cl;ﬁnt;r\- n::‘:.::;:or
) a = whale, 0 this cese e clelm ia S ‘ wil o

::t::;!:;:ec;muum o BET aith o An lins 29 we oball Clad & uant ity 12‘0

lire)1 whep the mschine giope whtcg ta 7 (provided this Lofloss than ’

but this cordition las bog gnored),

in the Jower half of
g Yao to varicy that each of the aseertgona in,
thoutnl?: :. sorrect. soing this the colusgsey bc Lokl :l;n sy order
and quite indepenian Thuw for caluen B . ,u‘:?" e
“yras Wie Clow diagrea ou -.n.-.a.nuh.a tr "1- o .‘ 8
" art of the 1 for wo have 0.
::: :?-".:; '.:or v t.0, okt 18w 33 in C shoudd be thar entries are

tho oaas as in B*,

verify that the pr to an end,
s '{ha programaer fgiving affifurthor definite
hkntity which is
atope, TO the
In this problem

Mually the cholker
lors agali he should be afsifjted
sanoytion to be veriried,
asscrtol 1o deoreaxs OO0
pure natheosticlen 1t ia
the ordinal sight be (a ~

- 4 ba a dacrease
7 . e latter oane mul tap frop B
e 250 (g o 7) + 290 (r S0 20 23l g b, Ta e
stap fyom ¥ to B thare 1 lovrease Irom 2

8} + 5.

n end the tine
ransing quentity
thae till tiw ea ptopa.

In the couwrse of cheaking
tavolyed 2ay sleo ba estinat
represeits an upper bound T

“assertions”
“dashed™after states

Checking a large routine (1949)

“In order to assist the checker, the programmer should make
assertions about the various states that the machine can reach.”

“The checker has to verify that the ... initial condition and the
stopped condition agree with the claims that are made for the
routine as a whole.”

"He has also to verify that each of the assertions ... is correct.”

“Finally the checker has to verify that the process comes to an
end.”

An Early Program Proof by

Alan Turing
F. L. MORRIS AND C. B. JONES

The paper repr with typographical corrections and a 1949
paper by Alan Turing that for much q waork in program
proving.

Categories and Subject Descriptors: D.2.4 ISoIMm Englmeﬂng]—
correctness proofs; F.3.1 [Logics and Meaning:
K.2 [History of Computing]—software

General Terms: Verification

Additional Key Words and Phrases: A, M. Turing

‘.j — A s |
Il e s
ey
b
FIG.A

| gromaas |Owmas | o =i

'm ® ® ' © ® ' ® G

“. kot | kb | kad &e0 keny ¢ l.ﬂ z ___k-tt
| e i) s sel s
' |ao x or L >

£33 " n ! n o) r " n

‘ ! w0 ! = Pk st sk ()i
R] ! - I T = T
¢ = T .L ¥ X Y AN, P
i 9 v ® D v @ im@;m@ ™ @
:. ; mNr‘ul L mren : ':'?;:_N‘
| s'.|| o ® - O
7 \ myde: f AT W]
K i ¥ walr
< o | ik S T I
FIG. 2
b
B
i TSSUE “T.R.E. M.OS.
—— 3 »|DIAG.NGRTR 1l/5790.

Introduction

The standard references for work on program proofs
attribute the early statement of direction to John
McCarthy (e.g., McCarthy 1963); the first workable
methods to Peter Naur (1966) and Robert Floyd
(1967); and the provision of more formal systems to
C. A. R. Hoare (1969) and Edsger Dijkstra (1976). The
early papers of some of the computing pioneers, how-
ever, show an awareness of the need for proofs of
program correctness and even present workable meth-
ods (e.g., Goldstine and von Neumann 1947; Turing
1949).

The 1949 paper by Alan M. Turing is remarkable
in many respects. The three (foolscap) pages of text
contain an excellent motivation by analogy, a proof of
a program with two nested loops, and an indication of
a general proof method very like that of Floyd. Unfor-
tunately, the paper is made extremely difficult to read
by the large number of transcription errors. For ex-
ample, all instances of the factorial sign (Turing used

© 1984 by the Ameri Fed of Inf ion Pi i

Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publical.ion and its date appear, and notice is
given that the copying is by permission of the American Federation
of lnformsu(m Pmcessmg Soﬂeneﬁ, Inc. To copy otherwise, or to

specific
Authors’ Addresses: F. L. Morrig, School of Compuxer and Infor-
mation Science, 313 Link Hall, $ Uni v, S NY

13210. C. B. Jones, Department of Computer Science, The Univer-
sity, Manchester MI3 9PL, England.
© 1984 AFIPS 0164-1239/84/020139-143$01.00/00

in) have been omitted in the commentary, and ten
other identifiers are written incorrectly. It would ap-
pear to be worth correcting these errors and com-
menting on the proof from the viewpoint of subse-
quent work on program proofs.

Turing delivered this paper in June 1949, at the
inaugural conference of the EDSAC, the computer at
Cambridge University built under the direction of
Maurice V. Wilkes. Turing had been writing programs
for an electronic computer since the end of 1945—at
first for the proposed ACE, the computer project at the
National Physical Laboratory, but since October
1948 for the Manchester prototype computer, of which
he was deputy director. The references in his paper to
2% are reflections of the 40-bit “lines” of the Man-
chester machine storage system.

The following is the text of Turing’s 1949 paper,
corrected to the best of our ability to what we believe
Turing intended. We have made no changes in spell-
ing, punctuation, or grammar.

Turing Text

Friday, 24th June [1949]

Checking a large routine by Dr A. Turing.

How can one check & routine in the sense of making sure
that it is right?

In order that the man who checks may not have too
difficult a task the programmer should make a number of
definite assertions which can be checked individually, and
from which the correctness of the whole programme easily
follows.

Annais of the History of Computing, Volume 6, Number 2, April 1984 « 139

(® .
M- Dashed variables
for after states

©, ® ®

>

Ty r’,=11 F—r3— V=g e TEST 1=l g’ = U 0 =Y | —— & =58]
u =
A
A
*| TESTs—r
< r'=r+1 < <
STORAGE ('N'QTL\')AL) ® © (SE§P) ®
LOCATION k=6 k=5 k=4 k=0 k=3 i P!
27 S s+1 S
28 r . ; - -
29 n n n n n i A
30 r Lr sl (s + lr (s+)l
= I I [Ir r
e Te g o 1 0 @10 ® 0 ®
WITH r’ =1 IFr=n WITHr =r +1
g’ =1 10 ® IFs=r
Fren TO
WITHs =s + 1
IFs<r

Turing and program proving

Modernized flow diagram, with assertions

v=nl

rsn' rfn' STOP ssr<'n ssr<n
u=r u=r! >0 u=sr! u=(s+1)!
0<n : v=r! v=r! v=r!
| | : | |
| Fi=1 : i ! : | :
i) x Vi=u s:=1 3 u:=u+v 3 S:=s8+1

<
i |
|
0 I
> <
r=r+1 e '—’<n

<cCow
[[

Mathematics and programming

In 1951, Christopher Strachey wrote a letter to
Alan Turing on his programming plans:

“... once the suitable notation is decided, all that
would be necessary would be to type more or
less ordinary mathematics and a special
routine called, say, 'Programme’ would convert
this into the necessary instructions to make the
machine carry out the operations indicated. This
may sound rather Utopian, but | think it, or
something like it, should be possible ...”

https://en.wikipedia.org/wiki/Christopher_Strachey

Turing’s influence on program proving

« Aad van Wijngaarden was at the Cambridge meeting —
but no known influence (1949...)

* Robert Floyd rediscovered ideas similar to those of Turing
(published 1967)

« Tony Hoare developed these further (published 1969)

 Had Turing lived longer, perhaps formal methods (in
particular program proving) would have developed more
rapidly, rather than being rediscovered

1976
1967

1947

1969
1963

1966
1949

REFERENCES

Dikstra, E. W. 1976. A Discipline of Programming. Engle-
wood Cliffs, N.J., Prentice-Hall.

Floyd, R. W. 1967. “Assigning Meaning to Programs.” Proc.
of Symposia in Appl. Math. 19. (Also in S. T. Schwartz
(ed.), Mathematical Aspects of Computer Science, Provi-
dence, American Mathematical Society, 1967.)

Goldstine, H. H., and J. von Neumann. 1947. “Planning and
Coding of Problems for an Electronic Computing Instru-
ment.” Report of U.S. Ord. Dept. In A. Taub (ed.), Col-
lected Works of J. von Neumann, New York, Pergamon,
Vol. 5, 1965, pp. 80-151.

Hoare, C. A. R. October 1969. An axiomatic basis for com-
puter programming. Comm. ACM 12, 10, 576-580.

McCarthy, J. 1963. “A Basis for a Mathematical Theory of
Computation.” In P. Braffort and D. Hirschberg (eds.),
Computer Programming and Formal Systems, Amsterdam,
North-Holland, 1967, pp. 33-70.

Naur, P. 1966. Proof of algorithms by general snapshots.
BIT 6, 4, 310-316.

Turing, A. M. 1949. “Checking a Large Routine.” In Report
of a Conference on High Speed Automatic Calculating
Machines, Univ. Math. Lab., Cambridge, pp. 67-69.

Assertions

An Axiomatic Basic for Computer Programming.
Communications of the ACM, October 1969

— Sir Tony Hoare (b.1934)

Hoare logic: {pre} prog {post}

Program proving with pre- and post-conditions as
“assertions” (logical statements about the program)

30 years later ... assertions widely used by programmers
for testing and debugging rather than proof

http://www.research.microsoft.com/~thoare/

Formal ...

formal /fm()l/ a. LME. [L formalis, f. forma: see FORM n., -AL.] 1
a Philos. Of or pertaining to the form or constitutive essence of a thing; essential. LME.
b Pertaining to the specific form of an animal or plant. LME-L17. ¢ Of or pertaining to
the outward form, shape, appearance, arrangement, or external qualities of a thing.
Formerly also (of knowledge), theoretical. M17. d Logic. Concerned with the
form, not the matter, of reasoning. M19.

proof

tet * 7S ={zx & fx}"

show “7.S Q range f" p . . 5y

oot i) After great pain, a formal feeling comes—
assume "'/, range ["

then obtain y where fy: "?S = fy" ..
show

show (315 — Emily Dickinson (1862)

assume " 7 c?8 -
hence " Y € f‘_l/ . by simp

http://www.vdash.org/formal/

... Methods

method /methd/ n. LME. [L methodus f. Gk methodos pursuit of
knowledge, mode of investigation, f. meta (see META-) + hodos

way.] | Procedure for attaining an object. 1 ... 2 Amode of procedure; a

(defined or systematic) way of doing a thing, esp. (w. specifying wd or wds) in accordance
with a particular theory or as associated with a particular person. L16. ... Il Systematic

arrangement, order. 3 The branch of logic that deals with the
description and arrangement of arguments or propositions for

the investigation or exposition of a truth. M16. 4 Order in thinking or
expressing thoughts; the orderly arrangement of ideas; gen. orderliness, regularity, or
planning in doing anything. M16.

4| "Bydifferent methods different men excel;
t bl] But where is he who can do all things well?”

, A | — Charles Churchill (1731-1764)

Formal Methods:
An Introduction to Symbolic Logic
and to the Study of Effective

Operations in Arithmetic and Logic
(1962)

Evert Willem Beth (1908-1964),
Dutch philosopher and logician

Earliest book with
“formal methods”
in the title?

EVERT W. BETH

FORMAL METHODS

OOOOOOOOOOOOOOOOOOOOOOOOOOOOO
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

llllllllllllllllllll

https://en.wikipedia.org/wiki/Evert_Willem_Beth

F o rm a I m et h o d s Requirements System

 Term established by late 1970s
Mathema.tlcal M[)a::cer?;:it;:lal
— Next stage from structured design
— Mathematical basis h:g::ﬂs

« Formal specification and (optionally) proof:

Verdict: Correct or Not

— Validation (correct specification)

— Verification (correct implementation wrt spec.)
Analysis Interpretation Checking

« But engineers calculate rather than prove

Proof D n°fe rent Deductive

Verification

Design by Forma I Model-Based
Refinement Methods Testing

Types of

https://encyclopedia.pub/entry/44342
https://encyclopedia.pub/entry/44342

Some formal methods approaches

* Abstract Interpretation: approximating program
behaviour to prove correctness or detect errors. F()rmal
- Model-Based Testing: generating test cases Methods

from a formal model.

An Appetizer

 Model Checking: exhaustively verifying system
behaviour against a formal specification. R

= . . Markus'RogggrlQM
* Proof Assistants: tools for interactively B
constructing and verifying mathematical proofs.

* Refinement: systematically refining a high-level
specification into a correct implementation.

~ 4 o BN Lo
S Tk 3 e TS

- Static Analysis: analyzing program code prpss
meaning to detect errors or enforce constraints.
- Verification: proving the correctness of a 2019

program using logical inference rules. &) Springer

0.

1.

2.

Formal methods levels

Formal Specification:
— Requirements only
— No analysis or proof
— Can be used to aid testing
— Cost-effective

Formal Verification:
— Program produced in a more formal way
— Use of proof or refinement based on a formal specification
— More costly

Theorem Proving:
— Use of a theorem prover tool
— Formal machine-checked proofs
— Proof of entire system possible but scaling difficult
— Expensive and hard

Markus Roggenbach - Antonio Cerone -
Bernd-Holger Schlingloff -
Gerardo Schneider - Siraj Ahmed Shaikh

Formal
Methods

for Software
Engineering

Languages, Methods, Application
Domains

2022 @ springer

Formal specification

1. A specification written and "~ known - P NAME
approved n accordance | o -
with established standards |
__ AddBirthday
2. A specification written in a name? « NAME
formal notation, often for o
use in proof of correctness. ey = Bl) udnet = daeeT)

— |IEEE glossary

Seven Myths of Formal Methods ‘ Fﬂ\ﬁﬂ I MYTxHS ‘

. Formal Methods can

guarantee that software is 5. Formal Methods increase the
perfect. cost of development.

2. Formal Methods are all about 6. Formal Methods are
program proving. unacceptable to users.

3. Formal Methods are only /. Formal Methods are not used
useful for safety-critical on real, large-scale software.
systems.

— J.A. Hall, [EEE Software,

4. Formal Methods require highly
September 1990

trained mathematicians.

ProCoS: Provably Correct Systems

European projects and Working Group (early 1990s)

* Requirements
» Specification P
| roCoS
* Design
* Programming Stop press:
Retrospective multi-author
« Compilation paper accepted for the

Formal Aspects of
« Hardware Computing journal

Levels of abstraction/complexity

» 15k lines of (informal) requirements

» 150k lines of (formal?) specification

* 1.5 million lines of design description
* 15 million lines of (formal!) high-level program code
« 150 million machine instructions of object code

1.5 billion transistors in hardware!

The later a mistake is detected, the more costly it is!

1.
V.

Ten Commandments of Formal Methods

Thou shalt choose an VI. Thou shalt document sufficiently

appropriate notation ,
VII. Thou shalt not compromise thy

Thou shalt formalize but not quality standards

over-formalize ,
VIIl. Thou shalt not be dogmatic

Thou shalt guestimate costs
Thou shalt test, test, and test

Thou shalt have a formal | again

methods guru on call
Thou shalt reuse

Thou shalt not abandon thy

traditional development — J.P. Bowen & M.G. Hinchey
methods IEEE Computer, April 1995

Applications of Formal Methods

Edited by
Michael G. Hinchey
Jonathan P. Bowen

Applications of
Formal
Methods

C.AR HOARE SERIES EDITOR

Examples:

» Tektronix (Z) — oscilloscopes
STV algorithm (VDM) — voting
IBM CICS (B) — transaction processing

AAMPS microprocessor (PVS) — hardware

GEC Alsthom (B) — railway software
« A300/340 (£) — airplane software

Prentice Hall, International Series in Computer Science,
1995

Seven More Myths of Formal Methods | facts |

8. Formal Methods delay the 12. Formal Methods are not
development process. required.

9. Formal Methods do not have 13. Formal Methods are not
tools. supported.

10. Formal Methods mean 14. Formal Methods people
forsaking traditional always use Formal Methods.

engineering design methods.
11. Formal Methods only apply —J.P. Bowen & M.G. Hinchey

to software. IEEE Software, July 1995

Industrial-Strength Formal Methods in Practice

Examples:

* Motorola CAP DSP (ACL2)
» Radiation Therapy Machine (£)
* ATC system (VDM)

 Railways (Prover Technology)

And later: Microsoft

Springer, FACIT series, 1999

Software Specification Methods

Marc Frappier and Henr Habrias cds

Software The process of producing a formal

Specification specification...
Methods Using a selection of formal methods:

W vervien Esing a Case Shidh

Z, SAZ, B, OMT, Action Systems,

=~ UML, VHDL, Estelle, SDL, E-LOTOS,
JSD, CASL, Coq, Petri Nets.

Marc Frappier & Henri Habrias (eds.)
O Springer | Springer-Verlag, FACIT series, 2001

Further books

+ Boulanger, J.-L., ed. 2012 .
Formal Methods: Industrial Use from Model ndustiat Uso
to the Code.

ISTE, Wiley.
ISBN 978-1848213623.

FORMALMETHODS
FOrR INDUSTRIAL

* Gnesi, S. and I\/Iargaria, T. 2012. CRITICAL SYSTEMS
Formal Methods for Industrial Critical e
Systems: A Survey of Applications.

IEEE Computer Society Press, Wiley.
ISBN 978-0470876183.

http://www.amazon.com/Formal-Method-Industrial-Used-Model/dp/184821362X
http://www.amazon.com/Formal-Methods-Industrial-Critical-Systems/dp/0470876182

BOOK FOR SALE _
R Education

[iput RS eR I

* Resistance by students

 Resistance even by

academics
TREWRY OFZ, |
PRACTICALPROGRAMNING WIH FORMAL METH O3 . Sup_p(?rt by professional
£15 0.0 socnetl_es (e.g_, BCS
accreditation)

Hardly used!

Choosing a formal method - difficult

Choosing a formal method can be a fearful thing,

Tools —
difficult
to use

Technology transfer

RN mAVe S

Courses (academia & industry) SELECTRIC S

Textbooks (good choice)

Tools (type-checkers, provers, ...)

Web resources (including Wikipedia) / ™ ~|° :

Mailing lists (e.g., JISCmail)

Meetings (conference series)

::-.'E;:' : - r \‘{{ A - _’ e ’
Standards (international) H B =55 7

I'he only thing harder to sell than formal methods.

Standards mandating formal methods

* In highest level of safety and security applications

e From 1990s*

* Also, for formal notations themselves...

*See:

Bowen, J.P. & Stavridou, V. (1993),
Safety-critical systems, formal methods
and standards. Software Engineering
Journal, 8(4):189-209. DOI:
@ttps://doi.orq/ 10.1049/s€].1993.0025

Country | Body | Sector Name FMs FMs Status Year
content | mandated | (Jan. 1992)

Us DoD | Defence | MIL-STD-882B | No N/A Standard 1985

MIL-STD-882C | Likely |7 Draft 1992
us RTCA | Aviation | DO-178A No N/A Guideline | 1985

DO-178B Yes ? Draft 1992
Europe | IEC Nuclear | IEC880 No N/A Standard 1986
UK HSE | Generic | PES No N/A Guideline | 1987
Europe | IEC Generic | IEC65A WG9 | Yes No Draft 1989

IEC65A 122 Yes No Proposed 1991
Europe | ESA Space PS55-05-0 Yes Yes Standard 1991
UK MoD Defence | 00-55 Yes Yes Interim 1991
us IEEE | Generic | P1228 No No Draft 1992
UK RIA Railway | - Yes Yes Draft 1991
Canada | AECB | Nuclear | - Yes ? Draft 1991

https://doi.org/10.1049/sej.1993.0025

Example: Z Standard

e |ISO/IEC 13568
—Long process (1990s)
— Inconsistencies found!

* Final Committee Draft
— accepted in 2001

* May help tools & industrial application

http://web.comlab.ox.ac.uk/oucl/research/groups/zstandards/

Case study: National Air Traffic Services

« 2.5 million flights per year (pre-Covid), covering the UK
and eastern North Atlantic.

« 250 million passengers per year in UK airspace.
 Among the busiest & most complex airspace in the world.

* Provides air traffic control from its centres at Swanwick,
Hampshire (England) and Prestwick, Ayrshire (Scotland).

 Also provides air traffic control services at 15 UK airports
including Heathrow, Gatwick, Stansted, Birmingham,
Manchester, Edinburgh, and Glasgow, together with air traffic

services at Gibraltar Airport. INATS Q@)

http://upload.wikimedia.org/wikipedia/en/f/fa/Nats_logo_2006.png

/NVATS National Air Traffic Services, UK

WISV
‘}Wf‘\ »"&:ﬁ
\"\\L: :s cx

Swanwick
southern England

www.nhats.co.uk

http://www.nats.co.uk/
http://upload.wikimedia.org/wikipedia/en/f/fa/Nats_logo_2006.png

Flight strips on paper

RVA 83A SPEEDBIRD SLS+

BAW2

4235 F600

03E 24 Com TS60|KJFK EGLL

Last flight of Concorde

European
alrspace

Source: Wikipedia

London:
England

& Wales

<

47[“#

©flightradar24
FlightRadar24

www.flightradar24.com

e &

AL
© A'E)p‘Stcl)‘ré

ANDROID APP ON

» (Google play

http://www.flightradar24.com/

NVATS National Air Traffic Services

« Advertisement at Heathrow Airport =
 Air Traffic Management (ATM)

« Single European Sky ATM Research
(SESAR)

« SESAR Joint Undertaking

* www.sesarju.eu

« SESAR project (2004—c.2030!)
 European ATM Master Plan

Heathrow Vi
Oettey

go to heathrowairthought.com

W

“).'(
.h a
4Pe

O4
X
£
i T
4 Tl
— ol
— -\""-\.____\-\-
-H-\"\-_H_ —_—
. -
"'--\.._____ "
Pl
'\-\.__.\-H--
-
tan
-~
o

He ey,
v ,b
4.%

To lighten our
environmental footprint
we're standing together.

'\/5/

HeathrowAirthQ%)ght

http://www.sesarju.eu/
http://www.sesarju.eu/
http://upload.wikimedia.org/wikipedia/en/f/fa/Nats_logo_2006.png

Formal Methods in Air Traffic Control

NATS, the UK’s leading air traffic services provider, has
pioneered research and development of advanced air
traffic control tools for several years from its simulator

and research centre.

The IFACTS project provides a subset of these tools onto
the system at the company’s main en-route Control
Centre at Swanwick.

www.slideshare.net/AdaCore/white-open-do k
alTRaNy -

www.youtube.com/watch?v=IQMWVgQfm5A
PRAXIS 7t

g o rais - (Original slides by Neil White) (Capgemini Engineering since 2019) (@)

https://automation.forthillgroup.com/story/iFACTS

UK Air Traffic Control

£ 2
X

Scottish Terminal
Control Area

Newcastle CTA

Scottish FIR

London FIR

Manchester
Terminal
Control Area,

2
Daventry
Control
Area
2
&

Cotswold
Control Area

London Terminal
Control Area

Worthing
Control Area

Channel Islands
CTR

Copyright © Altran Praxis

Planner
(in/out)

Copyright © Altran Praxis

ATC team

Tactical
(controller)

Assistant
(flight strips)

What is iFACTS?

e (FACTS - Interim Future Area Control Tools Support

e FACTS provides tools to support the controllers
— Electronic flight strips replace the paper flight strips.

- Trajectory tools - including prediction, deviation alerts,
and conflict detection - are added.

e |FACTS not an Air Traffic Control (ATC) system

- Integrated with, but sits alongside, the existing system.

Copyright © Altran Praxis

Medium Term Conflict Detection: Separation Monitor

BAW225
UAL3

BAWO028 ”
ANZ001

AZA292
BAL547
DLH4695

SAS123
BAWA3BE

Copyright © Altran Praxis limited 2010

The complete iFACTS specification

The functional specification
- Z notation

The algorithm specification
- Mathematics (Mathematica)

The Human-Machine Interface (HMI) specification
- State tables

The rest of the specification
— English!

Copyright © Altran Praxis

The Z specification

Every flight is associated with an aircraft type if its aircraft type name matches.

Every flight is associated with a performance madel. If there is no model corresponding to the
aircraft type, then this is a default model. If there is a filed speed up to maxPistonSpesd , then thisis
wrkrowr Pistar, if there is a filed speed above this but no greater than macThrboprapSpeed | itis

wrirrown Thrboprap, otherwise it is wrkrowner.

The set fupNAS Deletad Flights is those flights that have heen NAS deleted. Itis used by
Fecognised Flights.

_FWFFghts DervalAssoc it ioms
FWFFlights Associations
FwpFlight AircrafiType | FLIGHT = AIRCRAFTTYPENAME
JFwpRlightPerformancelodel - FLIGHT - PERFORMANCEMODEL

FwpNASDeletad Flights - F FLIGHT

FwpFlightAircrafiType = {f fwpFGHights | o aircrgitTypes
| (PwpFlightState DaircrafiTypeNane =a® fa}
PwpFlightPerformanceld odel =
i wpFGRLghts N fwpBlaockers), model | FERFORMANCEMODEL |
(let speed = (fwpFlightState(f)) filedSpeed ®
model = if the speed < maxFistonSpeed then unkrownPiston
else if the speed < macTurbopropSpeed then wilmownTirboprap
else Lrkrowrset)
& (fwpFlight AircrafiTvpe 5 type Performanceld adel)
pNASDeletad Flights = { [fwpFGHights | (fwpFlightSiate [nasDelated = Trie }

Z training

e /Zreader training
- 3-day course; fluency then comes after 1 week on the job.
- Trained 75 people to read Z.
- Engineers, domain experts, ATCOs.

e /Zwriter training
- 3-day course, fluency then comes after 3 months on the job.
- Trained 11 people to write Z.
- All engineers.

Copyright © Altran Praxis

Z tools

e / written in Microsoft Word

- To get acceptance, you need to work
with what people know.

- Supported by Word Add-ins.
e A Z character set.

* Asimple interface to the fuzz type checker.

* A graphical representation tool.

Copyright © Altran Praxis

Z tools

Advantages

- Easy to develop commentary and Z together.

- Hyperlinking of fuzz errors back to source.

— Cross-referencing of Z names in final document.

Disadvantages
— All the problems of large Word documents.
- Tools can be slow on 1,000 page documents.

- Merging branches (for different releases) painful.

Possible future
- Open Office XML

Copyright © Altran Praxis

The state machine specification

Button 1 Checkbox 1

State 1 | State2 N/A
State 2 | Statel State 3
State 3 Statel State 2

Transition Actions
State 1 -> State 2 : De-select Checkbox 1

Copyright © Altran Prax is

State machine training & tools

* Training
- So trivial that we don't train!
- People “just get it".

e Tools
- Err.... None.

The SPARK implementation

e SPARK Ada
- An annotated subset of Ada.

e 150 KSLOC (Logical)

e RTE (Run-Time Exception) Proof

- Formal partial correctness proof against
specification not considered cost-effective.

Code

function 3egment Group FL Occupancy
(Segs_Group : PIO Data.Segment Group Array T:
Quantity : PIO Data.Trajectory Index T)
return Altitudes.Level Range

is
The Range : Altitudes.Level Range:
Temp Range : Altitudes.Level Range;
begin

-— By wirtue of the fact that this procedure has been called means
-— that the lewvel ranges must be populated 30 set to a senseless
-— null wvalue guaranteed to be overwritten

The Range.Lower := Altitudes.Flight Lewvel T'Last;

The_ Range.Upper := Altitudes.Flight Lewvel T'First;

for Idx in PIO Data.Trajectory Index T range 1 .. Quantity loop
-—# assert Quantity = Quantitys:

-— Must have a standard occupancy at the wvery least so check for that
if MTCD_ Types.Get_ Standard Occupancy (Segs_Group (Idx)).Exists then

Temp Range := Segwent FL Occupancy (Segs_Group (Idx)):
The Range.Lower :=
Altitudes.Flight Lewvel T'Min [The_Range.Lower,
Temp Range.Lower) ;
The Range.Upper :=
Altitudes.Flight Lewvel T'Max [(The_Range.Upper,
Temp_ Range.Upper) ;
end if;
end loop:;

return The Range;

end Segment_ Group FL Occupancy;

SPARK training and tools
57 people trained in SPARK

Mostly contractors and clients.
Diverse programming background.

- All SPARK coders also Z readers.

Effective as SPARK coders immediately
Picking up RTE proof takes longer.

- About 2 months.
How long to pick up formal correctness proofs?

No data, but suspect longer again.

Copyright © Altran Praxis

The SPARK toolset:

Examiner.

Proof Simplifier.

Proof Checker.

Test Design

2.2.1.18 TPDeviationRequests

Summary
Requests the required deviation trajectories.

This is a non-conditional schema.

Partitions

There are two equivalence classes:

1 Flight is not radar supported, so no information.
2 Flight is radar supported.

The output condition in the first equivalence class is that there is no request. This can also occur
when there are no deviation trajectories, so that input condition should be tested as well.

It is stated within the FPM process specification that the number of deviation requests will be either

none, one or two ([4] section 13.2.13.2). We should test for each of these conditions separately
(since 0 and 2 are boundary conditions).

Test Conditions

TPDeviationRequests 1 2 3 4
fpmData!? = nil ® o o o
(the fomData!?).fpmDeviationTrajectories = & e o o0
deviationReqs = & e e o o
#deviationReqs = 1 o o ® o
#deviationReqs = 2 o o o e

The challenge of test design

_TPRemoveMultiple PIOs
ATP

ipFlights!? : PFLIGHT
piosToRemove : PPIO

= deletedDirectPIOs, deleted GroupedPIOs : PPIO
deletedDirectPIOs = flightPIO (tpFlights!?) N piosToRemove
A deletedGroupedPIOs = pioPIOGroup™ (| deletedDirectPIOs |) ®
flightPIO" = flightPIO & deletedDirectPIOs
A pioPIOGroup' = pioPIOGroup & deletedDirectPIOs
A pioGroupDisplayPIO" = deletedDirectPIOs < pioGroupDisplayPIO
A pioState' = (deletedDivectPIOs | deleted GroupedPIOs) < pioState
nominalVerticalProfiles' =
if fwpHookedFlight N tpFlights!? # nil

then nil else nominalVertical Profiles

How many potential tests for this fragment?

The challenge of test design

e [fyou justturn the handle there are 1134
conditions to test.

 But if you work at it hard enough you can cover
the required subset in just 6 test scripts.

* Formal methods are not a substitute for
Initiative.

Copyright © Altran Praxis

Mathematica tools & training

Algorithms are specified in pure mathematics.
Generate test cases as usual.

Create a test reference implementation in Mathematica.

Small team - only 5 trained.

Reference model has similar defect density to SPARK
Implementation.

Limited conclusions to draw from such a small activity.

Copyright © Altran Praxis

Case study conclusions

* Formal methods are applicable to all phases of the lifecycle.

* Training engineers is not a barrier

- It’s a one-off cost

- Data shows that training is easy and cheap.
e Tool support is vital

— The Achilles heel of formal methods

e Except the SPARK Examiner!

Copyright © Altran Praxis

Tracing

Completeness of coverage

— e.g., testing all parts of a Z specification

DOORS tool

— Dynamic Object-Oriented Requirements System
Link all specification components with test case(s
— or argument for safety case

Flag unlinked components
Also, visualization of schema structure

Subsequent IFACTS developments

IFACTS in operation (2011) — 18 minutes of prediction, |
up to 40% capacity increase in some sectors

Traffic Load Prediction Device (TLPD):

— Forecast air traffic load up to 4 hours ahead

— Plan workloads for optimum traffic flows

IFACTS — winner of the Duke of Edinburgh Navigation 4
Award for Technical Achievement (2013) -

MoD use for military air traffic control (2014)

FourSight, successor to IFACTS (2017) for
Swanwick/Prestwick — European SESAR compliant

How Important is mathematics to the
software practitioner?

Some consider it unimportant ... !

— Robert L. Glass
IEEE Software, Nov./Dec. 2000

Mathematics debates

Some consider it important ...

— Willilam W. McMillan et al., Letters
IEEE Software, Jan./Feb. 2001

The debate has continued ...

SETSS: Engineering Trustworthy
Software Systems

Annual Spring School at Southwest University,
Chongging, China, & now ISCAS, Beijing, China
Held 2014-2019, restarted after COVID in 2024

Week-long tutorials by international experts, for
graduate students from China and elsewhere

Engineering Trustworthy
Software Systems

o
Lo
[®]
=]
<
(o0}
0n
w
—
wv
O
=
=

Tutorial proceedings in Springer LNCS
State of the art in formal methods & related research =

Cf. annual Marktoberdorf Summer School in Europe
(6—15 August 2025)

https://link.springer.com/book/10.1007/978-981-96-4656-2

¥
o,

SETSS [_
15-21 April 2024 |
www.rise-swu.cn/SETSS2024

SWU, Chongqing, China
Seven tutorials over 5 days
Workshop over 2 days

E S\%’STEMS'(SETSS

R

http://www.rise-swu.cn/SETSS2024
http://www.rise-swu.cn/SETSS2024
http://www.rise-swu.cn/SETSS2024

SETSS .7 7
17-23 April 2025 =

tis.ios.ac.cn/SETSS2025

« ISCAS, Beijing, China
« 2 days of workshop talks

———v‘ ——

« 5 days of longer tutorials

ISLAS fiisniuia
it K & & *r Y

CHiNA COMPUTER FEDERATION SOUTHWEST UNIVERSITY

https://tis.ios.ac.cn/SETSS2025/

Forma‘l Methods and Al — questions

> /

d LLMs

Questions About Machiné [earning an

retable/explainable or should it be?

_|s Al interp oy
eative’ meaning:

~Is Al creative? What does “being €r
Do we agree that people should not study programming or

| programming languages anymore - what do you think about
coftware developmentwith LLM or programming In natural

languages?
Can LLM do logic reasoning (causal relations VS correlation

_ Can LLM computer more problems? Do they change the
theory of complexity theory?

. What is GAI anyway?
It is time to redefine computer science and software engineering

anyway!ll

LA 2 Ot =

Explainable Al, etc.

(&

Al — large “learned” models

quence: Consider it a Feature

ous with large learned models. [...]
creasingly clear that af least

A Possible Conse

“Al is becoming synonym
Given this state of affairs, i is in
part of Al is straying firmly away from ifs “engineering” roots.

It is increasingly hard to consider large learned systems as “de-
signed” in the fraditional sense of the word, with a specific pur-
pose in mind. After all, we don’t go around saying we are “de-
signing” our kids [...]

Al becomes on ersatz natural science studyin
artifacts. Of course, there might be significant methodological
resiclance and. reservations fo this shift . Affer all, CS has long
been used.fo the “correct by construction” holy grail, and from
there it is quite a shift fo getfing used fo living with systems that
are af best incentivized (“dog trained”) to be sort of correct —

sort of like us humans!”

g large learned

Subbarao Kambhampati: “Al as (an Ersatz) Natural Science?” CACM, June 8, 2022

“Correct by construction” vs. “dog trained”

Al Components for High Inlegrily, Safety-Crifical Human-Cyber-Physical Systems '
Marlin Franzle — Carl von Ossietzky Universilal Oldenburg ((

Cat) von Cssietzhy
Universitat

Univernat Line of Attack: Correctness

> Rigorous specification of intended functionality is partially possible by using don't care
regions

» Either as open-loop properties ex

ressing when,
regarding current state observed Eg the sensors, the
system ought issue which adyisories, like in (examples
simplified)

K collision avoidance SN
S threshold 4

P If no other flight device is within a radius of 20 miles then |

no advisory ought be given. I

|

|

|

|

[

(

» As soon as another flight device is within a radius of 4
miles, a conflict-free advisory has to be issued.

» or as closed-loop requirements:

» starfing from any situation obeying the system bounds
regarding speeds, initial separations, etc., the collision

volume remains unreachable when all advisories issued are

followed.
Formal methods and correctness
Rigorous specification
Al Componenls for High Infegrily, Safely-Crifical Human-CGuber-Physical Sysiems
Marlin Franzle — Corl von Ossielzky Universital Oldenburg

B e a #

““nmﬁ"ﬂl JWEE

2 Avigad+Har‘rison, 2014:
he soiences, mathematios
by its precise language

mentation.

m Amongt
is distinguished
and olear rules of argu

B Thisfact makes it possible to
model mathematical proofs as

formal axiomatio derivations.
B Computational proof assistants make Precise lan gua ' l\
ge, B

it possible to oheok the correctness
of these derivations, thereby inoreasing correctness checkabl
e i

|

the reliability of mathematioal olaims.
by proof assistants

=g

all Moshe Vardi |

B B B e B b

s B L P | B B B B B L
CEEEDEEECECEECEELLLL

@ - & B B- ©-
o = HERE . —cbes
HA HERS Sl BT e IR Bitm

Formalized mathematics

—— N s e == e

.-5--—.—.—.—0—»;.-&-.—5« hhhhh

.-b-;—o-._a—...b—;—u—

e B s i

»021: Advancing

A..-A-o-n-—».-ﬂl‘"

al.. Nature, 2
s by guiding hu
AL

s of using machine

= "We proposé d proces |
learning to discover potential patterns and

relations between mathematical objects, .
understanding them with atfribution techniques
and using these observations 10 guide intuifion

and propose conjectures.”

o In other words, IA rather than ATl
» SrXTivI, 12/A£8/h2P3|: GenBeWJ‘rive AT for Math: Human intuition
art I -- MathPile: A Bi ion-Token-Scal combi '
Pretraining Corpus 3 mbined with Al

e §n o Be e B

man intuition with

Machine learning

» e e FO».—O—-’-I—OI‘ILO'lI-IUII‘!l—
bbbl Ll L LA L L

I-ﬁ‘-‘-"—’-l—.-h.-b.‘.—’--.—.—.—‘-'-.—.‘.-4.0.-&
LLLL LLLLLLLLLLLLLLLLLLLLLLLLLLL
A 00 14 A
A4 34 [| =
rn —v - -
] H 2 = = P Vi {:l
) BT ® IR =0 £ic

S - 7 P
10

Deep Neural Networks (DNN)

DNN as a program

Input Hidden Hidden Output
layer layer Iayer layer

label = argmax; ., Ukl

1) neuron activation value

E Wi—1.h7" Vk—1,h

1<h<s,

Ui = bi;+ vy ; = max{uy;, 0}

weighted sum plus a bias;

w,b are parameters learned

https://qithub.com/theyouchena/DLTT

2) rectified linear unit (ReLU):

// 1) mneuron activation wvalue
double ug,= bk,i;
for (unsigned h=1; h<sci; h+=
{

Uk,i += Wk—1,h,i * Vk—1,h;

}

double vi;=0;

// 2) ReLU :
't mi>0 Multiple layers
{ 2

Vk,i = Uk,i; between |npUt
}

and output,
explainable Al

1)

Coverage
criteria
for Al

Test coverage
for DNNs

| 0 € CH < =
Il—il" gie (¢ ['\ L) 1{ ﬂl_l L ‘ ‘_j] |7| — [lw, 7 Vj |
NC mputational compi 10 \ l
LI | DNN layers.
ff
s) ' | :
= Lol | e |
|
|

Formal
methods
and
testing

Reliance on
probability
distributions

Predictions dangerous

“ ... these formal methods are the key to writing much
better software. Their widespread use will revolutionise
software writing, and the economic benefits will be
considerable — on a par with those of the revolution in
civil engineering during the last century.”

C Al — Brian Oakley (1927-2012),
ompare Al: Alvey Achievements, June 1987

https://en.wikipedia.org/wiki/Brian_Oakley

Future developments

An engineering approach

Proof vs. calculation

“Light” approach (specification)
Improved tools (Moore’s law helps)
International standards

Education / training (for all personnel)
Unification of approaches?

Unified theory? Cf. physics

“The construction of a single mathematical model
obeying an elegant set of algebraic laws is a significant
intellectual achievement; so is the formulation of a set of
algebraic laws characterising an interesting and useful

set of models.”
— Sir Tony Hoare, 1993

Operational, Denotational, Algebraic semantics

®

http://www.research.microsoft.com/~thoare/

Unifying Theories
of Programming

 Tony Hoare & Jifeng He

* Prentice Hall, 1998
* http://www.unifyingtheories.org

 UTP international symposium
* First symposium 2006, UK
« Springer LNCS proceedings

http://www.unifyingtheories.org/
http://www.unifyingtheories.org/
https://en.wikipedia.org/wiki/Unifying_Theories_of_Programming

Future developments

Safety-critical systems
Security (e.g., smartcards)
Harmonization of engineering practices |

Practical experience /
Assessment and measurement

Technology transfer investment

Use with Al, LLMs, etc... perhaps most promising!

« Computer science uses decades-old,
even centuries-old mathematics

S0, see what mathematicians are
doing now for the future

Ronald Ross to ChatGPT:

The birth and strange life of a
random walk

Mathematical Institute, Oxford,
26 June 2024

— Jordan Ellenberg, Univ. of
Wisconsin—Madison (b. 1971)

voutube.com/watch?v=08FGB5x090M

https://www.youtube.com/watch?v=08FGB5x090M
https://www.youtube.com/watch?v=08FGB5x090M
https://www.youtube.com/watch?v=08FGB5x090M
https://en.wikipedia.org/wiki/Jordan_Ellenberg

Mathematical discoveries from program
search and large language models

Nature, vol. 625,
pp. 468-475 (2024)

* Prospect: Al could suggest
outline proofs with human
interactive help for detail

« Could this approach work for
program generation/proof?

nature.com/articles/s41586-023-06924-6

https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6

The Potential for Al in
Science and Mathematics

Science Museum, London, 17 July 2024
(c/o Oxford Mathematics)

nford Mathematics

Oxford !
London Public Lecture

WEDNESDAY 17824465 730% — Terence Tao FAA FRS,
Science Museum, London T

LOOGNC UCLA (b. 1975)
[he Potential for Al _ _
in Science and Mathematics 2006 Fields Medalist

lerenice lao

youtube.com/watch?v=_sTDS074D8Q (®)

s NI G) |

https://www.maths.ox.ac.uk/node/68242
https://en.wikipedia.org/wiki/Terence_Tao
http://www.youtube.com/watch?v=_sTDSO74D8Q

We are used to computer tools - email, search
engines, programming languages, etc. - being
fussy and uncreative, but also reliable and

——r TR e R e i
‘Eﬁ_‘\t:é__% = d__ﬁ*;‘}-

S

Sometimes, the outputs can be quite impressive...

Prompt:

s’ unrefiable

M
g™

But now we have Large Language Mod
as ChatGPT, that can understand natural
language requests, and generate endless
creative text and image outputs - but without
reliability, predictability, or accuracy.

‘\"

®,

o N

e Yoy

... and sometimes, they are not.

Maths Olympiad proof vs. arithmetic

7°4+8*8=

120[...)
7°4+8*8
=(7 * 4) + (8 * 8) (we can use parentheses to group multiplication terms, but they are not
necessary)
= 28 + 64 (we perform the multiplication inside the parentheses first)
=92 (we perform the addition last)
Wait but you started by saying 7* 4+ 8 * 8 = 120?

&

1
i~

“l.

.
.

That was a typo, sorry. The correct answer is 92, as shown in the solution

Ationerecing 4300505 M . '. , ' /—
i O E P Reliablé 0 Op_f h'a@v - ﬂf 1able

‘ ENN |2 sl - (oo T i ﬂn—n—

How can we use a tool that is powerful, but
unreliable?

For applications where mistakes can cause real
harm (e.g., medicine, financial decisions, personal
advice and therapy), one must be cautious, despite
the great potentlal benefi ts

- o -.‘.’,,'

—— /// - z -

e / . ™2 e 4
N _— ’/ , —
o0 - ~— = = - =
N L 4N ez, - e a2 SD

R | / . e
v,

by

But there are more promising use cases Iif
the downside of producing an incorrect answer is
low (e.g., if one wants to generate background
images for slides).

Prove theorems
Proof tree n:N Local context by Interaction

., <, 1> S i

; A particularly promising use case for Al is in
In partlcular, in situations where the Al output can mathematics:

b_e_ indeper_tdetttly verifieq, there are 1Nl 1N e Little downside to producing incorrect proofs of
promising applications, both in the sciences and in mathematical theorems

mathematics. e Proofs can be independently verified by proof assistants -
b] % . e Training Al to improve their mathematical reasoning
may be of use in broader tasks

- *;" %

Legend: Boxes: def Ellipses: theor Blue border: Blue bg: Green border t t Green bg:
ALY A L r . | A

e Four color theorem: proved in 1976; formalized in

Proof assistants are computer languages specializing

in verifying that an algorithm or proof actually works 2005
as intended. e Kepler conjecture: resolved in 1998; formalized in
e They are used to verify routines for critical electronics 2014

e Liquid Tensor Experiment: Proposed in 2020;
formalized in 2022;

e Polynomial Freiman Ruzsa conjecture: proven Nov
2023; formalized in 3 weeks

(e.g., avionics), as well as mathematical proofs.
e Proof formalization is time consuming, but getting
faster.

exact abs_nonneg (H[X; u] - H[Y; u']) T
Prdbffﬂ%‘s‘lstants for formalization ...maths ...and-also programs?

rt LeanCopilot

¥ Tactic state
So far the speedup in formalization has been due to more

modern proof assistant languages, richer mathematical
libraries, and tools (such as Github) to facilitate collaboration.
e There are promising experiments in using Al to automatically fill

1goal

8 e [n principle, Al integration will allow formal proofs to be
written faster than human proofs (which are prone to

in short steps in a formal proof (with the Al asked to try again if error).
Lt PRl gass TEtCOmpe), = e This will be a tipping point, and will lead to formalization
: . iy ' i X ' | '= hy used not only to verify existing proofs, but to create new
hh'|H[XJU]'K[Y)UHSZ*‘-‘[X)“#YJH]"v_. : y y gp

mathematics, using massive collaborations of both
human and Al mathematicians. An era of "big
mathematics"!

gcd_self (n : N) : gcd nn=n := by
search_proof

Use Al to fill in maths proof steps... ...for program proofs too?

'nd Hidden

. Y 3 View Options v U
Hezarding] 9 J B View

LONDON
MATHEMATICAL
SOCIETY

Mathematics in the Age of Al

Jeremy Avigad
Department of Philosophy
Department of Mathematical Sciences
Carnegie Mellon University

Institute for Computer-Aided Reasoning in Mathematics
November 4, 2025

Online FACS/LMS talk

Andrei Popescu

Y ~ @ - a2 129 - ® B - Y-~ 5 (2

Unmute Stop Video Participants Record Show Captions Raise Hand Apps Whiteboards

Recording

LONDON

MATHEMATICAL
_ e

e tommny Proof assistant &
functional programming

Blog

Community information Iang U age

Community guidelines

Community

Projects using Lean

Teaching using Lean
Event: : . .
= Lean and its Mathematical Library =
Use Lean The Lean theorem prover is a proof assistant developed principally by Leonardo de Moura. hon O‘C;)n nor (LMS)

Online version (no installation)
Install Lean

have outdated information about Lean 3 (these pages are marked with a prominent banner). The old Lean 3 community

The community recently switched from using Lean 3 to using Lean 4. This website is still being updated, and some pages [r <
website has been archived. \

Maore options

Documentation The Lean mathematical library, mathlib, is a community-driven effort to build a unified library of mathematics formalized in

Learning resources (start here) the Lean proof assistant. The library also contains definitions useful for programming. This project is very active, with many
AP| documentation regular contributors and daily activity.

Declaration search (Loogle)

Language reference You can get a bird's-eye view of what is in the mathlib library by reading the library overview, and read about recent

Tactic fist additions on our blog. The design and community organization of mathlib are described in the 2020 article The Lean

Cale mode mathematical library, although the library has grown by an order of magnitude since that article appeared. You can also
Conikmoda have a look at our repository statistics to see how the library grows and who contributes to it.

Jeremy Avigad

Simplifier
Well-founded recursion

) el Try it! Learn to Lean! Meet the

;:W,z;_.“r, and commeon mistakes You can try Lean in your web You can learn by playing a game, Communlty! | e a n - | a n q - O rq
About MWEs browser, install it in an isolated following tutorials, or reading Lean has very diverse and active n n
Glossary folder, or go for the full install. books. community. It gathers mostly on
Lean is free, open source a Zulip chat and on GitHub. You

https://lean-lang.org/
https://lean-lang.org/
https://lean-lang.org/

Recording

The IMO Grand Challenge today

After the 2025 IMO, four groups claimed gold medal performance:
Harmonic Al (formal) International

ByteDance (formal)

OpenAl (informal) Mathematical
Google DeepMind (informal) O|ymp|ad

ByteDance's SeedProver solves 78.1% of formalized past IMO problems, and more
than 50% on PutnamBench.

On September 26, a group at Apple and UC San Diego claimed 70% on
PutnamBench with its publicly available Hilbert prover.

LONDON
MATHEMATICAL
SOCIETY

e i

% Kieran O'Connor (LMS)

3 View Options v =T
Recording B View

LONDON
MATHEMATICAL
SOCIETY

Final thoughts

“Today we serve technology. We need to reverse the machine-centered point of
view and turn it into a person-centered point of view: Technology should serve

”

us.

From Things That Make Us Smart: Defending Human Attributes in the Age of the
Machine, by Donald A. Norman (1994)

The question is not “how can mathematicians use the technology?” but rather
“what can technology do for mathematicians?”

... and formal methodists!

Y ~ w - a3 153 A O, | -~ ¢ - o (2

‘1
/"

Unmute Start Video Participants Record Show Captions Raise Hand Apps Whiteboards

SETTA 2025

11th International Symposium on Dependable
Software Engineering Theories, Tools and Applications

St Catherine’s College, Oxford, 1-3 December 2025

Cristina David,

M-based code translation

Bristol University Neural/Ee —

)

Automated translation of [T

scalability and correctness

real-world codebases e —

Theorem Proving and Al in 2025

; i RiRn e ¥
a_ . xie .'(}oil.w, ¥
i { nim._ AS v6 [12013 ATA Walarian Walawskl / SublimeStar]

Huang, S., et al. (Feb. 2025). LeanProgress: G
Search for Neural Theorem Proving via Proof Progress
Prediction. arXiv. doi:10.48550/arXiv.2502.17925

Lu, J., et al. (Oct. 2025). Lean Finder: Semantic Search
for Mathlib That Understands User Intents. arXiv.
doi:10.48550/arXiv.2510.15940

DeepSeek releases DeepSeek-Math-V2 (Nov. 2025)
Rapid Al-related developments with monthly updates...

... perhaps a reinvigouration of formal methods!

~ Blackwell’s, Oxford -
Cf Al Wintel’ FORMAL METHODS

Period of reduced funding between hype cycles |4 i .

Two major “winters™ approximately 1974—1980
and 1987-2000

Fifth Generation Computer Systems (FGCS): LRl o A
10-year initiative launched in 1982 by Japan's Mg Bk Ao il o)

Ministry of International Trade and Industry i - Ao T

(MITI)

Now a period of Al boom again with GenAl

P REE =l |

‘| v
1] KURZWEIL

Perhaps something similar for formal methods!

“Vibe coding”* ...
Al program generation

Vibe specifying » Formal specification
A
Vibe Vibe
proving calculating
v
Vibe coding » Program code

* Collins Dictionary Word of the Year for 2025

Reflection

Oui, l'ouvre sort plus belle
D'une forme au travail

Rebelle,
Vers, marbre, onyx, email.

[Yes, the work comes out more beautiful
from a material that resists the process,
verse, marble, onyx, or enamel.]

— Théophile Gautier (1811-1872) L’Art

http://mercator.ens.fr/home/letourne/gautier/gautier.html
http://www.mta.ca/faculty/arts-letters/mll/french/gautier/

Reflection:
Jean-Raymond Abrial (1938-2025)

 Originator of three important formal methods:
Z notation, B-Method, and Event-B

« FACS FACTS newsletter tributes planned for
January 2026

» Cf. Tony Hoare @ 90 tributes in FACS FACTS
July 2024 issue, pp. 542

 LNCS Festschrift volume also planned

Formal Methods:
Whence and Whither?

Prof. Jonathan P. Bowen FRSA FBCS

Emeritus Professor of Computing
London South Bank University, UK

Adjunct Professor, Southwest University, Chongqging, China

Chairman, Museophile Limited, Oxford, UK

WWW.|pbowen.com

o
O~
so
|_
)
LL]

e

=

http://www.jpbowen.com/
https://www.lsbu.ac.uk/

The End

	Slide 1: Formal Methods: Whence and Whither?
	Slide 2: Introduction
	Slide 3: Peter Landin (1930–2009)
	Slide 4: Peter Landin (1930–2009)
	Slide 5: Background
	Slide 6: Software…
	Slide 7: Safety and reliability
	Slide 8: The Flat Earth Society
	Slide 9: Logic
	Slide 10: Proof
	Slide 11: Theory and practice
	Slide 12: First formal methods paper?
	Slide 13: Turing and program proving
	Slide 14: Checking a large routine (1949)
	Slide 15: Turing and program proving
	Slide 16: Turing and program proving
	Slide 17: Turing and program proving
	Slide 18: Mathematics and programming
	Slide 19: Turing’s influence on program proving
	Slide 20: Turing and program proving
	Slide 21: Assertions
	Slide 22: Formal …
	Slide 23: … Methods
	Slide 24: Formal Methods: An Introduction to Symbolic Logic and to the Study of Effective Operations in Arithmetic and Logic (1962)
	Slide 25: Formal methods
	Slide 26: Some formal methods approaches
	Slide 27: Formal methods levels
	Slide 28: Formal specification
	Slide 29: Seven Myths of Formal Methods
	Slide 30: ProCoS: Provably Correct Systems
	Slide 31: Levels of abstraction/complexity
	Slide 32: Ten Commandments of Formal Methods
	Slide 33: Applications of Formal Methods
	Slide 34: Seven More Myths of Formal Methods
	Slide 35: Industrial-Strength Formal Methods in Practice
	Slide 36: Software Specification Methods
	Slide 37: Further books
	Slide 38: Education
	Slide 39: Choosing a formal method – difficult
	Slide 40: Tools – difficult to use
	Slide 41: Technology transfer
	Slide 42: Standards mandating formal methods
	Slide 43: Example: Z Standard
	Slide 44: Case study: National Air Traffic Services
	Slide 45: National Air Traffic Services, UK
	Slide 46: Flight strips on paper
	Slide 47: European airspace
	Slide 48: FlightRadar24
	Slide 49: National Air Traffic Services
	Slide 50: Formal Methods in Air Traffic Control
	Slide 51: UK Air Traffic Control
	Slide 52: ATC team
	Slide 53: What is iFACTS?
	Slide 54: Medium Term Conflict Detection: Separation Monitor
	Slide 55: The complete iFACTS specification
	Slide 56: The Z specification
	Slide 57: Z training
	Slide 58: Z tools
	Slide 59: Z tools
	Slide 60: The state machine specification
	Slide 61: State machine training & tools
	Slide 62: The SPARK implementation
	Slide 63: Code
	Slide 64: SPARK training and tools
	Slide 65: Test Design
	Slide 66: The challenge of test design
	Slide 67: The challenge of test design
	Slide 68: Mathematica tools & training
	Slide 69: Case study conclusions
	Slide 70: Tracing
	Slide 71: Subsequent iFACTS developments
	Slide 72: How Important is mathematics to the software practitioner?
	Slide 73: Mathematics debates
	Slide 74: SETSS: Engineering Trustworthy Software Systems
	Slide 75: SETSS 15–21 April 2024
	Slide 76: SETSS 17–23 April 2025
	Slide 77: Formal Methods and AI – questions
	Slide 78: AI – large “learned” models
	Slide 79: Formal methods and correctness
	Slide 80: Formalized mathematics
	Slide 81: Machine learning
	Slide 82: Deep Neural Networks (DNN)
	Slide 83: Coverage criteria for AI
	Slide 84: Formal methods and testing
	Slide 85: Predictions dangerous
	Slide 86: Future developments
	Slide 87: Unified theory? Cf. physics
	Slide 88: Unifying Theories of Programming
	Slide 89: Future developments
	Slide 90: Ronald Ross to ChatGPT: The birth and strange life of a random walk
	Slide 91: Mathematical discoveries from program search and large language models
	Slide 92: The Potential for AI in Science and Mathematics
	Slide 93: The Potential for AI in Science and Mathematics
	Slide 94: The Potential for AI in Science and Mathematics
	Slide 95: The Potential for AI in Science and Mathematics
	Slide 96: Mathematics in the Age of AI
	Slide 97: Mathematics in the Age of AI
	Slide 98: Mathematics in the Age of AI
	Slide 99: Mathematics in the Age of AI
	Slide 100: SETTA 2025
	Slide 101: Theorem Proving and AI in 2025
	Slide 102: Cf. AI winter
	Slide 103: “Vibe coding”* … AI program generation
	Slide 104: Reflection
	Slide 105: Reflection: Jean-Raymond Abrial (1938–2025)
	Slide 106: Formal Methods: Whence and Whither?
	Slide 107: The End

