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Program Verification and Semantics:
The early work

Robin Milner,
Tony Hoare,

Joe Stoy, and
Peter Landin

Teresa Numerico and Jonathan Bowen

On Tuesday 5 June 2001, a seminar on Program Verification @ |
and Semantics: The early work was held in the Director’s
Suite at the Science Museum, London. The seminar was :
organized with the co-operation of the British Computer Society (BCS) and the Computer
Conservation Society (CCS). It was an instructive and enjoyable afternoon for the hundred or so .
people that attended the meeting. SC|ence M useum,
Participating in the meeting were some of the pioneers and most important scientists in the
fields of program verification and semantics and some of the most important historians of computing London,
in Great Britain. It was a unique occasion that allowed the mingling of these two groups of people
with an interest in computer science. 5 June 2001
The organization of Prof. Jonathan Bowen, Prof. Cliff Jones and George Davis created a very
good rapport between the audience and the speakers that presented their experiences in the field of
formal methods. Presentations ranged from formal lectures to personal reminiscences. It was a
historical event in itself: the special atmosphere allowed the audience to participate with interesting CO_O rgan ized W|th
guestions and reminiscences of their own.
After an introductory speech by Chris Burton on the aims of the CCS, Jonathan Bowen Cllff Jones
outlined very briefly the history of formal methods from Aristotle’s logic to the use of Tony Hoare’s
assertions method in present debugging techniques, via Alan Turing’s and Christopher Strachey’s
achievements.



Peter Landin (1930-2009)

Why are things so complicated?

Peter Landin gave the last talk with the provocative title of “Why are things so complicated?” It
was a very personal recollection of thoughts about the beginnings of his scholarly career, started at
the end of the 1950s. He was much influenced by McCarthy and started to study LISP when the
most common language was FORTRAN. LISP was very different from the other contemporary
languages because it was based on a functional calculus rather than being procedural in nature. He

reminded the audience of Marvin Minsky’s hostility against A-calculus and ALGOL, while he was
writing some theoretical papers related to them. He remembered how difficult it was to deal with
delay lines and drums and gave the flavor of the past times. The audience had the impression that a
piece of the computing history was dancing in front of them.

At the end of the meeting, Cliff Jones, who was cited by some of the main speakers as one of
the major scientists in the field, drew some conclusions. The ability to prove mathematically that a
program correctly implements its specification is increasingly important, even if there is still a lot to
do in order to guarantee that security and safety-critical applications perform correctly.



Background

Academics vs. industrial practitioners

Formal methods still little used in practice
(except for safety/security)

Misconceptions

Guidance

Technology transfer issues

Future — effect of Artificial Intelligence?
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Software...

Failure is not an option...

It comes bundled with the software!

©
-I-I-H_ — From a fridge magnet!




Safety and reliability

Captain, what does,

“Global reconfigurationin progess—- ; -----
Please Stand By ™. o

mean?




The Flat Earth Society

Cf. formal methods community...

— Gerard J. Holzmann

The

HAT EARTH

SOCIETY



https://www.tfes.org/

Logic

Aristotle’s logic — highly influential on
Western thought.

— Aristotle (384-322 BC)

Aristotle’s Lyceum, rediscovered
in Athens (1997)



http://www.utm.edu/research/iep/a/aristotl.htm

Proof

« Mathematics — simple theorems, deep proofs

» Cf. software — complicated specifications &
programs, shallow proofs

Fermat’s Last Theorem (c.1637):
a’+ b" # ¢" (integer n > 2)
— Pierre de Fermat (1607-1665)

Proved 358 years later by Andrew Wiles, 1994/5.

Not a timescale acceptable for software!


http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Fermat.html
http://www-groups.dcs.st-andrews.ac.uk/~history/HistTopics/Fermat's_last_theorem.html

Theory and practice

“It has long been my personal view that the
separation of practical and theoretical work is
artificial and injurious. Much of the practical work
done in computing, both in software and in hardware
design, is unsound and clumsy because the people
who do it have not any clear understanding of the
fundamental design principles of their work. Most of
the abstract mathematical and theoretical work is
sterile because it has no point of contact with real
computing.”

— Christopher Strachey (1916-1975)


https://en.wikipedia.org/wiki/Christopher_Strachey

First formal methods paper?

Arguably the first “formal methods” paper ever:

Checking a Large Routine, Paper for the EDSAC Inaugural
Conference, 24 June 1949. In Report of a Conference on High Speed
Automatic Calculating Machines, pp 67—69.

Reprinted with corrections and annotations in:
An early program proof by Alan Turing, L. Morris and C.B. Jones, IEEE Ann. Hist.
Computing 6(2):129-143, 1984.

See also: Turing and Software Verification, C.B. Jones. Tech. Report CS-TR-1441,
Newcastle University, UK, 2014.

— Alan Turing (1912-1954)
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Checking a large routine (1949)

“In order to assist the checker, the programmer should make
assertions about the various states that the machine can reach.”

“The checker has to verify that the ... initial condition and the
stopped condition agree with the claims that are made for the
routine as a whole.”

"He has also to verify that each of the assertions ... is correct.”

“Finally the checker has to verify that the process comes to an
end.”



An Early Program Proof by

Alan Turing
F. L. MORRIS AND C. B. JONES

The paper repr with typographical corrections and a 1949
paper by Alan Turing that for much q waork in program
proving.

Categories and Subject Descriptors: D.2.4 ISoIMm Englmeﬂng]—
correctness proofs; F.3.1 [Logics and Meaning:
K.2 [History of Computing]—software

General Terms: Verification

Additional Key Words and Phrases: A, M. Turing
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Introduction

The standard references for work on program proofs
attribute the early statement of direction to John
McCarthy (e.g., McCarthy 1963); the first workable
methods to Peter Naur (1966) and Robert Floyd
(1967); and the provision of more formal systems to
C. A. R. Hoare (1969) and Edsger Dijkstra (1976). The
early papers of some of the computing pioneers, how-
ever, show an awareness of the need for proofs of
program correctness and even present workable meth-
ods (e.g., Goldstine and von Neumann 1947; Turing
1949).

The 1949 paper by Alan M. Turing is remarkable
in many respects. The three (foolscap) pages of text
contain an excellent motivation by analogy, a proof of
a program with two nested loops, and an indication of
a general proof method very like that of Floyd. Unfor-
tunately, the paper is made extremely difficult to read
by the large number of transcription errors. For ex-
ample, all instances of the factorial sign (Turing used

© 1984 by the Ameri Fed of Inf ion Pi i

Societies, Inc. Permission to copy without fee all or part of this
material is granted provided that the copies are not made or distrib-
uted for direct commercial advantage, the AFIPS copyright notice
and the title of the publical.ion and its date appear, and notice is
given that the copying is by permission of the American Federation
of lnformsu(m Pmcessmg Soﬂeneﬁ, Inc. To copy otherwise, or to

specific
Authors’ Addresses: F. L. Morrig, School of Compuxer and Infor-
mation Science, 313 Link Hall, $ Uni v, S NY

13210. C. B. Jones, Department of Computer Science, The Univer-
sity, Manchester MI3 9PL, England.
© 1984 AFIPS 0164-1239/84/020139-143$01.00/00

in) have been omitted in the commentary, and ten
other identifiers are written incorrectly. It would ap-
pear to be worth correcting these errors and com-
menting on the proof from the viewpoint of subse-
quent work on program proofs.

Turing delivered this paper in June 1949, at the
inaugural conference of the EDSAC, the computer at
Cambridge University built under the direction of
Maurice V. Wilkes. Turing had been writing programs
for an electronic computer since the end of 1945—at
first for the proposed ACE, the computer project at the
National Physical Laboratory, but since October
1948 for the Manchester prototype computer, of which
he was deputy director. The references in his paper to
2% are reflections of the 40-bit “lines” of the Man-
chester machine storage system.

The following is the text of Turing’s 1949 paper,
corrected to the best of our ability to what we believe
Turing intended. We have made no changes in spell-
ing, punctuation, or grammar.

Turing Text

Friday, 24th June [1949]

Checking a large routine by Dr A. Turing.

How can one check & routine in the sense of making sure
that it is right?

In order that the man who checks may not have too
difficult a task the programmer should make a number of
definite assertions which can be checked individually, and
from which the correctness of the whole programme easily
follows.

Annais of the History of Computing, Volume 6, Number 2, April 1984 « 139
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Turing and program proving

Modernized flow diagram, with assertions
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Mathematics and programming

In 1951, Christopher Strachey wrote a letter to
Alan Turing on his programming plans:

“... once the suitable notation is decided, all that
would be necessary would be to type more or
less ordinary mathematics and a special
routine called, say, 'Programme’ would convert
this into the necessary instructions to make the
machine carry out the operations indicated. This
may sound rather Utopian, but | think it, or
something like it, should be possible ...”


https://en.wikipedia.org/wiki/Christopher_Strachey

Turing’s influence on program proving

« Aad van Wijngaarden was at the Cambridge meeting —
but no known influence (1949...)

* Robert Floyd rediscovered ideas similar to those of Turing
(published 1967)

« Tony Hoare developed these further (published 1969)

 Had Turing lived longer, perhaps formal methods (in
particular program proving) would have developed more
rapidly, rather than being rediscovered



1976
1967

1947

1969
1963

1966
1949
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Assertions

An Axiomatic Basic for Computer Programming.
Communications of the ACM, October 1969

— Sir Tony Hoare (b.1934)

Hoare logic: {pre} prog {post}

Program proving with pre- and post-conditions as
“assertions” (logical statements about the program)

30 years later ... assertions widely used by programmers
for testing and debugging rather than proof


http://www.research.microsoft.com/~thoare/

Formal ...

formal /fm()l/ a. LME. [L formalis, f. forma: see FORM n., -AL.] 1
a Philos. Of or pertaining to the form or constitutive essence of a thing; essential. LME.
b Pertaining to the specific form of an animal or plant. LME-L17. ¢ Of or pertaining to
the outward form, shape, appearance, arrangement, or external qualities of a thing.
Formerly also (of knowledge), theoretical. M17. d Logic. Concerned with the
form, not the matter, of reasoning. M19.

proof

tet * 7S ={zx & fx}"

show “7.S Q range f" p . . 5y

oot i ) After great pain, a formal feeling comes—
assume "'/, range ["

then obtain y where fy: "?S = fy" ..
show

show (315 — Emily Dickinson (1862)

assume " 7 c?8 -
hence " Y € f‘_l/ . by simp


http://www.vdash.org/formal/

... Methods

method /methd/ n. LME. [L methodus f. Gk methodos pursuit of
knowledge, mode of investigation, f. meta (see META-) + hodos

way.] | Procedure for attaining an object. 1 ... 2 Amode of procedure; a

(defined or systematic) way of doing a thing, esp. (w. specifying wd or wds) in accordance
with a particular theory or as associated with a particular person. L16. ... Il Systematic

arrangement, order. 3 The branch of logic that deals with the
description and arrangement of arguments or propositions for

the investigation or exposition of a truth. M16. 4 Order in thinking or
expressing thoughts; the orderly arrangement of ideas; gen. orderliness, regularity, or
planning in doing anything. M16.

4|  "Bydifferent methods different men excel;
t bl ] But where is he who can do all things well?”

, A | — Charles Churchill (1731-1764)




Formal Methods:
An Introduction to Symbolic Logic
and to the Study of Effective

Operations in Arithmetic and Logic
(1962)

Evert Willem Beth (1908-1964),
Dutch philosopher and logician

Earliest book with
“formal methods”
in the title?

EVERT W. BETH

FORMAL METHODS

OOOOOOOOOOOOOOOOOOOOOOOOOOOOO
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

llllllllllllllllllll



https://en.wikipedia.org/wiki/Evert_Willem_Beth

F o rm a I m et h o d s Requirements System

 Term established by late 1970s
Mathema.tlcal M[)a::cer?;:it;:lal
— Next stage from structured design
— Mathematical basis h:g::ﬂs

« Formal specification and (optionally) proof:

Verdict: Correct or Not

— Validation (correct specification)

— Verification (correct implementation wrt spec.)
Analysis Interpretation Checking

« But engineers calculate rather than prove

Proof D n°fe rent Deductive

Verification

Design by Forma I Model-Based
Refinement Methods Testing

Types of



https://encyclopedia.pub/entry/44342
https://encyclopedia.pub/entry/44342

Some formal methods approaches

* Abstract Interpretation: approximating program
behaviour to prove correctness or detect errors. F()rmal
- Model-Based Testing: generating test cases Methods

from a formal model.

An Appetizer

 Model Checking: exhaustively verifying system
behaviour against a formal specification. R

= . . Markus'RogggrlQM
* Proof Assistants: tools for interactively B
constructing and verifying mathematical proofs.

* Refinement: systematically refining a high-level
specification into a correct implementation.

~ 4 o BN Lo
S Tk 3 e TS

- Static Analysis: analyzing program code prpss
meaning to detect errors or enforce constraints.
- Verification: proving the correctness of a 2019

program using logical inference rules. &) Springer



0.

1.

2.

Formal methods levels

Formal Specification:
— Requirements only
— No analysis or proof
— Can be used to aid testing
— Cost-effective

Formal Verification:
— Program produced in a more formal way
— Use of proof or refinement based on a formal specification
— More costly

Theorem Proving:
— Use of a theorem prover tool
— Formal machine-checked proofs
— Proof of entire system possible but scaling difficult
— Expensive and hard

Markus Roggenbach - Antonio Cerone -
Bernd-Holger Schlingloff -
Gerardo Schneider - Siraj Ahmed Shaikh

Formal
Methods

for Software
Engineering

Languages, Methods, Application
Domains

2022 @ springer




Formal specification

1. A specification written and "~ known - P NAME
approved n accordance | o -
with established standards |
__ AddBirthday
2. A specification written in a name? « NAME
formal notation, often for o
use in proof of correctness. ey = Bl ) udnet = daeeT)

— |IEEE glossary



Seven Myths of Formal Methods ‘ Fﬂ\ﬁﬂ I MYTxHS ‘

. Formal Methods can

guarantee that software is 5. Formal Methods increase the
perfect. cost of development.

2. Formal Methods are all about 6. Formal Methods are
program proving. unacceptable to users.

3. Formal Methods are only /. Formal Methods are not used
useful for safety-critical on real, large-scale software.
systems.

— J.A. Hall, [EEE Software,

4. Formal Methods require highly
September 1990

trained mathematicians.



ProCoS: Provably Correct Systems

European projects and Working Group (early 1990s)

* Requirements
» Specification P
| roCoS
* Design
* Programming Stop press:
Retrospective multi-author
« Compilation paper accepted for the

Formal Aspects of
« Hardware Computing journal



Levels of abstraction/complexity

» 15k lines of (informal) requirements

» 150k lines of (formal?) specification

* 1.5 million lines of design description
* 15 million lines of (formal!) high-level program code
« 150 million machine instructions of object code

1.5 billion transistors in hardware!

The later a mistake is detected, the more costly it is!



1.
V.

Ten Commandments of Formal Methods

Thou shalt choose an VI. Thou shalt document sufficiently

appropriate notation ,
VII. Thou shalt not compromise thy

Thou shalt formalize but not quality standards

over-formalize ,
VIIl. Thou shalt not be dogmatic

Thou shalt guestimate costs
Thou shalt test, test, and test

Thou shalt have a formal | again

methods guru on call
Thou shalt reuse

Thou shalt not abandon thy

traditional development — J.P. Bowen & M.G. Hinchey
methods IEEE Computer, April 1995



Applications of Formal Methods

Edited by
Michael G. Hinchey
Jonathan P. Bowen

Applications of
Formal
Methods

C.AR HOARE SERIES EDITOR

Examples:

» Tektronix (Z) — oscilloscopes
STV algorithm (VDM) — voting
IBM CICS (B) — transaction processing

AAMPS microprocessor (PVS) — hardware

GEC Alsthom (B) — railway software
« A300/340 (£) — airplane software

Prentice Hall, International Series in Computer Science,
1995



Seven More Myths of Formal Methods | facts |

8. Formal Methods delay the 12. Formal Methods are not
development process. required.

9. Formal Methods do not have 13. Formal Methods are not
tools. supported.

10. Formal Methods mean 14. Formal Methods people
forsaking traditional always use Formal Methods.

engineering design methods.
11. Formal Methods only apply —J.P. Bowen & M.G. Hinchey

to software. IEEE Software, July 1995



Industrial-Strength Formal Methods in Practice

Examples:

* Motorola CAP DSP (ACL2)
» Radiation Therapy Machine (£)
* ATC system (VDM)

 Railways (Prover Technology)

And later: Microsoft

Springer, FACIT series, 1999




Software Specification Methods

Marc Frappier and Henr Habrias cds

Software The process of producing a formal

Specification specification...
Methods Using a selection of formal methods:

W vervien Esing a Case Shidh

Z, SAZ, B, OMT, Action Systems,

=~ UML, VHDL, Estelle, SDL, E-LOTOS,
JSD, CASL, Coq, Petri Nets.

Marc Frappier & Henri Habrias (eds.)
O Springer | Springer-Verlag, FACIT series, 2001




Further books

+ Boulanger, J.-L., ed. 2012 .
Formal Methods: Industrial Use from Model ndustiat Uso
to the Code.

ISTE, Wiley.
ISBN 978-1848213623.

FORMALMETHODS
FOrR INDUSTRIAL

* Gnesi, S. and I\/Iargaria, T. 2012. CRITICAL SYSTEMS
Formal Methods for Industrial Critical e
Systems: A Survey of Applications.

IEEE Computer Society Press, Wiley.
ISBN 978-0470876183.



http://www.amazon.com/Formal-Method-Industrial-Used-Model/dp/184821362X
http://www.amazon.com/Formal-Methods-Industrial-Critical-Systems/dp/0470876182
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* Resistance by students

 Resistance even by

academics
TREWRY OFZ, |
PRACTICALPROGRAMNING WIH FORMAL METH O3 . Sup_p(?rt by professional
£15 0.0 socnetl_es (e.g_, BCS
accreditation)

Hardly used!



Choosing a formal method - difficult

Choosing a formal method can be a fearful thing,



Tools —
difficult
to use




Technology transfer

RN mAVe S

Courses (academia & industry) SELECTRIC S

Textbooks (good choice)

Tools (type-checkers, provers, ...)

Web resources (including Wikipedia) / ™ ~|° :

Mailing lists (e.g., JISCmail)

Meetings (conference series)

::-.'E;:' : - r \‘{{ A - _’ e ’
Standards (international) H B =55 7

I'he only thing harder to sell than formal methods.




Standards mandating formal methods

* In highest level of safety and security applications

e From 1990s*

* Also, for formal notations themselves...

*See:

Bowen, J.P. & Stavridou, V. (1993),
Safety-critical systems, formal methods
and standards. Software Engineering
Journal, 8(4):189-209. DOI:
@ttps://doi.orq/ 10.1049/s€].1993.0025

Country | Body | Sector Name FMs FMs Status Year
content | mandated | (Jan. 1992)

Us DoD | Defence | MIL-STD-882B | No N/A Standard 1985

MIL-STD-882C | Likely |7 Draft 1992
us RTCA | Aviation | DO-178A No N/A Guideline | 1985

DO-178B Yes ? Draft 1992
Europe | IEC Nuclear | IEC880 No N/A Standard 1986
UK HSE | Generic | PES No N/A Guideline | 1987
Europe | IEC Generic | IEC65A WG9 | Yes No Draft 1989

IEC65A 122 Yes No Proposed 1991
Europe | ESA Space PS55-05-0 Yes Yes Standard 1991
UK MoD Defence | 00-55 Yes Yes Interim 1991
us IEEE | Generic | P1228 No No Draft 1992
UK RIA Railway | - Yes Yes Draft 1991
Canada | AECB | Nuclear | - Yes ? Draft 1991



https://doi.org/10.1049/sej.1993.0025

Example: Z Standard

e |ISO/IEC 13568
—Long process (1990s)
— Inconsistencies found!

* Final Committee Draft
— accepted in 2001

* May help tools & industrial application



http://web.comlab.ox.ac.uk/oucl/research/groups/zstandards/

Case study: National Air Traffic Services

« 2.5 million flights per year (pre-Covid), covering the UK
and eastern North Atlantic.

« 250 million passengers per year in UK airspace.
 Among the busiest & most complex airspace in the world.

* Provides air traffic control from its centres at Swanwick,
Hampshire (England) and Prestwick, Ayrshire (Scotland).

 Also provides air traffic control services at 15 UK airports
including Heathrow, Gatwick, Stansted, Birmingham,
Manchester, Edinburgh, and Glasgow, together with air traffic

services at Gibraltar Airport. INATS Q@)


http://upload.wikimedia.org/wikipedia/en/f/fa/Nats_logo_2006.png

/NVATS National Air Traffic Services, UK

WISV
‘}Wf‘\ »"&:ﬁ
\"\\L: :s cx

Swanwick
southern England

www.nhats.co.uk



http://www.nats.co.uk/
http://upload.wikimedia.org/wikipedia/en/f/fa/Nats_logo_2006.png

Flight strips on paper
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http://www.flightradar24.com/

NVATS National Air Traffic Services

« Advertisement at Heathrow Airport =
 Air Traffic Management (ATM)

« Single European Sky ATM Research
(SESAR)

« SESAR Joint Undertaking

* www.sesarju.eu

« SESAR project (2004—c.2030!)
 European ATM Master Plan

Heathrow Vi
Oettey

go to heathrowairthought.com

W

“).'(
.h a
4Pe

O4
X
£
i T
4 Tl
— ol
— -\""-\.__\_\_\-\-
-H-\"\-_H_ —_—
. -
"'--\.._\___\_ "
Pl
'\-\._\_.\-H--
-
tan
-~
o

He ey,
v ,b
4.%

To lighten our
environmental footprint
we're standing together.

'\/5/

HeathrowAirthQ%)ght


http://www.sesarju.eu/
http://www.sesarju.eu/
http://upload.wikimedia.org/wikipedia/en/f/fa/Nats_logo_2006.png

Formal Methods in Air Traffic Control

NATS, the UK’s leading air traffic services provider, has
pioneered research and development of advanced air
traffic control tools for several years from its simulator

and research centre.

The IFACTS project provides a subset of these tools onto
the system at the company’s main en-route Control
Centre at Swanwick.

www.slideshare.net/AdaCore/white-open-do k
alTRaNy -

www.youtube.com/watch?v=IQMWVgQfm5A
PRAXIS 7t

g o rais - (Original slides by Neil White)  (Capgemini Engineering since 2019) (@)


https://automation.forthillgroup.com/story/iFACTS

UK Air Traffic Control

£ 2
X

Scottish Terminal
Control Area

Newcastle CTA

Scottish FIR

London FIR

Manchester
Terminal
Control Area,

2
Daventry
Control
Area
2
&

Cotswold
Control Area

London Terminal
Control Area

Worthing
Control Area

Channel Islands
CTR

Copyright © Altran Praxis




Planner
(in/out)

Copyright © Altran Praxis

ATC team

Tactical
(controller)

Assistant
(flight strips)




What is iFACTS?

e (FACTS - Interim Future Area Control Tools Support

e FACTS provides tools to support the controllers
— Electronic flight strips replace the paper flight strips.

- Trajectory tools - including prediction, deviation alerts,
and conflict detection - are added.

e |FACTS not an Air Traffic Control (ATC) system

- Integrated with, but sits alongside, the existing system.

Copyright © Altran Praxis



Medium Term Conflict Detection: Separation Monitor

BAW225
UAL3

BAWO028 ”
ANZ001

AZA292
BAL547
DLH4695

SAS123
BAWA3BE

Copyright © Altran Praxis limited 2010



The complete iFACTS specification

The functional specification
- Z notation

The algorithm specification
- Mathematics (Mathematica)

The Human-Machine Interface (HMI) specification
- State tables

The rest of the specification
—  English!

Copyright © Altran Praxis



The Z specification

Every flight is associated with an aircraft type if its aircraft type name matches.

Every flight is associated with a performance madel. If there is no model corresponding to the
aircraft type, then this is a default model. If there is a filed speed up to maxPistonSpesd , then thisis
wrkrowr Pistar, if there is a filed speed above this but no greater than macThrboprapSpeed | itis

wrirrown Thrboprap, otherwise it is wrkrowner.

The set fupNAS Deletad Flights is those flights that have heen NAS deleted. Itis used by
Fecognised Flights.

_FWFFghts DervalAssoc it ioms
FWFFlights Associations
FwpFlight AircrafiType | FLIGHT = AIRCRAFTTYPENAME
JFwpRlightPerformancelodel - FLIGHT - PERFORMANCEMODEL

FwpNASDeletad Flights - F FLIGHT

FwpFlightAircrafiType = {f fwpFGHights | o aircrgitTypes
| (PwpFlightState DaircrafiTypeNane =a® fa}
PwpFlightPerformanceld odel =
i wpFGRLghts N fwpBlaockers), model | FERFORMANCEMODEL |
(let speed = (fwpFlightState(f)) filedSpeed ®
model = if the speed < maxFistonSpeed then unkrownPiston
else if the speed < macTurbopropSpeed then wilmownTirboprap
else Lrkrowrset)
& (fwpFlight AircrafiTvpe 5 type Performanceld adel)
pNASDeletad Flights = { [ fwpFGHights | (fwpFlightSiate [ nasDelated = Trie }




Z training

e /Zreader training
- 3-day course; fluency then comes after 1 week on the job.
- Trained 75 people to read Z.
- Engineers, domain experts, ATCOs.

e /Zwriter training
- 3-day course, fluency then comes after 3 months on the job.
- Trained 11 people to write Z.
- All engineers.

Copyright © Altran Praxis



Z tools

e / written in Microsoft Word

- To get acceptance, you need to work
with what people know.

- Supported by Word Add-ins.
e A Z character set.

* Asimple interface to the fuzz type checker.

* A graphical representation tool.

Copyright © Altran Praxis



Z tools

Advantages

- Easy to develop commentary and Z together.

- Hyperlinking of fuzz errors back to source.

— Cross-referencing of Z names in final document.

Disadvantages
— All the problems of large Word documents.
- Tools can be slow on 1,000 page documents.

- Merging branches (for different releases) painful.

Possible future
- Open Office XML

Copyright © Altran Praxis



The state machine specification

Button 1 Checkbox 1

State 1 | State2 N/A
State 2 | Statel State 3
State 3 Statel State 2

Transition Actions
State 1 -> State 2 : De-select Checkbox 1

Copyright © Altran Prax is



State machine training & tools

* Training
- So trivial that we don't train!
- People “just get it".

e Tools
- Err.... None.




The SPARK implementation

e SPARK Ada
- An annotated subset of Ada.

e 150 KSLOC (Logical)

e RTE (Run-Time Exception) Proof

- Formal partial correctness proof against
specification not considered cost-effective.




Code

function 3egment Group FL Occupancy
(Segs_Group : PIO Data.Segment Group Array T:
Quantity : PIO Data.Trajectory Index T)
return Altitudes.Level Range

is
The Range : Altitudes.Level Range:
Temp Range : Altitudes.Level Range;
begin

-— By wirtue of the fact that this procedure has been called means
-— that the lewvel ranges must be populated 30 set to a senseless
-— null wvalue guaranteed to be overwritten

The Range.Lower := Altitudes.Flight Lewvel T'Last;

The_ Range.Upper := Altitudes.Flight Lewvel T'First;

for Idx in PIO Data.Trajectory Index T range 1 .. Quantity loop
-—# assert Quantity = Quantitys:

-— Must have a standard occupancy at the wvery least so check for that
if MTCD_ Types.Get_ Standard Occupancy (Segs_Group (Idx)).Exists then

Temp Range := Segwent FL Occupancy (Segs_Group (Idx)):
The Range.Lower :=
Altitudes.Flight Lewvel T'Min [The_Range.Lower,
Temp Range.Lower) ;
The Range.Upper :=
Altitudes.Flight Lewvel T'Max [(The_Range.Upper,
Temp_ Range.Upper) ;
end if;
end loop:;

return The Range;

end Segment_ Group FL Occupancy;




SPARK training and tools
57 people trained in SPARK

Mostly contractors and clients.
Diverse programming background.

- All SPARK coders also Z readers.

Effective as SPARK coders immediately
Picking up RTE proof takes longer.

- About 2 months.
How long to pick up formal correctness proofs?

No data, but suspect longer again.

Copyright © Altran Praxis

The SPARK toolset:

Examiner.

Proof Simplifier.

Proof Checker.



Test Design

2.2.1.18 TPDeviationRequests

Summary
Requests the required deviation trajectories.

This is a non-conditional schema.

Partitions

There are two equivalence classes:

1  Flight is not radar supported, so no information.
2  Flight is radar supported.

The output condition in the first equivalence class is that there is no request. This can also occur
when there are no deviation trajectories, so that input condition should be tested as well.

It is stated within the FPM process specification that the number of deviation requests will be either

none, one or two ([4] section 13.2.13.2). We should test for each of these conditions separately
(since 0 and 2 are boundary conditions).

Test Conditions

TPDeviationRequests 1 2 3 4
fpmData!? = nil ® o o o
(the fomData!?).fpmDeviationTrajectories = & e o o0
deviationReqs = & e e o o
#deviationReqs = 1 o o ® o
#deviationReqs = 2 o o o e




The challenge of test design

_TPRemoveMultiple PIOs
ATP

ipFlights!? : PFLIGHT
piosToRemove : PPIO

= deletedDirectPIOs, deleted GroupedPIOs : PPIO
deletedDirectPIOs = flightPIO ( tpFlights!? ) N piosToRemove
A deletedGroupedPIOs = pioPIOGroup™ (| deletedDirectPIOs |) ®
flightPIO" = flightPIO & deletedDirectPIOs
A pioPIOGroup' = pioPIOGroup & deletedDirectPIOs
A pioGroupDisplayPIO" = deletedDirectPIOs < pioGroupDisplayPIO
A pioState' = (deletedDivectPIOs | deleted GroupedPIOs) < pioState
nominalVerticalProfiles' =
if fwpHookedFlight N tpFlights!? # nil

then nil else nominalVertical Profiles

How many potential tests for this fragment?




The challenge of test design

e [fyou justturn the handle there are 1134
conditions to test.

 But if you work at it hard enough you can cover
the required subset in just 6 test scripts.

* Formal methods are not a substitute for
Initiative.

Copyright © Altran Praxis



Mathematica tools & training

Algorithms are specified in pure mathematics.
Generate test cases as usual.

Create a test reference implementation in Mathematica.

Small team - only 5 trained.

Reference model has similar defect density to SPARK
Implementation.

Limited conclusions to draw from such a small activity.

Copyright © Altran Praxis



Case study conclusions

* Formal methods are applicable to all phases of the lifecycle.

* Training engineers is not a barrier

- It’s a one-off cost

- Data shows that training is easy and cheap.
e Tool support is vital

— The Achilles heel of formal methods

e Except the SPARK Examiner!

Copyright © Altran Praxis



Tracing

Completeness of coverage

— e.g., testing all parts of a Z specification

DOORS tool

— Dynamic Object-Oriented Requirements System
Link all specification components with test case(s
— or argument for safety case

Flag unlinked components
Also, visualization of schema structure



Subsequent IFACTS developments

IFACTS in operation (2011) — 18 minutes of prediction, |
up to 40% capacity increase in some sectors

Traffic Load Prediction Device (TLPD):

— Forecast air traffic load up to 4 hours ahead

— Plan workloads for optimum traffic flows

IFACTS — winner of the Duke of Edinburgh Navigation 4
Award for Technical Achievement (2013) -

MoD use for military air traffic control (2014)

FourSight, successor to IFACTS (2017) for
Swanwick/Prestwick — European SESAR compliant




How Important is mathematics to the
software practitioner?

Some consider it unimportant ... !

— Robert L. Glass
IEEE Software, Nov./Dec. 2000




Mathematics debates

Some consider it important ...

— Willilam W. McMillan et al., Letters
IEEE Software, Jan./Feb. 2001

The debate has continued ...




SETSS: Engineering Trustworthy
Software Systems

Annual Spring School at Southwest University,
Chongging, China, & now ISCAS, Beijing, China
Held 2014-2019, restarted after COVID in 2024

Week-long tutorials by international experts, for
graduate students from China and elsewhere

Engineering Trustworthy
Software Systems
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Tutorial proceedings in Springer LNCS
State of the art in formal methods & related research =

Cf. annual Marktoberdorf Summer School in Europe
(6—15 August 2025)



https://link.springer.com/book/10.1007/978-981-96-4656-2

¥
o,

SETSS [ _
15-21 April 2024 |
www.rise-swu.cn/SETSS2024

SWU, Chongqing, China
Seven tutorials over 5 days
Workshop over 2 days

E S\%’STEMS'(SETSS

R



http://www.rise-swu.cn/SETSS2024
http://www.rise-swu.cn/SETSS2024
http://www.rise-swu.cn/SETSS2024

SETSS .7 7
17-23 April 2025 =

tis.ios.ac.cn/SETSS2025

« ISCAS, Beijing, China
« 2 days of workshop talks

———v‘ ——

« 5 days of longer tutorials

ISLAS fiisniuia
it K & & *r Y

CHiNA COMPUTER FEDERATION SOUTHWEST UNIVERSITY



https://tis.ios.ac.cn/SETSS2025/

Forma‘l Methods and Al — questions

> /

d LLMs

Questions About Machiné [ earning an

retable/explainable or should it be?

_|s Al interp oy
eative’ meaning:

~Is Al creative? What does “being €r
Do we agree that people should not study programming or

| programming languages anymore - what do you think about
coftware developmentwith LLM or programming In natural

languages?
Can LLM do logic reasoning (causal relations VS correlation

_ Can LLM computer more problems? Do they change the
theory of complexity theory?

. What is GAI anyway?
It is time to redefine computer science and software engineering

anyway!ll

LA 2 Ot =

Explainable Al, etc.

(&



Al — large “learned” models

quence: Consider it a Feature

ous with large learned models. [...]
creasingly clear that af least

A Possible Conse

“Al is becoming synonym
Given this state of affairs, i is in
part of Al is straying firmly away from ifs “engineering” roots.

It is increasingly hard to consider large learned systems as “de-
signed” in the fraditional sense of the word, with a specific pur-
pose in mind. After all, we don’t go around saying we are “de-
signing” our kids [... ]

Al becomes on ersatz natural science studyin
artifacts. Of course, there might be significant methodological
resiclance and. reservations fo this shift . Affer all, CS has long
been used.fo the “correct by construction” holy grail, and from
there it is quite a shift fo getfing used fo living with systems that
are af best incentivized (“dog trained”) to be sort of correct —

sort of like us humans!”

g large learned

Subbarao Kambhampati: “Al as (an Ersatz) Natural Science?” CACM, June 8, 2022

“Correct by construction” vs. “dog trained”

Al Components for High Inlegrily, Safety-Crifical Human-Cyber-Physical Systems '
Marlin Franzle — Carl von Ossietzky Universilal Oldenburg ((



Cat) von Cssietzhy
Universitat

Univernat Line of Attack: Correctness

> Rigorous specification of intended functionality is partially possible by using don't care
regions

» Either as open-loop properties ex

ressing when,
regarding current state observed Eg the sensors, the
system ought issue which adyisories, like in (examples
simplified)

K collision avoidance SN
S threshold 4

P If no other flight device is within a radius of 20 miles then |

no advisory ought be given. I

|

|

|

|

[

(

» As soon as another flight device is within a radius of 4
miles, a conflict-free advisory has to be issued.

» or as closed-loop requirements:

» starfing from any situation obeying the system bounds
regarding speeds, initial separations, etc., the collision

volume remains unreachable when all advisories issued are

followed.
Formal methods and correctness
Rigorous specification
Al Componenls for High Infegrily, Safely-Crifical Human-CGuber-Physical Sysiems
Marlin Franzle — Corl von Ossielzky Universital Oldenburg
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Deep Neural Networks (DNN)

DNN as a program

Input  Hidden Hidden Output
layer layer Iayer layer

label = argmax; ., Ukl

1) neuron activation value

E Wi—1.h7" Vk—1,h

1<h<s,

Ui = bi;+ vy ; = max{uy;, 0}

weighted sum plus a bias;

w,b are parameters learned

https://qithub.com/theyouchena/DLTT

2) rectified linear unit (ReLU):

// 1) mneuron activation wvalue
double ug,= bk,i;
for (unsigned h=1; h<sci; h+=
{

Uk,i += Wk—1,h,i * Vk—1,h;

}

double vi;=0;

// 2) ReLU :
't mi>0 Multiple layers
{ 2

Vk,i = Uk,i; between |npUt
}

and output,
explainable Al

1)




Coverage
criteria
for Al

Test coverage
for DNNs
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Formal
methods
and
testing

Reliance on
probability
distributions




Predictions dangerous

“ ... these formal methods are the key to writing much
better software. Their widespread use will revolutionise
software writing, and the economic benefits will be
considerable — on a par with those of the revolution in
civil engineering during the last century.”

C Al — Brian Oakley (1927-2012),
ompare Al: Alvey Achievements, June 1987



https://en.wikipedia.org/wiki/Brian_Oakley

Future developments

An engineering approach

Proof vs. calculation

“Light” approach (specification)
Improved tools (Moore’s law helps)
International standards

Education / training (for all personnel)
Unification of approaches?




Unified theory? Cf. physics

“The construction of a single mathematical model
obeying an elegant set of algebraic laws is a significant
intellectual achievement; so is the formulation of a set of
algebraic laws characterising an interesting and useful

set of models.”
— Sir Tony Hoare, 1993

Operational, Denotational, Algebraic semantics

®


http://www.research.microsoft.com/~thoare/

Unifying Theories
of Programming

 Tony Hoare & Jifeng He

* Prentice Hall, 1998
* http://www.unifyingtheories.org

 UTP international symposium
* First symposium 2006, UK
« Springer LNCS proceedings



http://www.unifyingtheories.org/
http://www.unifyingtheories.org/
https://en.wikipedia.org/wiki/Unifying_Theories_of_Programming

Future developments

Safety-critical systems
Security (e.g., smartcards)
Harmonization of engineering practices |

Practical experience /
Assessment and measurement

Technology transfer investment

Use with Al, LLMs, etc... perhaps most promising!




« Computer science uses decades-old,
even centuries-old mathematics

S0, see what mathematicians are
doing now for the future

Ronald Ross to ChatGPT:

The birth and strange life of a
random walk

Mathematical Institute, Oxford,
26 June 2024

— Jordan Ellenberg, Univ. of
Wisconsin—Madison (b. 1971)

voutube.com/watch?v=08FGB5x090M



https://www.youtube.com/watch?v=08FGB5x090M
https://www.youtube.com/watch?v=08FGB5x090M
https://www.youtube.com/watch?v=08FGB5x090M
https://en.wikipedia.org/wiki/Jordan_Ellenberg

Mathematical discoveries from program
search and large language models

Nature, vol. 625,
pp. 468-475 (2024)

* Prospect: Al could suggest
outline proofs with human
interactive help for detail

« Could this approach work for
program generation/proof?

nature.com/articles/s41586-023-06924-6



https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6

The Potential for Al in
Science and Mathematics

Science Museum, London, 17 July 2024
(c/o Oxford Mathematics)

nford Mathematics

Oxford !
London Public Lecture

WEDNESDAY 17824465 730% — Terence Tao FAA FRS,
Science Museum, London T

LOOGNC UCLA (b. 1975)
[he Potential for Al _ _
in Science and Mathematics 2006 Fields Medalist

lerenice lao

youtube.com/watch?v=_sTDS074D8Q (® )

s NI G ) |


https://www.maths.ox.ac.uk/node/68242
https://en.wikipedia.org/wiki/Terence_Tao
http://www.youtube.com/watch?v=_sTDSO74D8Q

We are used to computer tools - email, search
engines, programming languages, etc. - being
fussy and uncreative, but also reliable and

——r TR e R e i
‘Eﬁ_‘\t:é__% = d__ﬁ*;‘}-

S

Sometimes, the outputs can be quite impressive...

Prompt:

s’ unrefiable

M
g™

But now we have Large Language Mod
as ChatGPT, that can understand natural
language requests, and generate endless
creative text and image outputs - but without
reliability, predictability, or accuracy.

‘\"

®,

o N

e Yoy

... and sometimes, they are not.

Maths Olympiad proof vs. arithmetic

7°4+8*8=

120[...)
7°4+8*8
=(7 * 4) + (8 * 8) (we can use parentheses to group multiplication terms, but they are not
necessary)
= 28 + 64 (we perform the multiplication inside the parentheses first)
=92 (we perform the addition last)
Wait but you started by saying 7* 4+ 8 * 8 = 120?

&

1
i~

“l.

.
.

That was a typo, sorry. The correct answer is 92, as shown in the solution
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How can we use a tool that is powerful, but
unreliable?

For applications where mistakes can cause real
harm (e.g., medicine, financial decisions, personal
advice and therapy), one must be cautious, despite
the great potentlal benefi ts
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But there are more promising use cases Iif
the downside of producing an incorrect answer is
low (e.g., if one wants to generate background
images for slides).

Prove theorems
Proof tree n:N Local context by Interaction

., <, 1> S i

; A particularly promising use case for Al is in
In partlcular, in situations where the Al output can mathematics:

b_e_ indeper_tdetttly verifieq, there are 1Nl 1N e Little downside to producing incorrect proofs of
promising applications, both in the sciences and in mathematical theorems

mathematics. e Proofs can be independently verified by proof assistants -
b] % . e Training Al to improve their mathematical reasoning
may be of use in broader tasks

- *;" %
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e Four color theorem: proved in 1976; formalized in

Proof assistants are computer languages specializing

in verifying that an algorithm or proof actually works 2005
as intended. e Kepler conjecture: resolved in 1998; formalized in
e They are used to verify routines for critical electronics 2014

e Liquid Tensor Experiment: Proposed in 2020;
formalized in 2022;

e Polynomial Freiman Ruzsa conjecture: proven Nov
2023; formalized in 3 weeks

(e.g., avionics), as well as mathematical proofs.
e Proof formalization is time consuming, but getting
faster.

exact abs_nonneg (H[X; u] - H[Y; u']) T
Prdbffﬂ%‘s‘lstants for formalization ...maths ...and-also programs?

rt LeanCopilot

¥ Tactic state
So far the speedup in formalization has been due to more

modern proof assistant languages, richer mathematical
libraries, and tools (such as Github) to facilitate collaboration.
e There are promising experiments in using Al to automatically fill

1goal

8 e [n principle, Al integration will allow formal proofs to be
written faster than human proofs (which are prone to

in short steps in a formal proof (with the Al asked to try again if error).
Lt PRl gass TEtCOmpe), = e This will be a tipping point, and will lead to formalization
: . iy ' i X ' | '= hy used not only to verify existing proofs, but to create new
hh'|H[XJU]'K[Y)UHSZ*‘-‘[X)“#YJH]"v_. : y y gp

mathematics, using massive collaborations of both
human and Al mathematicians. An era of "big
mathematics"!

gcd_self (n : N) : gcd nn=n := by
search_proof

Use Al to fill in maths proof steps...  ...for program proofs too?

'nd Hidden
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Mathematics in the Age of Al

Jeremy Avigad
Department of Philosophy
Department of Mathematical Sciences
Carnegie Mellon University

Institute for Computer-Aided Reasoning in Mathematics
November 4, 2025

Online FACS/LMS talk

Andrei Popescu
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e tommny Proof assistant &
functional programming

Blog

Community information Iang U age

Community guidelines

Community

Projects using Lean

Teaching using Lean
Event: : . .
= Lean and its Mathematical Library =
Use Lean The Lean theorem prover is a proof assistant developed principally by Leonardo de Moura. hon O‘C;)n nor (LMS)

Online version (no installation)
Install Lean

have outdated information about Lean 3 (these pages are marked with a prominent banner). The old Lean 3 community

The community recently switched from using Lean 3 to using Lean 4. This website is still being updated, and some pages [ r <
website has been archived. \

Maore options

Documentation The Lean mathematical library, mathlib, is a community-driven effort to build a unified library of mathematics formalized in

Learning resources (start here) the Lean proof assistant. The library also contains definitions useful for programming. This project is very active, with many
AP| documentation regular contributors and daily activity.

Declaration search (Loogle)

Language reference You can get a bird's-eye view of what is in the mathlib library by reading the library overview, and read about recent

Tactic fist additions on our blog. The design and community organization of mathlib are described in the 2020 article The Lean

Cale mode mathematical library, although the library has grown by an order of magnitude since that article appeared. You can also
Conikmoda have a look at our repository statistics to see how the library grows and who contributes to it.

Jeremy Avigad

Simplifier
Well-founded recursion

) el Try it! Learn to Lean! Meet the

;:W,z;_.“r, and commeon mistakes You can try Lean in your web You can learn by playing a game, Communlty! | e a n - | a n q - O rq
About MWEs browser, install it in an isolated following tutorials, or reading Lean has very diverse and active n n
Glossary folder, or go for the full install. books. community. It gathers mostly on
Lean is free, open source a Zulip chat and on GitHub. You



https://lean-lang.org/
https://lean-lang.org/
https://lean-lang.org/

Recording

The IMO Grand Challenge today

After the 2025 IMO, four groups claimed gold medal performance:
Harmonic Al (formal) International

ByteDance (formal)

OpenAl (informal) Mathematical
Google DeepMind (informal) O|ymp|ad

ByteDance's SeedProver solves 78.1% of formalized past IMO problems, and more
than 50% on PutnamBench.

On September 26, a group at Apple and UC San Diego claimed 70% on
PutnamBench with its publicly available Hilbert prover.

LONDON
MATHEMATICAL
SOCIETY

e i

% Kieran O'Connor (LMS)
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Final thoughts

“Today we serve technology. We need to reverse the machine-centered point of
view and turn it into a person-centered point of view: Technology should serve

”

us.

From Things That Make Us Smart: Defending Human Attributes in the Age of the
Machine, by Donald A. Norman (1994)

The question is not “how can mathematicians use the technology?” but rather
“what can technology do for mathematicians?”

... and formal methodists!

Y ~  w - a3 153 A O, | -~ ¢ - o (2

‘1
/"

Unmute Start Video Participants Record Show Captions  Raise Hand Apps Whiteboards




SETTA 2025

11th International Symposium on Dependable
Software Engineering Theories, Tools and Applications

St Catherine’s College, Oxford, 1-3 December 2025

Cristina David,

M-based code translation

Bristol University Neural/Ee —

)

Automated translation of [T

scalability and correctness

real-world codebases e —




Theorem Proving and Al in 2025

; i RiRn e ¥
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Huang, S., et al. (Feb. 2025). LeanProgress: G
Search for Neural Theorem Proving via Proof Progress
Prediction. arXiv. doi:10.48550/arXiv.2502.17925

Lu, J., et al. (Oct. 2025). Lean Finder: Semantic Search
for Mathlib That Understands User Intents. arXiv.
doi:10.48550/arXiv.2510.15940

DeepSeek releases DeepSeek-Math-V2 (Nov. 2025)
Rapid Al-related developments with monthly updates...

... perhaps a reinvigouration of formal methods!




~ Blackwell’s, Oxford -
Cf Al Wintel’ FORMAL METHODS

Period of reduced funding between hype cycles |4 i .

Two major “winters™ approximately 1974—1980
and 1987-2000

Fifth Generation Computer Systems (FGCS): LRl o A
10-year initiative launched in 1982 by Japan's Mg Bk Ao il o)

Ministry of International Trade and Industry i - Ao T

(MITI)

Now a period of Al boom again with GenAl

P REE =l |

‘| v
1] KURZWEIL

Perhaps something similar for formal methods!



“Vibe coding”* ...
Al program generation

Vibe specifying » Formal specification
A
Vibe Vibe
proving calculating
v
Vibe coding » Program code

* Collins Dictionary Word of the Year for 2025



Reflection

Oui, l'ouvre sort plus belle
D'une forme au travail

Rebelle,
Vers, marbre, onyx, email.

[Yes, the work comes out more beautiful
from a material that resists the process,
verse, marble, onyx, or enamel.]

— Théophile Gautier (1811-1872) L’Art



http://mercator.ens.fr/home/letourne/gautier/gautier.html
http://www.mta.ca/faculty/arts-letters/mll/french/gautier/

Reflection:
Jean-Raymond Abrial (1938-2025)

 Originator of three important formal methods:
Z notation, B-Method, and Event-B

« FACS FACTS newsletter tributes planned for
January 2026

» Cf. Tony Hoare @ 90 tributes in FACS FACTS
July 2024 issue, pp. 542

 LNCS Festschrift volume also planned




Formal Methods:
Whence and Whither?

Prof. Jonathan P. Bowen FRSA FBCS

Emeritus Professor of Computing
London South Bank University, UK

Adjunct Professor, Southwest University, Chongqging, China

Chairman, Museophile Limited, Oxford, UK

WWW.|pbowen.com
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http://www.jpbowen.com/
https://www.lsbu.ac.uk/

The End
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