
Agile Database Development?

Yes we can!

Ron Ballard

1

What do you think of when you hear the words:

Relational database
?

2

What do you think of when you hear the words:

Relational database
SQL

?

2

What do you think of when you hear the words:

Relational database
SQL

Agile Development
?

2

What I Learned

Extreme Programming (Kent Beck - Paul Beckford)
Ruby on Rails
Several successful projects
Agile database development

Building database systems:
Small teams: exploring methodologies and tools

Developing database applications:
Weight of methodologies
Peopleware (Tom DeMarco & Tim Lister)

3

How Heavy Are The Methodologies?

A major finance company spent £400 million
between 2012 and 2016 developing conceptual
and logical database models that were
incomplete, riddled with errors and never used!

4

How Heavy Are The Methodologies?

A major finance company spent £400 million
between 2012 and 2016 developing conceptual
and logical database models that were
incomplete, riddled with errors and never used!

They had some big diagrams on the wall though.

5

Database vendors and major consultancies
have used overweight methodologies

to make fortunes
out of business and government

while failing to deliver good systems
over and over again.

6

Is This Contentious?

Database vendors and major consultancies
have used overweight methodologies

to make fortunes
out of business and government

while failing to deliver good systems
over and over again.

7

The Damage Done
• Methodologies got heavier

– "Things are going wrong; we need more control!"

• The tools from this era were tarred with the same
brush - some validly; some not

• Existing vendors made tools more complex with more
layers of "easy-to-use" administration tools

• Larry Ellison bought fighter jets and yachts with the
proceeds

• New vendors piled in with allegedly simpler tools.
• Scott Ambler's approach - "more UML" - is just wrong.

8

Time to Stop Moaning

9

Agile

The Agile Manifesto
• Working code is delivery; everything else is

overhead
• Users and developers must work together
• Change is what we do; do not fear change
• People deliver; processes and tools do not

10

Team Structure

• All necessary skills inside the team
• Includes users as part of the team
• No external DBAs (Database Administrators) –

database design by team members
• Analysis and development by the same people
• Testing by the same people
• Documentation by the same people

11

Database Design

• The data model is a direct model of the real
objects being processed by the application

• Understand the data and the model becomes
obvious; no designers’ ivory tower needed

• No conceptual model; no logical model; the
model in the database is the only one

• Always design concrete objects; no abstract or
generic objects

• Follow the checklist

12

Database Design Checklist
• Every column is atomic
• Every row has a primary key
• Every column in a row depends on the

primary key and nothing else
• No repeating groups in a row

13

Database Design Checklist
• Every column is atomic
• Every row has a primary key
• Every column in a row depends on the

primary key and nothing else
• No repeating groups in a row
• Strong data-types
• Concrete, specific, plain-English names
• Restrict nulls wherever possible
• Define constraints to protect links

14

Sneaky?

• If you are aware of "Database Normalisation"
you will spot that I snuck it into the checklist.

• "Normalisation" is useful because it makes
your database easier to use.

• Read about helicopter controls in The
Pragmatic Programmer.

• "Normalisation" has too much obscure jargon
• I'll give you one example of normalisation to

explain why it is useful.

15

Every Column Atomic

<vehicle>Mini John Cooper Works RH62XRG</vehicle>

16

Every Column Atomic

<vehicle>Mini John Cooper Works RH62XRG</vehicle>

<vehicle>Land Rover Discovery HIP 5TR</vehicle>

17

Every Column Atomic
<vehicle>Mini John Cooper Works RH62XRG</vehicle>

<vehicle>
<make>Mini</make>
<model>John Cooper Works</model>
<registration>RH62XRG</registration>

</vehicle>

<vehicle>Land Rover Discovery HIP 5TR</vehicle>

<vehicle>
<make>Land Rover</make>
<model>Discovery</model>
<registration>HIP 5TR</registration>

</vehicle>

18

Normal Forms
Normal
Form

In English (sort-of) When To
Use It

First Atomic fields Always

Second Every field part of same object Always

Third No internal relationships Usually

Bryce-Codd Overlapping candidate keys You
Ain't
Gonna
Need
It!

Fourth Multi-valued dependencies

Fifth Join dependencies

19

So What is Agile Database Design?
• Design only what is needed for this iteration (sprint).
• The first migration will just be some “create table” statements.
• On subsequent iterations, if the database does not change do

nothing. This often happens.
• If the database does change, build a migration to add what is new,

and, if necessary, migrate data as well as definitions.
• If you are migrating data then build tests to ensure that nothing has

unintentionally been lost, duplicated or shuffled.
• Refactor the design whenever it delivers a benefit.
• Store all migrations in your version control system. Organise and

name them so that you can replay them.

20

Agile Database Development

If "You Ain't Gonna Need It", don't do it.
For example:
• No indexes unless they solve an actual

performance problem, and then only if they
actually solve it.

• No partitioning unless absolutely necessary
• No "spare" columns at all, ever!
• No database "views"

21

Agile Database Development
Separation of Responsibilities

Use the database only for what it is good for:
• No dodgy data-types: "blobs", XML, arrays, etc.
• No nested tables
• No "stored-procedures" (limited exceptions)
• SQL is the only interface to the database
• SQL is non-procedural; don't subvert it
• Do use strong data-types to keep data clean
• No string longer than it needs to be

22

Use the application code for what it is good for
• No database navigation in the application
• Never use Object-Relational Mapping systems
• SQL is the interface to the database
• JDBC is a good implementation of the SQL

interface (not perfect but the best available)

Agile Database Development
Separation of Responsibilities

23

Agile Database Development
Test Driven

• Automated tests must include database tests
• Test database migrations and application

releases
• SQL scripts are a good tool to check that the

database changed as expected
• Automate running of scripts and reporting of

results. Must be able to make the screen turn
red if the release is broken.

24

The End

• Relational Databases and SQL are
powerful when used for appropriate
applications

• Relational Database development can
be Agile and rigorous

• Relational Databases can be big and fast

25

26

http://www.thedatastudio.net

Questions?

27

http://www.thedatastudio.net

	Agile Database Development?
	Slide Number 2
	Slide Number 3
	Slide Number 4
	What I Learned
	How Heavy Are The Methodologies?
	How Heavy Are The Methodologies?
	Slide Number 8
	Is This Contentious?
	The Damage Done
	Time to Stop Moaning
	Agile
	Team Structure
	Database Design
	Database Design Checklist
	Database Design Checklist
	Sneaky?
	Every Column Atomic
	Every Column Atomic
	Every Column Atomic
	Normal Forms
	So What is Agile Database Design?
	Agile Database Development
	Agile Database Development�Separation of Responsibilities
	Agile Database Development�Separation of Responsibilities
	Agile Database Development�Test Driven
	The End
	Slide Number 28
	Questions?
	Slide Number 30

