
Agile Database Development? 

Yes we can!

Ron Ballard
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What do you think of when you hear the words:

Relational database
?
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What do you think of when you hear the words:

Relational database
SQL

?
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What do you think of when you hear the words:

Relational database
SQL

Agile Development
?
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What I Learned

Extreme Programming (Kent Beck - Paul Beckford)
Ruby on Rails
Several successful projects
Agile database development

Building database systems:
Small teams: exploring methodologies and tools

Developing database applications:
Weight of methodologies
Peopleware (Tom DeMarco & Tim Lister)
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How Heavy Are The Methodologies?

A major finance company spent £400 million
between 2012 and 2016 developing conceptual 
and logical database models that were 
incomplete, riddled with errors and never used!
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How Heavy Are The Methodologies?

A major finance company spent £400 million
between 2012 and 2016 developing conceptual 
and logical database models that were 
incomplete, riddled with errors and never used!

They had some big diagrams on the wall though.
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Database vendors and major consultancies 
have used overweight methodologies 

to make fortunes 
out of business and government 

while failing to deliver good systems 
over and over again.
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Is This Contentious?

Database vendors and major consultancies 
have used overweight methodologies 

to make fortunes 
out of business and government 

while failing to deliver good systems 
over and over again.
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The Damage Done
• Methodologies got heavier

– "Things are going wrong; we need more control!"

• The tools from this era were tarred with the same 
brush - some validly; some not

• Existing vendors made tools more complex with more 
layers of "easy-to-use" administration tools

• Larry Ellison bought fighter jets and yachts with the 
proceeds

• New vendors piled in with allegedly simpler tools.
• Scott Ambler's approach - "more UML" - is just wrong.
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Time to Stop Moaning
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Agile

The Agile Manifesto
• Working code is delivery; everything else is 

overhead
• Users and developers must work together
• Change is what we do; do not fear change
• People deliver; processes and tools do not
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Team Structure

• All necessary skills inside the team
• Includes users as part of the team
• No external DBAs (Database Administrators) –

database design by team members
• Analysis and development by the same people
• Testing by the same people
• Documentation by the same people
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Database Design

• The data model is a direct model of the real 
objects being processed by the application

• Understand the data and the model becomes 
obvious; no designers’ ivory tower needed

• No conceptual model; no logical model; the 
model in the database is the only one

• Always design concrete objects; no abstract or 
generic objects

• Follow the checklist
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Database Design Checklist
• Every column is atomic
• Every row has a primary key
• Every column in a row depends on the 

primary key and nothing else
• No repeating groups in a row
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Database Design Checklist
• Every column is atomic
• Every row has a primary key
• Every column in a row depends on the 

primary key and nothing else
• No repeating groups in a row
• Strong data-types
• Concrete, specific, plain-English names
• Restrict nulls wherever possible
• Define constraints to protect links
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Sneaky?

• If you are aware of "Database Normalisation" 
you will spot that I snuck it into the checklist.

• "Normalisation" is useful because it makes 
your database easier to use.

• Read about helicopter controls in The 
Pragmatic Programmer.

• "Normalisation" has too much obscure jargon
• I'll give you one example of normalisation to 

explain why it is useful.
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Every Column Atomic

<vehicle>Mini John Cooper Works RH62XRG</vehicle>
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Every Column Atomic

<vehicle>Mini John Cooper Works RH62XRG</vehicle>

<vehicle>Land Rover Discovery HIP 5TR</vehicle>
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Every Column Atomic
<vehicle>Mini John Cooper Works RH62XRG</vehicle>

<vehicle>
<make>Mini</make>
<model>John Cooper Works</model>
<registration>RH62XRG</registration>

</vehicle>

<vehicle>Land Rover Discovery HIP 5TR</vehicle>

<vehicle>
<make>Land Rover</make>
<model>Discovery</model>
<registration>HIP 5TR</registration>

</vehicle>
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Normal Forms
Normal 
Form

In English (sort-of) When To 
Use It

First Atomic fields Always

Second Every field part of same object Always

Third No internal relationships Usually

Bryce-Codd Overlapping candidate keys You
Ain't
Gonna
Need
It!

Fourth Multi-valued dependencies

Fifth Join dependencies
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So What is Agile Database Design?
• Design only what is needed for this iteration (sprint). 
• The first migration will just be some “create table” statements.
• On subsequent iterations, if the database does not change do 

nothing.  This often happens.
• If the database does change, build a migration to add what is new, 

and, if necessary, migrate data as well as definitions.
• If you are migrating data then build tests to ensure that nothing has 

unintentionally been lost, duplicated or shuffled.
• Refactor the design whenever it delivers a benefit.
• Store all migrations in your version control system.  Organise and 

name them so that you can replay them.
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Agile Database Development

If "You Ain't Gonna Need It", don't do it.
For example:
• No indexes unless they solve an actual 

performance problem, and then only if they 
actually solve it.

• No partitioning unless absolutely necessary
• No "spare" columns at all, ever!
• No database "views"
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Agile Database Development
Separation of Responsibilities

Use the database only for what it is good for:
• No dodgy data-types: "blobs", XML, arrays, etc.
• No nested tables
• No "stored-procedures" (limited exceptions)
• SQL is the only interface to the database
• SQL is non-procedural; don't subvert it
• Do use strong data-types to keep data clean
• No string longer than it needs to be
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Use the application code for what it is good for
• No database navigation in the application
• Never use Object-Relational Mapping systems
• SQL is the interface to the database
• JDBC is a good implementation of the SQL 

interface (not perfect but the best available)

Agile Database Development
Separation of Responsibilities
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Agile Database Development
Test Driven

• Automated tests must include database tests
• Test database migrations and application 

releases
• SQL scripts are a good tool to check that the 

database changed as expected
• Automate running of scripts and reporting of 

results.  Must be able to make the screen turn 
red if the release is broken.
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The End

• Relational Databases and SQL are 
powerful when used for appropriate 
applications

• Relational Database development can 
be Agile and rigorous

• Relational Databases can be big and fast
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http://www.thedatastudio.net


Questions?
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http://www.thedatastudio.net
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