
Composing Protocols

Farhad Arbab
Emeritus Professor

Center for Mathematics and Computer Science (CWI), Amsterdam
Leiden Institute of Advanced Computer Science, Leiden University

April 3, 2019

BCS, London



The way we were

Barbra Streisand

Mem'ries light the corners of my mind

Misty water-colored mem'ries of the way we were

Scattered pictures of the smiles we left behind

Smiles we gave to one another for the way we were

Can it be that it was all so simple then

Or has time rewritten every line

If we had the chance to do it all again, 

tell me, would we, could we

Mem'ries may be beautiful and yet

What's too painful to remember

We simply choose to forget

So it's the laughter we will remember

Whenever we remember the way we were

The way we were

Songwriters: Alan Bergman / Marilyn Bergman / Marvin Hamlisch

The Way We Were lyrics © Sony/ATV Music Publishing LLC

Nostalgia of simpler times!

❑ Apollo mission and moon landing.

❑ No mobile phone, no Internet, no PC!

❑ Mass media of print, radio, TV, and 
cinema bonded people via shared 
communal experiences.

❑ We seemed to have matured beyond 
weaponizing religion ever again.

❑ Trump as president was conceivable only 
in dystopian worlds of science fiction!

❑ Brexit mess was inconceivable even in 
dystopian worlds of science fiction!

© F. Arbab 2019 2

Memories …



Concurrent
❑ As tasks, processes, threads, etc., using 

primitives like
o Locks & Mutex

o Semaphores (Dijkstra)

o Monitors (Brinch Hansen & Hoare)

o CSP (Hoare)

 p-calculus (Milner)

o Rendezvous (Ada)

o ACP (Bergstra & Klop)

❑ Still use 40-50 year-old primitives!

❑ Lower-level abstractions
o Complicate expressing intention

o Hinder reasoning and proofs

o Need top skills to get efficient 
executables (by hand-craft optimization)

prehistoric

1962/1963

1973/’74

1978

1973-1980 

1980

1982

The way we program(med)

Sequential 
❑ Using progressively more abstract 

constructs
o Machine code and assembly

o Fortran, Cobol, Algol, PL/I, … 

o Lisp, APL: functional abstraction

o Rigorous type systems

o Abstract data types

o Objects & classes 

o Prolog: logic programming

o Haskell: monads and monoids 

❑ Higher-level abstractions
o Simplify expressing intention

o Facilitate reasoning and proofs

o Produce more efficient executables 
(than hand-crafted code) 

© F. Arbab 2019 3



❑Affirm that there exists a better way 
to conceive of and express concurrency 
protocols using language constructs in 
higher-levels of abstraction.

❑Introduce a concrete programming 
language that offers such constructs.

Agenda

© F. Arbab 2019 4



Producers and Consumer

❑Construct an application consisting of: 
o A Display consumer process

o A Green producer process

o A Red producer process

❑The Display consumer must display the 
contents made available alternately by 
the Green and the Red producers.  

© F. Arbab 2019 5



Java-like Implementation

❑ Shared entities

❑ Consumer

❑ Producers

while (true) {

sleep (4000);

bufferSemaphore.acquire();

if (buffer != EMPTY) {

println(buffer);

buffer = EMPTY;

}

bufferSemaphore.release();

}

private final Semaphore greenSemaphore = new Semaphore(1);

private final Semaphore redSemaphore = new Semaphore(0);

private final Semaphore bufferSemaphore = new Semaphore(1);

private String buffer = EMPTY; 

while (true) {

sleep (5000);

greenText = ...

greenSemaphore.acquire();

bufferSemaphore.acquire();

buffer = greenText;

bufferSemaphore.release();

redSemaphore.release();

}

while (true) {

sleep (3000);

redText = ...

redSemaphore.acquire();

bufferSemaphore.acquire();

buffer = redText;

bufferSemaphore.release();

greenSemaphore.release();

}

•Where is green text computed?

•Where is red text computed?

•Where is text printed?

•Where is the protocol?

•What determines who goes first?

•What determines producers alternate?

•What provides buffer protection?

•Deadlocks?

•Live-locks?

•…

•Protocol becomes

•Implicit, nebulous, and intangible

•Difficult to reuse

© F. Arbab 2019 6



❑ Calculus to contrive expressions of action compositions.
o Composition operators, e.g.: ., |, +, :=, implied recursion

❑ Abstract away the clutter of computation details.

❑ Enable reasoning through rules of an algebra.

❑ Composition of actions yields more complex actions!
o Hence the name “process algebra”!

❑ Where is interaction?

Process Algebras

© F. Arbab 2019 7

g, r, b, d

B := ?b(t) . print(t) . !d("done") . B

G := ?g(k) . genG(t) . !b(t) . ?d(j) . !r(k) . G

R := ?r(k) . genR(t) . !b(t) . ?d(j) . !g(k) . R

G | R | B | !g("token")

Shared names:

Consumer:

Green producer:

Red producer:

Model: 

Duh!



Implicit Interaction

a2,b5

a3, d4

c3, d1

a6, d5

b3, d8

a2,b5

d2,b5

a2,b5

a1,e7

d1,e2

d2,e3
d7,b8

c7,e6

a2,b6

a6,e5

© F. Arbab 2019 8

b9, d4

a2,e3

a9,f5

d3,b6

a2,e5

g3, h4

a2,b5

c6,f7

d8,e3

Only indirectly, through 
manipulating processes,

i.e.,

With difficulty, even if possible!

❑ Interaction (protocol) is implicit in action-based models of concurrency

❑ Interaction is a by-product of processes executing their actions
o Action ai of process A collides with action bj of process B

o Interaction is the specific (timed) sequence of such collisions in a run

o Interaction protocol is the intended subset of such sequences.

❑ How can we differentiate the intended from the coincidental?

❑ How can the sequences of intended collisions be
o Manipulated?

o Verified?

o Debugged?

o Reused ?

o ...



❑ The interesting* side of concurrency is interaction, not action!

❑ An action is a mere “half-interaction” in a binary interaction.

❑ An action is an interaction-shard in a multiparty interaction.

❑ Managing interaction becomes more difficult than necessary 
when done through its shards.
o Tolerable with not too many shards (simple interactions among few 

parties).

o Unmanageable otherwise: increasingly the case in modern world.

Alternative to algebra of interaction-shards?

❑ Our failure to take interaction seriously as a 
first-class concept has made concurrent 
programming more complex than necessary.

❑ First-class concept:
o Explicit construct to capture the concept

o Composition operators, ideally, forming an 
algebra.

❑ Make action the implicit concept!

Can it be that it was all so simple then?

© F. Arbab 2019 9

*As in: intriguing, exciting, challenging, exacting, difficult, arduous, grueling, herculean, laborious, curse! 



Concurrency by interaction

❑A concurrent system consists of actors that 
interact.
o An actor may itself contain nested interacting actors.

o An atomic actor performs a sequential computation.

❑Specification of a concurrent system:
o What does each actor do?

▪ Specification of computation.

o What are the permissible interactions amongst actors?
▪ Specification of interaction protocol as a constraint on ordering of activities 

and exchanges of partial results amongst independently running actors.

© F. Arbab 2019 10



Interaction centric concurrency 
(1: actors)

❑ Specification of a concurrent system in terms of actors and 
their interaction protocol.

❑ Actors are black-box environment-agnostic processes:
o Do not share memory

o Contain no concurrency primitives (locks, semaphores, etc.)

o Offer no inter-process methods nor make such calls

o Do not send/receive targeted messages

o Communicate exclusively by exchange of values through blocking
I/O primitives that they perform only on their own ports:
▪ get(p, v) or get(p, v, t)

▪ put(p, v) or put(p, v, t)

© F. Arbab 2019 11

CP



Interaction centric concurrency 
(2: protocols)

❑ Interaction protocols are connectors that exogenously
constrain otherwise arbitrary interaction attempts by actors 

❑ Composing same processes with different connectors yields 
different systems: exogenous coordination

❑ Compositional specification of interaction protocols:
o Start with a set of primitive interactions as binary constraints

o Define (constraint) composition operators to combine interactions into more 
complex interactions

CP
synchronousbounded bufferedunbounded bufferedOrdered (e.g., FIFO)unorderedasynchronousLossy (e.g., sampling)etc.

© F. Arbab 2019 12

• Farhad Arbab, Ivan Herman, and Per Spilling, "Interaction Management of a Window Manager in Manifold," Proceedings of the Fourth 
International Conference on Computing and Information, IEEE, Toronto, May 1992. 

• Marcello Bonsangue, Farhad Arbab, Jaco de Bakker, Jan Rutten, Adriano Secutella, and Gianluigi Zavattaro, "A Transition System Semantics 
for the Control-Driven Coordination Language Manifold," Theoretical Computer Science, Elsevier, Vol. 240, No. 1, pp. 3-47, 2000.

• George A. Papadopoulos and Farhad Arbab, "Coordination Models and Languages," Advances in Computers, Vol. 46, Academic Press, 1998.



Reo

© F. Arbab 2019 13

▪ Reo is a language for compositional construction of interaction protocols.

▪ Interaction is the only first-class concept in Reo:
▪ Explicit constructs representing interaction

▪ Composition operators over interaction constructs (set of interactions is closed under composition operators)

▪ Protocols manifest as a connectors

▪ In its graphical syntax, connectors are graphs
▪ Data items flow through channels represented as edges

▪ Boundary nodes permit (components to perform) I/O operations

▪ Formal semantics given as ABT (and various other formalisms)

▪ Tool support: draw, animate, verify, compile

• F. Arbab "Puff, The Magic Protocol," Formal Modeling: Actors, Open Systems, Biological Systems 2011, SRI International, Menlo 
Park, California, November 3-4, 2011, Lecture Notes in Computer Science, Springer, vol. 7000, pp. 169-206, 2011.

• Farhad Arbab, "Reo: A Channel-based Coordination Model for Component Composition," Mathematical Structures in 
Computer Science, Cambridge University Press, Vol. 14, Issue 3, pp. 329-366, June 2004. 



Channels 

❑ Atomic connectors in Reo are called channels.
❑ Reo generalizes the common notion of channel.
❑ A channel is an abstract communication medium with:

o exactly two ends; and
o a constraint that relates (the flows of data at) its ends.

❑ Two types of channel ends
o Source: data enters into the channel.
o Sink: data leaves the channel.

❑ A channel can have two sources or two sinks.
❑ A channel represents a primitive interaction.

© F. Arbab 2019 14



© F. Arbab 2019 15

A Sample of Channels

❑Synchronous channel
o write/take

❑Synchronous drain: two sources
o write/write

❑Synchronous spout: two sinks
o take/take

❑Lossy synchronous channel

❑Asynchronous FIFO1 channel
o write/take



❑Mixed node
o Atomic merge + replication 

❑Sink node
o Non-deterministic merge

❑Source node
o Atomic replication

Join

a

b

a

c

b c

c

b

a

© F. Arbab 2019 16



Reo Connectors

=
A

B

C

FIFO1 channel synchronous 
channel

lossy synchronous 
channel

filter channel

≤

P-producer

synchronous drain asynchronous drain synchronous spout asynchronous spout timer channel

A

B

C

Exclusive choice (deffered XOR)

closeopen

A B

Valve connector: 

controls flow from A to B

© F. Arbab 2019 17



Flow regulator

❑Write-cue synchronous flow-regulator

a c

b

!x ?

!y

x

© F. Arbab 2019 18

regulatorwwr(a, b, c) {

sync(a, m) syncdrain(m, b) sync(m, c)

}



barrier(x[1..n], y[1..n]) {

{sync(x[i], z[i]) sync(z[i], y[i]) syncdrain(z[i], z[i+1]) | i : <1 .. n-1>}

sync(x[n], z[n]) sync(z[n], y[n])

}

Flow Synchronization

❑The write/take operations on the pairs 
of channel ends a/c and b/d are 
synchronized.

❑Barrier synchronization.

a

b

c

d

!x!x ?!x ?

?

!x

!y

?

?

x

y

© F. Arbab 2019 19

barrier(x[1..n], y[1..n]) {

{sync(x[i], z[i]) sync(z[i], y[i]) syncdrain(z[i-1], z[i]) | i : <2 .. n >}

sync(x[1], z[1]) sync(z[1], y[1])

}

barrier(a, b, c, d) {

regulatorwwr(a, m, c) sync(b, m) sync(m, d)

}

barrier(a, b, c, d) {

sync(a, u) sync(u, c) syncdrain(u, m) sync(b, m) sync(m, d)

}



❑Subsequent takes from c retrieve items from 
the streams alternating between a and b.

❑Items at both a and b must be present in 
each round before a pair can go through.

❑Generalize to n inputs:
!3

!4

1
!1

!2

Alternator

?

© F. Arbab 2019 20

a

b

c alternator(a, b, c) {

syncdrain(a, b) sync(b, x) fifo(x, c)

sync(a, c)

}

2

2,3,4,

4

a

b

c

d

z

alternator(p[1..n], x[1]) {

{syncdrain(p[i-1], p[i]) sync(p[i], x[i]) fifo(x[i], x[i-1]) | i : <2 .. N>}

sync(p[1], x[1])

}



❑We can use the alternator circuit to impose 
the protocol on the green and red producers 
of our example
o From outside

o Without their knowledge

Alternating Producers

© F. Arbab 2019 21

main() {

green(a) red(b) blue(c) alternator(a, b, c)

}



Library

© F. Arbab 2019 22

Exclusive router<k> 

Overflow Lossy Fifo1

Shift Lossy Fifo1
Variable

Sequencer<k>



❑ At least 8 different sensible protocol alternatives:

❑ None of which has the bug/feature of the Java code!

Possible intended alternatives

© F. Arbab 2019 23



❑Scale up?

Scaling up

© F. Arbab 2019 24

main() {

green(a[1]) … red(a[n]) blue(b) 

connector(a[1..n], b)

}

connector(a[1..n], b) {

seqc(x[n]) 

{sync(a[i], x[i]) sync(x[i], m) | i : <1 ..n>} 

sync(m, b)

}



❑Mix and match?

Scale and combine

© F. Arbab 2019 25

Connector<ileg[1..n](?, !), oleg(?, !)> (a[1..n], b) {

seqc(x[n]) 

{ileg[i](a[i], x[i]) sync(x[i], m) | for i : <1 ..n>} 

oleg(m, b)

}

main() {

green(a[1]) … red(a[n]) blue(b) 

ileg = [sync, lossysync, fifo, sync, variable, …, shiftlossyfifo, ovflfifo]

connector<ileg[1..n], sync>(a[1..n], b)

}



❑ A 1-out-of-n protocol:
o Output 1 item out of items from n input ports & repeat.

Protocol programming example

© F. Arbab 2019 26



❑ Action-centric programming of an interaction:
o Smash interaction on the solid rock of action

o Let each process/thread pick up some interaction-shards.

o Pray that:
▪ No shards go missing or get lost

▪ Processes will independently pick up and flip over just the right 

shard at the right time to reconstitute the original interaction. 

Protocol programming

© F. Arbab 2019 27

Contrary to our illusion that bugs pray to 
spred, they in fact thrive in the 
ecosystem of our methodologies.



❑ Interaction-centric programming of an interaction:
o Separation of concerns.

▪ Nature: ultimate machinery employing separation of concerns.

o Consider the protocol as manifestation of a constraint.

Protocol programming

© F. Arbab 2019 28

Nature manifests magnificently complex forms and behaviors 
by bridling simple unintelligent actions of independent actors, 
ignorant of those emerging patterns, with superimposition of 
easy constraints.

o Decompose the constraint into simple, 
down to easy constraints.

o Superimpose constraints through 
mathematical composition of relations.



❑ Output 1 item out of items from n input ports & repeat.
o Which item? 

▪ Any one?

▪ The first/last arriving one? 

▪ A specific one? Which one? In temporal order? In structural order?

o How to handle excess input from the same source in a cycle?
▪ Delay it for next cycle? 

▪ Lose it?

o When should output become available? 
▪ As soon as available? 

▪ At the end of a cycle?

o When does a cycle end? 
▪ After one input from each source? 

▪ Once the output is taken?

❑ Generalize 1-out-of-n to k-out-of-n

A 1-out-of-n protocol

© F. Arbab 2019 29



Interaction programming

© F. Arbab 2019 30

X
R
o
u
te

r

❑Decompose a protocol into simpler protocols.

❑Compose the original protocol by 
superimposition of simpler protocols.

❑Some simple sub-protocols for k-out-of-n:



Sparing Delayed 1st Out of n
• Outputs only the first of the n arriving inputs in each cycle.

• Output is delayed until the end of each cycle. 

• Cycle ends after: 
• A value arrives on each input node, and

• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.

© F. Arbab 2019 31



Sparing Prompt k Out of n
• Outputs only the first of the n arriving inputs in each cycle.

• Output is possible promptly after the first k input values arrive. 

• Cycle ends after: 
• A value arrives on each input node, and

• A value is taken from the output node.

• Extra input values of a node are spared for the next cycle.

© F. Arbab 2019 32

E
x
clu

siv
e
 R

o
u
te

r



Semantics

❑ Reo allows:
o Arbitrary user-defined channels as primitives.
o Arbitrary mix of synchrony and asynchrony.
o Relational constraints between input and output.

❑ Reo is more expressive than, e.g., dataflow models, 
Kahn networks, workflow models, stream processing 
models, Petri nets, and synchronous languages.

❑ Formal semantics:
o Coalgebraic semantics based on timed-data streams.
o Constraint automata.
o SOS semantics (in Maude).
o Constraint propagation (connector coloring scheme).
o First order predicate logic, Intuitionistic linear logic

• Sung-Shik T.Q. Jongmans and Farhad Arbab, "Overview of Thirty Semantic Formalisms for Reo," Scientific Annals of 
Computer Science, vol. 12, Issue 1, pp. 201-251, 2012.

© F. Arbab 2019 33



Constraint automata

❑ Finite-state automata where a transition has a pair of 
constraints as its label:

o (Synchronization-constraint, Data-constraint)

❑ Introduced to capture operational semantics of Reo

© F. Arbab 2019 34

CA of typical Reo primitives:

• F. Arbab, C. Baier, J.J.M.M. Rutten, and M. Sirjani, "Modeling Component Connectors in Reo by Constraint Automata," Proc. 
International Workshop on Foundations of Coordination Languages and Software Architectures (FOCLASA 2003), CONCUR 2003, 
Marseille, France, September 2003, Electronic Notes in Theoretical Computer Science, 97.22, Elsevier Science, July 2004.

• C. Baier, M. Sirjani, F. Arbab, and J.J.M.M. Rutten, "Modeling Component Connectors in Reo by Constraint Automata," 
Science of Computer Programming, Elsevier, Vol. 61, Issue 2, pp. 75-113, July 2006.  

• F. Arbab, C. Baier, F.S. de Boer, and J.J.M.M. Rutten, "Models and Temporal Logical Specifications for Timed Component 
Connectors," International Journal on Software and Systems Modeling, pp. 59-82, Vol. 6, No. 1, March 2007, Springer.  



CA of a connector

❑The CA semantics of a connector is composed 
from the CA of its constituents via a 
synchronous product operator.

© F. Arbab 2019 35



Vereofy Model Checker

❑ Symbolic model checker for Reo:
o Based on constraint automata

o Developed at the University of Dresden

o LTL and CTL-like logic for property specification

❑ Modal formulae
o Branching time temporal logic: 

▪ AG[EX[true]] 

▪ check for deadlocks

o Linear temporal logics: 
▪ G(request → F (reject ∪ sendFormOut)) 

▪ check that admissible states reject or sendFormOut are reached

❑ http://www.vereofy.de

© F. Arbab 2019 36

http://www.vereofy.de/


Executable code generation

❑ Reo makes interaction explicit and tangible, allowing
o Specification 
o Composition
o Analysis
o Verification
o Reuse

Of interaction protocols
❑ Efficient executable code directly from Reo models?

o Performance comparable to hand-crafted optimized code.
o Choreography of Web services
o Coordinated composition of distributed components
o Concurrent applications on multi-core platforms

❑ Use Constraint Automata

© F. Arbab 2019 37



❑Java version of NASA Parallel 
Benchmarks (NPB)

o 84 full programs

o Reo circuits reused for same 
protocols in different cases

o Each case ran 5 times

❑In 37% of cases generated 
code no worse than 10% slower

❑In 38% of cases generated 
code is up to 20% faster

❑In 25% of cases generated 
code is between 10% to 40% 
slower

NASA benchmarks

© F. Arbab 2019 38

❑ 24-cores, 2 Intel E5-2690V3 processors in 2 sockets

❑ Static clock frequency

o Hyper-threading off

o Turbo boost off

Optimization opportunities!

• Sung-Shik T.Q. Jongmans "Automata-theoretic protocol programming," PhD thesis, Leiden University, 2016, 
http://hdl.handle.net/1887/38223.



❑ As the exponentially complex aspect of concurrency, 
interaction protocols become simpler to construct, 
validate, compose, and reuse as first-class entities.

❑ Interaction-centric programming needs programming 
constructs for:
o Explicit formal representation
o Direct composition

❑ Reo is a simple, rich, versatile, and surprisingly 
expressive language for compositional construction of 
pure interaction protocols.
o Treats interaction as (the only) first-class concept.
o Free combination of synchrony, exclusion, and asynchrony.
o Offers direct composition and verbatim reuse of protocols. 

What are you doing the rest of 
your life?

http://reo.project.cwi.nl
© F. Arbab 2019 39


