21/10/2019

PUTTING THE SEC IN DEVSECOPS

ANDREW HARDIE

THAT WAS THE SEC THAT WAS

® Hard shell, soft centre

® Perimeter around the corral, Wild West inside
® Focus on people security, not process security
® Manual procedures

®* Hard boundary between Dev and Ops

® “Throw it over the wall” mentality




21/10/2019

DEVOPS CHANGES EVERYTHING

® What'’s DevOps anyway...?

® DevOps comprises the tools, techniques and practices for the rapid, reliable
and repeatable delivery and deployment of infrastructure and application
artefacts, with:
® automated tests for validation
® security procedures for assurance
® logging for observability

® metrics for improvement

DEVOPS IS NOW MUCH MORE THAN...

* Automated application code compile, package and test
® Deploy to an artefact repository

® That’s Cl (Continuous Integration)




21/10/2019

DEVOPS IS NOW MUCH MORE THAN...

® Automated application code compile, package and test
® Deploy to an artefact repository

® That’s Cl (Continuous Integration)

®* On-demand deployment of those tested ready-to-run artefacts into target

environments

® That’s CD (Continuous Deployment)

DEVOPS IS NOW MUCH MORE THAN...

Automated application code compile, package and test

Deploy to an artefact repository

That’s Cl (Continuous Integration)

On-demand deployment of those tested ready-to-run artefacts into target environments

That’s CD (Continuous Deployment)

Rolling the two together, automated all the way through from code commit

That'’s (the other) CD — Continuous Deployment




21/10/2019

SO, WHAT’S CHANGED?

* In a word: Infrastructure
® In the beginning, your own iron/tin — hand crafted, limited automation
® Then came the cloud (hardware substitution) — 10 years ago

® Then came automating cloud instance creation (the start of infrastructure as code) — 8
years ago (CloudFormation)

Then came Docker and containers — March 2013

Then came Kubernetes — June 2014

And everything changed...

WHICH MEANS WHAT?

DevOps now covers the entire SDLC
DevOps now covers all the traditional system & environment setup

DevOps now covers all the traditional application provisioning, configuration,

maintenance and deletion
DevOps is thus now (at least) 90% of your IT strategy

DevOps is now, de facto, your new IT strategy

The old ways of working have to be transformed (exterminated)




WHICH MEANS WHAT FOR SECURITY?

“Ops” staff (whether in-house or at service providers) as the gatekeepers to
infrastructure and root access is no longer a sustainable practice.

“Take a ticket and wait” for infrastructure resources creation is no longer a
sustainable practice.

Waiting for Ops to install and configure applications on that infrastructure is no
longer a sustainable practice. (The cost of even large disposable infrastructure is
almost always less than the cost of holding up a development team.)

Root access to create infrastructure and then access that infrastructure to configure it
must be eliminated. Indeed, “root” becomes a non-event in terms of access control for
staff. There is nothing to access!

WHICH MEANS WHAT FOR SECURITY?

® Only systems will have root-level access to other systems, if at all.

®* No more shared root password for the Ops oppos!

® People configure what that root access will do via code and config files, to be

run automatically.

® Trust thus shifts from who has root system access to who has access to the code

that will run as root. Think about that!

21/10/2019




21/10/2019

BUT, WAIT, THERE'S MORE — MUCH MORE...

® Source code repo access — covered.

® But that’s only for the code you write — what about the rest? (>50%)
¢ Security at the other end? Contractors, maybe. Open Source nol

* Signed commits?2 Commit history. Checksums/digests?

® Import procedures

® Secrets scanning

® With everything as code, your source code repo is your crown jewels!

AND YET MORE...

* Artefact repository security — who/what can commit?
* Who/what can access?
*® Third party binaries — “sheepdip” import, verification, etc

® Third party repositories — compromise risk




21/10/2019

SOURCE CODE AND ARTEFACT HANDLING

® Supply chain integrity
® Multi-level audit trail — repo, company, item, persons

® If any one of these is found to have been compromised, need to know FAST if

and where that code or artefact is running in my estate

SDLC SECURITY

® Bearing in mind the SDLC now runs from code commit to production deploy...

® Pipeline runner security:
® Source code access (esp for laC code)
® Artefact repo commit access
® Infrastructure create/configure access

® Artefact deploy access

Network & service mesh config




21/10/2019

THE SURROUNDING LANDSCAPE

® Logging integrity — immutable logs ideally

® Metrics integrity — diversionary tactics by intruders
® Tracing integrity — will it detect MITM net activity?
® Policy control — what can do what and with whom
® Access control — certificates, keys, etc

® Zero trust networks — nothing to see here, move along...

SDLC PROCESS SECURITY

* Accelerate (you read the book, right?) but let’s be careful out there... ©

GitOps — env promo as code, automated; but if /when is human approval required?
Regulatory or “risk theatre”?

How many tests are enough? Balance between automation and humans...

If it's immutable it must be killable — how is that controlled?

If it's scalable, how is scale controlled?

There are no more CMDBs (Ops confession books) — the code describes it!




21/10/2019

INCIDENT RESPONSE

* Automated incident response /remediation — don’t rely on it too much...
* If it’s immutable, no hot fixes! So, how fast can you replace that cow?

® What checks are safe to skip for thate NFT2 What else?

THREAT SUMMARY

® The Dev Zone — repo access security, not endpoint access security
® Dev account integrity — identity hijack — attacker commits

* The dependency chain — can run far and wide

* Artefact and image repository integrity and access control

® The connectivity matrix risks — APls as threat points

* Keep it dark — zero trust networks, segmentation, etc




TAKEAWAY S

® This is new
® This is different

® This is hard

®* Remember, most successful compromises are either:
® Via social engineering — e.g. phishing emails

® Via zero-day exploits — e.g. Apache Struts

TAKEAWAY S

® It's now mostly not about edge/boundary attacks (aka firewalls)

® It's the penetrate to the inside, then exploit, e.g. via:

®* Compromised user accounts

®* Compromised imported code or binaries or container images

Supply chain integrity — perhaps the hardest problem right now...
® The “sleeper” compromise — only activated when something interesting happens

The compromise you discover only later: exfiltration, reputation destruction, extinction

21/10/2019




21/10/2019

THE GOAL

* Shift left!
® You shift testing left, so why not security?

® Turn DevSecOps into SecDevOps...

QUESTIONS?

ANDREW HARDIE

BCS@DEVOPERATIVE.COM




