
FORMAL MiO'iBOlS

EUROPE

FA CS
Europe

The Newsletter of the BCS Formal Aspects of Computing Science Special Interest Group and
Formal Methods Europe.

Series I Vol. 1, No. 1 Autumn 1993

Contents
Editorial· o. 0 ••• 0 •••••• 0 0 ••••••••••• 0 •••••• 0 •••• 0 0 • 0 ••••••• 0 0 ••••• 0 o. 2
Invitation to FACS members ... 0 •••••••• 0 •• 0. 0 0 0 • 0 •• 0 ••• 0 0 0 0 •• 0 0 0 2
FME '9,3 .00 0 0 0 o. 0 •• 0 • 0 •• 0 ••••• 0 0 • 0 0 0 • 0 .0.00 00' 0 • 0 • 0 •• 0 •• 0 ••••• 0 00. 0 3
A Special Welcome to FME Members o. 0 0 0 • 0 0 • 0 0 0 •• 0 ••• 0 0 ••• 0 •• 0 4
Raise Column o. 0 •• 0 0 • 0 ••••• 0 • 0 0 • 0 0 •• 0 • 0 •• 0 •• 0 0 0 0 0 0 • 0 ••• 0 0 0 • 0 0 • o. 5-6
Understanding the differences between VDM and Zoo ... o. 0 7-30
A Response to Florence, Dougal and Zebedee 00 •• 0 •• 0.0000 31-32
Current German Activities in Security and Correctness 0 0 33-38
Formal Specification of Neuorsis 00.00000. 0 00000 ••• 0000000000 39-40
Formal Methods Survey . 0 •• 0 0 0 • 0 ••••• o. 0 0 • 0 • 0 0 0 0 ; ••• 0 • 0 •• 0 •• 41-43
Anyone for Fractal Programming ... '0 •• 0 0 0 0 0 0 0 0 0 • 0 • 0 0 0 ••• o. 44-45
Wittgenstien - The Film .0 ••• 00 ••• 0. 0 0 0.0 •• 0 •• 0.0 •••• 00 •• 0 0 46-47
Notices and Calls for Papers 0 0 48-51
ForthcommingEvents 0000000000. 0 0.00000. 0 0 0 0 0 0 0 0 0 •• 00000000. 52-54
Contributions and Guidelines 0 0 0 0 0 0 0 0 0 • 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 55
BCS FACS Committee 1992/93 00 0 0 0 0 0 .000.000. 0.000000.0000.00 56

2

Editorial
Welcome to FACS Europe, the first joint New
sletter of FACS and FME.

FACS - Formal Aspects of Computing - is
a special interest group of the British Com
puter Society (BCS). John Cooke has written
a short article about FACS elsewhere in this
newsletter, describing the benefits of FACS
membership. Members of Formal Methods
Europe who are not members of FACS are
particularly invited to read this, and FACS
members too may find there are advantages to
their membership which they had temporarily
forgotten about!

FME - Formal Methods Europe - is an associ
ation based in the European Community and
supported by the European Commission (DG
XIII). The mission of FME is to stimulate
the use of formal methods by European in
dustry and to provide a meeting place for the
European formal methods community, with a
major emphasis on industrial providers and
users, current or potential.

Producing newsletters for organisations like
FME and FA CS requires a lot of voluntary
editorial effort. The objectives of the two
newsletters are almost indistinguishable. Giv
en the limited available resources, the com
mittees of FACS and FME have decided to
collaborate and produce a combined FACS
FME newsletter, starting with this current
issue. Combining the two will avoid duplica
tion of a scarce effort and, we hope, provide
an opportunity for an improvement in quality
and scope. FACS news will be available to a
wider audience and we hope to receive contri
butions from a greater variety of sources.

Henceforth members of both FACS and FME
will receive the joint newsletter.

Tim Denvir chairman FACS

FACS Europe - Series I Vol. 1, No. 1, Autumn 1993

Invitation to FACS Mem
bers

FME organises a conference every eighteen
months. The next, FME'94, will be held in
Barcelona from 24 to 28 October 1994. The
previous and first FME Symposium was held
in Odense in April 1993.

FME organises industrial seminars in vari
ous locations in the EC. Other activities are
planned, including providing a panel of speak
ers on formal methods for introductory semi
nars and the setting up of a Formal Methods
Tools Database.

Membership of FME is open to current and
potential industrial users of formal methods,
and any other interested persons. Member
ship is by application to the chairman, see
backpage.

There is currently no charge for membership.
Members will be requested to provide brief
details of their involvement (if any) in formal
methods and to assist FME in its mission.

Martyn Thomas chairman FME

Acknowledgements

This edition of the newsletter was produced
by:

Jawed Siddiqi
Chris Roast

Sheffield Hallam University
Sheffield Hallam University

We would like to put on record our appreci
ation of Brian Monahan's support while con
valescing, we wish him well.

Duplication and distribution by the Depart
ment of Computing and Management Sciences,
Sheffield Hallam University.

Odense, Denmark, April 1993

Oops. we all
make mistakes

3

",--- -
I am glad to see

the level of formality
is being maintained

FACS Europe - Series I Vol. 1, No. 1. Autumn 1993

•

4

A Special Welcome to Members of FME

The UK has always been active in formal computing, and it was therefore quite natural
that , in 1979, a special interest group in the Formal Aspects of Computing Science (FACS
or, in full, BCS-FACS) be created under the umbrella of the British Computer Society.

Although FACS was originally set up with the primary function of supporting the
British Formal methods community, we now have members in America, Asia and Aus
tralasia as well as in mainland Europe. Apart from organising workshops in the UK, we
also co-sponsor meetings further afield; and some five years ago we launched the Formal
Aspects of Computing journal, the international scope of which is truly reflected in the
composition of its editorial board.

In the true spiri t of collaboration we have for many years offered the BCS discount
rate to members of other 'sister ' national computing societies with which the BCS has
reciprocal arrangements; all members of FACS are treated equally regardless of being
members of BCS (etc.) or not , or whether they reside in the UK or not. They receive
this newsletter, t hey get direct mailings about future meetings - which they can attend at
discounted rates , they can subscribe to EATCS (the European Association for Theoretical
Computer Science) at the same time as renewing their annual FACS subscription. They
can also subscribe to "Formal Aspects of Computing" at over 70% discount, and obtain
the proceedings of the FACS workshops at di scounted prices (typically 20% below normal).

The rates for 1993 were:

FACS membership subscription (full price) 25
FACS membership subscription (for Members of BCS, ACM, Cl, AFCET,
ACIA, etc.) 10

FAC journal vol 4, 1992 (6 regular issues + one special) 33
FAC journal vol 5, 1993 (6 issues) 33
EATCS subscription 10

To be sent membership forms, to ascertain rates for 1994, or to obtain a sample copy of
our journal, please contact me see backpage.

John Cooke

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

November 1993

Dear Reader,

Sheffield Hallam University
School of Computing & Management Sciences

100 Napier Street
. Sheffield, S11 8HD

Welcome to the first edition of FACS Europe. I hope you find it an interesting read.

We are sorry it's late, this is due to the print machine breaking down. We would like
you to make a seasonal mind shift, that is assume this is the winter edition and that
the next edition will be in spring.

Wishing you a happy winter solstice, and hoping that reading it will inspire you to
contribute to the next edition.

Jawed Siddiqi

5

RAISE Column

A Language-Independent Definition of Refinement

Maurice Naftalin, Lloyd's Register
tcsmpn@aie.lreg.co.uk

Some time back I wrote a paper([l]) which proposed a model of the refinement process as a series of
operations building and modifying a structure which summarises an entire program development.
This structure, which has a graphical interpretation, is intended to provide a means of visualising
the complete refinement process. The starting-point of its definition was a part which I called a
"refinement tree". This is a formalisation of the structures that arise during use of a refinement
calculus. The idea is this: a specification (or program; for this discussion there is no need to
distinguish) can be represented as a tree in the syntax of your favourite language!. Viewed
abstractly, each node in this tree (called an Abstract Syntax Tree or AS1j is either an atom or else
a composite consisting of an operator and a tuple of operand subtrees, each of appropriate type.
If you decide that some node in such a tree is in need of improvement, you make a refinement,
which is a structural link between the part being improved (the source) and a better version (the
target). The target is another abstract syntax tree, any node of which may again be refined.

This idea was expressible quite concisely in VDM-SL syntax:

Reftree = AST I Refmt

AST = Atom I Oprnode

Oprnode .. opr : token
subtrees : Reftree-

Refmt .. source AST
target : Reftree

and this specification served well when extended to describe how refinement trees were linked
together in the refinement process as a whole, what operations were appropriate to the structure
representing the process, and so on. There is an unsatisfactory aspect to it, however: the definition
of Oprnode provides no way of referring to properties of the language (other than the constant
and rather unhelpful observation that a syntactic construct consists of an operator and some
operands). So it is impossible to specify any properties of refinement trees other than those which
are completely independent of the language in use. For example, you cannot specify when a
refinement tree is well-typed, what its meaning is, and so on. What I really wanted was to define
a structure parameterised by language. In this situation an unstructured specification language
could only provide a choice between omitting the language entirely (as I did) or choosing a language
arbitrarily and cluttering the specification with its details.

The structuring facilities of the RAISE Specification Language (RSL) provide an escape from this
dilemma. A simple-minded language definition in RSL is:

scheme
LANG=

class
type

Atom,
OpLtoken,
Syntactic-Type,
Atomtypes = Atom "fit Syntactic_Type,
Oprtypes = Opr_token "fit Oprtype,
Oprtype :: argts : Syntactic_Type· result: Syntactic-Type

lor languages: although this note describes refinement in a wide-spectrum language, that is not central to the
argument.

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

6

value
at : Atomtypes,
ot : Oprtypes

end

This specification defines the types of Atom and Opr_token (corresponding to the types Atom
and token in the VDM specification) as RSL sorts (i.e. abstract types). (The additional sort
Syntactic_Type is added to allow type-checking of refinement trees). Subsequently, extensions of
this specification can be defined to populate these types. At the same time, the values (constants)
at and at will be defined to associate each atom and operator with appropriate syntactic types.

Now a language-independent specification of refinement trees can be given. In fact, it looks very
similar to the original VDM one: the only difference is that the types of Atom and Opr_token are
parameters from the language definition.

scheme
REFTREE(lng : LANG) =

class
type

end

Reftree == ASTtoReftree(AST) I RefmttoReftree(Refmt),
AST==

AtomtoAST(lng.Atom) I mkOprnode(opr : Ing.Opr_token, subtrees : Reftree*),
Refmt :: source : AST target: Reftree

Something new has in fact been achieved, however: it is now possible to define properties of
the structure which are partly dependent on the language. For example, the specification .of a
typechecker for refinement trees is:

scheme
REFTREE-TYPES(lng : LANG) =

extend REFTREE(lng) with
class

value

end

welltyped : Reftree x Ing.Syntactic_Type Bool
welltyped(r, s) ==

case r of
ASTtoReftree(ast)

case ast of
AtomtoAST(a) lng.at(a) == s,
mkOprnode(o, st)

end,

('1 i : Nat • i E inds (st) ~ welltyped(st(i), lng.argts(lng.ot(o))(i))) 1\

(lng.result(lng.ot(o)) == s)

RefmttoReftree(rfmt) welltyped(target(rfmt), s)
end

Of course, this is still highly schematic and oversimplified. These three specifications would all
require considerable enhancement before they could serve as adequate abstractions from real lan
guages or refinement structures. But the example as it stands serves to show how two overlapping
concerns, the properties of a refinement structure and the properties of the language composing
it, can be cleanly separated - given the right structuring facilities.

Reference

Naftalin M. P. A Model of the Refinement Process, in Jones C. B., Shaw R. C., and Denvir T.
(eds), Proceedings of the Fifth BCS-FACS Refinement Workshop, 211-229, Springer-Verlag, 1993.

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

Understanding the differences between VD M and Z

I. J. Hayes*

Department of Computer Science
University of Queensland

e-mail: Ian.Hayes@uqcspe.cs.uq.oz.au

C. B. Jones

Department of Computer Science
University of Manchester
e-mail: cbj@cs.man.ac.uk

J. E. Nicholls

Programming Research Group
Oxford University

August 20, 1993

Abstract
This paper attempts to provide an understanding of the interesting differences between two
well-known specification languages.

The main ideas are presented in the form of a discussion. This was partly prompted by Lakatos'
book 'Proof and Refutations' but, since this paper is less profound, characters from the childrens'
television series 'The Magic Roundabout' are the speakers: Zebedee speaks for Z, Dougal puts
the VDM position, and Florence acts as the user.,

The specifications which are presented have been made similar so as to afford comparison -
in neither the VDM nor the Z case would they be considered to be ideal presentations. Some
technical details are relegated to footnotes.

Discussion

Florence: I know that some people are confused by the existence of two specification languages,
Z and VDM, which have a lot in common.

Dougal: Yes, there is certainly a common objective in Z and VDM and in many places one can
see that the same solution has been adopted.

The use of both VDM and Z has been concentrated on the specification of abstract machines,
and they both take the same so called 'model-oriented' approach. Jointly they differ from the
so called 'algebraic' specification languages (these might be better called 'property-oriented' to
contrast with 'model-oriented') which concentrate on specifying abstract data types.

Zebedee: The primary difference between these approaches is that VDM and Z both give an
explicit model of the state of an abstract machine - the operations of the abstract machine are

7

FACS Europe - Series I Vol. 1, No. 1, Autumn 1993

8

defined in terms of this state- whereas 'algebraic' approaches give no explicit model of the type
- an abstract data type is specified by axioms giving relationships between its operations. For
(a much-overused) example, a stack in VDM and Z would typically be modelled as a sequence,
while in the 'algebraic' approaches axioms such as

pop(push(x, s» = s

would be given.

Dougal: Before going further, let's be clear what we mean by 'VDM'. Strictly, VDM was
always seen as a development method in the sense that rules are given to verify steps of devel
opment (data reification and operation decomposition). I guess that our discussion today will
be confined to the specification language used in VDM.

Florence: Does that have a name?

Dougal: I wish I could say 'no'! But I have to confess that it is sometimes known as 'Meta-IV'
the draft VDM standard talks about 'VDM-SL',l but let's talk about the significant differences
between the two specification languages.

Florence: Probably what hit me first about the difference between VDM and Z specifications
is the appearance of the page. VDM specifications are full of keywords and Z specifications are
all 'boxes'. Is this a significant difference?

Dougal: VDM uses keywords in order to distinguish the roles of different parts of a specification.
F?r example, a module corresponds to an abstract machine with state and operations; a state
has components and an invariant; and operations have separate, pre- and post-conditions. These
different components are distinguished as they have different purposes in the specification. To
do this VDM makes use of keywords to introduce each component. All this structure is part of
the VD M language.

Zebedee: In Z almost none of the structure Dougal mentioned is explicit in the language.
A typical specification consists of lots of definitions, many of which are schemas - the boxes
Florence was referring to. Schemas are used to describe not only states but also operations. The
status of any particular schema is really only determined by the text introducing it, although
it isn't hard to guess the purpose of a schema by looking at its definition. Schemas are also
used as building blocks to construct descriptions of machine states or facets of operations. Such
component building blocks may not correspond to any of the VDM categories.2

Florence: But don't you need the extra structure that VDM gives if you want to do formal
refinements?

Zebedee: Yes, but to perform refinements you also need to consider a target programming
language. For example, if you wanted to produce Modula code then you could give a definition
module for an abstract machine in which the state and the operations are defined by Z schemas.
Such a definition module would be very close to a VDM module in terms of structure.

Florence: How about an example - something other than stacks please!

Zebedee: A simple relational database, known as NDB, has been presented in both notations.
Let's use that.3 After you Dougal.

lThe notation used here is close to that of the 'Committee Draft' of the VDM-SL Standard but there.may be
minor syntactic differences.

2It is perhaps worth explaining that Z has a number of levels: a basic mathematical notation (similar to that
of VDM); the schema notation; and conventions for describing the state and operations of an abstract machine
using Z schemas. Little new notation is introduced in the third level, only conventions for making use of the
other notation to describe abstract machines. It is worth noting that Z notation - the first two levels - has been
used with a different set of conventions for other purposes, such as specifying real-time systems.

30riginally formally specified in [WeI82) and revised in [Wal90), this was used as a challenge problem in [F J90)

FACS Europe - Series I Vo!. 1. No. 1. Autumn 1993

Dougal: Someone writing a VDM specification of a system normally sketches a state before
going into the details· of the operations which use and modify that state.4

For the NDB description, the overall state will have information about entities and relations.
In order to build up such a state, a number of sets are taken as basic.

Eid Each entity in the database has a unique identifier taken from the set Eid.

Value Entities have values taken from the set Value.

Esetnm An entity can belong to one or more entity sets (or types). The names of these sets
are taken from the set Esetnm.

Rnm The database consists of a number of relations with names taken from the set Rnm.

All but the first of these can conveniently be thought of as parameters to the specification of
the NDB database system; Eid is an internal set about which we need to know little - we just
regard it as a set of 'tokens'.

Now we can begin to think about the types which are constructed from these basic sets.
NDB is a binary relational database consisting of relations containing tuples which each have
two elements: a from value and a to value. A tuple contains a pair of Eids; in VDM the type
Tuple is defined as follows

Tuple :: fv : Eid
tv : Eid

Then a relation can be defined as a set of such pairs:

Relation = Tuple-set

To define whether a relation is to be constrained to be one-to-one - or whatever - four distinct
constants are used

Maptp = ONEONE I ONEMANY I MANyONE I MANYMANY

Relation information (Rinf) contains information stored for a relation: apart from the Tuple set,
an element of Maptp provides the constraint on the form of relation allowed. The consistency
of the tp and· r fields of Rinf is expressed as an invariant.

Rinf :: tp : Maptp
r : Relation

inv (mk-Rinf(tp, r)) D.

(tp = ONEMANY :::} Vtb t2 Er· tl.tv = t2.tv :::} t1.fv = t2.fv) A
(tp = MANyONE :::} Vtl, t2 Er· tl.jv = t2.fv :::} tl.tv = t2 .tv) A
(tp = ONEONE :::} Vtl\ ~ Er· tl.fv = t2 .fv <=> tl.tv = ~.tv)

It's worth noting that the set of values defined by a definition with an invariant only contains
values which satisfy the invariant. So we can only say that 'rel E Rinf if the relation, rel.r
is consistent with the map type rel.tp. Because invariants can be arbitrary predicates, type
membership is only partially decidable.

Florence: Is Z's notion of type the same as what Dougal just described?

Zebedee: No, but this is a difference in the use of the word 'type' rather than a real difference
between Z and VDM. In Z the term 'type' is used to refer to what can be statically type checked.
This is more liberal than what Z calls a 'declared set' which is what VDM calls a 'type'.

Dougal: Well, let me get through the rest of the state; then we can make more comparisons.

to which a Z response is given in [Hay92].
4The description of the NDB state presented here is given post/acto rather than attempting to emulate the

process by which specifications are produced.

9

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

10

In NDB, relations are identified not only by their names but also by the entity sets of the
values they relate (so a database can contain two relations called OWNS: one between PEOPLE

and CARS and - at the same time - another between PEOPLE and HOUSES). So a key for a
relation contains three things

Rkey :: nm Rnm
Is : Esetnm
ts : Esetnm

The overall state which we are aiming for has three components: an entity set map (esm)
which defines which entities are in each valid entity set; a map (em) which contains the value
of each identified entity; and a third map (rm) which stores the relevant Rinl for each Rkey.
The invariant records the consistency conditions between the components.

Ndb :: esm Esetnm ~ Eid-set
em : Eid ~ Value
rm : Rkey ~ Rinl

inv (mk-Ndb(esm, em, rm)) l::,.

dom em = U rng esm 1\

'irk E dom rm .

{rk.ls, rk.ts} ~ dom esm 1\

'imk- Tuple(fv, tv) E rm(rk).r . Iv E esm(fs) 1\ tv E esm(ts)

Later, we'll look at how this (together with the initial state and the operations) gets grouped
into a module.

Florence: How would the above state be presented in Z?

Zebedee: All the details would be almost identical, but the specification would be structured
differently. The specification would consist of a sequence of sections and each section would
present a small set of the state components along with operations on just those components.

The Z approach to structuring specifications is to try to build the specification from near
orthogonal components. We look for ways of splitting the state of the system so that we can
specify operations on just that part of the state that they require.

For NDB we have chosen to split the specification into three parts:

1. entities and their types or entity sets,

2. a single relation, and

3. multiple relations.

Finally, we put these specifications together to give the final specification.
Rather than follow the normal Z approach here, I'll give all of the state components from

the different sections together, so that we can compare the state with that used for the VDM
specification. As for the VDM, our basic sets are the following:

[Eid, Esetnm, Value]

As with the VDM the sets Esetnm and Value can be thought of as parameters, and the set Eid
is used locally within the specification.

For a database we keep track of the entities that are in an entity set (of that type). Ev
ery entity must be of one or more known types. The following schema, Entities, groups the
components of the state together with a invariant linking them.

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

Entities ____________________________ _

esm: Esetnm -+Ho (F Eid)
em: Eid -+Ho Value

dom em = U ran esm

Florence: How does this differ from the VDM so far?

Zebedee: It's virtually identical - bar the concrete syntax. The notation F Esetnm is equivalent
to the VDM notation Esetnm-set.

Another approach to defining the state in Z would be to define esm as a binary relation
between Esetnm and Eid. This leads to simpler predicates in the specifications because the Z
operators on binary relations are closer to the operations required for NDB's binary relations.
Entities is defined using Z's binary relations in [Hay92], but for our comparison here it is simpler
to use the same state as the VDM version. That way we can concentrate on more fundamental
differences.

Dougal: Yes, these modelling differences are interesting but not the point of today's discussion;
but it is worth saying that binary relation notation could also be added to VDM and the same
alternative state used.

Florence: So far that only covers the components esm and em of the VDM Ndb state.

Zebedee: Right, and at this point we would give a set of operations on the above state, but
in order to provide a more straightforward comparison with the VDM state, we shall skip to
the remainder of the state. The relations used in NDB are binary relations between entity
identifiers (rather than entity values). A Tuple is just a pair of entity identifiers and a Relation
is modeled as a Z binary relation between entity identifiers.

Tuple == Eid x Eid
Relation == Eid +-7 Eid

Florence: Is that really different from VDM?

Zebedee: Well, yes and no. Both the VDM and Z versions use a set of pairs for a relation -
note that Eid +-7 Eid is a shorthand for P(Eid x Eid). The difference is that, in Z, relations
are predefined and have a rich set of operators defined on them.

Dougal: There are a couple of points I'd like to pick up from what Zebedee has said. When
we make a selection of basic building blocks for specifications, we are clearly influenced by
experience. There is nothing deep in, say, the omission of relations from VDM (or - say of
optional objects from Z). Once again, the remarkable thing is just how similar the selection in
Z and VDM is. As I said above, if I were writing a large specification which needed relations, I
would just extend VD M appropriately.

Florence: What about the Maptp in Z?

Zebedee: Maptp is virtually identical:

Maptp : : = OneOne I OneMany I ManyOne I ManyMany

When a relation is created its type is specified as being one of the following four possibilities:
it is a one-to-one relation (Le., an injective partial function), a one-to-many relation (i.e., its
inverse is a partial function), a many-to-one relation (i.e., a partial function), or a many-to
many relation. In Z, the set of binary relations between X and Y is written X +-7 Y, the set of
partial functions is written X -++ Y, the set of one-to-one partial functions is written X >-++ Y,
and the inverse of a relation r is written r"".

11

FACS Europe ~ Series I Vo!. 1. No. 1. Autumn 1993

12

A relation is created to be of a particular type and no operation on the relation may violate
the type constraint.

Rinf __ _

tp: Maptp
r: Relation

(tp = One One => r E Eid >++ Eid) 1\

(tp = ManyOne => r E Eid -H Eid) 1\

(tp = OneMany => r- E Eid -H Eid)

Dougal: If you expanded the definitions you would get the same constraint as in the VDM
version.

Zebedee: Yes, they are exactly the same.

Florence: We still don't have NDB's named relations in Z.

Zebedee: That's next, but again at this point in the normal flow of a Z specification operations
would be defined on the state Rinf. The database consists of a number of relations with names
taken from the set Rnm (essentially a parameter set).

[Rnm]

A relation is identified by its name and the 'from' and 'to' entity sets that it relates. This
allows a number of relations to have the same Rnm provided they have different combinations
of 'from' and 'to' entity sets.

1~~~YRnm
fs, ts: Esetnm

The entities related by each relation must belong to the entity sets specified by the relation key.

Ndb __ __

Entities
rm: Rkey -+H- Rinf

Vrk:domrm _

{rk.fs,rk.ts} ~ domesm 1\

(Vt: (rm rk).r_
first t E esm(rk .fs) 1\ second t E esm(rk. ts »

Florence: Because you have included Entities you now have all the state components, so that
this is equivalent to the VDM Ndb state.

Zebedee: Yes.

Florence: Why don't we look at initialisation?

Dougal: The initial state (in this case it is unique) is defined in VDM as

init (ndb) 6. ndb = mk-Ndb({}, {}, {})

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

Zebedee: In Z the initial state is defined by the following schema (given using the horizontal
form of presentation):

NdbJnit == [Ndb I esm = n 1\ em = n 1\ rm = n]
Again, if we followed the more structured presentation of NDB, we would probably define the
set of allowable initial Entities and then define the allowable initial Ndb states in terms of it.

Florence: Why don't we look at operations?

Dougal: The simplest operation adds a new entity set name to the set of known entity sets,
esm. The set of entities associated with this new name is initially empty. In VDM this can be
defined.

ADDES (es: Esetnm)

ext wr esm : Esetnm ~ Eid-set

pre es fJ. dom esm

post esm = esm u {es 1-+ { } }

Zebedee: In Z that's

ADDESO __ __

LlEntities
es?: Esetnm

es? ~ dom esm 1\

esm' = esm U { es 1-+ n} 1\

em' = em

where LlEntities introduces the before and after (primed) states:

LlEntities == Entities 1\ Entities'

Florence: One obvious syntactic difference is that VDM uses hooked variables for the before
state and un hooked variables for the after state, whilst Z uses undecorated variables for the
before state and primed variables for the after state. In addition, Z uses variable names ending
in '?' for inputs (and names ending in '!' for outputs). Apart from the differences in syntax, I
notice that VDM uses an externals clause and distinguishes the pre-condition.

Zebedee: Yes, Z does not have any equivalent of an externals clause. The predicate must
define the final values of all variables, even if the variable is unchanged, such as em. This is
why in Z one divides up the state into small groups of components and defines sub-operations
on each group, before combining the sub-operations in order to define the full operation. For
a large specification with many state components, if one had to define the operations on the
whole state, then there would be many boring predicates stating that many of the variables are
unaffected. Dividing up the state avoids this problem, although it is still necessary to promote
the operations on the substates to the full state at some stage:

Dougal: In VDM, an operation is always written in a module. This provides the appropriate
state but one can use the external clause of an operation specification to make it self-contained
and to restrict the frame.

Zebedee: In Z, the state is explicitly included - via a 'Ll' or 'E' schema usually - within the
operation, so the operation schema can stand on its own.

13

FACS Europe - Series I Vo!. 1. No. 1. Autumn 1993

14

With regard to the pre-condition, although the same logical expression appears in the Z
schema ADDESO as in the VDM operation ADDES, it is not separated out. For this operation
that doesn't make a large difference between the Z and VDM versions, but for other operations
it can.

Dougal: OK, let's look at deleting an entity set in VDM.

DELES (es: Esetnm)

ext wr esm : Esetnm ~ Eid-set
rd rm : Rkey ~ Rinf

pre es E dom esm A esm(es) = { } A
'\:Irk E dom rm . es =I rk.fs A es =I rk.ts

post esm = {es} <J esm

Zebedee: In Z this would be written

DELESO __ __

ilEntities
es?: Esetnm

es? E dom esm A esm(es) = {} A
esm' = {es?} <El esm A
em' = em

Florence: But isn't it missing part of the pre-condition in the VDM version?

Zebedee: Yes, DELESO is only defined on the state Entities, so it is impossible to talk about
the state component rm. To define the equivalent of the VDM operation, we need to promote
DELESO to the full Ndb state. We do this by defining the schema ERM which introduces the
full Ndb state and constrains rm to be unchanged. This is then conjoined with DELESO.

ERM == [ilNdb I rm' = rm]
DELES == DELESO A ERM

Florence: But I still can't see the missing bit of the pre-condition!

Zebedee: That's because it's not visible! But the Z DELES has the same pre-condition as the
VDM operation.

Florence: How do I get to see it?

Zebedee: In Z, the pre-condition of an operation characterises exactly those inputs and initial
states such that there exists a least one possible combination of outputs and final state that
satisfies the operation specification. For DELES the pre-condition is

preDELES __ _

Ndb
es?: Esetnm

3 Ndb'.
es? E domesm A esm(es}= {} /\
esm' = {es?} <El esm A

rm' = rm

The predicate can be expanded to

FACS Europe - Series I Vo!' 1. No. 1. Autumn 1993

preDELES~ __ __

Ndb
es?: Esetnm

3 Entities'; rm': Rkey -f++ Rinf •
(V rk: dom rm' •

{rk.fs, rk.ts} ~ dom esm' /\
("It: (rm' rk).r.

first t E esm' (rk .fs) /\ second t E esm' (rk. ts))) /\
es? E dom esm /\ esm(es) = {} /\
esm' = {es?} ~ esm /\
rm' = rm

which can be simplified to

preDELES __ ___

Ndb
es?: Esetnm

es? E dom esm /\ esm(es) = {} /\
("Irk: dom rm • es? f:. rk·fs/\ es? f:. rk.ts)

Dougal: That's now the same as the VDM pre-condition.

Florence: Wasn't all that a bit complicated compared to the VDM version?

Zebedee: Well, yes and no. If you want to compare it with the VDM version, then we have
also done the equivalent of discharging its satisfiability proof obligation. In VDM this proof
obligation is the main consistency check available for the specifier, and the Z pre-condition
calculation can be likewise seen as a consistency check - that the calculated pre-condition
agrees with the specifier's expectations.

Dougal: I believe that this is a significant difference between Z and VDM. There is a technical
point: when development steps are undertaken, the pre-condition is required.5 But there is also
a pragmatic point: in reading many industrial (informal) specifications, I have observed that
people are actually not so bad at describing what function is to be performed; what they so
often forget is to record the assumptions. I therefore think that it is wise to prompt a specifier
to think about the pre-condition.

Zebedee: I'd agree with that, but in both VDM and Z, provided the respective consistency
checks are done, we do end up at the same point. It's only the path that is different.

With the Z approach of constructing the specification of an operation it is only when you
have the final operation that the concept of a pre-condition really makes sense.6

Florence: What does a pre-condition mean? I'm really not clear about whose responsibility it
is to avoid calls that violate the pre-condition - or are these exceptions?

Dougal: A pre-condition is essentially a warning to the user: the behaviour defined in the
post-condition is only guaranteed if the starting state satisfies the pre-condition. In formal
development, the user should treat the pre-condition as a proof obligation that an operation is
only invoked when its pre-condition is true. It is perhaps useful to think of the pre-condition as

STony Hoare in [Hoa9l] appears to argue for the use of Z to develop specifications and the use of VDM for
development of the design and implementation.

6 Although it is possible to define operators similar to schema conjunction and disjunction on pre/postcondition
pairs; see [War93].

15

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

16

something that the developer of an operation can rely upon; it is permission for the developer
to ignore certain situations. Exceptions are quite different - VDM does have notation (not used
so far in this example) to mark error conditions which must be detected and handled by the
developer. In VDM an operation specification can consist of a normal pre/postcondition pair
followed by a set of exception pre/postcondition pairs.

Florence: Can we compare the treatment of exceptions? I've noticed Z doesn't have exceptions
as part of the language.

Zebedee: I guess one way of viewing the Z approach is to say that it doesn't really have
exceptions at all. As part of specifying an operation one specifies its behaviour both in the
normal case and in the exceptional cases. Both the normal case and each exceptional case
are specified in the same manner in a Z schema. Each of these schemas corresponds to a
pre/post-condition pair in the VDM version.

Florence: So the difference about the use of pre/postcondition pairs in the VDM version versus
a single schema in the Z version crops up here as well.

Zebedee: That's correct.

Florence: How else do they differ?

Zebedee: In terms of what they both mean, not at all. The complete operation is specified
in Z by taking the disjunction of the schemas for the normal and exceptional cases. It has
the same meaning as the corresponding VDM specification. For example, in both Z and VDM
the preconditions of the alternatives may overlap, either between the normal case and an error
case or between error alternatives, and in both Z and VDM there is a non deterministic choice
between alternatives that overlap.

Dougal: Yes, that's correct. Although VDM and Z appear to describe exceptions differently,
the semantic ideas underneath the concrete syntax are virtually identical.

Florence: So why do they look so different?

Zebedee: Well mostly it is just differences in syntax but I guess there are a couple of points
about building an operation specification from Z schemas using schema operators that are worth
noting. Firstly, it is possible to specify more than one normal case and these further alternatives
just become part of the disjunction of cases. (There is no real distinction between normal and
error cases, so one can have as many of either as suits the problem in hand.) Secondly, the same
exception schema can be used for more than one operation. This has the twin advantages of
avoiding repetition and maintaining consistency between different operations in their treatment
of the same exception.

Dougal: I see those advantages; it is just in the spirit of VDM to have a place for exceptions
marked by keywords. As always, syntactic issues tend to be more an issue of taste than of hard
scientific arguments.

Florence: How about an example?

Zebedee: Let's consider the possibility of trying to add a new entity set when the name is
already in use. In Z the exception alternative is specified by

ESlnUse __ ___

~
=Entities
es?:Esetnm

_ es? E dom esm

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

where EEntities introduces the before and after states and constrains them to be equal:

EEntities == [LlEntities I 8Entities' = 8Entities]

The operation augmented with the error alternative is

ADDESX == ADDESO V ESlnUse

Dougal: In VDM ADDES with an exception if the entity set is already in use would be specified
by adding the line

err ESINUsE fis E dom esm

Zebedee: In both the VDM and Z we should really add an error report to be returned by the
operation. This would be done in essentially the same way in both VDM and Z.

Dougal: In VDM, the whole specification gets put into a module: this is a structuring mecha
nism that makes it possible to build one module on top of others. One possible module synta.x
is illustrated in Appendix A. But I have to confess that this is still a subject of debate. In
fact [F J90] was written precisely because this debate is not yet settled.

Zebedee: Z also needs a modularisation mechanism and one proposal is developed in [HW93].

Florence: Does the issue of pre-conditions have any connection with the fact that I suspect
the two notations handle partial functions differently?

Dougal: Yes, there is a loose connection and there are differences between Z and VDM here.
In fact, I'll be interested to hear what Zebedee has to say on this point.

Let me set the scene.7 Both operators like hd and re cursively defined functions can be partial
in that a simple type restriction does not indicate whether they will evaluate to a defined result
for all arguments of the argument type: hd [] or factorial applied to minus one are examples
of non-denoting terms. VDM uses non-standard logical operators which cope with possibly
undefined operands: so true V undefined is true as is undefined ,V true.

Zebedee: In [Spi88] Mike Spivey uses existential equality which always delivers a truth value
- where either of the operands are undefined, the whole expression is false. This enables him
to stay with classical (two-valued) logic.

Dougal: Yes, I should have said that there are a couple of different approaches where one tries
to trap the undefined before it becomes an operand of a logical operator. Thus, in hd [] =3 5 it
is possible to define the result as false. Unfortunately, the task does not end here - any relational
operators need similar special versions. Moreover, the user has to keep the distinction between
the logical equality and the computational equality operator of the programming language in
mind. As they say 'There ain't no such thing as a free lunch'.

Zebedee: Yes, but I did say Spivey took that approach; in the beginning, I believe that Jean
Raymond Abrial wanted to formalize the view that while 'the law of the excluded middle' held,
for undefined formulae, one never knew which disjunct was true. (The work on the new Z
standard is still evolving.)

Florence: This is all a bit technical - does it matter?

Zebedee: Not much - but it is an interesting difference!

Florence: What about recursively defined structures such as trees?

Zebedee: Before we start into the details of the definition of recursive structures, one approach
often taken in Z specifications is to avoid recursive structures and use a flattened representation

7 A fuller discussion can be found in [BCJ84, CJ91, JM93).

17

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993 .

18

instead. For example, the specification of the Unix filing system [MS84] represents the hierar
chical directory structure by a mapping from full path names to the file's contents. All prefixes
of any path name in the domain of the map must also be in the domain of the map.

A representation of the filing system state8 as a recursive structure can be defined by con
sidering a directory to be a mapping from a single segment of a path name to a file, where a
file is either a sequence of bytes or is itself a directory.

It is interesting to compare specifications of filing system operations on both representations.
On the flat representation finding a file is simply application of the map representing the filing
system state to the file name, whereas a recursive function needs to be provided for the recursive
representation. If one considers updating operations, the flat representation provides even
simpler descriptions of operations.

Dougal: The recursive approach description is used in [Jon90] and I'm not sure that I'd concede
the advantages that Zebedee claims for the flat specification. But that's a modelling issue not
a difference between the two specification languages.

Florence: So when do we need to use recursive structures?

Dougal: A good example is the specification of the abstract syntax of a programming language.

Florence: Are there examples outside the rather special field of programming languages?

Zebedee: Yes, consider a simple binary tree. This can be specified in Z via the following

T: : = nil I binnode((T x N x T))

This introduces a new type T, a constant of that type nil and an (injective) constructor function
binnode, that when given a (left sub-) tree, a natural number and a (right sub-) tree returns a
tree.

Dougal: In VDM that would be

binnode :: I T
v N
r T

T = [binnode]

Zebedee: There are some technical differences in the approach taken here. In Z, T is a new
type, whereas for the VDM binnode is a new type but T is not a new type. Also, in neither
Spivey [Spi92] nor the Z Base Standard are mutually recursive structures (as used in the VDM
version above) allowed.

Dougal: Wouldn't that cause problems for specifying the abstract syntax of a programming
language? For an Algol-like language it is common to distinguish the syntactic categories of
commands and blocks, but a command may be a block and a block may contain commands.

Zebedee: If you wanted to follow the draft Z standard then you would have to merge commands
and blocks into a single syntactic category and then add consistency constraints to the language
to ensure that they are correctly used.

Dougal: So, it is possible to specify it, but it isn't the most natural specification.

Zebedee: True. I have to admit that I would be very tempted to extend Z to allow mutually
recursive definitions.9

Florence: I suppose this is all linked to the semantics of the specification languages themselves.

8We avoid consideration of inodes and links here.
9The problem here is the scope of the definitions vis a vis constraints on the set defined by the recursive

structure.

FACS Europe - Series I Vo!. 1. No. 1. Autumn 1993

Zebedee: To the average user, the semantics of the met a-language might not be bedtime
reading. The aim has always been to base the semantics of Z on set theory; Mike Spivey gives
a semantics in [Spi88jbut a new semantics is being developed for the language standard.

Dougal: VDM has its origins in language description and it has to cope with reflexive domains
etc. The semantics in the 'Committee Draft' of the VDM-SL standard is certainly not 'bedtime
reading' but for simple operations a relatively simple set theoretic semantics would suffice.

Florence: Could you each tell me a bit about the history of your chosen specification languages?

Dougal: VDM was developed at the IBM Laboratory in Vienna. The Laboratory came into
existence in 1961 when Professor Heinz Zemanek of the Technical University in Vienna decided
to move his whole group to an industrial home. They had previously developed a computer
called Mailiifterl at the Technical University. From 1958 the group had been increasingly
involved in software projects including the construction of one of the early compilers for the
ALGOL 60 programming language. As time went on they found it difficult to get adequate
support for their projects and eventually joined IBM. Still in the first half of the 1960s, IBM
decided to develop a new programming language for which the ambition was to replace both
FORTRAN and COBOL. The language, which was at first called New Programming Language
(until the National Physical Laboratories in the UK objected to the acronym - the language
became known as PL/I), was clearly going to be large and it was decided that it would be useful
to try to apply some formal techniques to its description.

Based on their own work - and influenced by research work by Cal Elgot, Peter Landin
and John McCarthy - the Vienna group developed an operational semantics definition of PL/I
which they called ULD-3 (Universal Language Description; ULD-2 was the name which had
been applied to the IBM Hursley contribution to this effort; the language itself was being
developed mainly from Hursley along with the early compilers. ULD-1 was a term applied to
the natural language description.of the language.)10 The description of PL /1 in ULD-3 style
ran through three versions. These are very large documents. Operational semantics is now seen
as unnecessarily complicated when compared to denotational semantics. However, to make the
principles of denotational semantics applicable to a language like PL/I with arbitrary transfer
of control, procedures as arguments, complicated tasking, etc. required major theoretical break
throughs and a considerable mathematical apparatus not available at the time. The effort of
the formal definition uncovered many language problems early and had a substantial influence
on the shape of the language.

Towards the end of the 1960s serious attempts were made to use the ULD-3 description as
the basis of compiler designs. Many problems were uncovered. The over-detailed mechanistic
features of an operational semantics definition considerably complicated the task of proving
that compiling algorithms were correct. But again one should be clear that an achievement was
made; a series of papers was published which did describe how various programming language
concepts could be mapped into implementation strategies which could be proved correct from
the description. A series of proposals were made which could simplify the task of developing
compilers from a semantic description. One of these was an early form of an exit construct
which actually led to an interesting difference between the Vienna denotational semantics and
that used in Oxford. Another important idea which arose at this time was Peter Lucas' twin
machine proof a.nd subsequently the observation that the ghost variable type treatment in the
twin machine could be replaced by retrieve functions as a simpler way of proving that this sort
of data development was correct. It is worth noting that Lucas' twin machine idea has been·
re-invented several times since: the generalization of retrieve functions to relations can be seen
as equivalent to twin machines with invariants.

lOVDL stands for Vienna Description Language and was a term coined by JAN Lee for the notation used in
ULD-3.

19

FACS Europe - Series I Vcl. 1. No. 1. Autumn 1993

20

The person who initiated the move that pushed the Vienna group in the direction of de
notational semantics was Hans BekiC's; he spent some time in England with Peter Landin at
Queen Mary College.

During the period from 1971 to 1973, the Vienna group was diverted into other activities not
really related to formal description. Cliff Jones at this time went back to the Hursley Laboratory
and worked on a /unctionallanguage description and other aspects of what has become known
as VDM. In particular he published a development of Earley's recogniser which is one of the
first reports to use an idea of data refinement. In late 1972 and throughout '73 and '74 the
Vienna group (Cliff Jones returned and Dines Bj0rner was recruited) had the opportunity to
work on a PL/I compiler for what was then a very novel machine. They of course decided to
base their development for the compiler on a formal description of the programming language.
PL/I at that time was undergoing ECMA/ ANSI standardisation. The Vienna group chose to
write a denotational semantics for PL/I. This is the origin of the VDM work. VDM stands
for Vienna Development Method. When they decided not to go ahead with the machine, IBM
decided to divert the Vienna Laboratory to other activities in 1976. This led to a diaspora of
the serious scientists. Dines Bj0rner went to Copenhagen University then on to the Technical
University of Denmark. Peter Lucas left to join IBM Research in the States. Wolfgang Henhapl
left to take up a chair in Germany and Cliff Jones left to move to IBM's European System
Research Institute (ESRI) in Brussels.

Cliff Jones and Dines Bj0rner took upon themselves the task of making sure that something
other than technical reports existed to describe the work that had gone on on the language
aspects of VDM. LNCS 61 ([BJ78]) is a description of that work. At ESRI, Cliff Jones also
developed the work on those aspects of VDM not specifically related to compiler development
and the first book on what is now generally thought of as VDM is [Jon80]. Both of these books
have now been supplanted. The language description work is best accessed in [BJ82] and the
non-language work is best seen in - second edition - [Jon90j.

Dines Bj0rner's group at the Technical University of Denmark strenuously pursued the use
of VDM for language description and he and his colleagues were responsible for descriptions
of the CHILL programming language and a major effort to document the semantics of the
Ada programming language. Cliff Jones spent 1979 to 81 at Oxford University (collecting a
somewhat belated doctorate). This was an interesting period because Cliff and Jean-Raymond
Abrial arrived within a few days of each other in Oxford and had some interesting interchanges
about the evolving description technique which through many generations has been known as
Z.

The non-language aspects of VDM were taken up by the STL laboratory in Harlow and,
partly because of their industrial push, BSI were persuaded to establish a standardisation
activity. This activity has not been easy to get going because of the differences between the
pressures of the language description aspects of VDM and those who are only interested in
pre/post-conditions, data reification and operation decomposition. It is to the credit of the
standards committee that they have managed to bear in mind the requirements of both sorts of
user and come up with a standard which embraces such a wide scope of technical ideas. There
are now many books on VDM and more papers than even Dines Bj0rner's energy could keep
in a bibliography although Peter Gorm-Larsen has made an attempt to continue the work of
keeping the key references in a single bibliography [Lar93].

The ideas in VDM have influenced several other specification languages including RAISE,
COLD-K and VVSL.

Florence: Can you tell me how Z started?

Zebedee: Well, although there was a Z notation before 1979, many people associate the early
development of Z with the period spent by Jean-Raymond Abrial in Oxford from 1979 to 1981.
Abrial had used a paper he had written with Steve Schuman and Bertrand Meyer as lecture

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

notes for a course given in Belfast. He ,was invited by Tony Hoare to Oxford, and presented
similar material to the Programming R~search Group (PRG) where it generated considerable
interest and resulting activity. The notation described in this paper includes a basis in set
theory and predicate calculus, although at this time the schema notation had not been fully
developed.

Jean-Raymond Abrial was in Oxford at the same time as Cliff Jones, who had already worked
on the Vienna Definition Language and the Vienna Development Method. The intention was
that the two should exchange ideas and objectives and there were productive communications
between the two, although in the end each pursued a distinctive path.

Florence: Is there such a thing as a Z method?

Zebedee: Z is a notation, and there is no official method attached to it, though there are
conventions and practices that make it specially suitable for specifications written in the model
oriented style. The status of Z as a mathematical notation (rather than a method) is deliberate,
and gives it flexibility and open-endedness.

Florence: How did the notation develop after the first proposals?

Zebedee: As with much of the PRG research, early development of Z centred on industrial
case studies. An important early case study was CAVIAR, a visitor information system for an
industrial company based on requirements from STL; other case studies carried out in the early
stages included those based on the UNIX File System, the ICL Data Dictionary, and several
on topics in Distributed Computing. PRG members carrying out case studies included Carroll
Morgan, Ian Hayes, Bernard Sufrin, Ib S0rensen, and others. Ian Hayes, in addition to his
contributions to the IBM CICS project, later collected these case studies and published them
in the first book on Z [Hay93].

One of the most extensive case studies has been the use of Z for defining CICS, a transaction
processing system developed by.IBM. The collaboration between the PRG and the Hursley
development laboratory, starting in 1982 and still continuing, has been a valuable source of
information and experience for both groups.

During this early period the design of the most distinctive feature of Z, the schema, together
with related schema operations, emerged in its present form. The Z schema notation was
originally introduced as a technique for structuring large specifications and was seen as a means
of naming and copying segments of mathematical text, much like a textual macro language.
It was later apparent that schemas could be used more generally to define the combination
of specifications, and the basic operations of schema inclusion, and conjunction were extended
to form the more comprehensive operations that make up what has been called the schema
calculus.

Florence: You've talked about the PRG contribution to application case studies - what about
the underlying theory?

Zebedee: In early stages of Z development, the notation was described in documents produced
in the PRG and locally distributed. The complete language description, The Z Handbook by
B. A. Sufrin [Suf88j, was given only a limited circulation, and in fact the first account of the
notation published in book form was in the 1987 edition of the collection of Case Studies (second
edition [Hay93]) mentioned above. Theoretical work on the foundations of Z continued in the
PRG and elsewhere, and an important contribution was provided by the D.Phil. thesis of Mike
Spivey, subsequently published as a book [Spi88].

With a growing number of industrial users of Z, requests for standardisation were made at
Z User Meetings in 1987 and 1988. Work was started in the Programming Research Group to
establish an agreed definition of the language. Starting with the best available documentation,
including [Suf88j, the document produced in 1989 as a result of this work, the Reference Manual

21

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

22

by J. M. Spivey became a widely accepted description of Z and provided the main starting point
for the standards work described below - it is now in its second edition [Spi92].

Florence: I believe there is now a draft standard for Z - what is the status of this?

Zebedee: Towards the end of 1989 a project to develop Standards, Methods and Tools for Z was
set up, with supporting funding from the UK Department of Trade and Industry. The formation
of the ZIP project marked the beginning of a further stage of development, providing a stable
basis for the development of national and international standards for Z. As with other projects
of this kind, members of the project included both industrial and academic partners. The
project was divided into four main working groups dealing with Standards, Methods and Tools
- there was also a Foundations group providing theoretical support, mainly for the standards
work.

The Z Standard Group developed new material for the standard, not only providing a newly
written document in the style needed for a standard, but also introducing new material for the
semantics (see for example [GLW91]) and logic [WB92] defined in the standard. The first
draft, Version 1.0 (reference) was presented at the Z Users Meeting in December 1992 and the
standards committee is now at work, reviewing and revising the document as it becomes ready
for standardisation in ISO.

Meanwhile, industry users are busy using Z on projects, writing tools for Z and considering
how it can be combined with other notations and methods. A good idea of the breadth and
variety of interest can be gained from the Z Bibliography [Bow92].

The standards committees for Z and VDM-SL keep in touch by exchange of documents
and by the appointment of liaison members. They are both subcommittees of the same BSI
standards committee.

Florence: Could you give me some useful references?

Zebedee: For Z, the standard reference for the language (until the language standard appears)
is Mike Spivey's [Spi92]. However, this is a language reference manual and there are some more
introductory texts such as [PST91, Wor92] and a book of case studies [Hay93].

Dougal: For the non-compiler aspects of VDM, the standard reference has been [Jon90] and a
case studies book is [JS90]; but [WH93] refers to Jones' book .as 'austere' and either of [AI91,
LBC90] might be more approachable. A good overview of VDM-SL is contained in [Daw91];
although there are several books on the language description and compiler development aspects
of VDM, they haven't really come up very much in our discussion.

Florence: You have both ignored details of concrete syntax of the mathematical notation: these
differences confuse some people.

Zebedee: Yes, but they are just an accident of history.

Dougal: A list of the syntactic differences has been given in a note [IS091] from the Japanese
ISO representatives.

Florence: Well, it's time for bed.

Zebedee: Boing!

Dougal: Chases his tail for a bit before running off to bed.

Acknowledgements

We would like to acknowledge the input from John Fitzgerald, and for permission to reuse the
NDB material from [FJ90]. Peter Gorm Larsen, Lynn Marshall, Anthony Hall, Tony Hoare and
Tim Clement gave us useful comments on drafts of this paper. Cliff Jones thanks the SERC for

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

the financial support of his Senior Research Fellowship, and lan Hayes both the financial support
from the Special Studies Program from the University of Queensland and the hospitality of the
Department of Computer Science at the University of Manchester, where he visited for the first
half of 1993. We would also like to thank the BCS journal Formal Aspects of Computing for
permission to reuse the NDB material from [Hay92].

References

[AI91] D. Andrews and D. Ince. Practical Formal Methods with VDM. McGraw-Hill, 1991.

[BCJ84] H. Barringer, J.H. Cheng, and C. B. Jones. A logic covering undefinedness in program
proofs. Acta Informatica, 21:251-269, 1984.

[BJ78] D. Bj0rner and C. B. Jones; editors. The Vienna Development Method: The Meta
Language, volume 61 of Lecture Notes in Computer Science. Springer-Verlag, 1978.

[BJ82] D. Bj0rner and C. B. Jones. Formal Specification and Software Development. Prentice
Hall International, 1982.

[Bow92] J.P. Bowen. Select Z bibliography. In J.E. Nicholls, editor, Z User Workshop, York
1991, Workshops in Computing, pages 367-397. Springer-Verlag, 1992.

[CJ91] J. H. Cheng and C. B. Jones. On the usability oflogics which handle partial functions.
In C. Morgan and J. C. P. Woodcock, editors, 3rd Refinement Workshop, pages 51-69.
Springer-Verlag, 1991.

[Daw91] J. Dawes. The VDM-SL Reference Guide. Pitman, 1991.

[F J90] J .S. Fitzgerald and C. B. Jones. Modularizing the formal description of a database
system. In D. Bj0rner, C. A. R. Hoare, and H. Langmaack, editors, VDM'90: VDM
and Z - Formal Methods in Software Development, volume 428 of Lecture Notes in
Computer Science, pages 189-210. Springer-Verlag, 1990.

[GLW91] P.H.B. Gardiner, P.J. Lupton, and Jim C.P. Woodcock. A simpler semantics for Z.
In J.E. Nicholls, editor, Z User Workshop, Oxford 1990, Workshops in Computing,
pages 3-11. Springer-Verlag, 1991.

[Hay92] I. J. Hayes. VDM and Z: A comparative case study. Formal Aspects of Computing,
4(1):76-99,1992.

[Hay93] lan Hayes, editor. Specification Case Studies. Prentice Hall International, second
edition, 1993.

[Hoa91] C. A. R. Hoare. Preface. In [PT91j, pages vii-x, 1991.

[HW93] I. J. Hayes and 1. P. Wildman. Towards libraries for Z. In J. P. Bowen and J. E.
Nicholls, editors, Z User Workshop: Proceedings of the Seventh Annual Z User Meet
ing, London, December 1992, Workshops in Computing. Springer-Verlag, 1993.

[IS091] ISO. Japan's input on the VDM-SL standardization, April 1991. ISO/IEC
JTCl/SC22/WGI9-VDM-SL.

[JM93] C.B. Jones and C.A. Middelburg. A typed logic of partial functions reconstructed
classically. Logic Group Preprint Series 89, Utrecht University, Department of Phi
losophy, April 1993.

23

FACS Europe - Series I Vo!. 1. No. 1. Autumn 1993

24

[Jon80] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall Interna
tional, 1980.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall Interna
tional, second edition, 1990.

[JS90] C. B. Jones and R. C. F. Shaw, editors. Case Studies in Systematic Software Devel
opment. Prentice Hall International, 1990.

[Lar93] Peter Gorm Larsen. VDM as a mature formal method. Technical report, Institute of
Applied Computer Science, April 1993.

[LBC90] J. T. Latham, V. J. Bush, and I. D. Cottam. The Programming Process: An Intro
duction Using VDM and Pascal. Addison-Wesley, 1990.

[MS84] C.C. Morgan and B.A. Sufrin. Specification of the UNIX file system. IEEE Trans.
on Software Engineering, SE-10(2): 128-142, March 1984.

[PST91] Ben Potter, Jane Sindair, and David Till. An Introduction to Formal Specification
and Z. Prentice Hall International, 1991.

[PT91] S. Prehn and W. J. Toetenel, editors. VDM'91 - Formal Software DeVelopment
Methods. Proceedings of the 4th International Symposium of VDM Europe, Noord
wijkerhout, The Netherlands, October 1991, Vol. 2: Tutorials, volume 552 of Lecture
Notes in Computer Science. Springer-Verlag, 1991.

[Spi88] J.M. Spivey. Understanding Z-A Specification Language and its Formal Semantics.
Cambridge Tracts in Computer Science 3. Cambridge University Press, 1988.

[Spi92] J .M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International,
second edition, 1992.

[Suf88] B. A. Sufrin. Notes for a Z handbook: Part 1 - the mathematical language, 1988.
Programming Research Group, Oxford University.

[Wal90] A. Walshe. NDB. In [JS90j, chapter 2, pages 11-46. Prentice Hall International,
1990.

[War93] N. Ward. Adding specification constructors to the refinement calculus. In J.C.P.
Woodcock and P.G. Larsen, editors, Proceedings, Formal Methods Europe'93, volume
670 of Lecture Notes in Computer Science, pages 652-670. Springer Verlag, 1993.

[WB92] J.C.P. Woodcock and S.M. Brien. W: A logic for Z. In J.E. Nicholls, editor, Z User
Workshop, York 1991, Workshops in Computing, pages 77-96. Springer-Verlag, 1992.

[WeI82] A. Welsh. The specification, design and implementation of NDB. Master's thesis,
University of Manchester, October 1982.

[WH93] M. Woodman and B. Heal. Introduction to VDM. McGraw-Hill, 1993.

[Wor92] J. B. Wordsworth. Software Development with Z. Addison-Wesley, 1992.

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

A VDM specification

This specification has been adapted from the NDB specification in [FJ90]. In some minor
respects (e.g. optional relation names), it is more restrictive than the original [Wel82] (to which
the reader is referred for a description of the operations - such as ADDTUP - which are not
discussed above).

module NDB
parameters

types Value, Esetnm, Rnm: Triv
exports

operations ADDES, ADDENT, ADDREL, ADDTUP,

definitions

defined types

Eid = token

DELES, DELENT, DELREL, DELTUP

Maptp = {ONEONE, ONEMANY, MANyONE, MANYMANY}

Tuple :: fv : Eid
tv : Eid

Relation = Tuple-set

Rinf :: tp : Maptp
r : Relation

inv (mk-Rinf(tp, r» 6 arity-match(tp, r)

Rkey :: nm : Rnm
fs : Esetnm
ts : Esetnm

state

Ndb :: esm Esetnm ~ Eid-set
em Eid ~ Value
rm Rkey ~ Rinf

inv (mk- Ndb(esm, em, rm» 6
dom em = U rng esm A

"Irk E dom rm .

{rk.fs, rk.ts} ~ dom esm A

'V mk- Tuple(fv, tv) E rm(rk). r . fv E esm(fs) A tv E esm(ts)

init(ndb) 6 ndb=mk-Ndb({},{},{})

defined functions

arity-match(tp, r) 6

(tp = ONEMANY ::} 'Vtb t2 Er· tl.tV = t2.tv ::} t1.fv = ~.fv) A
(tp = MANyONE ::} 'Vtb t2 Er· t1.fv = ~.fv ::} tl.tV = t2.tv) A

(tp = ONEONE ::} 'Vtb t2 Er· t1.fv = ~.fv {:} tl.tV = t2.tv)

25

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

26

defined operations

ADDES (es: Esetnm)

ext wr esm : Esetnm ~ Eid-set

pre es (j. dom esm

post esm = esm U {es t-t { } }

DELES (es: Esetnm)

ext wr esm : Esetnm ~ Eid-set
rd rm : Rkey ~ Rinf

pre es E dom esm /\ esm(es) = { } /\
Vrk E dom rm . es :j:. rk.fs /\ es :j:. rk.ts

post esm = {es} <J esm

ADDENT (memb: Esetnm-set, val: Value) eid: Eid

ext wr esm : Esetnm ~ Eid-set
wr em : Eid ~ Value

pre memb ~ dom esm

post eid (j. dom em /\
em = em U {eid t-t val} /\
esm = esm t {es t-t esm(es)u {eid} I es E memb}

DELENT (eid: Eid)

ext wr esm Esetnm ~ Eid-set
wr em : Eid ~ Value
rd rm : Rkey ~ Rinf

pre eid E dom em /\
Vt E U{ri.r I ri E rng rm}· t.fv :j:. eid /\ t.tv:j:. eid

post esm = {es t-t esm(es) - {eid} I es E dom esm} /\
em = {eid} <J em

ADDREL (rk: Rkey, tp: Maptp)

ext rd esm : Esetnm ~ Eid-set
wr rm : Rkey ~ Rinf

pre {rk.fs, rk.ts} ~ dom esm /\
rk (j. dom rm

post rm = rm U {rk t-t mk-Rinf(tp, {})}

DELREL (rk: Rkey)

ext wr rm : Rkey ~ Rinf

pre rk E dom rm /\ r(rm(rk)) = {}

post rm = {rk} <J rm

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

ADDTUP (Jval, tval: Eid, rk: Rkey)

ext wr rm : Rkey ~ Rinf
rd esm : Esetnm ~ Eid-set

pre rk E dom rm 1\

let mk-Rkey(nm,Js, ts) = rk in

let mk-Rinf(tp, r) = rm(rk) in

fval E esm(Js) 1\ tval E esm(ts) 1\ arity-match(tp, r U mk-Tuple(Jval, tval))

post rm = rm t {rk .- J.L(rm(rk), r .- r(rm(rk)) U {mk- Tuple(Jval, tval)})}

DELTUP (Jval, tval: Eid, rk: Rkey)

ext wr rm : Rkey ~ Rinf

pre rk E dom rm

post let ri = J.L(rm(rk), r.- r(rm(rk)) - {mk-Tuple(Jval, tval)}) in

rm = rm t {rk .- ri}

endmodule NDB

B Z specification

This specification has been adapted from the specification of NDB given in [Hay92].

B.l Entities and entity sets (or types)

[Eid, Esetnm, Value]

Entities _________________________ _

esm: Esetnm -1!-7 (F Eid)
em: Eid -1!-7 Value

dom em = U(ran esm)

LlEntities == Entities 1\ Entities'

2Entities == [LlEntities I fJEntities' = fJEntities]

ADDESO __ ___

LlEntities
es?: Esetnm

es? ~ dom esm 1\

esm' = esm U { es? .- {}} 1\

em' = em

27

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

28

DELESO __ ___

LlEntities
es?: Esetnm

es? E dom esm /\ esm(es?) = {} /\
esm' = {es?} <El esm /\
em' = em

ADDENTO __ __

LlEntities
memb?: F Esetnm
val?: Value
eid!: Eid

memb? ~ dom esm /\
eid! rt. dom em /\
em' = em U {eid! 1--+ val?} /\
esm' = esm EB {es: memb? • es 1--+ esm(es) U {eid!}}

DELENTO __ ___

LlEntities
eid?: Eid

eid? E dom em /\
em' = {eid?} <El em /\
esm' = {es: dom esm • es 1--+ esm(es) \ {eid?}}

B.2 A single relation

Tuple == Eid x Eid
Relation == Eid +--+ Eid

Maptp: : = One One I OneMany I ManyOne I ManyMany

Rinf __ _

tp: Maptp
r: Relation

(tp = One One => r E Eid >++ Eid) /\
(tp = ManyOlle => r E Eid -++ Eid) /\
(tp = OneMany => r- E Eid -++ Eid)

LlRinf ~ [Rinf; Rinf' I tp' = tp]

[ADDTUPLEO
LlRinf
t?: Tuple

r' = r U {t?}

FACS Europe - Series I Vol. 1. No. 1, Autumn 1993

~~f~UPLEO
t?: Tuple .

r'=r\{t?}

B.3 Multiple relations

[Rnm]

Rkey __ _

fnm:Rnm
fs, ts: Esetnm

Ndb __ __

Entities
rm: Rkey -fI-T Rinf

Vrk:domrm.
{rk.fs, rk.ts} ~ dom esm /\
(V t: (rm rk). r •

first t E esm(rk.fs) /\ second t E esm(rk. ts))

l1Ndb == Ndb /\ Ndb'
l1REL == l1Ndb /\ SEntities

ADDREL __ _

l1REL
tp?: Maptp
rk?: Rkey

rk? ~ dOIIl rm /\
{rk? .fs, rk? .ts} ~ dom esm /\
rm' = rm U {rk? ~ (J.L Rinf I r = {} /\ tp = tp?)}

DELREL __ _

l1REL
rk?: Rkey

rk? E dom rm /\
(rm rk?).r = {} /\
rm' = {rk?} <EEl rm

B.4 Promotion of operations

SRM == [l1Ndb I rm' = rmJ

29

FACS Europe - Series I Vo!. 1. No. 1. Autumn 1993

30

ADDES == ADDESO 1\ ERM
DELES == DELESO 1\ ERM
ADDENT == ADDENTO 1\ ERM
DELENT == DELENTO 1\ ERM

Promote __ _

LlREL
rk?: Rkey
LlRinf

rk? E dom rm 1\

(JRinf = rm(rk?) 1\

rm' = rm EB {rk? 1-+ 8Rinf'}

ADDTUPLE == (3 LlRinf • ADDTUPLEO 1\ Promote)
DELTUPLE == (3 LlRinf • DELTUPLEO 1\ Promote)

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

A Response to Florence, Dougal and Zebedee

Antony Hall
Email: j ahCOpraxis . co . uk

The article "Understanding the Differences between VDM and Z" sets out to
offer an understanding of the interesting differences between two well-known speci
fication languages. My immediate reaction is to ask "interesting to whom?". As an
industrial practitioner of formal methods, and one who gives courses and consul
tancy, I am often asked about this very topic. Typically my questioner is someone
who actually wants to use one of these languages and doesn't know which to choose.
Would the article help such a person? I fear not.

This is not the fault of the authors. Rather, the problem seems to me to be
that the we do not really know how to characterise, objectively, the issues that
are important for the user of a language. It is possible to be pretty precise about
some of the differences -for example, three valued .vs. two valued logic, domains
.vs. sets, and so on- and these are interesting differences to a methodologist. But
there is another class of differences, such as "How do they differ in applicability?",
"How do they scale up in practice?", which are interesting to potential users but
which are harder to answer objectively.

The article in fact dismisses some such differences. For example, in the discussion
on modelling style Dougal explicitly dismisses as irrelevant the fact that Z has a lot
of operations on binary relations. From a practitioners point of view this is very
far from irrelevant. Dougal "would just extend VDM appropriately". I was a bit
puzzled by this, although this may be because of my ignorance of BSI VDM. It
isn't clear to me that there is any mechanism to extend VDM. Furthermore, even
if there is, such an extension would presumably introduce a new type, the binary
relation, quite different from any other types. In Z, however, not only are binary
relations built in, but there is an explicit collection of extension capabilities built in
to the language. Furthermore, the fact that, for example, sequences are functions
are relations are sets is enormously helpful. We recently specified and designed a
large system in VVSL, a VDM extension. In writing the specification we wanted
to do things like composing functions with sequences and there seemed to be no
mechanism for doing this; in Z such mechanisms come free. So a discussion of
the ways you can extend the two languages, and a discussion of the advantages
and disadvantages of the type-homogeneity of functions, sequences etc. in Z versus
new data types in VDM would be highly relevant. Similarly the strengths and
weaknesses of the Z extension mechanism (fine for the mathematical language, but
with no useful way of extending the schema calculus) could be brought out.

On a similar note, the question of modularisation is very important in practice.
Dougal mentions that operation specifications need to be in modules, but the mod
ule mechanism in BSI VDM has received little practical testing. We looked at it for
our project and it was completely useless for the kind of specification (with a lot of
shared state) that we wanted to write. (We couldn't even find a way of expressing
the fact that the time was the same in all modules!). The strengths and weaknesses
of the Z schema are pretty well understood - it has severe theoretical shortcom
ings, but in practice, with decent guidelines (as taught on Praxis Z courses) it works
extremely well for a variety of specification styles.

31

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

32

This is related to the issue of Z preconditions only making sense when you have
the whole operation. This is true, and related to Tony Hoare's suggestion in footnote
5. I think this kind of issue is worth much more than a footnote. Z does give you
very convenient syntactic sugar for developing your specification in small pieces.
This is ENORMOUSLY useful, BUT you pay a price - the small pieces are not
really implementation-level entities. It is tremendously useful to be able to define
an operation in pieces, each piece defining part ofthe effect, and then to AND them
together. But you can only do this because the parts are not really operations at all,
but only relations. And it is only by courtesy that the final relation is deemed to be
an operation of the system. So the pieces are not, for example, separately refinable,
and their preconditions are related to the real precondition in a pretty obscure
way. So this is NOT a useful way of doing development, but it IS a useful way
of writing specifications. (I know, because it's very difficult to write specifications
without it!) When you move to development, you always find that more VD M-like
constructs appear (look at the refinement calculus, for example) - in particular,
explicit separation on pre and post, and explicit frames. These are anathema to
compositional specifications (if programming languages had the AND combinator,
software development would be automatable) but essential for refinement. (Having
said that, I've no experience of doing large scale DATA refinement in Z, but it
ought to be at least as easy as it is in VDM - and I am (albeit on no very
good grounds) sceptical of the refinement calculus approach to data refinement). A
further advantage (at least, I think it maybe an advantage) of the VDM approach is
that you can of course add more constructs to your specifications like rely / guarantee,
inter conditions or whatever. There is no sensible way of doing this in the normal
Z style, as far as I am aware.

A particular instance is exceptions. Again, Z doesn't really distinguish excep
tions, and the conventional way of expressing them is certainly clumsier than the
VDM way - this is the one area where I am glad we were using VVSL not Z on our
project (though the advantage was considerable reduced by the lack of operation
combinators). The article downplays the syntactic issues here - surprisingly, since
in his book on VDM Cliff Jones quotes, presumably with approval, Whitehead's
comment that a good notation "increases the mental power of the race".

On the other hand, the article does sometimes stray into unjustified generalisa
tions of its own. The bland statement that "Z needs a modularisation mechanism"
is highly disputable. It's got one: it MAY need another one, but it may just need
some good rules for using the one it's got. It is certainly possible to use the existing
one for substantial specifications without too much trouble.

In summary, I think there is another article waiting to be written - less objec
tive, perhaps, but more relevant to the growing number of industrial practitioners
who are trying to understand the choices they have to make to use formal methods
effectively.

FACS Europe - Series I Vol. 1. No. 1, Autumn 1993

Security, Reliability and Correctness of Software:
A Description of Current German Activities in the Field

M. Broy, W. Bibel, S. Jahnichen,
H.-J. Kreowski, J. Siekmann, F. Vogt*

Increasing attention is currently being given to the quality of software in the community at
large. For both technological and social reasons, there is a growing need for us to be able to
evaluate systems consisting largely of software components, too, according to such quality
criteria as "correct", "reliable" and "secure", thus substantially increasing confidence in such
systems.

At present, there are in Germany a number of projects in progress dealing with this particular
topic, and others are planned. These projects, which are concerned with providing the
necessary scientific and technological foundations for the development of correct software, are
currently being supported by three funding agencies:

• the German Federal Ministry for Research and Technology (Bundesministerium fUr
Forschung und Technologie, BMFf)

• the German Information Security Agency, GISA (Bundesamt fUr Sicherheit in der
Informationstechnologie, B SI) in Bonn

• the German Research Association (Deutsche Forschungsgmeinschaft, DFG) as part of
its Keynote Programme on Deduction.

To coordinate these activities, experts from all sides met for talks at SchloB Dagstuhl on March
16, 1993. At this meeting, four projects were presented and their goals discussed. These are
(together with the respective funding agencies):

* Correspondence to the authors should be addressed to: Prof. S. Jlihnichen. GMO-FIRST. Rudower Chaussee 5. 0-1199 Berlin. Germany. (Please note new posta1lzip code as of July 1. 1993: 0-12489 instead of 0-1199). e-mail address:jaehn@cs.tu-berlin.de

33

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

34

1. The KORSO (Correct Software) Project, BMFf.

An integrated project funded by the BMFf. Its aim is the prototypical application of

tools and methods, the implementation of basic knowledge and the adaptation of tools

and techniques to the needs of the respective applications.

2. The VSE CV erification Support Environment) Project, GISA

Initiated and funded by the German Infonnation Security Agency. The project is

concerned with the concrete development of a method and corresponding tools for

checking the security of software.

3. The Keynote Programme on Deduction, DFG.

The Keynote Programme is dedicated to basic research on deduction techniques and

tools.

4. Proposal for a DFG Keynote Programme on Development Techniques.

The proposal was rejected or rather deferred by the DFG, partly on the grounds that

there was no clear demarcation between it and the above-mentioned projects.

The aim of the proposed project was to look into innovative techniques and methods for

constructing complex systems consisting largely of software components.

The projects were found to have widely differing goals, but at the same time to ideally

complement each other in the sense that they investigate the essential prerequisites for the

production of provably correct software. It was agreed that the topic is of paramount

importance for Gennan infonnation technology and that the necessary development techniques

have not yet been properly mastered. All those present thus shared the view that there is a

continuing need for research into basic techniques for the development of software. This need

relates not only to the further development of so-called "fonnal" methods, but also to research

into and development of mechanisms for integrating methods into unifonn construction

techniques for systems consisting largely of software components.

There was general agreement that the strong mathematical and logical orientation of training and

research in the infonnation technology field in Gennany provides an ideal basis for research

and development work in this area, thus ensuring an internationally recognized standard of

excellence. Gennan information technology is an international leader in this particular field,

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

which means there is a good chance of exercising a considerable influence on developments

here and of belonging to the vanguard with respect to the anticipated industrial applications.

To provide an overview of current work in this field, more detailed treatment is given below to

the three projects now in progress and to the aims of the proposed DFG Keynote Programme

mentioned above.

1. Correct Software (KORSO) (Coordinators: Professor Broy, Professor Jalmichen),

BMFT

Since the autumn of 1991, 14 academic and industrial partners have been working together in

the integrated BMFT project KORSO on techniques for developing correct software.

The overall aim of the project is to enhance theoretical foundations, to improve development

concepts and methods for producing correct software, and to design and implement the required

tools. A long-term goal is to make program development techniques that are systematically

geared to correctness both practicable and economically viable. For this purpose, case studies

are to be used to demonstrate the suitability of such techniques. The fundamental problems

confronting attempts to ensure the correctness of software are now well-known, but have at

best been solved for small programs only.

In the KORSO project, work is underway to make well-known techniques for developing

larger programs practically implementable. This work includes the design of a general

methodological framework, the development of a generic description and modelling language,

the support of correctness-preserving development steps by means of mathematically sound

calculi and tools based on these, as well as a constant critical review of each partner's work by

reference to numerous accompanying case studies.

The current status of the project may be outlined as follows:

A methodological framework for the development of correct software has been created which is

geared to the needs of formal techniques. This allows the definition of clearly distinguishable

sub tasks for requirements analysis, design decision support, and for problems relating to

description and to validation and verification. By way of a reference language for the KORSO

project, the wideband language SPECTRUM was defined, enabling all the documents

generated in the development process - from the requirements specification to the (functional)

program - to be written in uniform terms. In this context, work is also being done on modelling

distributed systems.

35

FACS Europe - Series I Vol. 1. No., 1; Autumn 1993

36

In the field of verification, new, improved techniques have been developed both for the

synthesis and transformational development of individual algorithms, and for the systematic

construction of large, modular systems. Innovative elements here are the formal treatment,

reuse and metalogical reflection of specifications, proofs and developments. At present, a

concept for integrating the different support tools is being elaborated. Numerous case studies

are planned to ensure the practicability and suitability of the methods and techniques developed

in the context of the project The main ones currently being worked on are:

• Hean Patient Data Management System (HDMS) at the Berlin Hean Centre

Here, a requirements specification was written in SPECTRUM for the system core. A

significant feature of this case study, besides its size, is its treatment of problems relating to the

interfaces with existing subordinate systems such as frequently occur in practical applications,

but which have been given scarcely any attention so far in research work.

• Production Control System

Here, various competing specification and development methods are being tested A particular

feature encountered here are the problems of modelling distributedness and real time typical of

this application area

Finally, concepts were drawn up for a heterogeneous support system allowing the integration

of different methods, languages and logics of formal software development. Using meta

languages, the aim is to lay the foundations for a modular system of specification and

verification techniques and tools providing appropriate formalisms for different application

areas.

2 • Verification Support Environment (VSE) (Spokesman: Professor Siekmann),

GISA

The VSE project owes its origin to an initiative by the German Information Security Agency

(GISA). In 1989, this newly created agency was responsible for issuing a catalogue of quality

criteria for information-processing systems designed to help in evaluating the security of such

systems. In the case of the two highest quality levels, the use of formal methods and specialized

development tools is prescribed for the (software) production process. To make such tools

available, in early 1991 the GISA commissioned a consortium of industrial and academic

partners to implement a system for strictly formal development of critical system components.

VSE partners are: Domier GmbH, the Gesellschaft flir Prozeftrechner-Programmierung (GPP)

FACS Europe - Series I Vol. 1. No. 1, Autumn 1993

Forschungsinstitut for Kiinstliche lntelligenz (DFKJ) (German Artificial Intelligence Research
Institute) in Saarbriicken, and the University of Ulm. The first phase of the project is due to end
in mid-I994 with the delivery of the fIrst prototype.

The VSE system is based on a formal method for the modular development of software
components by stepwise implementation of structured specifIcations. This method is fIrst of all
implemented in the form of a suitably structured management system for centralized data
storage and user guidance. It is in this framework that deduction systems to support the user in
fulfilling the proof obligations arising during the development process are integrated. Deduction
problems reflecting the mathematical concepts behind a particular method are essential features
of a formal approach (unlike nonformal techniques). The VSE frame system consists of a
commercial CASE tool (EPOS developed by OPP) enhanced by an appropriate formal
component. This means that tool support is also available when using nonformal development
techniques and for project management purposes. By combining different proof techniques and
architectures, the deduction component provides a comprehensive, flexible and effective proof
support system. With VSE geared to the production process, application of the system is not
confIned to the area of security. On the contrary, it is suitable for all areas in which software
components with the highest quality requirements ("provably correct software") are called for.

Parallel to the project, two large-scale case studies are being conducted involving the
redevelopment of major components of systems built in the context of industrial projects. One
of the case studies deals with a control and planning system for booking, managing and
executing the exchange of programmes between different broadcasting corporations; the other is
concerned with a physical access control system for nuclear power plants. Former members of
the industrial projects are involved in the formal redevelopment. Besides continuing work on
the individual components of the VSE system and extension of the formal basis, this tentative
implementation of the system in industrial practice will constitute a major element in the second
project phase, which is currently in the planning stage.

3 Deduction (Spokesman: Professor Bibel), DFG

Processing knowledge and translating it into algorithmic problem solutions are essential
elements in the software production process. Manipulation of this kind of (formalized)
knowledge is accomplished by means of deductive mechanisms. Deduction, then, is a crucial
subtechnique for the contemporary production of correct software. Its field of application,
however, is much broader. That is why the DFG has, since 1992, been funding basic research
in this field as part of the Keynote Research Programme on Deduction.

37

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

38

This programme is concerned with investigating deductive methods and testing them

prototypically in a system context. The application field in view here is software production. In

individual projects, specific deductive techniques are being examined with this application in

mind.The consideration of concrete applications is, however, explicitly ruled out, for capacity

reasons. The programme itself is rather designed to serve as a "feed" for further research

projects, particularly in the field of software development

40 "Development Techniques" (Spokesmen: Professor Vogt, Professor Kreowski),

(DFG):

Software development, besides pursuing the sort of language-oriented concepts it has so far,

must give greater attention than in the past to model-oriented or architecture-based concepts.

And it is important here, with a view to practical relevance, that weakly fonnalized approaches,

too, such as the object-oriented methods, be examined with respect to their suitability for

modelling purposes. However, if fonnal treatment of the model-oriented and application-related

approaches is the goal striven for, methods of knowledge processing and their implementation

in the fonn of algorithmic problem solutions are specifically required. Existing formal

development techniques for software systems, be they algebraically, functionally or logically

based, also form a crucial cornerstone for problem solution and description and should

therefore be integrated. The configuration concept is a promising approach here, and for this

reason a suitable candidate for promoting the integrated use of formal development methods.

This concept is based on the assumption that building blocks developed using different methods

can be combined. This means that methods belonging to different specification approaches must

be semantically integrated. This sort of integration requires supplementary basic research which

would acquire additional synergetic impetus by close cooperation with the Deduction

Programme.

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

A Nice Derangement of Predicates:
A Formal Specification

of Neurosis

E. J. Baillie
University of Hertfordshire

Hatfield
email:comqejb@herts.ac.uk

Madness, like everything else, can be formally specified. In this short paper we offer a few axioms
which, we suggest, encapsulate key aspects of commonly observed behaviour and reasoning of
human beings. The axioms are both internally inconsistent and incomplete with respect to any
known model. Whilst this feature is not in itself original, it is clearly consistent with its subject,
encouraging us in the belief that we are on the right lines. We should be pleased to hear from
others working in the area.

1 The Insanity Propositions

1. (P::} Q) <=> (Q::} P) (The Peugeot Principle)

as in, 'Intellectuals never look smart. I am a scruff. I must be brilliant.'
and, 'Doors on quality cars close with a nice sound. Listen to this door. There's quality for you.'

as in , 'If you don't eat up all your crusts you'll never have curly hair. So if I eat my crusts I'll
have lovely curly hair.'1

3. P V"'P <=> P 1\ ..,p (The Law of the Included Middle)

as in, 'If I get this promotion I'll have a lot more responsibility, which I don't want. If I don't get
it, I won't be able to afford my holiday, which I do want. These are mutually exclusive. I will
worry about both of them.'

2 The Anxiety Predicates

1. Vc: Concept. can_understand(I, c)::} musLbe_trivial(c)

and its corollary

la.Vc : Concept. can_understand(I, c) ::} "la: Anyfool • can_understand(a, c)

2. Vc: Concept • confuses(c,' Me) ::} 3d: Cleverdick • ..,confuses(c, d) 1\ deflates(d, Me)

1 I ate my crusts. I have straight hair.

39

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

40

3 The Principle of Anti-knowledge

"Ix, y : Anything. knows(x) 1\ vaguelY-Bimilar(x, y) 1\ learns(y) => -.knows(x) " -.knows(y)

as in, 'I knew Modula2. Then I learned Ada. Now I can't write programs at all.'

Acknowledgements

I am indebted to Peugeot Talbot Marketing for a particularly helpful demonstration of proposition
1.1 in the design of the new 405 range: to my maternal grandmother for proposition 1.2: to the
letters of Screwtape for proposition 1.3: and to Andrew, Mrs Malaprop and Ben Potter for their
helpful contributions throughout.

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

Survey of Formal Methods in Software Engineering

1 Introduction

Graeme I Parkin
National Physical Laboratory,

Teddington, Middlesex, England.
e-mail: gip@seg.npl.co.uk

29 April 1993

The use of formal methods has been much heralded as the way forward for the production
of good quality software but as yet they have not been widely accepted in industry. The
United Kingdom's Department of Trade and Industry asked the National Physical Laboratory
to investigate the reasons for this. This we did by conducting literature and industrial surveys
in 1992.

The main aim of the surveys was to learn the views of people using or considering using formal
methods in the areas of the: benefits, limitations, and barriers to formal methods. A secondary
aim was to learn people's views of the means of assessing the contribution that formal methods
make to the software life-cycle. The industrial survey also gives information on which formal
methods are being used, how they are being used and with what they are being used with.

2 Literature Survey

For the literature survey we made a list of the claims made in the literature about the benefits,
limitations and barriers to formal methods. We then assessed the claims made in terms of
rational argument and reported experimental evidence. We concluded that the main reasons
for the lack of uptake of formal methods are the use of mathematics and perhaps the lack of
tools.

It was thus possible to compare the results of the literature survey with those of the industrial
survey.

3 Industrial Survey

The industrial survey was aimed to reach as many people as possible to get a wide range of
opinion rather than that of a few recognised experts. The survey used a questionnaire which
was designed so that it did not lead people to answer the questions in a particular way. The
returned questionnaires were a.nalysed with the help of software written in UNIX commands,
in particular Bourne shell and nawk scripts.

41

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

42

The industrial survey attracted a lot of interest with over 400 questionnaires being returned.
This survey is the largest of its type ever conducted in the area of formal methods with
participants mainly from industry but with significant input from academics. It should be
noted that the survey is mainly of the United Kingdom.

The survey has shown that the most widely used formal methods are VDM (55%1) and Z
(55%). The formal methods which are used to specify concurrent systems e.g. LOTOS, CCS
and CSP (18%), are less widely used probably because they have been designed specifically
for concurrent systems.

Formal methods are being integrated into the software life-cycle, most widely through struc
tured methods (SSADM and Yourdon in particular) and much less through requirements
analysis tools (like CORE).

Those who are using formal methods do so because customers require it (in particular the
MOD and in security standards) or they work in the area of safety critical software which
warrants best practice.

The survey shows three main reasons why formal methods are not being more widely used in
industry:

• There is a lack of tools for formal methods, in particular commercially supported tools.
There could be several reasons for this: not large enough market, lack of standards (of
the most widely used formal methods only LOTOS is standardised) or not clear what
type of tools are needed. An obvious way to improve this would be to get VDM and Z
standardised in such a form that effective tools can be built.

• It has not been shown conclusively that there are cost benefits to be gained from the use
of formal methods in producing software.

• Many of the barriers (and limitations) to the use of formal methods are the symptoms of
the process of change from the use of one technique to a completely different one. This
process will take some time to work itself out.

Of the above three reasons the lack of tools was confirmed by the literature survey, but not the
other two. The literature survey proposed instead that the use of mathematics was a problem
but the survey of industry did not confirm this.

The survey has shown clearly that people are not aware of any good techniques for assessing
objectively the contribution of formal methods to the quality of the software.

4 Way forward

To overcome some of the above problems we suggest the following:

• A programme of education to spread the understanding of formal methods which would
help the process of change.

• Case studies, which may show the cost benefits to be gained by using formal methods.

1 This is the percentage of the participants who voted with this response.

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

• Research on metrics and data collection to help in assessing the contribution of formal
methods to the production of software .

• Efforts to get VDM and Z standardised as soon as possible.

A report on the complete details of the survey can be obtained for £25 from: DITC Office,
Formal Methods Survey, National Physical Laboratory, Queens Road, Teddington, Middlesex,
TWll OLW, United Kingdom. Tel: 081-943 7002. Fax: 081-9777091.

43

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

44

Anyone for Fractal Programming Semantics?

Mike Stannett
13 lbbotson Road
Sheffield S6 SAD

The popularisation of fracta1-based graphics over the last decade or so has brought these intriguing
and elegant mathematical objects very much into the public domain - and especially to the attention of
today's game-crazy youngsters sitting up night after night with only Def Leppard and their PCs for
company. Here we have a case of a whole discipline - experimental mathematics - evolving hand-in
hand with the computers that make its problems, if not soluble, then at least compelling. This is
obviously an excellent development from the viewpoint of sharing the sheer joy of discovery that
drives so many research projects, but the point I want to address here is whether or not this cross
fertilisation doesn't, in fact, work in both directions. The processes carried out for the tired-eyed kid
by his fractal kit have a lot in common with processes at the heart of many types of programming
semantics.

Open any introductory text on fracta1s, and you'll find one of the subject's standard icons: the
bifurcation diagram for the function

j{k,x) = x + h(l-x)

which arises in studies of population dynamics. For example, we can think of x as representing the
proportion of a city's population who are currently suffering from some virulent infection. The
parameter k represents the infection rate, and j(k,x) tells us the proportion of infected citizens in the
next time period. Often in such situations, it's useful to identify the long-term behaviour of the system
- how big must x be before an epidemic becomes inevitable? The experimental mathematician might
approach this problem by trying out lots of examples - she simply chooses some value of k, some
initial value of x, and then iteratesjuntil a clear answer becomes apparent. As is very well-known, the
long-run behaviour depends very much upon the choice of k and the initial value of x - for some
choices, the series of values generated by repeatedly applyingj diverges, for other choices the series
converges towards a repeating finite set of values, and in yet other cases the behaviour becomes
chaotic. The bifurcation diagram is simply a graph showing, for each value of k along the horizontal
axis, the long-run behaviour off

We can easily describe this bifurcation diagram formally. Suppose the experimenter chooses initial
values k and x. Notice the difference between these two variables: k is static because the same value of
k is used in each iteration, whereas x is dynamic because a new value of x is substituted-in each time.
Writing PJ(k,x) = x andp+l(k,x) = j{k,P(k,x», the cross-section of the bifurcation diagram above the
value k, corresponding to the initial value x, is just the set of points which can be approximated
arbitrarily accurately by the values of P(k,x) as n ranges through the naturals. That is, if we write
Fik) to denote this cross-section, then

Fik) = (lneN CIR { ptl(k,x) : m ~ n }

where "CIR X" denotes the topological closure in R of the set X. In general, the choice of x is

irrelevant to the definition of this cross-section, and introductory texts often disregard its value.
However, more rigour can be introduced if we so desire. We can regard two choices of x as being 'as
good as one another' from the viewpoint of this construction if they yield the same cross-section at k, a
property which can be captured by defining a collection of equivalence relations (one for each value of
k)by

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

It's easy to see that in the 'non-chaotic' regions of the bifurcation diagram, each -k chops R into

finitely many equivalence classes, almost all of which are themselves finite. The standard assumption
thatall x's are equivalent in these regions is thus a fairly good approximation to the truth, although
not strictly correct.

Now let's look at a simple exercise in semantics. I'm rather keen on English folk music, and am fairly
partial to coffee, but I don't particularly care about the order in which I indulge myself with these two
vices. However, listening to folk music always starts me reminiscing, and my behaviour reverts to that
of several years ago (a behaviour which has, of course, evolved into that which I display today).
Ignoring the more mundane activities of the day, I can be described as a process which repeatedly
listens to music and drinks coffee, i.e.

Mike = (music ~ YoungMike) + (coffee ~ Mike)

where "a ~ X" means that after perfonning action a, I adopt the behaviour pattern X, and where "+"
represents some form of non-detenninistic choice between two concurrent activities. Obviously, the
behaviour defined by this specification can only be fully described by 'unfolding' the definition
infinitely many times. On the other hand, we can obtain as good an approximation as we like simply
by unfolding it any sufficiently largefinite number of times.

This is in some ways analogous to the "fractal-kit" construction of cross-sections of the bifurcation
diagram given above, except that this time we're considering the iterated values of a function

g(k,x) = (music ~ k) + (coffee ~ x)

As before, x (i.e. Mike) is used dynamically in the specification, and k is the static part. So write
GO(k,x) = x and (7!1+1(k,x) = g(k,(7!1(k,x», choose your favourite order topology for the class of
processes (several versions are available, depending on your choice of concurrent specification
language), and denote this topological space PROCESS. As before, the behaviour(s) of Mike
corresponding to choosing some initial description x of the 'dynamic behaviour', together with some
'static parameter' k, are just the processes in

Gik) = f"""\eN Cl PROCESS { am(k,x) : m ~ n }

[An aside: What we might call"standard" semantics (for example in CSP) corresponds to making the
initial choice "X = sroP", where sroP is some process that does absolutely nothing for all time.]

There is clearly something similar happening in these two examples, and in all situations where a
function is constructed by infinite iteration - but is the resemblance simply superficial? I suggest that
it is not, and, what's more, this similarity can perhaps be exploited. In one sense, programming
semantics are the very antithesis of chaos - we construct a semantics for a language to ensure that
behaviours described in this language have a precise realisation, i.e. Gik) is required to be a

singleton; we would not usually appreciate a compiler which generates periodic or chaotic code. In
dynamical terminology, we'd say that programming languages are designed to be 'linear'. But in
physical terms, this is surely a crazy activity, since linear languages clearly cannot generate true
representations of general non-linear systems. Consequently, a multitude of physically realisable
processes are presumably theoretically uncomputable, and at best approximable only with
considerable computational effort - a glaring inadequacy of current theory, and one which should
perhaps no longer be tolerated.

Rather than build increasingly powerful linear computational systems, would it not be more sensible
to introduce non-linear languages that can represent physical systems directly? Fractals offer us
beauty, but they may also offer us the hope of a new generation of semantics - and a future in which
the theory of computation takes its place as a true natural science.

45

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

46

Wittgenstien
THE FILM

"The world is everything that is the case" are the opening words of Wittgenstein's
Tractatus Logico-Philosophicus. A fleeting allusion rather than a reference is made to this
in the course of a conversation in Derek Jarman's film "Wittgenstein", along with many
others casually dropped during the vigorous and sometimes fraught dialogue. I cannot
help feeling that these unexplained linguistic pointers must be lost on anyone who is not
at least a little familiar with Wittgenstein's work and life.

Why is a review of a film appearing in the FACSjFME Newsletter? Philosophy is an
attempt to answer the question "what are we talking about?" when we conduct a human
discourse. The formal semantics of programming languages is an attempt to answer the
question "what are we writing about?" when we write computer programs, and formal
methods an attempt to determine what we are doing when we develop software. Wittgen
stein's philosophy in particular concentrated on the nature of language and its relation to
"the world", if indeed such a concept can be dealt with meaningfully. This stand-point
has, I believe, a particular affinity for computer scientists because our principal concerns
stem from the conclusions which can be legitimately drawn from language scripts. What
are the consequences of this program? How certain can we be of its properties?

-As films go, "Wittgenstein" is brief: 75 minutes. At present it is showing in London
and Oxford. The film is minimal in its production: the backdrops are all plain colours
and the props amount to a couple of beds, a blackboard and a pillar box. Many of
the ideas from the Tractatus, the Blue and Brown Books and On Certainty are played
out in terse dialogues between Wittgenstein and his students, Maynard Keynes, Bertrand
Russell and even a Martian. Some events in Wittgenstein's life are presented by allusion,
others by a more direct dramatised narrative, the latter always portrayed through words,
however, rather than actions - befitting the life of a linguistic philosopher no doubt! The
only exception I remember is that where L. W. insists on playing a game with two of his
friends, each simulating the sun, earth and moon in their orbital paths through space. An
example of the more sparse kind of reference is a silent shot of a student carefully writing

. down Wittgenstein's words in a blue book; Wittgenstein angrily tells him to stop, but he
does not. Wittgenstein was generally reluctant to commit his thoughts to print, but he
dictated the Blue Book to his class of students in Cambridge in 1933-34.

Wittgenstein, boy and man, is engagingly played by Clancy Chassay and Karl Johnson.
However, for my money, the outstanding portrayal is that of Bertrand Russell played by
Michael Gough. Bertrand Russell figures significantly, as indeed he should, being the one
who first encouraged Wittgenstein to study philosophy. Remembering radio and television
interviews of Russell, I found his somewhat crusty mannerisms mixed with an almost
childlike idealism accurately reflected.

The schematic nature of the film and the licence taken with some of the chronology
strongly suggest a caricature. But Russell's autobiography records that he and Lady
Ottoline Morrell were indeed lovers from 1910 to 1916, which would have been about the
time that Wittgenstein was starting his philosophical career at Cambridge. Lady Ottoline
Morrell's clothes are extravagant, striking, flamboyant. She appears perhaps twice, briefly.

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

This contrast emphasises the minimalism of the remainder of the set, the props, indeed
the film.

The result of this sparse approach to the production is austere and abstract: a deliberate .
symbolic device; the film communicates its message through words rather than pictures,
although it is not without its visual imagery. This gives a neat link to the final statement
of the Tractatus, again the subject of a casually dropped verbal clue, "Whereof one cannot
speak, thereof one must be silent".

At first I found the burlesque nature of the film and its licence with facts rather irri
tating. But as time passed and the more serious side of the playful symbolism emerged I
began to enjoy it considerably. I recommend it!

Tim Denvir

References

Wittgenstein, 1. Tractatus Logico-Philosophicus. Routledge and Kegan Paul, 1922,
reprinted 1985 (and no doubt since). ISBN 0-7100-0962-3

The Blue and Brown Books. Basil Blackwe1l1967, 1987. ISBN 0-631-14660-1

On Certainty. Basil Blackwell1969, 1984. ISBN 0-631-16940-7

Philosophical Investigations. Basil Blackwe1l1953, 1986. ISBN 0-631-14670-9

Bertrand Russell. The Autobiography of Bertrand Russell, Vols. I, Il, Ill. AlIen and
Unwin, 1967, 1968, 1969 respectively.

47

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

48

Call for Participation

Formal Aspects of Object Oriented
Systems

BCS FACS (Formal Aspects of Computing Science) Group
Christmas Meeting

Imperial College London,
December 16th and 17th, 1993.

The aims of this meeting will be to review recent work on:

1. the logical basis of Object Oriented structure.

'2. formal support for Object Oriented system development.

3. application of Object Oriented structuring to the development of large scale specifi
cations.

4. formal treatment of con currency in Object Oriented systems.

There will be invited speakers on these topics, but there will also be an opportunity for
contributions from workers in the field who would like to submit papers.
Contributions, in the form of abstracts of one or two pages A4, should be sent to one of
the following by 15th October, 1993.

Prof. S.J. Goldsack,
Dept of Computing,
Imperial College of Science Technology and Medicine,
London SW7 2BZ.
tel. 071 589 5111
fax. 071 589 8024
e-mail: sjg(Moc.ic . uk.

Stuart Kent,
University of Brighton,
Dept of Computing Science,
Watts Building,
Moulsecoomb,
Brighton BN2 4GJ.
tel. 0273 642451
fax. 0273 642405
e-mail: sjhk@unix.brighton.ac . uk
or sjk@doc. ic. ac. uk

It is hoped that a selection of the best papers may be published in a summary proceedings.
If so complete versions of the selected papers would be requested at a later date: Please
indicate if you would not wish your contribution to be considered for inclusion.

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

Notice of Meeting and Call for Papers

8th Z User Meeting - ZUM'94
Organized by the Z User Group in association with BCS FACS

29-30th June 1994
St. John's College, University of Cambridge, UK

Programme committee:
Rosalind Batden, Logica, Cambridge Jonathan Jacky, Univ. of Washington, USA
Jonathan Bowen, Oxford University Peter Lupton, IBM Hursley
Elspeth Cusack, BT John McDermid, York University
Neville Dean, Anglia Polytechnic Univ. Sylvio Meira, Univ. of Pernambuco, Brazil
David Duce, Rutherford Appleton Lab. John Nicholls, Oxford University
Anthony Hall, Praxis plc Gordon Rose, Univ. of Queensland, Australia
Brian Hepworth, British Aerospace Chris Sennett, DRA Malvern
Howard Haughton, Lloyd's Register Sam Valentine, University of Brighton
Mike Hinchey, University of Cambridge Jim Woodcock, Oxford University
Darrell Ince, Open University John Wordsworth, IBM Hursley

The programme committee invites authors to submit pap~rs on or related to the formal speci
fication notation Z in particular and formal methods in general for presentation at the next Z
User Meeting and inclusion in the published Proceedings to be distributed at the meeting.

NOTE: THE SUBMISSION DEADLINE IS 1st OCTOBER 1993

................................. e'

Call for Papers I

,

The committee of the Z User Group invites the submission of papers related to the interests of Z
users. Special sessions on the following themes are planned if there is enough interest, and papers
on these topics are especially encouraged:

• Industrial experiences

• Application of Z to safety-critical systems

• Projects and processes for formal methods - management and organizational issues

• Z and concurrency

Papers for presentation and publication will be reviewed and selected by the programme com
mittee. The timetable for submitted papers is as follows:

Submission of draft paper:
Notification of acceptance:
Final copy for Proceedings:
Z User Meeting in Cambridge:

1st October 1993
30th November 1993
31st, January 1994
29-30th June 1994

49

FACS Europe - Series I Vol. 1. No. 1, Autumn 1993

50

A maximum limit of 20 pages is requested. Industrial contributors may submit extended abstracts
if they prefer. Please include four copies of your submission and indicate if you wish your paper
to be considered for one of the special themes. The meeting will also include:

• Tool demonstrations

• Exhibitions by publishers

• Posters or leaflets

Associated tutorials could be held immediately before or after the meeting if appropriate proposals
are submitted. Please contact the tutorial chair as soon as possible about all of the above. The
following invited speakers are planned (* subject to confirmation):

David Garlan, Carnegie-Mellon University, USA: Z and education*
Mike Gordon, University of Cambridge: Z and HOL
Leslie Lamport, DEC Systems Research Center, USA: Z and concurrency
Jim Woodcock, Oxford University: Z and 00-56*
Robert Worden, Chairman of Logica Cambridge: Z and industry
Maurice V. Wilkes, Olivetti Research (Emeritus Professor, University of Cambridge):
After dinner speaker on the occasion of the 45th anniversary of the EDSAC
meeting (first European computer conference) held in; Cambridge, June 1949,
and hosted by him.

The meeting will be sponsored by BT, Logica and Praxis and is supported by the BCS FACS
special interest group and the CEC ESPRIT ProCoS-WG 8694 Working Group.

General enquiries about the meeting and the Z User Group may be directed to:

Jonathan Bowen (Conference Chair)
Oxford University Computing Laboratory, 11 Keble Road, Oxford OX1 3QD, UK.
Email: Jonathan. BowenCOcomlab. ox. ac. uk Tel: +44-865-272574 Fax: +44-865-273839

Submitted papers and extended abstracts should be sent to:

Anthony Hall (Programme Chair)
Praxis Systems plc, 20 Manvers Street, Bath BA11PX, UK.
Email: j ahCOpraxis. co. uk Tel: +44-225-444700 Fax: +44-225-465205

Proposals for tutorials, tool demonstrations, publishers' stands, and requests for information
concerning local arrangements should be sent to:

Mike Hinchey (Tutorial Chair)
University of Cambridge, Computer Laboratory
New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK.
Email: Michael. HincheyCOcl. cam. ac. uk Tel: +44-223-334419 Fax: +44-223-334678

Until beginning of October ~1993:
DEC Systems Research Center, Palo Alto, CA 94301, USA
Email: hincheyCOsrc.dec.com

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

Call for Papers

Z User Meeting 1994 - Education Half Day

A special session on Educational Issues relating to Formal Methods (Z in particular) is being
organized for the Friday morning (1 July 1994) after the main Z User Meeting 1994 to be held
in Cambridge (29-30th June 1994) ..

Submissions are now invited for papers and posters to be presented at the Education Half-Day;
they should cover topics in teaching, learning and understanding formal methods (not specifically
Z) both in academia and in industry.

Papers may be published in the Proceedings of the Z User Meeting, provided they are of suf
ficiently high standard and conform to the guidelines for papers to be presented at the main
session. In particular they should be submitted to the main organizing committee for the Z User
Meeting by 1st October 1993 (as previously announced); please mark that the paper is to be
considered for the Education Session.

Alternatively, papers (or extended abstracts of no more than four pages) should be submitted by
31st December 1993 directly to:

Neville Dean,
Anglia Polytechnic University,
Applied Sciences,
Cambridge CB11PT, UK.
Email: cdeanha.anglia.ac.uk Tel: +44-223-35299iext 2329 Fax: +44-223-352979

Authors will be notified by 28th February 1994 if their paper has been accepted. Final versions of
accepted papers will need to be received by 31st March 1994. Note that papers so submitted
will not be included in the published proceedings. '

Proposals for posters should take the form of an abstract (no more than 500 words) and be sent
to Neville Dean by 28th February 1994. Successful authors will be notified by 31 March 1994.

51

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

52

FORTHCOMING EVENTS

1993

September 26-0ctober 1 OOPSLA'93
Conference on Object Oriented Programming Systems Languages and Applications,
Washington, DC., USA. Sponsor: SIGPLAN. Contact: Timlynn Babitsky, JFS Consulting, 5 Wise Ferry Ct.,
Lexington, SC 29072, USA; Tel: +1 (803) 957-5779.

September 27-30
Conference on Software Maintenance '93,
Montreal, Quebec, Canada. Contact: Marc Kellner, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 15213-3890, USA. Tel: +1 (412) 268 7721; Fax: +1 (412) 2685758; Email: mik@sei.cmu.edu

October 6-8
12th Symposium on Reliable Distributed Systems,
Princeton, NJ, USA. Contact: Prof. David Taylor, Department of Computer Science, University of Waterloo,
Waterloo, Ontario, CANADA N2L 3Gl. Tel: +1 (519) 888-4432; Email: dtaylor@grand.uwaterloo.ca

October 19-22 PNPM'93
Fifth International Workshop on Petri Nets and Performance Models,
Toulouse, France. Contact: G. Juanole, LAAS-CNRS, 7, Avenue du Colonel Roche, 31077 Toulouse Cedex,
France; Fax: +33-61-336411; Email: juanole@laas.fr

October 25-27 SoSL
International Workshop on Semantics of Specification Languages,
Utrecht, The Netherlands. Contact: Annemarie Besselink, Dept of Philosophy, University of Utrecht, PO
Box 80126, 3508 TC Utrecht, The Netherlands. Tel: +31 03 53 18 31; Fax:+31 30 53 28 16; Email: An
nemarie.Besselink@phil.ruu.nl

October 26-29 ILPS'93
International Logic Programming Symposium,
Vancouver, Canada. Contact: Dale Miller, Department of Computer Science, 200 South 33rd Street, University
of Pennsylvanis, Philadelphia, PA 19104-6389, USA; Fax: +1 (215) 898 0587; Email: dale@saui.cis.upenn.edu

October 26-29 Forte'93
6th International Conference on Formal Description Techniques,
Boston, MA. Sponsor: IFIP WG6.1. Contact: Richard L. Tenney, Math & Comp. Sci., Univ. of Massachusetts,
Boston, MA 02125-3393. Email: rlt@cs.umb.edu

November 3-6 ISSRE 93
Fourth International Symposium on Software Reliability Engineering,
Denver. Cosponsors: IEEE Computer Soc. Technical Committee on Software Eng., IEEE Reliability Soc. Den
ver Chapter. Contact: Anneliese von M ayrhauser , Computer Science Dept., Colorado State Univ., Ft. Collins,
CO 80523, USA; Tel: +1 (303) 491-7016; Fax: +1 (303) 491-6639. Email: avm@cs.colostate.edu. Or Yoshihiro
Tohma, Computer Science Dept., Tokyo Inst. of Technology, 2-12-1 Oakayama Meguro-ku, Tokyo 152, Japan;
Tel: +81 (3) 3726-1111, ext. 2566; Email: tohma@cs.titech.ac.jp

December 1-3
14th IEEE Real-Time Systems Symposium,
Durham, N.C. Sponsor: IEEE Computer Soc. TC on Real-Time Systems. Contact: Farnam Jahanian,
IBM T.J. Watson Research Ctr., PO Box 704, York town Heights, NY 10598; Tel: 784-7498; Email: far
nam@watson.ibm.com

. December 1-4
Fifth IEEE Symposium on Parallel and Distributed Processing,
Dallas, TX, USA. Contact: Prasenjit Biswas, Cyrix, 2703 N. Central Expressway, Richardson, TX 75080; Tel:
+1 (214) 234-8388; Fax: +1 (214) 699-9857.

December 6-7 IWSSD-7
Seventh International Workshop on Software Specification and Design,
Los Angeles area, CA, USA. Sponsor: IEEE Computer Society. Contact: Jack Wileden, Computer Science
Department, University of Massachusetts, Amherst MA 01003, USA; Email: jack@cs.umass.edu

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

53

December 7-10
Symposium on the Foundations of Software Engineering,
Los Angeles, CA, USA. Sponsor: ACM SIGSOFT. Contact: Barry Boehm, Computer Science Department, Uni
versity of Southern California, Los Angeles CA 90089, USA; Tel: +1 (213) 740-8163; Email: boehm@cs.usc.edu

December 15-17 FSTTCS'93
Thirteenth Conference on the Foundations of Software Technology and Theoretical Computer
Science,
Bombay, India. Contact: Prof. R.K. Shyamasundar, FST&TCS'13, Tata Institute of Fundamental Research,
Bombay 400 005, India; Fax: +91-22-215-2181. Email: fsttcs@tifrvax.bitnet

December 16-17 FACS Christmas Workshop
Formal Aspects of Object Oriented Systems,
Imperial College, University of London, UK. Sponsor: BCS-FACS. Contact: Prof. Step hen Goldsack, Imperial
College; Tel: +44 (71) 589 5111; Fax: +44 (71) 589 8024; Email: sjg@cod.ic.ac.uk or Stuart Kent, Univer
sity of Brighton, UK; Tel: +44 (273) 642451; Fax: +44 (273) 642405; Email: sjhk@unix.brighton.ac.uk or
sjk@doc.ic.ac.uk

1994

January 5-7
The Sixth FACS Refinement Workshop on Theory and Practice of Formal Software Develop
ment,
London, UK. Contact: Dr Jeremy Jacob, Dept of Computer Science, University of York, Heslington, York Y01
5DD, UK; Tel: +44 (904) 432720; Email: jeremy@minster.york.ac.uk or David Till, Dept of Computer Science,
City University, Northampton Square, London EC1V OHB, UK; Tel: +44 (71) 477 8552; Email: till@cs.city.ac.uk

January 5-7 SEI CSEEE,
7th SEI Conference on Software Engineering Education,
San Antonio, Texas. Contact: Dr Jorge 1. Diaz-Herrera, SEI, Carnegie-Mellon Univ., Pittsburgh, PA 15213-
3890, USA; Tel: +1 (412) 268-7636; Fax: +1 (412) 268-5758; Email: jldh@sei.cmu:edu

January 17-219 POPL'94,
The 21st Annual Symposium on Principles Of Programming Languages,
Portland, OR, USA.Sponsors: ACM. SIGPLAN-SIGACT Contact: Hans-J. Boehm, Xerox Corporation, Palo
Alto Research Ctr., 3333 Coyote Hill Rd., Palo Alto, CA 94304 USA; Email: boehm@parc.xerox.com

February 24-26 STACS94,
11th Symposium on Theoretical Aspects of Computer Science,
Caen, France. Contact: Prof. Patrice Enjalbert, 1.A.LA.C. STACS94, Universite de Caen, F-14032 Caen
Cedex, France; Tel: +33-31-45-56-16; Fax: +33-31-45-58-14. Email: stacs@univ-caen.fr

April 7-9 CC94,
International Conference on Compiler Construction,
Edinburgh, Scotland. Contact: Peter Fritzson, CC94, Department of Computer and Information Science,
Linkoping University, S-581 83 Linkoping, Sweden; Tel: +46-13-281484; Fax: +46-13-282666; Email:
petfr@ida.liu.se

April 11-13 CAAP94,
Colloqium on Trees in Algebra and Programming,
Edinburgh, Scotland. Contact: Sophie Tison, CAAP'94, University of Lille 1, LIFL, Bat. M3, F-59655 Vil
leneuve d'Ascq Cedex, France; Tel: +33-20434309; Fax: +33-20436566; Email: tison@lifl.fr

April11-13 ESOP94,
European Symposium on Programming,
Edinburgh, Scotland. Contact: Don Sannella, ESOP'94, Laboratory for Foundations of Computer Science, De
partment of Computer Science, The King's Buildings, University of Edinburgh, Edinburgh EH9 3JZ, Scotland;
Tel: +44 (031) 6505184; Fax: +44 (031) 6677209; Email: dts@dcs.ed.ac.uk

AprillS-22
International Conference on Requirements Enginering,
Colorado Springs, CO, USA. Sponsor: IEEE-CS TC-SE. Contact: Alan Davis, Univ. of Colorado,Center for
SE, 1867 Austin Bluffs Pkwy, Ste 200, PO box 7150, Colorado Springs, CO 80933-7150; Tel: +1 (719) 593-
3695; Email: adavis@zeppo.uccs.edu

April 19-21 TACS'94
International ymposium on Theoretical Aspects of Computer Software, Tohoku University, Sendai,
Japan. Email: tacs94@ito.ecei.tohoku.ac.jp

May 16-19 ICCL'94
5th International Conference on Computer Languages,

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

54

Toulouse, France. Contact: Henri E Bal, Vrije University, MCS Dept.: De Boelelaan 10t-'ia, 1081 HV Amster
dam, The Netherlands. Tel: +31 (20) 548-5574; Fax: +31 (20) 642-7707; Email: bal@cs.vu.nl

May 16-21 ICSE
16th International Conference on Software Engineering,
Sorrento, Italy. Sponsors: IEEE-CS, ACM Sigsoft, AICA. Contact: Bruno Fadini, Dept "Informatica e Sis
temistica", University of Naples "Federico Il", Via Claudio 211-80125 Napoli, Italy. Tel: +3981 768 3193; Fax:
+39 81 768 3186; Email: fadini@vm.cised.unina.it

May 23-25 STOC
26th Symposium on Theory of Computing,
Montreal, Canada. Contact: Micheal Goodrich, Dept of Computer Science, .Johns Hopkins University, Balti
more, MD 21218-2694, USA.

June 8-10
Design, Specification, Verification of Interactive Systems,
Pisa, Italy. Sponsor: Eurographics Contact: Dott. Fabio Paterno', CNUCE-C.N.R., Via S.Maria 36, 56126
Pisa, Italy; Fax: +3950589354; Email: paterno@vm.cnuce.cnr.it

June 13-17 PARLE'94
Parallel Architectures and Languages Europe,
Athens, Greece. Contact: ParlejCTI, Computer Technology Institute, 3 Kolokotroni Str., 26221 Patras, Greece.
Tel: +30 (61) 220 112; Fax: +30 (61) 222 086; Email: parle@cti.gr

June 15-17 FTCS-24
24th Annual International Symposium on Fault-Tolerant Computing, Austin, Texas, USA. Sponsor:
IEEE cs. Contact: Miroslaw Malek, Dept. Electrical and Computer Engineering, University of Texas at Austin,
TX 78712-1084, USA. Tel: +1 (512) 471 5704, Fax: +1 (512) 471 0954, Email: malek@emx.cc.utexas.edu

June 29-30 ZUM94
8th Z User Group Meeting
Cambridge, England. Sponsor: Z User Group and FACS. Contact: Jonathan Bowen, Oxford University Com
puting Laboratory, 11 Keble Road, Oxford OX1 3QD, UK. Tel: +44 (865) 272 574; Fax:+44 (865) 273 839;
Email: Jonathan.Bowen@comlab.ox.ac.uk

July 4-7 LICS'94
9th IEEE Symposium on Logic in Computer Science,
Paris, France. Sponsor: IEEE TC-MFC, Cosponsors: ASL and EATCS. Contact: Amy Felty and Douglas Howe,
AT&T Bell Labs, 600 Mountain Avenue, Murray Hill, N.J 07974, USA. Email: felty.howe@research.att.com

July 10-15 ICALP'94
21st International Colloquim on Automata, Languages, and Programming,
Jerusalem, Israel. Contact: E. Shamir, Department of Computer Science, Hebrew University of Jerusalem,
Jerusalem 91904, Israel; Fax: +972 2630702. Email: shamir@cs.huji.ac.il

September 21-22 ISOOMS
International Symposium on Object Oiented Methodologies and Systems, Palermo, Italy. Sponsor:
AICA Contact: Elisa Bertino, Dipartimento di Scienze dell'lnformzione, Universita di Milano, Via Comelico, 39,
Milano, Italy. Tel: +39-2-55006227; Fax +39-2-55006253; Email:bertino@disi.unige.it or Susan Urban, Com
putr Science Department, Arizona State University, Temple 85287-5406, USA; Tel: +1 (602) 9652784; Fax: +1
(602) 9652751; Email: urban@asuvax.eas.asu.edu

October 16-28 OOPSLA'94
Conference on Object Orientated Programming Systems, Languages and Applications.
Portland OR, USA. Sponsor: SIGPLAN. Contact: John T Richardson, IBM TJ Watson Research Center, H1-
B50, PO Box 704, Yorktown Heights, NY 10598, USA; Tel: +1 (914) 784-7616; Email: jtr@watson.ibm.com

\

FACS Europe - Series I Vol. 1. No. 1. Autumn 1993

55

Guidelines for Newsletter Contributions

Contributions may be in the form of single-sided camera-ready copy, suitable for layout and sub-editing.
They can also be sent to us using elect~onic media (i.e. by floppy disk (MS DOS or Mac)/e-mail/etc.), to be
forniatted in the house style. As a rule, we generally accept pure ASCII text or 1EX/:u.TEX in order to avoid
complications involving interchange between wordprocessing formats. We regret that we are unable to offer
typesetting facilities for handwritten material.

If contributions are sent using proprietary wordprocessor/markup language formats (i.e. MicroSoft Word 5,
FrameMaker), then these will be treated as though they were camera-ready copy. If we are unable to print
them adequately or to otherwise convert to another more suitable form then the authors may be asked to
provide paper copies of appropriate reproduction quality.

Artwork can be provided for appropriate inclusion, either using general formats (such as DVI files or Encap
sulated PostScript) by sending camera-ready paper copy. Generally, line drawings and other high-contrast
graphical diagrams will be acceptable.

Material must be of adequate quality for reproduction. Output from high quality printers with at least 300 DPI
resolution is generally acceptable. Output from printers with lesser resolution (i.e. dot-matrix printers) tends
not to reproduce very well and will not be of sufficiently good print quality. The Editorial Panel reserves the
right to refuse publication for contributions which cannot be reproduced adequately.

Page definition information

If possible, contributions should be designed to fit standard A4 paper size, leaving a margin of at least one inch
(1") on all sides. Camera ready copy should be sent in single-sided format, with page numbers written lightly
on the back. Ideally, all fount sizes used should be no smaller than 10pt for clarity. Contributions should
attempt to make adequate use of the space, filling at least 60% of each page, including the last one. Authors
should note that all contributions may be sub-edited appropriately to make efficient use of space.

Deadlines

The production deadlines for the coming year are:

Summer
Autumn

end of May, 1993
end of August, 1993

Winter· end of November, 1993
Spring end of February, 1994

Disclaimer

The views and opinions expressed within articles included in the FACS Europe newsletter are the responsibility
of the authors concerned and do not necessarily represent the opinions or views of the editorial panel.

Addresses

Editors:
Dr. Jawed Siddiqi
Dept. of Computing and Management Sciences
Sheffield Hallam University
100 N apier Street
Sheffield, S11 8HD
United Kingdom

Tel: +44 742 533141
E-mail: J.1.Siddiqi<Dshu.ac . uk

Dr. Brian Monahan
Dept. of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL
United Kingdom

Tel: +44 61 275 6137
E-mail: brianm<Dcs.man.ac.uk

FACS Europe - Series I Vol. 1. No, 1. Autumn 1993

BCS FACS Committee 1992/93

General

General enquiries about the BCS FACS group, the newsletter or its meetings can be made to:

BCSFACS
Department of Computer Studies
Loughborough University of Technology
Loughborough, Leicestershire
LE113TU
Tel: +44 509 222676
Fax: +44 509211586
E-mail: FACS@lut.ac.uk

Membership fees 1993
Standard (i.e. non-BCS members): £25
BCS members : £10

Discount subscription rates 1993
EATCS : £io
FACS Journal: £33 (6 issues, Vol. 5)

Officers

Chair
Treasurer
Committee Secretary
Membership Secretary
Newsletter Editors
Publicity
BCS SIG representative
BCS SE TC representative
Liaison with FACS Journal
Liaison with BCS FMIS group

TtmDenvir
Roger Stone
Richard Mitchell
JohnCooke
Jawed Siddiqi & Brian Monahan
Brian Monahan
David Blyth
John Boarder (Roger Shaw)
JohnCooke
Ann Wrightson

Committee Members

Name Affiliation Tel: E-mail

R. Barden Logica Cambridge Ltd 0223-66343 rosalind@logcam.co.uk
D. Blyth IncordLtd. 0202-896834 DBlyth@cix.compulink.co.uk

- J. Boarder Buckinhamshire 0494-22141 jcb@buckscol.ac.uk
DJ. Cooke Loughborough 0509-222676 DJ .Cooke@lut.ac.uk
B.T. Denvir Translimina Ltd. 081-882 5853 timdenvir@cix.compulink.co.uk

SJ. Goldsack Imperial 071-589-5111x5099 sig@ic.doc.ac.uk
AJJ. Dick Bull Research J .Dick@brno.uk03.bull.co.uk
R.B. Jones ICL Winnersh 0734-693131x6536

RJ. Mitchell Brighton 0273-642458 tjm4@unix.brighton.ac.uk
B.Q. Monahan Manchester 061-275-6137 brianm@cs.man.ac.uk . A Norcliffe Sheffield Hallam 0742-720911x2473 ANorcliffe@scp.ac.uk

R.C.F. Shaw LIoyd's Register 081-681-4040x4818 Roger.Shaw@aie.lreg.co.uk
J.LA Siddiqi Sheffield Hallam. 0742-533141 J .LSiddiqi@shu.ac.uk

D. Simpson Brighton 0273-600900x2450 ds33@unix.bton.ac.uk
R.G. Stone Loughborough 0509-222686 R.G.Stone@lut.ac.uk

D.R. Till City 071-477 -8552 till@cs.city.ac.uk
A Wrightson Central Lancashire 0772-893242 annw@sc.uclan.ac.uk

FMEContact

Name Affiliation Tel: E-mail

M. Thomas Praxis plc 0225-444700 mct@praxis.co.uka

