
~FACS
FORMAL METHODS

EUROPE

The Newsletter of the BCS Formal Aspects of Computing Science Special Interest Group and
Formal Methods Europe.

Series I Vol. 1, No. 2 Spring 1994

Contents
Editorial .. 2
VDM and Z again .. 3-5
Education Column ... 6-7
Notes and Queries Column ... 8
RAISE Column ... 9-11
Formal Methods Tools Database , " 12-13
Recent Books Column .. 14-16
VDM Forunl .. 17
Formal Computer Science in JFIT ... 18-19
Report on Formal Methods Tutorial .. 20
Report on Sixth Refinement Workshop 21-23
Report on .Formal Aspects of Object Oriented Systems 24-28
Summary of the ERIL Project ... 29-30
Secure Critical Components .. 31-38
EATCS ... 39-40
Notice of talk on History of Formal Methods 41
Call for participation: ZUM '94 ... 42
Contributors Guidelines ... 43
BCS FACS and FME Committee 93-94 44

2

Editorial
Welcome to the Spring issue of FACS Europe,
hope you enjoyed reading the last bumper is
sue. This issue has a comprehensive range of
contributions beginning with a communica
tion from Cliff Jones which responds to An
thony Hall's comments on the magic round
about tour of comparing Z and VDM. We also
introduce a much needed Education Column
which should enable those of us involved in
the teaching of formal methods to exchange
and share ideas on curricula and pedagogy;
those of us who like to solve problems should
find the 'Notes and Queries' an inviting chal
lenge. Our regular RAISE Column invites
participation on RAISE standardisation.

Two contributions that provide useful and easy
to digest information are the Formal Meth
ods Tools Database and the Formal Computer
Science in JFIT. The first contribution in
forms on an initiative to set up a database,
invites participation and provides a summary
of existing tools. The second contribution re
ports on the number of applications submit
ted for the Formal Computer Science area un
der JFIT in 1992/93; their total value, the
number funded etc, it also provides details of
the funded projects.

Our roving reporters have submitted interest
ing reports on key areas including formal as
pects of object orientation and term re-writing.

Former FACS FACTS readers might be won
dering about the whereabouts of F-X REID.
The editors have not received any correspon
dence from him/her although the column on
the formal specification of neurosis in the last
edition seemed to carry that hallmark. We
have had a lot of interest in people wanting to
obtain copies of FACS Europe from all over
the world and would tell anyone not on the
mailing list to join FACS by contacting the
FACS membership secretary in order to re-

FACS Europe - Series I Vol. 1. No. 2. Spring 1994

celVe a copy. Our mailing list is well over
700!

Finally, the success and quality of FACS Eu
rope is in your hands, the more contributions
we receive the higher the quality of the newslet
ter. We welcome all types of contributions
on formal aspects: technical, informative, hu
morous; reports and much more. We look
forward to hearing from you.

Jawed Siddiqi

Acknow ledgements

This edition was compiled, edited and k\TEX'd
at the Computing Research Centre of Sheffield
Hallam University, by:

Brian Monahan
Chris Roast
Jawed Siddiqi

University of Manchester
Sheffield Hallam U ni versity
Sheffield Hallam University

3

VDM and Z again:
A Reply to Anthony Hall's Response

Cliff Jones
cb j@cs.man.ac.uk

March 24, 1994

This 'letter to the Editor' is written in reply to Anthony Hall's A Response to Florence, Dougal and
Zebedee pp 31-32 of FAGS Europe, Vo!. 1, No. 1. I should first like to welcome Anthony's basic point:
there is a need for another article. In defence of what was written in the original paper (Understanding
the Differences between VDM and Z pp 7-30, FAGS Europe Vol. 1, No. 1.) it could be pointed out
that its authors have often been asked about differences between Z and VDMl by specialists who have
found the topics which are addressed in our paper to be very much the ones which interest them. The
alternative proposals (in the logics for Z and VDM) for dealing with partial functions, for example, is
a topic of continuing research interest. It is certainly clear that users of specification languages may
well have other, or at least additional, concerns and another paper could be written which \\'ould be
more suitable for this audience. We would certainly encourage someone to write such a paper and
therefore welcome the main thrust of Anthony's letter.

I should like to offer some comments which might influence someone undertaking the envisioned
article: I address the issue of objectivity and provide some technical reminders. For brevity below I
will refer to the original paper as MRP (Magic Roundabout Paper) and to Anthony Hall's letter as
AHL.

The authors of MRP come (two) from a Z background and (one) from a VDM background and it
was intended to be a strength of the paper that they managed to agree a combined text. It should
have limited any extreme claims from one side to which the other authors felt they would not wish to
put their name. Let me then now make clear that I am changing to the first person singular. I will
again try to retain a spirit of fairness (and I hope my co-authors would not disassociate themselves
from much of what follows). In some places, I certainly put a VDM point of view (where I feel that
Anthony has listed arguments in favour of Z) but I hope that this will be seen as a contribution to
understanding the differences rather than fuel for a battle between two valid approaches.

I must first address the point in AHL about the lack of a discussion of modelling style in MRP. The
reason that this is not covered is that one can make different modelling decisions when writing in a
specification in Z or VDM and these differences have very little to do with the differences between the
Z and VDM languages. For example, Z specifications tend to introduce 'derived' state components
whose values are constrained by invariants (they are redundant in the sense that their values are
completely determined by other state variables); in VDM specifications one would normally find these
values being computed by auxiliary functions (thus keeping to a minimal state). There is no technical
obstacle to reversing this stylistic trend and it would therefore be confusing to labour the point in a
comparison between Z and VDM specification notations. Of course the differences between models can
be crucially important to their users and I personally find this a fascinating topic (I have just taught
an MSc course exactly on Abstract Models of Computer Systems; my examples have been taken from
both the Jones/Shaw and Hayes case study books); but this is not the subject of MRP.

1 Indeed, the strongest reason for writing this paper was precisely that this question has come up many times in
the standardisation activities; members of some foreign ISO committees would ideally have liked to have seen just one
specification language coming forward for standardisation.

FACS Europe - Series I Vol. 1. No. 2. Sprinll: 1994

\

4

AHL does challenge the technical point as to whether VDM can 'just be extended'. Personally
I fought against seeing VDM as a fixed language carved on tablets of stone; I wanted very much
more to see it as an evolving school of specification ideas. I have experimented with a variety of
extensions (Anthony is kind enough to draw attention to my rely-guarantee approach to concurrency)
and certainly do not believe that VDM-SL is the last word in specification languages. In fact, the
whole issue of whether we should try to standardise specification languages is one about which I could
write another long letter.

Focusing on AHL's specific challenge about the use of a new construct like general relations, I
should have little hesitation in defining this as a new type if I wanted it for a large application and
providing its foundations in a similar style to the foundations of other parts of VDM. In fact, in many
cases it is possible to provide suitable extensions by writing a series of auxiliary functions and then
one is 'just' faced with a concrete syntax problem as to whether those functions are written in normal
functional notation or as infix operators.

I find the related claim in AHL that 'functions are relations (are sets)' is a good idea somewhat
debatable. This is certainly an issue on which I should like to hear user's views. In my experience, very
little 'comes for free' and I fear that there will be proof obligations when, say, composing functions
with lists and claiming that the result is a list which are non-trivial and perhaps not understood by
all users. But, I should concede that I do see the advantage of having general relations available as
a type in a specification language and it is certainly an example that I should reconsider were I to
be writing another book on VDM. The division between types is more rigid in VDM (than in Z)
and this is connected with its original aim to facilitate the description of the denotational semantics
of programming languages. (The extension mechanisms of Z could not easily be used to introduce
Domain Theory.) In order to compare like with like, MRP does not address this application of the
notations. But I have to say that, even if I were designing a non-domain theoretic specification
language, I should probably retain the distinctions between types based on my best guess of what
users can be expected to write safely.

There is no doubt in my mind that modularisation is still an open issue in the sense that I have
seen no fully satisfactory solution (see the paper in MRP cited as [F J90j and the responses in Formal
Aspects of Computing Vol. 4 No. 1; John Fitzgerald and I still need to write a response to those
'solutions' !). I certainly include in my claim that there is no fully satisfactory solution among those
modularisation proposals which have been written for VDM-SL and I echo Anthony's point that none
of them have acquired the same degree of practical use as the 'flat' VDM specification language. But I
have to add that I am pleased to hear that VDM-SL modularisation proposal did not work for 'shared
states ': it wasn't intended to allow such usage. Of course one can model something like shared state
with a fairly gruesome construction of pointers. But, having said that this solution is not pleasing, I
have to repeat my point that I know of no elegant solution to this particular difficulty.

I find very interesting the claim in AHL that 'the strengths and weaknesses of the Z schema
are pretty well understood'. I am certainly prepared to believe that, in careful hands, the Z schema
notation and in particular schema operators can be used to provide delightfully readable specifications.
(For the first several years of the CICS specification work, I was a consultant on the project and
reviewed many of the Z specifications; I developed great enthusiasm for the way lan Hayes in particular
was using the schema notation to present such specifications. I was, however, always left with the
feeling that to be really sure I knew what the system was intended to do, I needed to have a 'flatten
button'.) But I am not aware of any document which sets out warnings about the schema notation.
(I haven't had the pleasure of attending one of Anthony's courses on Z.) I believe there are dangers in
the way Z schemas can share names. This is borne out by reading a number of other Z specifications
including those which are published in the literature as presumably examples of good style. I won't
pursue this point here, both because it would only be fair to do so if I provided detailed examples and
because I am anxious not to have a competition between the notations. One of the main purposes of
MRP was precisely the reverse: we wanted to foster co-operation between different formal methods
communities by explaining the essential differences rather than having people argue about irrelevant

FACS Europe - Series I Vol. 1. No. 2. Spring 1994

5

issues. But in connection with this issue I must point out that 'Z needs a modularisation mechanism'
appears in the co-authored MRP.

The use of the schema calculus is certainly another area where I should like to understand user
experience. How are schema combinators really used in practice? Are they just used to separate
out exception conditions or do people really make many connections between free names in different
schemas? AHL is emphatic that this is a good way to write specifications. With care I am sure this is
true but it is unclear to me that you cannot get the same advantage by tasteful use of sub-functions
without the dangers inherent in linking free names.

There is one other point on specifications which I should like to pick up for fear that a statement in
AHL be taken as a complete rebuttal of claims in MRP. I believe that the separation of a pre-condition
in a specification is a specification issue. In my experience of reading many large (informal) industrial
specifications, people are actually better at describing the intended function (post-condition) than they
are at recording the assumptions they are making about their system (pre-condition). It is therefore
not just a technical point that suits the VDM development method to have a separate pre-condition;
it is my firm opinion that forcing people to focus on a separate pre-condition when they are thinking
about the specification is essential. I do not believe that writing down a post-condition and then
'computing the pre-condition' is a substitute for asking the user to document their assumptions.2

A major issue which is not addressed in MRP is development methods. Clearly, this would not
have been easy to do since there is not - to my knowledge - a generally agreed development method
associated with Z which was originally seen solely as a specification language. Of course, the fact
that operation decomposition and data reification were addressed early in the evolution of VDM, has
influenced the language. (I find it interesting how many of the decision's in Jean-Raymond Abrial's
'Abstract Machine Notation' are closer to VDM than to Z. 1 am certain that this is because AMN
is seen as part of a development method. One could also observe that Carroll Morgan's 'refinement
calculus' separates pre-conditions.) But the decision to exclude development methods from MRP did
make it harder to motivate some of the differences.

Tony Hoare (see footnote 3, page 15 of MRP) appears to argue that one can undertake a specifica
tion in Z and then use VDM as the development method. This could be a masterful compromise but
it comes up against exactly the sort of technical difficulties which are discussed in MRP. 1 certainly do
not dispute that there could be a Z-like specification language which was more convenient for analysing
requirements and generating the first specification and that a somewhat different (VDM-like?) no
tation or presentation of specification might be useful for recording the specification which is to be
used from the beginning of the (VD M-like) design process. But is is clearly imperative that there are
no gratuitous technical differences between these two languages. MRP has discussed issues like the
appropriate logic to handle partial functions; if we are to come up with a 'beautiful pair of twins' the
issues which are raised in MRP need to be resolved.

1 will end as AHL ends: in summary 1 certainly agree that another article is waiting to be written.
1 personally enjoyed the collaboration in writing MRP and 1 believe the choice of authors from the
different approaches resulted in a fairly balanced paper. 1 hope that, when it is written, the article
written from the users' point of view is also fairly balanced.

Cliff Jones
1994-02-04

2During January there have been two relevant debates on comp.specification.z: One concerned schema composition
which would benefit from identifying a pre-condition; in the other a Z user explained why a style which distinguishes (ill
some way) a pre-condition is to be recommended for avoiding short but cryptic specifications.

FACS Europe - Series I Vol. 1. No. 2. Sprinll: 1994

.6

The Education Column
Roger Carsley

University of Westminster
155 New Cavendish Street

London, W1M 8JS
roger~westminster.ac.uk

Welcome to the Education Column, a column, it is hoped, to interest all - practitioners as
well as academics.

The arena of education is particularly important to Formal Methods. Staff in education
and industry work closely together, even exchanging places. The universities are educating the
future recruits and offering advanced and training courses. At this stage in its maturity, all are
undergoing a process of continuing education. In addition to the high profile and big money
joint research projects, we also have a mutual interest in the more modest levels of the transfer
(exchange!) of skills and development of the subject.

What is happening in education? What should be? What knowledge and skills are required
by practitioners? What should be being taught now to prepare for the future? How can we
best teach our subject?

This column can be a forum for wide-ranging discussions about Formal Methods Education.
But a column is only its articles and correspondence and these are provided by participation.
Please accept this invitation to share your views, experience and knowledge.

One special request for material for this column goes to those outside academia and the re
search organisations: How well do skills currently taught match needs? What is most relevant?
What appears least relevant? Which areas would benefit from continuing education courses'?
What additional skills are desirable in future graduates?

Additionally, the following eclectic list (a pedagogic device) of potential topics and titles was
extracted from a confused and incoherent 'customer'. Use any appropriate methods, preferably
formal, (possibly induction, interpolation or intoxication) to infer a model of the requirements
of the client. Hence, write and submit a report satisfying any aspect of the client's needs of
your choice:

• reviews of books, software tools and other materials from the point of view of their value
as teaching aids

• examples of 'successful' student projects

• "How not to choose a Formal Methods PhD topic/supervisor"

• challenges to a prevalent view (c.f. the NPL report "Formal Methods: A Survey" 1993)
that the staple food of formal methods education is VDM/Z, spiced with a dash of COll

currency

• experiences with 'alternative' forms of assessment

• "Do we need and do we have time for Modal Logic?"

• those elusive stimulating case studies and insightful examples

• curricula for the new millennium

FACS Europe - Series I Vol. 1. No. 2. Spring 1994

7

• on the basis that we will have succeeded in our mission when FM is applied in other
topics, examples of such

• "Hacking in Specification Language X: a student's guide"

• "A Comparison of Approaches to FME in Europe, the USA and Japan"

[this column has no travel budget! Ed.]

We launch the column, with grateful thanks to Dan Simpson, surveying research under
JFIT thereby illustrating the scale, range and prominence of formal methods activity within
the U.K. JFIT, the Joint Framework for Information Technology, a collaborative research effort
involving industry, government and academia in the U.K. is supported by the Department of
Trade and Industry (DTI) and the Science and Engineering Research Council (SERC).

May we also draw your attention to, if you do not already know of it, "Educational Matters"
coordinated by Hans-Jorg Kreowski in the EATCS Bulletin. Currently, the focus there is on
the mathematical education of software engineers and will follow responses to papers by David
Parnas and Jacques Printz.

The names of those submitting the best work will be displayed in boldfont along side their
efforts in the next column. Late submission is not permissible. Contributions should be sent
to to the author, preferably bye-mail.

FACS Europe - Series I Vol. 1. No. 2. Spring; 1994

8

Notes and Queries Column
Anne Wright

annw~uk.ac.uclan.sc

We have recieved two related "queries" from Tim Denvir to which answers are sought.

Q1. What is the relationship between the formal semantics of a language and its
proof theory?

To elaborate this question: the proof theory of a language is a deductive scheme
for propositions about sentences in the language. For example the proof rules
of an imperative programming language embody a language of propositions of
the form P{ S}Q where P and Q are predicates and S is a statement in the
language. This is probably the same question as:

Q2. Given a calculus, how does one find the algebra?

There seems to be a common evolution in the development of semantics for
languages. The language is first defined by means of a calculus, for example
the CCS rules over action-labelled relations and the Hoare-Floyd rules of im
perative languages, then several years later an equational characterisation is
produced which, one hopes, captures the same class of models. Can one find
a general heuristic for translation between the two?

Please send replies and ripostes to the columnist.

FACS Europe - Series I Vol. 1. No. 2. SprinR: 1994

RAISE Column
Concrete is more abstract

Chris George, CRI
cwg~csd.cri.dk

9

The implementation relation in RSL is intended to allow you to replace a module with an
implementation of it in a larger context. This is what allows you to do 'development in the
large'. If module Ba uses Aa, and I have an implementation Al of Aa, then creating BI from
Ba by making it use Al instead of Aa will give implementation of Ba by B1.

This requirement on implementation means that we have to be careful about using concrete
types. For instance, if in Aa in our example we had a type definition

type T = Elem-set

then we cannot just write in Al

type T = Elem"

since the attempt to create B 1 will generate type errors.
This may seem like a problem that can be circumvented, but it is part of a deeper problem.

Implementation in RSL is based on theory extension: all the properties of a module must hold
in any implementation. This is important for rigorous development. We want to show that
our initial specification has the properties to meet the requirements. From then on we should
be able to extend, to add properties, but not to change them. The theory of lists is not an
extension of the theory of sets.

To avoid the problem of concrete types RSL allows sort definitions and axiomatic speci
fications. These are not always so easy to write, but there is general methodological advice.
You identify the 'type of interest' and decide on signatures for your functions. Then they are
easily categorised as generators or observers according to whether their result types depend
on the type of interest or not. Then usually some observers can be defined in terms of oth
ers, they become 'derived'. Then for the non-derived observers you write an axiom for each
observer-generator pair and each observer-constant pair.

This approach gives you the left hand-sides of all the axioms, with relative completeness
(you can observe any finitely generated term), without overspecification, and, with reasonable
care, consistency. It all sounds easy enough. But in practice it isn't. It turns out that some
right hand sides are hard to formulate.

Consider for example the generic abstract data type example, the stack. 'is_empty' is
probably an observer and 'pop' a generator, whether it just reduces the stack or also returns
the top element. We will assume the former for simplicity, so we will also have an observer
'pop'. Now according to our method we will need axioms of the form

[is_empty _pop 1 is_empty(pop(s)) = ...
[top_pop 1 top(pop(s)) == ...

Any suggestions for the right hand sides? You might decide to add another observer, like
'depth', say, to deal with the first. The second seems to need yet another observer. It seems
that the 'observer-generator axioms only' style may be difficult.

The standard approach is to say that, as with observers, some generators can be derived
from others. If we take 'empty' and 'push' as the basic generators then we can define the
generator 'pop' for non-empty stacks by

FACS Europe - Series I Vol. 1. No. 2. SprinR: 1994

10

[pop_push] pop(push(e,s)) == s

(How to write [pop_empty] is another issue that is not relevant to this discussion). We can also
go further (in RSL or in Larch, for example) and state that 'empty' and 'push' will be the only
generators (i.e. we won't add any later in development) so that we can do induction.

The standard objection from the model-based school is now "This may work for stacks but
what about queues. You never show those, do you." Well, we can show the corresponding
axiom for a queue:

[deq_enq]
deq(enq(e,q)) =

if is_empty(q) then empty else let q' = deq(q) in enq(e,q') end end

but I am not convinced we can argue that it is easy or obvious.
But there is a more fundamental objection to [deq~nq] than its difficulty, and this also

applies to [pop_push]. The problem is that such axioms preclude some obvious implementa
tions. The standard example for a (bounded) stack is an array with a pointer. Pushing an
element increments the pointer and inserts the element; popping the stack should involve just
decrementing the pointer. But this won't give you the equivalence in the axiom [pop_push]
unless you also clear the value above the pointer to some standard value. This is a waste of
time, as this value can never be accessed again by the stack operations. Similar problems arise
with the natural implementation of a (bounded) queue as a circular buffer.

Our abstract specifications are not sufficiently abstract: they preclude some implementa
tions that, I hope, we would want to regard as correct. What is to be done?

This is not a new problem. Some people have attempted to solve it by an abstraction
mechanism, a mechanism that weakens the equivalence in axioms like [pop_])Ushj to an obser
vational equivalence: 'stacks are equivalent when there are no observers tllat can distinguish
them'. The problem with this is that in general there seems to be no way to finitely present
the resulting theory. As a consequence the implementation relation in RSL would not have
a finite expansion. (This is why hide in RSL is purely syntactic rather than behaving like
an abstractor.) It is also not clear how to combine it with development: the meaning of the
observational equivalence is likely to change if we add new observers.

My solution is based, ironically, on using concrete types. It seems natural to model both
stacks and queues (as it happens) as lists. But I don't, for reasons I outlined above, want to
say

type Queue = Elem*

What I do instead is to say there should be an observer that can observe any queue as a list.
It should be clear that this will be true of my circular buffer implementation. I believe it to
be so for any implementation of a queue. My observer will be hidden because I don't want to
expose anything about the model I am using to users of my module, and in fact I intend not to
implement this observer in the final program: it is just a specification device. So I start with

type Queue
value lisLof : Queue -+ Elem*

Now it should be clear that all the other observers, like 'is_empty', become derived:

FACS Europe - Series I Vol. 1, No. 2, Sprin£ 1994

value
is_empty : Queue --. Bool
is_empty(q) == lisLof(q) = 0

11

This means that when I follow the observer-generator paradigm I only need to define axiomat
ically the relations between my one observer 'lisLof' and the generators:

[lisLoLempty]lisLof(empty) == 0,
[lisLoLenq]lisLof(enq(e,q)) = lisLof(q) ~ (e),
[lisLoLdeq]list_of(deq(q)) == tl lisLof(q) pre l'Vis_empty(q)

(I have presented the axioms for an unbounded queue for simplicity, but the bounded version
is only very slightly more complicated.)

Now I have axioms that are easier to write (and get right) and expressions using the con
venient operators for lists. The axioms only relate observers and generators, so I also have
a specification based on a concrete type that is demonstrably more abstract (in the sense of
permitting more implementations) than the traditional 'abstract' version.

RAISE Standardisation
Maurice N aftalin, Lloyd's Register,

tcsmpn~aie.lreg.co.uk

RAISE has finally set forth on The Longest Journey - standardisation. We regard
standardisation as important not only for the industrial credibility of RAISE, but
also because it provides a guarantee to the outside world that the definition of the
language and tools have been subjected to careful independent scrutiny. So our first
action has been to convene a proto-Review Panel, which will have the responsibility
of transforming the existing RSL documentation to standard-ready form - although
we anticipate that there maybe quite a lot of new work to do as well. We are
also asking existing RAISE users for suggestions for changes to the language to be
standardised (send to Bo Stig Hansen, bsh@id.dth.dk). We are hopeful that this
work will be able to take place under the auspices of the BSI, in the same way as Z
has recently been "adopted" without yet formally entering standardisation,
We would welcome participation in this activity, at any level, by anyone interested
in RAISE. Please contact me for further details.

FACS Europe - Series I Vol. 1. No. 2. $prinsr; 1994

12

Formal Methods Tools Database
Tim Denvir

timdenvir~cix.compulink.co.uk

With the blessings of FME (Formal Methods Europe) and BCS FACS (Formal Aspects of Computing
Science) I am initiating a database of information on formal methods tools. Details of the database
will available to all members of FACS and of FME via periodic announcements in the FACS Europe
newsletter. Under normal conditions suppliers of tools will pay a small fee to enter and maintain
details of their tools on the database, but readers of the database will have free access either through
FACS Europe or via ftp which is being arranged from several sources. The readership of FACS Europe
number about 700, a highly focussed list of computer scientists interested in formal methods.

I am offering to those who demonstrate their tools at either the FACS Refinement Workshops or
at the FME Symposia a year's free entry of details of their tools on to the database. Those who
demonstrated their tool at FME'93 or the VIth Refinement Workshop will be eligible for free entry
during 1994 and those who demonstrate at FME'94 will be eligible for free entry during 1995.

This database will therefore be a service to FACS and FME members and an additional free service
to demonstrators at FME and Refinement Workshops. For information on how to enter details of a
tool, the template to fill in etc. please e-mail me at the address below.

I shall require that in the database, descriptions of tools should be without hype, comparisons
with other tools or claims which are not objectively determinable. This means that the use of words
like "good", "excellent", "mature", "industrial quality" should be avoided. I reserve the right to edit
entries in the description, but if I do so, the final version will be submitted to the tool supplier for
agreement before entering it in the database. I hope that it will not often be necessary to do this. The
choice of information in the record has been guided by the appendix in the proceedings of FME'93,
LNCS ,670.

I am still trying to determine what the normal terms should be for suppliers, who have not
demonstrated at FME or Refinement Workshops; I wish to find a price which leaves me not burdened
with a large amount of unpaid work and yet which tool suppliers will feel is value for money. Some
general principles are: each renewal of the entry of a tool carries an opportunity to update the details;
the fees are on a per tool basis; suppliers will not be able to renew for more than one year at a time;
and updating details will always incur a fee, even for those who started with free entry. First-time
demonstrators at FME or Refinement Workshops will have a year's free entry for that tool into the
database; demonstrators whose tools are already resident will be granted a waiving of six months' fees.
The database will be updated with all the updates received and paid for to date every three months;
thus any update will be accessible within three months of receipt and payment.

The above terms are tentative and I need to work on them in more detail; but they express my
intention of how the database will be operated. When it has all been operating for some time I may
think of extending the operation to include independent assessments, but I plan to start with simple
beginnings.

Meanwhile, please propose a demonstration of your tool to FME'94; if you demonstrate there,
provided there are no unforeseen circumstances and the scheme is running, you will be entitled to
a free year's entry (six months if your tool already has free entry resulting from demonstrating at a
previous event).

At present there are 24 tools in the database summarised overleaf.

FACSEurope-"':- Series r Vbl. 1. No. 2. Spring 1994

13

Formal Methods Tools Database

Name of Tool Supported I Contact Name I email

B-Toolkit Abstract Machine Ib Holm Sorensen Ib.Sorensen@comlab.ox.ac.uk
Notation

Boyer-Moore theo- Boyer-Moore logic William D. Young young@cli.com
rem prover
CADiZ Z core language and David Jordan yse@minster.york.ac.uk -

mathematical toolkit
Centaur generic J anet Bertot jmi@sophia.inria.fr
Centaur-VDM VDM-SL Phillippe Facon facon@cnam.cnam.fr
environment
Design/CPN Coloured Petri Nets John Moelgaard jm@elctr.dk
DisCo DisCo language Kari Systa ks@cs.tut.fi
DST-fuzz Z Hans-Martin Horcher
ExSpect Hierarchical coloured L.J.A.M. Somers wsinlou@win.tue.nl

timed Petri Nets
FDR CSP David Jackson David.J ackson@prg.ox.ac.uk
Formaliser Z Susan Stepney susan@logcam.co.uk
ForMooZ MooZ (Modular Silvio Lemos Meira srlm@di.ufpe.br

Object-Oriented Z)
IFAD VDM-SL BSI-VDM Poul Boegh Lassen poul@ifad.dk
Toolbox
IPTES Toolset SA/RT, SA/SD Rene Elmstrom rene@ifad.dk
LOTOS Toolbox LOTOS A.W. van der Vloedt vdvloedt@ita.nl
Mathias Prolog (various Dr. Ron Knott R.Knott@surrey.ac.uk

systems)
Mural VDM-SL (subset) Dr. Brian Ritchie br@inf.rl.ac.uk
Oyster Whelk Martin-Lof Prof. Alan Bundy, geraint@ai.ed.ac.uk
CLaM Barnacle Type Theory, Prolog, Dr. Geraint

Goedel, Lazy ML A. Wiggins
Pet Dingo Estelle Brett W. Strausser ·strauss@osi.ncsl.nist.gov
ProofPower HOL, Z Roger B. Jones R.B.Jones@uknet.ac.uk
PVS Dr. Natarajan shankar@csl.sri.com

Shankar
RAISE RSL RAISE raise@csd.cri.dk
SpecBox VDM-SL Peter Froome pkdf@dcs.ed.ac.uk

TAV CCS
Klm li. Larsen,

{kgl,ask }@iesd.auc.dk Arne Skou

At this stage please contact the tool suppliers direct to obtain more details of their tool.

FACS Europe - Series I Vol. 1. No. 2. Sprinl 1994

14

Recent books column

Cliff Jones

February 4, 1994

I agreed to produce listings of books which relate to the
purpose of this newsletter. Authors should send references
(BibTeX format preferred) to cb j@cs . man. ac . uk. For
this edition, I have gone back to 1990 and obtained input
by putting out a request on comp . specifica t ion.

Authored books: [MP92, Mid93, Mor90, BA90, EM90,
Hen90, Daw91 , LBC90, AI91, WH93, 0di90, BW90,
JJLM91, Jon90, BFL +94, Gro92, Mos92, Ost90, Fra92,
WSL93 , Wor92, Spi92, vdS93, 01d91, A091, BA93,
PST91, TZ88, Win93, DS90, Dil90, GS93, Inc92, Mey90,
Fei93]

Edited book: [LH94a, Yon90, Par90, Bae90, JS90,
FvGGM90, GH93, MW93, Ros94, Coh90, Hay93, LH94b,
GM93, Mel93]

Proceedings: [Ame91, IM91, Nie93 , BG91, PT91a,
PT91b, BJ90, GJ93, WL93"Bes93, BHL90]

References

[AI91]

[Ame91]

[A091]

[BA90]

[BA93]

[Bae90]

[Bes93]

D. Andrews and D. Ince. Practical Formal
Methods with VDM. McGraw-Hill, 1991.

P. America, editor. ECOOP' 91 , volume
612 of Lecture Notes in Computer Science.
Springer-Vedag, 1991.

KrzysztofR Apt and Ernst-RUdiger Olderog.
Verification of Sequential and Concurrent
Programs. Springer-Vedag, 1991. ISBN 0-
387-97532-2,3-540-97532-2.

M. Ben-Ari. Principles of Concurrent and
Distributed Programming. Prentice Hall,
1990. ISBN 0-13-711821-X.

M Ben-Ari. Mathematical Logic for Com
puter Science. Prentice Hall International,
1993. ISBN 0-13-564139-X.

J. C. M. Baeten, editor. Applications of Pro
cess Algebra. Cambridge University Press,
1990.

E. Best, editor. CONCUR'93: 4th Interna
tional Conference on Concurrency Theory,
volume 715 of Lecture Notes in Computer
Science. Springer-Vedag, 1993.

[BFL +94] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lind
say, R. Moore, and B. Ritchie. Proof in VDM:
A Practitioner's Guide. FACIT. Springer
Vedag, 1994. ISBN 3-540-19813-X.

[BG91] J. C. M. Baeten and J. F. Groote, editors.
CONCUR'91 - Proceedings of the 2nd In
ternational Conference on Con currency The
ory, volume 527 of Lecture Notes in Com
puter Science. Springer-Vedag, 1991.

[BHL90] D. Bj~rner, C. A. R. Hoare, and H. Lang
maack, editors. VDM' 90: VDM and Z -
Formal Methods in Software Development,
volume 428 of Lecture Notes in Computer
Science. Springer-Vedag, 1990.

[BJ90] M. Broy and C. B. Jones, editors. Program
ming Concepts and Methods. North-Holland,
1990.

[BW90]

[Coh90]

[Daw91]

[Dil90]

[DS90]

[EM90]

J. C. M. Baeten and W. P. Weijland, edi
tors. Process Algebra. Cambridge University
Press, 1990.

Edward Cohen. Programming in the 1990's,
An Introduction to the Calculation of Pro
grams. Texts and Monographs in Computer
Science. Springer-Vedag, 1990. ISBN 3-
540-97382-6.

J. Dawes. The VDM-SL Reference Guide.
Pitman, 1991.

Antoni Diller. Z - An Introduction to Formal
Methods. John Wiley and Sons, 1990. ISBN
0-471-92489-X.

Edsger W Dijkstra and Carel S Scholten.
Predicated Calculus and Program Seman
tics. Springer-Vedag, 1990. ISBN 0-387-
96957-8,3-540-96957-8.

H. Ehrig and B. Mahr. Fundamentals of Al
gebraic Specification 2: Module Specifica
tions and Constraints. EATCS Monographs
on Theoretical Computer Science. Springer
Vedag, 1990.

FACS Europe - Series .1 Vol." 1. No. 2. Spr.inl!: 1994

[Fei93] Loe Feijs. A Formalisation of Design Meth- [JJLM91]
ods - a Lambda-calculus approach to system
design with an application to text editing.
Ellis Horwood, 1993. ISBN 0-13-106113-5.

[Fra92] Nissim Francez. Program Verification. Ad- [Jon90]
dison Wesley, 1992. ISBN 0-201-41608-5.

C. B'. Jones, K. D. Jones, P. A. Lindsay,
and R. Moore. mural: A Formal Develop
ment Support System. Springer-VerIag, 1991.
ISBN 3-540-19651-X.

15

C. B. Jones. Systematic Software Develop
ment using VDM. Prentice Hall International,
second edition, 1990. ISBN 0-13-880733-7.

[FvGGM90] W H J Feijen, A J M van Gasteren, D Gries,
and J Misra, editors. Beauty is our Business [JS90] C. B. Jones and R. C. F. Shaw, editors. Case

Studies in Systematic Software Development.
Prentice Hall International, 1990. ISBN 0-
13-116088-5.

[GH93]

[GJ93]

[GM93]

[Gro92]

[GS93]

[Hay93]

[Hen90]

[IM91]

[Inc92]

- A Birthday Salute to Edsger W Dijkstra.
Springer-Vedag, 1990. ISBN 0-387-97299-
4,3-540-97299-4.

John V. Guttag and James J. Homing. Larch:
Languages and Toolsfor Formal Specifica
tion. Texts and Monographs in Computer
Science. Springer-Verlag, 1993. ISBN 0-
387-94006-5/1SBN 3-540-94006-5.

M-C. Gaudel and J-P. Jouannaud, editors.
TAPSOFT93: Theory and Practice of Soft
ware Development, volume 668 of Lecture
Notes in Computer Science. Springer-Verlag,
1993.

M. J. C. Gordon and T. F. Melham, editors.

[LBC90]

[LH94a]

[LH94b]

J. T. Latham, V. J. Bush, and I. D. Cottam.
The Programming Process: An Introduction
Using VDM and Pascal. Addison-Wesley,
1990.

Kevin Lano and Howard Haughton, editors.
Object-Oriented Specification Case Studies.
Prentice Hall, 1994. ISBN 0-13-097015-8.

Kevin Lano and Howard Haughton, editors.
Object-oriented Specification Case Studies.
Prentice Hall International, 1994. ISBN 0-
13-097015-8.

Introduction to HOL: A theorem proving en- [Me193] T. Melham, editor. Higher Order Logic and
Hardware Verification. Cambridge Tracts in
Theoretical Computer Science. Cambridge
University Press, 1993. ISBN 0-521-41718-
X.

vironmentfor higher order logic. Cambridge
University Press, 1993. ISBN 0-521-44189-
7.

The RAISE Language Group. The RAISE
Specification Language. BCS Practitioner
Series. Prentice Hall, 1992. ISBN 0-13-
752833-7.

David Gries and Fred B Schneider. A Logical
Approach to Discrete Math. Springer-Verlag,
1993. ISBN 0-387-94115-0,3-540-94115-0.

lan Hayes, editor. Specification Case Studies.
Prentice Hall International, second edition,
1993.

M. Hennessy. The Semantics of Program
ming Languages. John Wiley, 1990.

T. Ito and A. R. Meyer, editors. TACS'9J -
Proceedings of the International Conference
on Theoretical Aspects of Computer Science,
Sendai. Japan, volume 526 of Lecture Notes
in Computer Science. Springer-Verlag, 1991.

DC Ince. An Introduction to Discrete Math
ematics. Formal System Specification and Z.
Oxford University Press, 1992. ISBN -19-
853836-7.

[Mey90]

[Mid93]

[Mor90]

[Mos92]

[MP92]

[MW93]

Bertrand Meyer. Introduction to the Theory
of Programming Languages. Prentice Hall
International, 1990. ISBN 0-13-498502-8.

Cornelius A. Middelburg. Logic and Speci
fication: Extending VDM-SL for advanced
formal specification. Chapman and Hall,
1993.

Carroll Morgan. Programming from Specifi
cations. Prentice-Hall, 1990.

Peter D. Mosses. Action Semantics. Num
ber 26 in Cambridge Tracts in Theoreti
cal Computer Science. Cambridge Univer
sity Press, 1992.

Zohar Manna and Amir Pnueli. The Tempo
ral Logic of Reactive and Concu"ent Sys
tems: Specification. Springer-Verlag, 1992.

Ursula Martin and Jeannette M. Wing, edi
tors. First International Workshop on Larch.
Dedham 1992. Workshops in Computing.
Springer-Verlag, 1993. ISBN 3-540-19804-
0,0-387-19804-0.

FACS Europe - Series I Vol. 1. No. 2. Spring: 1994

16

[Nie93]

[Odi90]

[Old91]

[Ost90]

[par90]

[PST91]

[PT91a]

[PT91b]

[Ros94]

[Spi92]

[1288]

[vdS93]

Oscar M. Nierstrasz, editor. ECOOP' 93:
Object-Oriented Programming, volume 707
of Lecture Notes in Computer Science.
Springer-Verlag, 1993.

P. Odifreddi, editor. Logic and Computer
Science. Academic Press, 1990.

E-R Olderog. Nets, Terms and Formulas.
Cambridge University Press, 1991. ISBN
0-521-40044-9.

Jonathan S. Ostroff. Temporal Logic for
Real-Time Systems. Advanced Software
Development. Reserach Studies Press (dis
tributed by John Wiley & Sons, 1990. ISBN
0471 924024.

H. A. Partsch. Specification and Transfor
mation of Programs: A Formal Approach
to Software Development. Springer-Verlag,
1990.

Ben Potter, Jane Sinclair, and David Till. An
Introduction to Formal Specification and Z.
Prentice Hall International, 1991.

S. Prehn and W. J. Toetenel, editors. VDM' 91
- Formal Software Development Methods.
Proceedings of the 4th International Sympo
sium of VD M Europe, Noordwijkerhout, The
Netherlands, October 1991. VoU: Confer
ence Contributions, volume 551 of Lecture
Notes in Computer Science. Springer-Verlag,
1991.

S. Prehn and W. J. Toetenel, editors. VDM'91
- Formal Software Development Methods.
Proceedings of the 4th International Sympo
sium of VD M Europe, Noordwijkerhout, The
Netherlands, October 1991, Vol.2: Tutorials,
volume 552 of Lecture Notes in Computer
Science. Springer-Verlag, 1991.

A. W. Roscoe, editor. A Classical Mind:
Essays in Honour ofC. A. R. Hoare. Prentice
HalI,1994.

J.M. Spivey. The Z Notation: A Reference
Manual. Prentice Hall International, second
edition, 1992.

J V Tucker and J I Zucker. Program Correct
ness over Abstract Data Types, with Error
State Semantics. North-Holland, 1988. ISBN
0-444-70340-3.

Jan L A van de Snepscheut. What Computing
is all About. Springer Verlag, 1993. ISBN
0-387-94021-9,3-540-94021-9.

FACS Europe - Series I Vol. 1. No. 2. Spring 1994

[WH93]

[Win93]

[WL93]

[Wor92]

[WSL93]

[Yon90]

M. Woodman and B. Heal. Introduction to
VDM. McGraw-Hill, 1993.

Glynn Winskel. The Formal Semantics of
Programming Languages. The MIT Press,
1993. ISBN 0-262-23169-7.

J. C. P. Woodcock and P. G. Larsen, edi
tors. FME'93: Industrial-Strength Formal
Methods, volume 670 of Lecture Notes in
Computer Science. Springer-Verlag, 1993.

J. B. Wordsworth. Software Development
with Z. Addison-Wesley, 1992.

M. Weber, M. Simons, and Ch. Lafontaine.
The Generic Development Language Deva:
Presentation and Case Studies, volume 738
of Lecture Notes in Computer Science.
Springer-Verlag, 1993. ISBN 3-540-57335-
6.

Akinori Yonezawa, editor. ABCL: An Object
Oriented Concurrent System. MIT Press,
1990. ISBN 0-262-24029-7.

The VDM Forum
A new e-mail list for researchers, practitioners and teachers

A new e-mail list has been set up for discussions on any aspect of
system specification and development using the Vienna Development
Method (VDM). Anyone with an interest in VDM (research, teaching
or industrial) is welcome to subscribe to the list.

The group is informal, friendly and wide-ranging. Topics for
discussion will include, but are not limited to:

Problems, tips and techniques of specification and refinement;

Information and discussion about tools;

Conference, course, workshop and seminar announcements;

Reports on academic and industrial projects;

VDM-SL semantics and proof theory;

The VDM-SL Standard.

Associated with the list will be a repository of files from which
members of the list can obtain copies of public documents including
The VDM Bibliography, the Draft Standard, project reports and the
discussion list archives.

To subscribe, send an e-mail message to

mailbase@mailbase.ac.uk

containing the following line alone as the message body:

join vdm-forum Joe Bloggs

where Joe Bloggs is your name (two words only; complex names must
be hyphenated, e.g. Joe van-der-Bloggs). The subject line is immaterial.
Your e-mail address will be picked up automatically. You will be sent
an information file on how to post etc. on joining the list.

The vdm-forum list is unmoderated, but is administered on a voluntary basis by John Fitzgerald at
Newcastle University (vdm-forum-request@mailbase.ac.uk).

The vdm-forum list is provided by courtesy of the UK Network Information Services Project and
JANET. The list may not be used for commercial gain.

17

FACSEurope - Series I Vol. 1. No. 2. Sprinl!: 1994

18

Formal Computer Science in JFIT
Dan Simpson

University of Brighton
ds33~unix.btom.ac.uk

This year the JFIT Annual Report comprises six volumes: an overall report is supported by detailed
reports on the programme areas in VLSI technology, advanced devices and materials, systems archi
tectures, communications and distributed systems, and systems engineering. Together these reports
form the best overview available of government funded research in the United Kingdom. They are
available (free) from TPS1a, DTI, 151 Buckingham Palace Road, London SW1W 955, England.

The overview volume contains a number of reports from the various divisions of JFIT, including
education and training. There are also detailed lists which include the number of research students
allocated to various institutions and the courses which SERC supports.

Here we shall concentrate on the systems engineering work and more particularly the sub-programme
within that area called formal computer science. Overall within the systems engineering area there
were 300 grant applications in the academic-only programmes with a requested value of £23m.

The report states a concern that, although the quality remains high, only a small proportion of
these - approximately 17% - will eventually be funded.

The figures for the FCS area in the year 92/93 are as follows. Total applications 68 with value
£9,690k. Of these, 17 alpha rated projects were funded with a value of £2,410k but 37 alpha rated
projects remain unfunded with a value of £5,490k. There were six beta rated projects and 8 rejected.

This year saw the end of the Logic for IT initiative, which has been a major success in this area.
For further details see EATC5 Bulletins 40 and 51. The community still waits with baited breath
whether a follow-on programme will be announced.

Within the area of collaborative programmes probably the one which was most relevant to readers
was the safety critical systems programme. The programme has been reviewed with the conclusion
that the workplan has now been covered. The SERC funding has been fully committed and almost
all the DTI funding was committed. From the two calls 52 proposals were received; 15 first call and
21 second call projects have been approved and are now running. The programme involves some 80
industrial collaborators from a large cross-section of UK industry.

Within the overall systems engineering area there are 159 grants held by HEIs with a total value
of £21,530k; for the formal computer science area there are 66 grants with a value of £9,772k. As can
be readily seen, FCS is by far the most popular area both in number of grants and in value.

Within the FCS programme there are 36 universities and 32 companies involved. The universities
with the number of projects and £k of grant are listed overleaf.

All the information in this section is abstracted from the JFIT Annual Report. Being Government
statistics they may not be too accurate! A very simple analysis shows a number of inconsistencies but
at a broad level they give a picture of what is going on. For more details you should obtain copies of
the reports from DTI at the address given above.

Of the 66 FCS grants the software engineering volume of the annual report contains one page
summaries of the following projects. Presumably the other grants did not have reports ready for the
publication date.

FACS Europe - Series I Vol. 1. No. 2. SprinR: 1994

Formal Computer Science Projects

D Sannella - Edinburgh Computer Assisted
Formal Reasoning: Formal Development of Pro
grams from Specifications

J W Lloyd - Bristol Foundations of Meta-Pro
gramming in Logic Programming

D A Turner - Kent Machine Supported Verifi
cation of Functional Programs

M Fourman - Edinburgh Formally Based Sys
tems Design Tools

C P Stirling - Edinburgh Modal and Tempo
ral Mu-Calculi

S B Cooper. Leeds Partial Functions, Non De
terministic Computations and Polynomial Time
Enumeration Reducibility

J K Truss - Leeds Equality in Logic Program
ming Word Problems and Unification

CAR Hoare - Oxford The Formal Design of
Medical Diagnostic Computer Programs

J V Tucker· Swansea Logic Programming, Ab
stract Data Types and Many-Sorted Model The
ory

D Rydeheard • Manchester Programming En
vironments and Categorical Logic (Il)

A J Sinclair· Edinburgh Quantitative Analy
sis of Stochastic Systems in Computer Science

A J R G Milner - Edinburgh Declarative Lan
guages and Applied Semantics

R Kennaway • East Anglia Generalised Graph
Rewriting as a General Computational Model

C M Holt • Newcastle Embedding Concurrent
and Imperative Programming Constructs in In
terval Temporal Logic

TRodden - Lancaster Database Requirements
for Co-operative Working

M Levene - University College, London
Development of Software Engineering Database
System Based on Hypernode Model.

D M Gabbay - Imperial Syntactical Founda
tions of Non-monotonic Reasoning

A M Pitts • Cambridge Verifying ML Programs
using Evaluation Logic

R Burstall - Edinburgh Constructive Logic as
a Basis for Program Development

K Bennett - Durham A Proof Theory for Pro
gram Refinement and Equivalence

G D Plotkin - Edinburgh Logical and Seman
tical Frameworks

M M Y Croft - Cambridge Types, Strictness
Analysis and Reduction Machines

R G Wilson - Warwick Symmetry Breaking in
Neural Networks for Visual Pattern Recognition

C P Stirling - Edinburgh Verification of Con
current Infinite State Systems

19

D Simpson - Brighton D€veloping and Using
Formal Models of Inheritance

R Cooper - Glasgow Configurable Data Mod
els

H Barringer - Manchester Model-checking U n
bounded State Space Programs

I Hodkinson - Imperial Theory of Interval Time
Handling

M Shanahan - Imperial Logic of Knowledge
Representation

D Sannella - Edinburgh Algebraic and Logical
Foundations of Formal Software Development

J Darlington - Imperial Definitional Constraint
Programming: A Foundation for logically Cor
rect Concurrent Systems

A G Cohn - Leeds Logical and Computational
Aspects of Spatial Reasoning

A G Cohn - Leeds Declarative Extensions of
Logic Programming

I A Stewart - Swansea Descriptive Complexity
Theory

C M N Tofts - Swansea Process Semantics for
Simulation and its Applications

D Sannella - Edinburgh Formal Development of
Modular Programs in Extended ML

D Sannella - Edinburgh Formal Development of
Modular Programs for Algebraic Specifications:
Computing Support

M Thomas - Glasgow Further Verification Tech
niques for LOTOS Specifications

CAR Hoare - Oxford Probably Correct Hard
ware/Software Co-design

K J Turner - Stirling FORMOSA
(Formalisation of Open Systems Architecture)

Projects and Grants

Bath (1 - 230)
Birkbeck (1 - 99)
Birmingham (1 - 275)
Brighton (1 - 109)
Cambridge (3 - 264)
City (2 - 506)
Cranfield (1 - 150)
Durham (1 - 94)
East Anglia (1 - 25)
Edinburgh (10 - 1962)
Essex (1 - 54)
Exeter (1 - 388)
Glasgow (3 - 84)
Heriot Watt (2 - 517)
Hertfordshire (1 - 55)
Imperial (3 - 467)
Keele (1 - 102)
Kent (1 - 164)

Lancaster (1 - 243)
Loughborough(3 - 249)
Manchester (2 - 380)
Newcastle (2 - 184)
Open (1 - 86)
Oxford (1 - 97)
Paisley (1 - 304)
QMWC (1 - 92)
Royal Holloway(3 - 451)
St Andrews (1 - 70)
Stirling (1 - 61)
Surrey (1 - 110)
Sussex (1 - 126)
Swansea (1 - 96)
Ulster (1 - 41)
UMIST (1 - 84)
Warwick (2 - 201)
York (7 - 1403)

FACS Europe - Series I Vol. 1. No. 2. Sprinl!: 1994

20

Report on Formal Methods Tutorial
Angela Alapide

Aerospace Systems Division
Space Software Italia

alapide<Ossi. it

Space Software Italia (SSI) is a company based in Taranto, Italy, specialized in the design and imple
mentation of aerospace systems, which has identified as strategic for future exploitation the partici
pation in LaCoS, an ESPRIT project aimed at demonstrating the applicability of Formal Methods to
the industrial development of software. SS! has been recently in charge of disseminating theoretical
information on Formal Methods and of reporting about industrial experiences related to their use in
practise, within the companies controlled by Alenia, its mother company.

Among other activities performed in this frame, SS! gave a half-day tutorial to managers and
engineers coming from the Alenia Corporate Divisions interested in the Formal Methods technology.
The tutorial set out the following objectives:

• Introduce Formal Methods from a methodological perspective in terms of: definitions; indications
on the ways in which they can be used for the production of high quality software; kind of support
they can provide to the various phases of the software lifecycle.

• Give to the attendees an appreciation of what a formal method looks like. The formal method
presented was RAISE. The presentation focused much on the RAISE Specification Language
(RSL) than on the method. Specifically the tutorial included a large description of RSL con
structs and of the various specification styles supported by RSL.

• Point out the pre-requisites and the problems, together with possible solutions, related to the
integration of Formal Methods in the existing software development environments.

The tutorial was attended by 20 people, newcomers to Formal Methods, who expressed interest on the
subject "Formal Methods". They participated actively to the tutorial by SUbmitting to the presenters
many questions on the subjects treated and, moreover, raising further issues. S'Jme concerns were
expressed by the Quality Assurance responsibles regarding: the need of establishing a sort of mapping
between products associated to traditional development processes and their corresponding (if any)
when a formal approach is applied; the changes in the effort distribution required by the adoption
of Formal Methods. Other problems pointed out by most attendees were related to the technology
transfer process and the need of having Formal Methods integrated with the everyday software devel
opment practices. Nevertheless, no cultural prevention was perceived in the attendees and, moreover,
people involved in the development of safety-critical software, feel Formal Methods are techniques
whose adoption will be in the mid-long term more and more required by their customers.

FACS Europe - Series I Vol. 1. No. 2. Sprinli/: 1994

21

Report of the BCS FACS Sixth Refinement Workshop
5 - 7 January 1994

The Sixth Refinement Workshop was held at City University on 5-7 January 1994. It follows
five previous workshops held at approximate annual intervals; the last was in January 1992,
again in London at Lloyd's Register of Shipping.

The sixth workshop was plagued with curses: two of the invited speakers were unable to
come at the last minute owing to unforeseeable circumstances, the session on the second day
was interrupted by a (genuine) fire alarm for over an hour, and on the third day David Till,
the joint workshop chairman and local organiser, slipped on the very icy pavements and broke
his wrist. Despite these troubles, the workshop was a great success: the standard of the papers
and their delivery was exceptionally high and the audience, at just over 50 in number from ten
different countries, smaller than in previous years, participated actively with lively questions
and discussion.

David Garlan's invited paper, "Using Refinement to Understand Architectural Connection",
explored the use of refinement to specify and re-use the connectors between components in a
system's architecture. Common architectural ideas such as client-server ports and connections
were illustrated as interacting protocols defined in a subset of CSP.

Session 1 comprised three papers and the first of several opportunities to see tool demon
strations. The first paper was by Kevin Lano and Howard Haughton, "Improving the Process of
System Specification and Refinement in B". They saw two barriers to the widespread adoption
of formal methods in the development of high integrity systems: that there are few methods
for integrating formal methods with current practice such as ERA models, especially useful for
formalising the early stages of the life-cycle, and the difficulty of performing proofs in practice,
especially of refinements. The paper demonstrated how ERA models, with inheritance and spe
cialisation, can be expressed in the Abstract Machine language of the B method. Refinement
to code was illustrated and the proof obligations identified. The 'formalisation of a dynamic
model was shown using aspects of a lift system as an example.

The "Formal development of Authentication Protocols" by Pierre Bieber and Nora Boulahia
Cuppens again used B to define a specification of a protocol with various security aspects involv
ing malicious agents. Cryptographic keys are used to ensure the required security properties
and refinement properties shown. The authors used the B-tool to build and verify the various
specifications and refinements in the paper.

"Testing and Safety Analysis of AM Specifications" by Howard Haughton and Kevin Lano
again used Jean-Raymond Abrial's Abstract Machine language (AM) as a formal medium
for specifications. A thesis of the paper is that safety analysis is related to testing. A tree
can be constructed in which the top node denotes the conjectured fault and the lower nodes
denote causes for the fault. By using substitution axioms establishing post-conditions for AM
expressions, a means of selecting test cases is shown. This is then related to a fault tree analysis
in a safety analysis context.

The second invited speaker, Willem-Paul de Roever, was unable to be present owing, we
understand, to ill-health. His paper, co-authored by a team of four, was most ably delivered by
Jan Peleska. I think he deserves a special mention because, not only did he step into the breach
at short notice, but he succeeded in holding the audience's interest with a lucid talk despite
being interrupted by an evacuation of the workshop following a fire alarm. The paper, "Formal
Semantics for Ward and Mellor's Transformation Schema", addressed the divide between a.

structured analysis and design method and formal approaches; this is considered an important
issue at the present time, as it seems to be a way of moving formal approaches further towards
the requirements analysis end of the life-cycle. Ward-MelIor's method is claimed to be used

FACS Europe - Series I Vol. 1. No. 2, Sprinll 1994

22

by 1/6 of all system specifiers in the USA but, the authors state, is in places inconsistent
or ambiguous and does not provide any characterisation of real-time behaviour with enough
rigour to express or deduce specific timing properties. However the method contains enough
indications to enable attempts at reconstructing its intended meaning. The paper identifies
a number of these ambiguities, explores the plausible intended meanings and proposes some
semantics. These are presented as labelled transitions in the style of Plotkin.

In session 2 Lindsay Groves presented a case study in combining program specialisation
and data refinement, "Deriving Language recognition Algorithms". His paper showed very
eloquently how several language recognition algorithms could be derived from a single abstract
algorithm. He derived a LR(l) parser via specialisation and refinement, deferring data refine
ment until later in the development process.

The second paper in session 2 was by J. von Wright: "Program Refinement by Theorem
Prover". He showed how HOL and the "window inference system" can be used to prove
refinements, according to Back's refinement calculus. The window inference system is a tool
developed by Jim Grundy (and reported in the fifth Refinement Workshop) which supports a
transformational style of reasoning with HOL. The window inference tool enables refinements
of expressions to be deduced from refinements of sub-expressions ("windows"). Weakest pre
condition semantics presented as a formal system, the resulting predicate transformation system
can be embedded into HOL. The predicate transformations must have certain "healthiness"
conditions, e.g. monotonicity with respect to statement. composition and predicate conjunction,
certain continuity conditions etc. The chosen predicate transformations may be implementable,
but not necessarily so: they could be more general and include, for example, angelic non
determinism. D~ta refinement is achieved through abstraction and (inver:;e) representation
relations applied locally over windows.

The first paper in session 3 was "Co-refinement" by Mike Ainsworth and Peter Wallis. This
treats of the situation where one has two or more specifications with possibly different frames
and/or signatures implicit in their pre and post-conditions, each specification representing a
different "viewpoint" of a user or designer of part of the system. The specifications can be
combined using a number of different combinators, including union which if it is applied in a
state satisfying both pre-conditions, will guarantee that both post-conditions are satisfied. Co
refinement is a partial ordering relation between specifications which is equivalent to refinement
if the signatures of the specifications are the same, and which has useful properties when related
to the various forms of specification combination.

The second paper of session 3 was by Raymond Nickson and Lindsay Groves: Metavariables
and Conditional Refinements in the Refinement Calculus. This describes two techniques for the
refinement calculus which facilitate goal-directed development. Decisions abc-ut the precise form
of refinement steps can be deferred, so that high-level choices can be expressed as soon as they
are appropriate. Metavariables are place-holders for components of partly developed programs
which will be instantiated when they are suitably constrained by later refinements. Conditional
refinements allows the development of alternative refinements into a guarded command set. A
rigorous way of applying these techniques was described and illustrated.

The last paper in session 3 was "Machine Code Programs are Predicates too" by Theodore
Norvell. This considered two kinds of computational behaviour: that specified by high-level
programs in terms of source level variables and that specified by machine language programs
in terms of registers and memory. The two are related by using predicate logic as a common
framework. The relationship serves as a specification for a code generator. The idea clearly
has relevance for provably correct compiler generation.

The third and final invited paper was from Steve Schuman and David Pitt on "Object
Oriented Formal Specification and Behavioural Refinement". The example cnosen to illustrate

FACS Europe - Series I Vol. 1, No. 2, Sprin2: 1994

23

the principles was a lift system. A Z-style of notation was used to express the state of the
system and also its behavioural properties in terms of state-transitions associated with events.
Further extensions and elaborations were explored.

The fourth session started with a paper from XU Qiwen and He Jifeng. They explore alge
braic laws of parallel programming with shared variables. The programming language chosen
was a variant of that of Owicki and Gries. Non-deterministic choice plays an important part
in the refinement calculus of statements in this language, being equivalent to a g.l.b. operator
w.r.t. the refinement ordering. For me, this put into a new context the non-deterministic as
pects of Dijkstra's guarded commands; although they do not involve parallelism, if one equips
them with a refinement order, then a non-deterministic operator such as Hoare's union operator
completes the non-deterministic aspects and, I think, turns the refinement order into a lattice
and provides the set of statement forms with a pleasing symmetry. This may be an obvious
insight, but because of it I found this paper particularly rewarding.

The second paper in session 4 was from Yves Ledru and Pierre Collette: Environment
based Development of Reactive Systems. They approach the specification of reactive systems
with the environment as the starting point of the development. Lamport's TLA framework is
used and the canonical case study of the dining philosophers shows how the method prevents
over-specification. The environment provides a context for proving the design and validation
activities.

In the fifth and last session, Kevin Lano's paper: "Refinement in Object Oriented specifica
tion Languages" addressed the semantics and refinement of object oriented Z. He argued that
a clear semantic framework ~an be developed based upon the standard Z specification language
which can inClude simple forms of temporal reasoning and the treatment of object identity. It
supports global and local reasoning about the properties of specifications.

The second paper of the session was "Operation Semantics with Read and Write Frames"
by Juan Bicarregui. This paper explored in detail the semantic models of the "external" clauses
in VDM specifications, which bind the free variables which appear in operation pre and post
conditions and also indicate the sets of state variables which implementations are allowed to
read and write. The consequences are more subtle than most people have realised and the
author proposed an extension to the denotational model of operations which captures this
informal understanding of the read frame. The exploration uses notions of satisfiability (or
equivalently, refinement) and was illustrated very usefully with specific cases and diagrams.

The final paper was "Proof obligations for Real-Time Refinement" by Colin Fidge. This
extends existing algorithm design rules for refining Z specifications to structured high-level
implementations with proof obligations which preserve specified real time behaviour in addition
to the normal functional behaviour. A linear time model is used, specified in Z, and related to
refinement in the context of real time requirements, as may be found in some safety applications.

Seven tools were demonstrated. Contacts for most. of these are provided elsewhere in this
newsletter, in the article about the Formal Methods Tools Database. The tools demonstrated
were: CADIZ, FDR, Formaliser, Matthias, Oyster/Whelk/CLaM/Barnacle, RAISE, Z.

City University provided an efficient and amenable environment for the workshop with
working facilities for the demonstrations, a very pleasant workshop dinner, a book display by
Springer in whose "workshops in computing" series we expect to publish the proceedings. FACS
warmly thanks City university, the organisers and the contributors for a most successful event.

Finally, I apologise in advance for any misconceptions or misrepresentations. Any errors
are mine and any differences in detail of reporting should be attributed to my inconsistent
concentration during the event.

Tim Denvir

FACS Europe .:- Series I Vot 1. No. 2. Sprinp;1994

24

Report of the 1993 BCS-FACS Christmas Meeting

Formal Aspects of Object Oriented Systems

was held at the Department of Computing,
Imperial College of Science Technology and Medicine (London)

on December 16th and 17th 1993.

The aims of the meeting were to review recent work on the logical basis of Object-Oriented
structure, formal support for Object-Oriented system development, the application of Object
Oriented structuring to the development of large scale specifications and formal treatment of
con currency in Object-Oriented systems. It was well attended and we were ably hosted by
Imperial College. The standard of presentation was very high with speakers introducing some
parallel processing with the formal and explanatory threads of the talks concurrently presented.

SESSION 1
The first session (on December 16th) was principally concerned with the application of Cate
gory theory to specification structuring and the first talk was by Jose Fiadeiro (University of
Lisbon) and Tom Maibaum (Imperial College): Fundamentals of Object Oriented Structuring
and integrated two paradigms: the temporal logic imperative and the categorical imperative.
Thus, object specifications are temporal theories and communities (systems of interconnected
component objects) are diagrams. The notion of an object specification was defined and ap
plied to a producer-buffer-consumer example. Accordingly buffers are defined as objects with
associated actions get(ITEM) and put(ITEM) and axioms which describe the object including
temporal operator next. This object (together with objects consumer, buffer and communica
tion channels) is a node of a diagram whose edges are signature morphisms. Joint behaviour
of this system is given by the colimit of the diagram; taking the colimit computes the disjoint
union of the signatures and identifies the symbols which are shared between the components.
For instance, put (from the buffer) and store (from the producer) are identified as a single action
of the system. A second illustrative example was presented which provided a seasonal flavour :
a variation on the Dining Philosophers problem, with the philosophers transformed to Santa's
and the forks transmuted to reindeer reins.

The second talk was given by Grant Malcolm (Oxford University): Equational Specifica
tion of Systems of Interacting Objects and this was a study of ways of specifying systems of
interacting objects and ways of composing specifications to reflect the concrete composition of
systems. In order to model objects with local states the notion of Hidden Sorted Algebra was
developed, and this was described in the talk. Sheaves were used to formalise the passage from
local to global variables and the pasting together of local observations of behaviour; a system is
defined as a diagram of sheaves connected by sheaf morphisms. The example given to illustrate
the talk was a system consisting of two automata where the output of one automaton is the
input of another.

Frank Piessens (speaker) and Eric Steegmans (Catholic University, Louvain) followed with:
Categorical Semantics for Object-Oriented Data Specifications. In this semantics nodes and
arrows of a graph respectively represent classes and dependencies between classes, and this was
illustrated by means of a specification of a simple library system where classes are Person, Book
etc. A special form of specification is defined, viz, a canonical form, and a proof was presented
that no two non-isomorphic canonical specifications have the same semantics.

FACS Europe - Series I Vol. 1. No. 2. Sprinl!: 1994

25

SESSION 2
This principally concerned the formal development of object oriented programs and the first
speaker was Cliff Jones (University of Manchester) who presented his work on: A Concurrent
Object-based Design Notation: Concurrency and its Semantics. The talk was chiefly about
the design notation 7ro(3).. which is employed in the development of 0-0 concurrent programs.
7ro(3).. is heavily based on the POOL programming language; in addition there exists a mapping
between 7ro(3).. and the 7r-calculus. 7ro(3).. supports composition in parallel programming by
making it possible to avoid interference. An illustrative example was given of a sorted list
(class) with methods add (a member to the list) and remove (the smallest member of the list).
The semantics of 7ro(3).. is such that only one method can be active in anyone instance of a
class at a time. The code which invokes a method is held in a rendezvous until the method
being executed reaches a return statement. A sequential version of the class was first provided,
with return as the last statement contained in each method. It was then transformed to a more
efficient parallel form, so that add and remove contain return as their first statement; as soon as
the parameter is passed the caller is released from the rendezvous. The rule for this interchange
is that Si return e can be replaced by return ei S provided that S always terminates, e is not
affected by Sand S only invokes methods reachable by private reference. Thus con currency is
allowed by making sure the returns are executed as soon as possible.

Paulo Borba (Oxford University) presented the next talk on: An Operational Semantics
for FOOPS. FOOPS (Functional and Object-Oriented Programming System) is a functional,
concurrent, object-oriented specification language with an executable subset and derived from
o BJ. A structural operational semantics was provided for FOO PS and the notion of refinement
between specifications defined in terms of the semantics. A stack provided an illustrative case
study to demonstrate the process of formal software development in FOOPS.

SESSION 3
This session chiefly concerned the integration of formal and structured methods and began
with a talk by Chris Dollin (Hewlett-Packard) on: The Rationale Behind the Fusion OOA/D
Method. Fusion is a method developed by HP which originated from a training course in object
oriented programming for HP engineers. The method involves the designer first building three
interacting models, an object model, an operational model and a lifecycle model. (This is in
order for an understanding of the system to be developed.) The object model incorporates
classes and relationships, viz an E-R diagram; the operation model includes pre- and post
conditions and the lifecycle model specifies accepted sequences of events. The subsequent
design activity implements the system operations via interacting objects and implementation
follows in which the design is convert~d into object-oriented programme code. The speaker
made the point that although Fusion is not a formal method (which require powerful tools
which are currently unavailable) it does have formal underpinnings. For example the pre- and
post-conditions in the operational model are declarative in nature and can be written formally
if desired. Also the lifecycle model is based on regular expressions and admit of straightforward
implementation; altogether the methods can be regarded as the "Trojan Horse" approach to
formality! There are several tools available to support Fusion (eg FUSIONCASE), but none
developed by HP.

Kevin Lano (of Lloyds Register) presented the next talk on: Integrating Formal and Struc
tured Methods in Object-Oriented System Development, co-authored by H. Houghton and P
Wheeler. The speaker described the formalisation of models expressed in the Object Modelling
Technique (OMT) notation by Rumbaugh. Systematic mapping techniques were described
which capture the standard meaning of data and dynamic models of the OMT notations in a

FACS Europe ~ Series I Vol. 1. No. 2. Sprinsr: 1994

26

formal specification in either Z or the B Abstract Machine Notation. A (safety-critical) case
study was described: a system which optimises and monitors the loading of bulk carriers to
ensure that safe hull stress limits are not exceeded during loading, and to create optimised
loading plans.

SESSION 4
This session began bright and early at 9.00am (on December 17th) with Steve Schuman and
David Pitt (University of Surrey) who combined to give a presentation on: Object Oriented
Formal Specifications and the Rest Stays Unchanged: State Based Concurrency. Their main
concern was to be able to reason about dynamic (behavioural) properties of some specified
class of object. This is based on an ability to reason about static (structural) properties of the
formal specification itself. The first part of the talk defined events in terms of post-conditions
characterising its effect as a possible change of state. The specifications used a Z-like notation.
Thus an event is expressed as a relation between pre-states and their possible post-states, both of
which must also satisfy the state-invariant. The speaker then established some formal validation
conditions for such specifications. Eg There is some state in which the event can start and the
event may successfully complete from every state from which it can occur. The specifications
were then refined and an observation made that refinement and composition are just logical
conjunction ie adding/combining constraints. The formal validation conditions serve to ensure
that there are at least some models for the resulting specification. Putting specifications together
to make specifications is regarded as the real pay-off of Object-Orientation. This minimalist
approach to formal specification was further discussed in the second part of the talk, by David
Pitt on: The Rest Stays Unchanged.

David Pitt gave several examples to illustrate the relational view of pre/post conditions
where there are parts of the state being changed which are unaltered by the event. This
more readily allows the creation of complex specifications from simpler constituents since the
constituents only specify in an explicit way parts of the state. Neutral relations were defined,
which keep part of the state fixed, allowing the rest to (possibly) alter. In conclusion, if events
have duration we are able to reason about concurrent behaviour by considering the overlapping
of two events in terms of conjunction.

The controversial subject of inheritance was tackled by Jim Armstrong (DCSC, University of
Newcastle) who spoke on: The Impact of Inheritance on Software Structure. (The talk was co
authored with the MFI Group, University of Brighton.) He began by reviewing previous formal
perspectives (of inheritance) which have tended to be operational and denotational semantic
models. In particular Cook and Palsberg have concluded that inheritance provides "expressive
power not available in other languages". Examples were provided of the use of inheritance,
such as representing IS-A and PART_OF relationships. However there have also been warnings
that inheritance mechanisms are potentially harmful and an opposing view of inheritance is
taken by Magnusson who has compared it to the "go to" statement! The speaker's view was
that inheritance hierarchies require formal guarantees that valid type inclusion relations are
properly captured and this could be achieved by formulating models of both inheritance and
module hierarchies. A translation function is then defined from the former to the latter. In
conclusion there is an increasing likelihood that real-time languages such as Ada 9X with
inheritance capabilities will be employed in the production of safety-critical systems where
formality is vital.

FACS Europe - Series I Vol. 1. No. 2. Sprinsz: 1994

27

SESSION 5
This session opened with Eugene Durr and Stephen Goldsack presentation of their work on
the Afrodite project: Approaches to Specifying Real- Time Requirements and Concurrent Be
haviour in VDM++. Stephen Goldsack (Imperial College) described the specification language
VDM++, an object-oriented extension of VDM. This offers objects derived from classes with
inheritance and polymorphism, supporting reuse of specifications. Refinement (reification) is
supported by object structures to represent VDM structures such as maps and sequences. In
addition, the scope of VDM is extended to include con currency and real time applications.
Independent (concurrent) execution threads are modelled by active objects (process objects)
and concurrency achieved by the invocation of passive objects by these threads. One means
of enforcing synchronisation discipline is the use of permission predicates derived from deontic
logics (Model Action Logic). The talk was illustrated by a re-visit to our well known Dining
Philosophers; the philosopher represented an active and the table a passives class.

Eugene Durr (Utrecht University) continued with an exposition of some real time (RT)
principles, with RT considered as (in some sense) orthogonal to the usual functional specifica
tion. In order to model continuous variables (such as temperature, current etc) these quantities
are sampled at intervals. In addition methods have associated time durations. An electronic
circuit was given as an example, comprising resistance, inductance, capacitor, source. Each
of these are modelled as subclasses of component and the whole circuit then modelled by a
world of parallel objects: resistance, inductance etc, each having their own independent thread.
Together they form a (discrete) model of the circuit differential equation .

. Sophia Drossopolou (Imperial College) presented the last talk of the session which was co
authored by Stephan Karathanos and entitled: Static Typing for Dynamic Binding. ST&T is
a new type system for Smalltalk which includes the following feature: the subtype relationship
is an extension of the subclass relationship and a method may have several signatures. As a
consequence type-checking a method does not require re-type-checking the same method in the
sub-classes of the class that contains the method body. In addition more programs are type
correct using ST&T than in previous type systems. In order to cope with the possibility of
multiple signatures the type of message expression (or message sent) is determined by those
signatures of the message which "fit best" the types of the receiver and arguments; inference
rules were presented for determining the types for message expressions.

SESSION 6
Keith Clark (Imperial College) presented: Distributed Symbolic 00 Programming Using April.
April (Agent Process Interaction Language) is a language for implementing distributed sym
bolic applications. Application areas include distributed AI and multi-agent systems and April
will shortly be used in a project for British Telecom on distributed fault finding over a network.
It is a process language where processes communicate Pro log style recursive data structures
to mailboxes using TCP lIP; objects can be emulated as processes, as in concurrent logic pro
gramming and new processes can be spawned either locally or remotely. Other features include
the use of guarded commands (similar to CSP) and the use of functional expressions, a depar
ture from traditional logic programming. Additionally April can communicate with other Unix
processes via a suite of routines for reading and writing to mailboxes as though they were files;
examples are DIALOX, Motif.

The session concluded with a further talk with a distributed application theme, by Yiping
Yang and Nicolas Treves (Telesystemes, Guyancourt, France): Introducing 00 Concepts into
a Net-Based Hierarchical Software Development Process. The talk was based on the PROOFS
project work on the promotion of the use of net-based techniques in the development of Het-

FACS Europe - Series I Vol. 1. No. 2. Sprinll1994

28

erogeneous Distributed Applications. Channel/Agency (CA) nets were used to for modelling
purposes in the Requirements Analysis and Systems Architecture phases of the system life
cycle. A CA net consists of a set of labelled active (agency) and passive (channel) components
with appropriate links. O-CA nets are an extended version of CA nets which include some
0-0 concepts and characteristics wherein an object is represented by an agency and opera
tions among objects by channels. For example if object A uses object B then the are both
linked to the same uses channel. Refinement is accomplished by replacing certain objects by
linked object-uses-object groupings; inheritance is captured by embedding sub-nets into nets.
Net development is achieved by an iterative use of refinement, inheritance and splitting of use
channels. The completed O-CA net is linked to Place transition and Coloured Petri Nets for
the latter stages of system design and subsequent code implementation is in C++ or Ada. This
development process was illustrated by a Document Conferencing Application where Editors
desk and Producers desk objects are both linked to Document object via separate uses chan
nels. This top-level net was then developed to become a system comprising an editor, many
producers and a document containing many parts.

SESSION 7
The last session of the meeting was opened by Emil Sekerinski (Universitat Karlsruhe) who
introduced: Refinement Algebra for Object-Oriented programming. A formal treatment of the
concepts of encapsulation, instantiation was given based on the refinement algebra (Back,
Morgan). Each object is defined by means of a signature which maps method names to value
and result parameter names and types. A class (of objects with a particular signature) is
subsequently refined to produce a class with the same behaviour. For example a buffer defined
more generally as a bag of items is refined by a FIFO buffer. Relations between object types
(such as refinement, specialisation etc.) are formally defined and proof theoretic criteria are
derived (based on simulation) for verifying these relations. By these means an object-oriented
refinement algebra is developed which is powerful enough for the study of many aspects of
object-oriented programming and is able to reason about programs and specifications equally
well.

Ana Moreira presented: LOTOS in the Object-Oriented analysis process (by A Moreira and
R.G. Clarke of the University of Stirling). The ROOA (Rigorous Object-Oriented Analysis)
method combines 0-0 methods and formal description techniques to produce a formal 0-0
analysis model that acts as the requirements specification of a system. The formal model is
expressed in LOTOS and, as it is executable, prototyping tools can be used to help validate the
specification against the original requirements. For this to be possible, a LOTOS interpretation
is given of 0-0 constructs: for example aggregation is modelled by defining a process for the
aggregate class which embeds a process for each component together with an interface process.

The last talk was by Ian Maung (University of Brighton): Behavioural Subtyping and Sub
stitutability. The speaker compared inheritance with the "goto" statement and predicted that
inheritance would be eventually be replaced by abstraction. Thus the objectives of his work
were to formalise a general inheritance mechanism, distinguishing different uses of inheritance.
An object-oriented programming language (OOPL) is being designed supporting abstractions
only. He illustrated by formalising the IS_A relation by putting together its behavioural and
contravariant aspects. This was in order to provide objective criteria for checking its cor
rectness. The talk ended with an outline of an OOPL syntax and the identification of some
remaining problems such as the need for a proof theory for subtypes.

Margaret West,
University of Leeds

FACS Europe - Series I Vol. 1. No. 2. Spring 1994

29

Summary of the ERIL Project

This project, officially called Verification Techniques for LOTOS Specifications, but otherwise known
as the ERIL project (for Equational Reasoning in LOTOS and the ERIL software tool) was funded by
the joint SERC /DTI Information Engineering Directorate (lED) programme. It involved four partners
for the following periods:

University of St Andrews Lead Partner
Prof. U. Martin (October 1989-August 1993)

University of Glasgow
Dr. M. Thomas (October 1989-September 1992)

British Telecom PLC
Dr. E. Cusack (October 1989-July 1990)

Rutherford Appleton Laboratory
Dr. B. Ritchie (October 1989-March 1993)

The aim of the project was to investigate the verification requirements of LOTOS [ISO:8807J specifi
cations, and to determine the applicability of equational reasoning and term rewriting to discharging
those requirements.

This work was presented at major international conferences throughout the life of the project and
has resulted in about 11 high quality journal publications, 25 publications in the proceedings of major
international conferences, and a further 25 technical reports.

In addition two significant pieces of software were developed: an ASN .1/LOTOS translator; and
the ERIL equational reasoning system.

Further work continues in several of these areas under SERC GR/J31230 (Prof. Martin), GR/J08300
(Dr. Thomas) and GR/J52716 (Dr. Thomas).

The main scientific achievements of this project were:

• Case studies The completion of major case studies in safety-critical application areas in col
laboration with researchers from end user organisations including:

- A medical information bus, in collaboration with Royal Free Hospital School of Medicine.

- A control device for a radiation machine, carried out in collaboration with DEC/SRC Palo
Alto.

- A secure login protocol in collaboration with a major defence contractor.

- GKS (Graphical Kernel System), in collaboration with numerous end-users.

These studies extended the use of LOTOS, commonly thought of as appropriate only for speci
fying protocols, by showing how it could be used in a variety of safety critical applications. They
also showed the importance of formal specifications for uncovering errors .

• Verification requirements A clear understanding of the diverse verification requirements
that different applications of LOTOS may generate, gained from both theoretical analysis and
investigation of case studies.

Our results are very much in line with the conclusions of a recent wide ranging American DoD
study of formal methods. The simplest verification requirements are often the most important
to users, and any methodology should give some guidance as to what to do if the verification
requirements are not satisfied.

FACS Europe -,-Series I Vo!. ·1, No. 2. Sprinll: 1994

30

• Discharge of verification requirements A clear understanding of the most appropriate
way to use tools in the discharge of these requirements. Tools should be simple and provide
automated support of common decision procedures, together with useful guidance when proofs
fail.

In particular the Larch Prover, was used in the discharge of requirements in three of the main
studies described above, and proved ideal for the rapid development and debugging of proofs. Our
own ERIL system incorporates experimental techniques devised more specifically to discharge
the verification requirements.

• Reasoning techniques

Significant original research on foundational issues:

The development of new techniques for equational reasoning incorporated III the ERIL
prover and other systems,

termination, and

divergence.

The main technical achievements of the project comprised:

• The ASN.1 to LOTOS translator

The ASN.1 to LOTOS translator is a software tool for translating data type specifications written
in the language ASN.1 into LOTOS.

This type of project proved to be a successful application area for formal methods: fonnalisa
tion of the language revealed several inconsistencies and omissions from the language design,
and functional programming as a prototyping tool enabled quick and effective communication
between language designers, implementors, and users.

The translator is not only the first formally specified tool for ASN.1, but it is also the first
translator for the complete language.

The tool is in use at British Telecom and currently discussions are under way with three com
panies (in Austria, Canada and UK) with a view to further exploitation.

• The ERIL prover

ERIL is an equational reasoning theorem prover based on first order term-rewriting. It is highly
reconfigurable with an advanced user interface. It supports order sorted logic, which allows
the succinct representation of many complex problems, and is the only such prover to support
specialised inference mechanisms for order-sorted logic.

The system was one of the eight major equational reasoning systems chosen for demonstration
at the Sixth International Conference on Rewriting Techniques and Applications (RTA) 1993,
in Montreal.

For further information about the project please contact:

Prof. Ursula Martin
Department of Mathematical
and Computational Sciences,
University of St Andrews
St Andrews
Scotland
Phone: 0334 63252
E-mail
um~dcs.st-and.ac.uk

or Dr M Thomas
Department of Computing Science
University of Glasgow
Glasgow G12 8QQ
Phone: 041 3304969
E-mail muffy~dcs.glasgow.ac . uk

FACS Europe - Series I Vol. 1. No. 2. $prinR; 1994

A Comparison of the Conventional and Formal Design of a
Secure System Component

T.M.Brookes, M.A.Green; J.S.Fitzgeraldt P.G.Larsent

February 18, 1994

British Aerospace (Systems and Equipment) Ltd, (BASE) is developing a security critical
device, a Trusted Gateway. Some preliminary work on the application of formal methods to
its design was performed as a case study by the University of Newcastle. A proposal for an
application experiment based on this programme was submitted to and approved by the European
Systems and Software Initiative (ESSI). This programme is being used to assess the use of
formal methods in the system and software design process within BASE. This article describes
the basic philosophy, objectives and methodology of the ESSI experiment which is now getting
underway at BASE Plymouth.

1 Introduction

British Aerospace (Systems and Equipment) Ltd. (BASE) currently produces several security
critical systems. At present, the use of formal methods in the design of these systems is not
mandated but, as the confidence in the security-related features has to be increased, their use
is desirable. This confidence is generated by being able to show that all of the requirements
have been captured and analysed thoroughly and that traceability from requirement to imple
mentation has been established.

A programme is currently underway within BASE to develop a Trusted Gateway (Network
Guard) which has limited functionality, making it ideal for testing formal methods against
current design practices. The evaluation level sought for this device requires that some aspects
of the design be modelled formally, even though the design does not have to be carried out using
formal methods.

Some initial work was carried out on the Trusted Gateway with the assistance of the Univer
sity of Newcastle. From an initial specification developed within BASE, a formal specification
covering many aspects of the gateways operation was developed. This early work has been used
to formulate the specification to be used in the ESSI work.

The Trusted Gateway programme is wholly funded by BASE and the EC. The University of
Newcastle will act in the role of consultant to the project where their expertise and familiarity

'British Aerospace (Systems and Equipment) PLC, Clittaford Road, Southway, Plymouth, Devon, PL6 6DE
(email: mikeg@cx.plym.ac.uk, tel: +44 752 695695, fax: +44 752 695500)

tDepartment of Computing Science, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
(email: John Fitzgerald@newcastle.ac.uk, tel: +44 912228058, fax: +44 912228788

tIFAD, "The Institute of Applied Computer Science", Forskerparken 10, DK-5230, Oderise M, Denmark
. (email: peter@ifad.dk, tel:. +45 65 93 23 00, fax: +45 65 93 29 99)

31

FACS ~urope ,:- Se~ies I Vgl. 1. No., 2 .. SprinR:)99~

32

with formal methods will prove valuable. IFAD will supply a tool set to support the VDM formal
method and will also act as consultants in its use. The results obtained in this programme will
be reported at the ESSI Workshops and to other meetings.

2 Trusted Gateways

The Trusted Gateway being developed in this experiment is a simple device consisting of a
single input and two outputs. Messages are read into the Gateway, analysed for the presence of
character strings which indicate the message classification and then written to the appropriate
(high or low security) output port. In an information processing system, the Trusted Gateway
would be placed in the communications path between two systems which have different security
levels. Its purpose is to sort the information into different classifications and ensure that it is
sent to the correct destination. This is shown diagramatically in Figure 1.

High Securit
System

High Securit
System

Trusted
Gateway

Low Security
System

Figure 1: System Function of the Trusted Gateway.

There are many exception conditions which have to be catered for in the design. For example:

• what does the system do with any characters which are read in which do not form a part
of a message?,

• what happens if the message is longer than a pre-defined number of characters ?

These conditions have to be addressed and system solutions provided for them. Formal
methods provide techniques for modelling the system at various levels of abstrac,tion which can
help to detect the presence of these events and to check that the proposed design deals with
them correctly. .

3 Objectives of the Application Experiment

The primary objective is to determine whether the system design process from requirements
capture to software development and test can be improved by introducing formal methods.
Parameters used to make this judgement include the effort expended in the design and evaluation

FACS Europe - Series I Vol. 1. No. 2. Sprinl(1994

processes and the number of customer requirements which are satisfied on the first design
iteration. Other aims are to investigate if the use of formal methods:

• produces a more reliable product,

• decreases the time to respond to changes in the customer's requirements, and

• produces a product which better satisfies the customers' requirements.

The experiment should show the level of cost effectiveness of developing a secure system using
a formal design techniques in the context of an existing design methodology.

The subsiduary objective of the experiment is to define where in the project life cycle formal
methods generate the most benefit and whether the entire design has to be analysed or can the
majority of the benefit be obtained by only considering a part of the entire system. If sucessfull,
the parts of the design process in which the use of formal methods give the most benefit will be
identified.

4 The Proposed Methodology

The experiment consists of the parallel development of the Trusted Gateway by two separate
and independent design teams. Procedures, such as ensuring that the design teams are in
different areas and are instructed not to discuss the project with each other, will be enforced to
minimise the communication between them so that they are truly independent. The first team
will use the standard BASE development methodology, Ward and Mellor[WM85], supported by
the Teamwork Computer Aided System/Software Engineering tool set!. The other tea.ni will
follow a similar design process, but will use formal methods to support this design methodology
and to develop a formal specification. The specification will be developed and tested using the
VDM tool kit from IFAD which a.llows the specification to be animated. Test cases can be
developed and applied to the specification to investigate whether the results are as expected.
These test cases can then be used in the test of the final product. Rigerous proof of the formal
specification will not be attempted during this experiment.

The experiment will take the design processes from the Customer Requirement through
System Design to Development and Implementation. There will be a central authority acting
as the customer and keeping records of the queries, problems and progress made on the project.
In the system design stage, a change in the specification will be introduced to obtain a measure
of the effort required to implement the change and the effect on the design process. The team
members will not know in advance what change will be made to the specification. At the
conclusion of each stage of the process, a design review will be performed on each specification.
The customer will examine the output and compare it with what was required. No feedback
will be performed, but the deficiencies will be recorded in the experiment design log.

Each version of the system will be implemented in software and tested using the test plan
devised by its own design team. The test procedures from the other design team will then
be applied to compare the test coverage achieved by the two design approaches. The software
produced will be tested by the original customer to determine if it fulfils his requirements. Areas
where the performance is deficient will be highlighted and examination of the records of the
project will pinpoint the decisions in the design process responsible for the introduction of that

1 Teamwork is a Registered Trademark of Cadre Technology Inc.

33

FACS Europe:,.- Series l'Vol. 1. No. 2. SprinlZ: 1994

34

area. Actions will then be taken to introduce additional controls to the existing procedures to
reduce the probability of a similar event occurring in future projects

The following points will be assessed and used to compare the two design process:

1 The effort required to perform the design task (It is realised that those using formal
methods will be inexperienced. Provision has been made to support them in the method,
but not the design detail, using the external consultants: University of Newcastle and
IFAD.);

2 The number and complexity of the queries raised against the requirement specification;

3 The number and seriousness of the deficiencies identified during the design reviews;

4 The number of identified inconsistencies detected within the customer requirement;

5 A comparison of the compliance of the system the original specification;

6 After implementation, the performance of the system and tests in terms of code size,
speed, accuracy and test coverage will be made.

The reliability of both products will be evaluated, based on the rate of detection of problems
throughout the development, testing and evaluation periods.

The proposed experiment is shown in outline in Figure 2. It consists of three parallel ac
tivities, each of which is split into 4 major phases. The first activity is the BASE conventional
project described above. The second activity is a duplicate of the first in which the formal
specification language VDM-SL2 is used to support the design, development and test process.
The third activity monitors, compares and reports on the progress in each of the design activi
ties. The monitoring activity includes the review and reporting of progress on the application
experiment.

Support will be available to the engineers during the course of the programme. Consultants
will be available to advise on both the method (University of Newcastle and IFAD) and the
use of the tools set (IFAD) to try to compensate for the lack of on-site expertise in the use of
formal methods.

Training in the use of formal methods and the toolset will be provided for the engineers
involved in the design and monitoring process. The tools set provides a means for preparing
VDM specifications in the correct format, performs static checking, and can animate the VDM
SL specification produced during the course of the design [LL91]. IFAD and Newcastle will also
participate in the review of the programmes where the design methods are compared. Their
comments on the progress of the experiment will be incorporated in the reports.

The experiment will be initiated by producing a customer requirement that is submitted to
each of the independent design teams. Queries on the requirement and the clarification of the
requirement will be submitted and responded to in writing. Requests submitted by each team
will not be passed on to the other. The number of requests and their complexity will be used
as a measure of how well the requirement capture process employed forces the system designer
to clarify the requirement with the customer. There is likely to be a divergence in the design as
each Of the groups will interpret the original specification differently and will receive answers to
different questions. After the system design has been produced, a major change will be made

2The project will use VDM in conformance with the ISO/BSI Draft Standard [IS093)

FACS Europe - S.eries I Vol. 1. No. 2. Spring; 1994

PROGRAMME RUN
USING EXISTING BASE

PROCEDURES

System Specification
System Test Specification

REVIEW -
System Specification

System Test Specification

REVIEW -
Software Specification

Software Test Specification

REVIEW -

Code

Test Report (Conv)

REVIEW -

Test Report (FM)

REVIEW -

MONITORING
AND REPORTING

ACTIVITIES

Requireme

REVIEW I COMPARE I REPORT

Updated Requirement

REVIEW I COMPARE I REPORT

ESSI REPORT I WORKSHOP

END OF PHASE 1

REVIEW I COMPARE I REPORT

END OF PHASE 2

REVIEW I COMPARE I REPORT

REVIEW I COMPARE I REPORT

END OF PHASE 3

DISSEMINATION
REPORT/ESSIWORKSHOP

END OF PHASE 4

PROGRAMME RUN
USING FORMAL

METHODS

System Specification

System Test Specification

- REVIEW

System Specification
System Test Specification

- REVIEW

Software Specification
Software Test Specification

- REVIEW

Code

Test Report (FM)

- REVIEW

Test Report (Conv)

- REVIEW

35

Figure 2: An Outline of the Programme.

FACS E"urope- Series I Vol. 1: No. 2. Spri",l 1994

36

in the customer requirement (the design teams will not be expecting it) and the effort required
to include the change will be measured.

4.1 Phase One

During Phase One, BASE will produce the documentation required for the design process. The
major documents produced are the System Specification and the System Test Plan that is used
as the final customer acceptance document. The equivalent documents will be generated in the
parallel (formal methods) path. After each document has been produced it will be subjected
to review and then updated if necessary. After this review, a major change will be made to
the customer requirement and new issues of the specification will be generated to reflect this
change. The documents will then be reviewed.

The final activity of the first phase is a major review in which the progress and results of
the two design teams will be contrasted and compared. The output of the review will be a
document showing the progress to date and comparing the two approaches.

4.2 Phase Two

The second phase commences with the submission of the system documentation to the software
department for design. Two new independent design teams will be employed, one using the
conventional specification and one the formal specification. The customer in this case is repre
sented by the system engineer who produced the system documentation. Queries and responses
on the documents are to be provided in writing to enable the understanding of the requirements
to be measured and compared in the two teams.

A subset of the required BASE documentation, sufficient for software implementation, will
be produced during the second phase. The primary documents to be produced are a Soft
ware Specification and Test Plan. The phase concludes by reviewing and comparing the two
approaches and reporting the results.

4.3 Phase Three

In the third phase, the software design documentation will be used to produce prototype code. A
third team of engineers will perform this task using the software design documents as their source
of information. The special purpose hardware required for a secure implementation will not be
available, so the code will be run on a suitable computer. The implementations will be tested
using their own Test Specifications and deficiencies in the code corrected. The coverage of the
Test Plans and the detection of faults in the implementations will be compared. As a final test,
the Test Plans for each development path will be applied to the other implementation to compare
how each implementation satisfies the customer's requirements. The original customer will also
examine the implementations to determine how well they satisfy the original requirement.

4.4 Phase Four

In the final phase of the project, the resuts from the project are analysed and the two approaches
compared. The final report on the proiramme will be produced which will describe any benefits
which have been obtained using a formal design approach.

FACS Europe -- S'eries , Vol. 1. No. 2. Sprine: 1994

5 Data Capture and Analysis

The Customer Requirements and the System Security Policy have been captured using the
RTM requirement traceability tool3. As queries are received, they will be recorded against the
requirement and clarification text will be added to amplify the requirement when needed. This
will be used as the basis for requirement 'expansion Using the 'trace' facility, the evolution of
the final system requirement from the initial customer specification can easily be followed.

6 Project Status

The project commenced at the start of 1994. No results have been obtained yet. The conclusion
of Phase One is expected in April 1994, Phase 2 concludes during September and Phase Three
terminates in November. Final results from the experiment are expected early in 1995.

7 Conclusions

In this article, we have described the basic function of a Trusted Gateway and discussed our
experiment in using formal specifications at various stages of the system development. It should
be stressed that we are not employing a full formal method. Rather, we are experimenting
with the application of formal specification in the context of an existing design methodology
(which has been certified to ISO 9000). The application of formal techniques is modest: it
is not envisiged that refinment obligations or other proofs will be conducted by the engineers
(although the consultants may perform some proofs in private). The checking of the formal
specification will be performed using the specification animation capability of the IFAD VDM
toolbox.

The results of the experiment will show whether using formal methods can be improves the
system and software design and that they are applicable in an industrial environment. The
results of this experiment will influence whether BASE adopts a formal design apprach for
future projects or parts of projects.

The authors welcome comments and expresssions of interest from other systems developers,
especially in security-critical fields.

8 Acknowledgements

The authors acknowledge the support of the British Aerospace Dependable Computing Systems
Centre at the Universities of Newcastle upon Tyne and York, which sponsored the initial study
on which the ESSI experiment was based.

References

[IS093] ISO. Document Number ISO/IEC JTC1/SC22/WG19/N-20 Information Technology
Programming Languages - - VDM-SL First Committee Draft Standard CD 13817-1,
November 1993.

3RTM is a Registered Trademark of GEe Marconi, Addlestone, Surrey

37

FACS Europe - SerieS I VoL.l. No. 2. SpriOlz:.1994

38

[LL91] P. G. Larsen and P. B. Lassen. An Executable Subset of Meta-IV with Loose Specifica
tion. In VDM '91 - Formal Software Development Methods. Springer-Verlag, October
1991.

[WM85] P.T. Ward and S.J. Mellor. Structured Development for Real Time Systems, volume
1,2,3. Yourdon Press, Prentice-Hall, Englewood Cliffs, NJ, 1985.

FACS Europe - Series I Vol. 1. No. 2. Spring 1994

EATes

Dan Simpson, University of Brighton

This note is to introduce EATCS to readers of the newsletter. Whilst many readers may
already be members of EATCS, with the expanded circulation of the newsletter some people
may not know of EATCS or its activities.

EA TCS is the European Association for Theoretical Computer Science. It is a loose
association of people in industry and academe who are interested in both developing the
foundations of our subject and also applying them in order to build better software and
computer based systems. The aims are very similar to those of both FACS and FM Europe
but, just as FACS and FM Europe have their own distinctive but complementary flavours so
too has EA TCS.

To many EATCS members the most important reason for joining is the EA TCS Bulletin. This
is a large compendium of news, reports, technical papers, conference announcements and
general information to keep people up to date in the area. Personally I consider it the only
really essential reading I receive. It is published three times a year, about each academic
term, by a group in Leiden and is edited by Gregorz Rozenberg who is also the current
president of EA TCS. It is worth joining the association if only to obtain the Bulletin.

But EATCS has many other activities of its own and also helps promote many joint activities.
On the publications front, as well as the Bulletin there is alsQ a journal - Theoretical Computer
Science; a series of books and monographs published by Springer Verlag; and various
occasional publications such as conference proceedings. All these are offered at a discount
rate to members. The association also agrees deals with various other publishers so that many
publications can be obtained at a discount rate.

The association is also active in the conference area where the most important activity is
ICALP the association's annual conference.

Despite the title and the firm European base of the association it has ties with national groups
in Europe and also around the world. So if you wish to keep up to date with activities in
places such as Japan, Australia and the USA the regular news columns in the Bulletin are a
must. There are also regular news columns from various European organisations including
BCS-FACS.

I can only assume that readers of this newsletter must be interested in what is going on in our
subject and I fully recommend that you help meet this interest by joining EATCS. Further
details are available from the contact address given but you can easily join EATCS via FACS.
Contact the FACS secretariat at Loughborough and they will send you a form which will
allow you to invest £10 in a way which wiII repay itself many times each year.

Contact
Prof Or B Monien
Secretary EATCS
Fachbereich Mathematik - Informatik
Universitat-GH Paderborn
33098 Paderborn
Germany
Email eatcs@uni-paderborn.de

39

FACS Europe -:-:- Series I Vol. 1, No. 2, Spring: 1994

40

The dues are DM 30.- for a period of one year. If the initial membership payment is received in
the period December 21 - April 20, April 21 - August 20 or August 21 - December 20, then the
first membership year will start on June 1, October 1 or February 1, respectively. Every contribution
payment continues the membership for the same time period. Payments can be made in DM and in
US $.
Additional fee is required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.
The amounts are DM 12.- for USA, Canada and Israel, DM 16.- for Japan and DM 20.- for Australia
per year. For information on additional fees for other destinations contact either the Secretary or the
Treasurer.

HOW TO JOIN EATCS

To join, send the annual dues, or a multiple thereof (to cover a number of years), to the Treasurer of
EATCS:

Prof.Dr. D. Janssens
University of Antwerp (UIA)
Dept. of Mathematics and Computer Science
Universiteitsplein, 1
B-2610 Wilrijk, Belgium
Email: dmjans@wins.uia.ac.be
Fax: (+32) 3 820 2421
The dues can be paid (in order of preference) by cheques in DM or US $, cheques in other currency, DM
or US $ cash, or other currency cash. When submitting your payment, please make sure to indicate
your complete name and address. For this purpose you may use the form below.
Transfers of larger amounts may be made via the following bank account, on the condition that an
additional DM 8.- is paid for each transfer to cover the bank charges. If you use this way of payment,
please send the necessary information (reason for the payment, name and address) to the treasurer.
Our account is:
Generale Bank Antwerpen
Antwerp (Wilrijk), Belgium
Account number: 220-0596350-30-01130

I would like to join EATCS / renew my EATCS membership and enclose as membership fee

for years (and for air mail delivery)

Name:

First name:

Address:

Date: Signature:

FACS Europe - Series I Vol. 1. No. 2, Spring: 1994

BCS FACS
"A Brief History of Formal Methods"

Bernie Cohen
Thursday 28 April 1994

5.30 - 7.00 p.m.
Room M405, the Middleton building, City University

167-173 Goswell Road, London EC1

41

Bernie Cohen has a long experience in promoting formal approaches, both in industry
and academia, and is known to many of us for his enthusiastic commitment to formality
in software engineering. This talk is, in his words, "a very personal view, anecdotal rather
than encyclopaedic, but accurate as far as it goes".

FREE for members of FACS, £5 for others.

Please register your intention to come by contacting:

BCS-FACS
e-mail: facs@lut.ac.uk
fax: 0509-610815
tel: 0509-222676
clo Department of Computer Studies,
University of Technology,
Loughborough, LEll 3TU.
preferably bye-mail

FACS Europe - Series I Vol. 1. No. 2: SprinQ; 1994

42

Call for Participation

8th Z User Meeting - ZUM'94
Organized by the Z User Group in association with BCS FACS

Sponsored by BT, Logica Cambridge Limited & Praxis
Supported by the ESPRIT ProCoS-WG Working Group (no. 8694)

St. John's College, University of Cambridge, England
Tutorials:
Main meeting:
Educational Issues:

27-28 June, 1994
29-30 June, 1994
1 July, 1994

Programme committee:

Rosalind Barden, Logica, Cambridge
Jonathan Bowen, Oxford University
Elspeth Cusack, BT
Neville Dean, Anglia Polytechnic Univ.
David Duce, Rutherford Appleton Lab.
Anthony Hall, Praxis plc
Brian Hepworth, British Aerospace
Howard Haughton, Lloyd's Register
Mike Hinchey, University of Cambridge
Darrell Ince, Open University
Jonathan Jacky, Univ. of Washington, USA

Peter Lupton, IBM Hursley
John McDermid, University of York
Sylvio Meira, Univ. of Pernambuco, Brazil
John Nicholls, Oxford University
Gordon Rose, Univ. of Queensland, Australia
Chris Sennett, DRA Malvern
David Till, City University
Sam Valentine, University of Brighton
Jim Woodcock, Oxford University
John Wordsworth, IBM Hursley

ZUM'94, the 8th Z User Meeting, is to be held at St. John's College, University of Cambridge, on
29th and 30th June 1994, preceded by two days of tutorials covering introductory Z, object-oriented Z
specification, B, the B-method and B-toolkit, project management with formal methods, and real-time
system development.

An Educational Issues session on 1st July provides a forum for educators and others to discuss issues
relating to the teaching of formal methods, in general, and Z, in particular.

The meeting will also include tool demonstrations and displays by publishers. A small display of
computing memorabilia is also planned.
For further details and general enquiries about the meeting contact:

J onathan Bowen (C(onference Chair,
ZUM'94) Neville Dean (Educational

ZUM'94) Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford Anglia Polytechnic University

. or Cambridge CB4 4ES, UK. OX13QD, UK.
Tel: +44-865-283512 (dl- Tel: +44-223-63271
rect), 283521 (secretary)
Fax: +44-865-273839 or 273819

Fax: +44-223-352979

Email:
Email: cdeanQva.anglia.ac . uk

Jonathan.Bowen~comlab.ox.ac.uk

Issues,

FACS Europe - Series I Vol. 1. No. 2. Sprine: 1994

43

Guidelines for Newsletter Contributions

Contributions may be in the form of single-sided camera-ready copy, suitable for layout and sub-editing.
They can also be sent to us using electronic media (i.e. by floppy disk (MS DOS or Mac)/e-mail/etc.), to be
formatted in the house style. As a rule, we generally accept pure ASCII text or TEX/UTEX in order to avoid
complications involving interchange between wordprocessing formats. We regret that we are unable to offer
typeset ting facilities for hand wri t ten material.

If contributions are sent using proprietary wordprocessor/markup language formats (i.e. MicroSoft Word 5,
FrameMaker), then these will be treated as though they were camera-ready copy. If we are unable to print
them adequately or to otherwise convert to another more suitable form then the authors may be asked to
provide paper copies of appropriate reproduction quality.

Artwork can be provided for appropriate inclusion, either using general formats (such as DVI files or Encap
sulated PostScript) by sending camera-ready paper copy. Generally, line drawings and other high-contrast
graphical diagrams will be acceptable.

Material must be of adequate quality for reproduction. Output from high quality printers with at least 300 DPI
resolution is generally acceptable. Output from printers with lesser resolution (i.e. dot-matrix printers) tends
not to reproduce very well and will not be of sufficiently good print quality. The Editorial Panel reserves the
right to refuse publication for contributions which cannot be reproduced adequately.

Page definition information

If possible, contributions should be designed to fit standard A4 paper size, leaving a margin of at least one inch
(1") on all sides. Camera ready copy should be sent in single-sided format, with page numbers written lightly
on the back. Ideally, all fount sizes used should be no smaller than 10pt for clarity. Contributions should
attempt to make adequate use of the space, filling at least 60% of each page, including the last one. Authors
should note that all contributions may be sub-edited appropriately to make efficient use of space.

Deadlines

The production deadlines for the coming year are:

Summer
Autumn

end of May, 1993
end of August, 1993

Winter
Spring

end of November, 1993
end of February, 1994

Disclaimer

The views and opinions expressed within articles included in the FACS Europe newsletter are the responsibility
of the authors concerned and do not necessarily represent the opinions or views of the editorial panel.

Addresses

Editors:
Dr. Jawed Siddiqi
Dept. of Computing and Management Sciences
Sheffield Hallam University
100 N apier Street
Sheffield, SII 8HD
United Kingdom

Tel: +44742533141
E-mail: J.I.SiddiqiCDshu.ac . uk

Dr. Brian Monahan
Dept. of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL
United Kingdom

Tel: +44 61 275 6137
E-mail: brianmCDcs.man.ac.uk

FACS Europe - Series I Vol. 1, No. 2. Sprinll: 1994

BCS FACS and FME Committee 93-94

General

General enquiries about the BCS FACS group, the newsletter or its meetings can be made to:

BCS FACS Membership fees 1994
Standard (i.e. non-BCS members) : £25
BCS members £10

Department of Computer Studies
Loughborough University of Technology
Loughborough, Leicestershire
LE11 3TU Discount subscription rates 1994

Tel: +44 509 222676
Fax: +44 509 211586
E-mail: FACS@lut.ac.uk

EATCS £10
FACS Journal: £35 (6 issues, Vol. 6)

FACS Officers

Chair
Treasurer
Committee Secretary
~embership Secretary
Newsletter Editors
Publicity
Liaison with FACS Journal
Liaison with BCS F~IS group

Tim Denvir
Roger Stone
Richard Mitchell
John Cooke
Jawed Siddiqi & Brian Monahan
Brian Monahan
John Cooke
Ann Wrightson

FACS Committee Members

Name Affiliation Tel: E-mail

D. Blyth lncord Ltd. 0202-896834 DBlyth@cix.compulink.co.uk
J. Boarder Buckinghamshire 0494-22141 jcb@buckscol.ac.uk

R.E. Carsley Westminster 071-911-5000x3568 roger@westminster.ac.uk
D.J. Cooke Loughborough 0509-222676 D.J .Cooke@lut.ac.uk

B.T. Denvir Translimina Ltd. 081-882-5853 timdenvir@cix.compulink.co.uk
S.J. Goldsack Imperial 071-589-5111x5014 sig@doc.ic.ac.uk

A.J.J. Dick Bull 0442-884586 J .Dick@brno.uk03.bull.co.uk
RB. Jones ICL Winnersh 0734-693131x6536

R.J. Mitchell Brighton 0273-642458 rjm4@unix.brighton.ac.uk
B.Q. Monahan Manchester 061-275-6137 brianm@cs.man.ac.uk

M.P.Naftalin Lloyd's Register 081-681-4040 tcsmpn@aie.lreg.co.uk
J .I.A. Siddiqi Sheffield Hallam 0742-533141 J .I.Siddiqi@shu.ac.uk

D. Simpson Brighton 0273-600900x2450 ds33@unix.bton.ac.uk
R.G. Stone Loughborough 0509-222686 RG .Stone@lut.ac.uk

D.R Till City 071-477-8552 tiU@cs.city.ac.uk
M.M. West Leeds 0532-335430 mmwest@scs.leeds.ac.uk

A. Wrightson Central Lancashire 0772-893242 annw@sc.ucian.ac.uk

FME Officers

Name Affiliation Tel: E-mail

Chair Martyn Thomas Praxis plc +44-225-444 700 mct@praxis.co.uk
Secretary Tim Denvir Translimina Ltd. +44-81-882-5853 timdenvir@cix.compulink.co.uk
Treasurer Kees Pronk T.U.Delft +31-157-81803 c.pronk@twi.tudelft.nl

