
FACS
Europe

The Newsletter of the BCS Formal Aspects of Computing Science Special Interest Group and
Formal Methods Europe.

Series I Vol. 2, No. 1 Summer 1995

Contents

Editorial•... 2
FACS Xmas Workshop 1994 ... 3
Engineering Models for Software Development .. 10
Formal Models and Object-orientation .. 13
How did Software get so Reliable Without proof? 17
Announcements ... 21

FACS Europe --. Series I Vol. 2, No. 1, Summer 1995

2

Editorial

This issue sees a number of changes. One is
that we say farewell to Jawed Siddiqi, with
appreciation for his work with Chris Roast
in keeping the Newsletter going through the
changes and difficulties of the last few years.
The Newsletter team is now myself as editor,
with assistance from Chris Roast and Mar­
garet West, and from a number of others who
have taken responsibility for trying to get ma­
terial regularly on particular topics. If you
have anything to offer, please do not wait for
any of us to ask you - send it in, electronically
if possible (email toFACS@lut.ac.uk or to me
at a.wrightson@hud.ac.uk) or by snailmail to:

FACS/FME Newsletter
clo Ann M Wrightson
School of Computing and Mathematics
University of Huddersfield
Queensgate
Huddersfield
HD13DH
UK

Tel: (01484) 472758
Fax: (01484) 421106

Another change is the return of John Cooke
as Chair of BCS-FACS, with Tim Denvir tak­
ing on the role (from the FACS point of view)
ofliaison with FME, to complement his role in
FME itself. One of my hopes for the Newslet­
ter is that it can be more interesting and rel­
evant to our industrial readership (I've had
some hard words said to me about it being
only marginally better than the FACS Jour­
nal for that ...); that depends a lot, of course,
on those readers letting us know what they
are interested in, so please talk to us and help
make it a useful source of news and views for
everyone seriously involved with "formal as­
pects" and "formal methods" .

Events

There are a number of FACS events planned
for the next year or two. There are announce­
ments for the 1995 Xmas Workshop, the Sev­
enth Refinement Workshop and a workshop on
Formal Aspects of the Human-Computer In­
terface, at the back of this issue.

Other events being planned include a joint

event with the BCS Requirements Engi­
neering SIG, and a workshop on develop­
ments in Theorem-proving. If you have any
other ideas for events, please email them to
FACS@lut.ac.uk, or talk to any of us ...

Contributions Welcome ...

Contributions to the Newsletter on any rele­
vant topic are welcome. Please send them elec­
tronically, in U-TEX or 'lEX form if you CaD;

next best is plain ASCII. Otherwise please
send A4 copy fit to reproduce by fast pho­
tocopying (i.e. no paste-ups), with 300dpi
laserprint or equivalent a minimum standard.
We will not convert WP formats or type up
manuscripts. We will not reproduce extensive
notices of events which are also available elec­
tronically; please send a short notice (max 1
page) with pointers to more extensive informa­
tion where available. Please always include a
postal or telephone contact for those without
email.

Contributions express the opinions of con­
tributors, not of F ACS, FME or any organi­
zation with which they are associated (unless
they say otherwise!).

Letters are welcome and should be sent to
the Editor.

Note from Margaret West

After Tom Maibaum's interesting talk at the
AGM [reported within-Ed.] I mentioned
work by Toby Walsh on "abstraction". Just
before I dashed off for the train one or two
people asked me his email and I now have it:
tw@aisb.ed.ac.uk.

An example of a published paper on his
work is: F Giunchiglia and T Walsh, Abstrac­
tion in AI, AISB Quarterly (73): 22-26, 1990.

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

3

BCS-FACS Xmas Workshop 1994

The BCS-FACS 1994 Xmas workshop was held at Imperial College, London on 19-20 December
1994, on the theme of Concurrency. It was organized on behalf of BCS-FACS by Tim Denvir
timd envir@cix.compulink.co.uk and Richard Mitchell Richard.Mitchel/@brighton.ac.uk. The work­
shop provided a good spread of topics, including recent work based on well established specification
languages, reviews of broader areas of work, and reports of work in progress.

This report is based on my [Ed] notes for most of it; thanks to John Cooke for notes on the
last half-day. Mike Ingleby took a more raffish view - his report follows this one!

1 Formulating Rely/Guarantee-conditions

Cliff J ones, cliff@computer-science.manchester.ac.uk
The starting point of Cliff Jones' talk was a shift in emphasis in considering invariants, from

establishing invariants to make things safe, to thinking about permitted perturbations of desired
conditions. This was brought together with the idea of two parallel processes together satisfying
a 4-tuple made up of preconditions, rely-conditions, guarantee-conditions, and post-conditions;
with a formalization of the idea of one parallel process tolerating the interference of both the
environment, and the activity of the other process. This led on to evolutionary predicates, as a
dynamic aspect of the observable state-transitions which end up conjoined with the other post­
conditions. (Tom Maibaum suggested a similarity between evolve, and dynamic constraints in
databases, and another interesting similarity between the guarantee aspects, and frame conditions
as used in temporal logic and AI.)

An implementation using Fischer-Galler forests had an interesting concurrent feature in itself
which displayed a strong analogy with garbage-collection. A process collapsing linear paths to
retain the significant branching structure can be working in garbage-collection style behind the
scenes of other tree operations, without harmful interference. Cliff informed us he had a PhD
student willing to prove it!

Then we came back to rely and guarantee conditions, with concern expressed about implicit 'do
nothing' conditions, the granularity choices implicit in many development methods, and about the
difficulty of realizing code·implementing the specification conditions needed to satisfy interference
tolerance.

2 Compilation and Transformation in a Parallel Extension
ofTDF

Tom Lake, Tom.Lake@glossa.co.uk
This was an account of a two-year project extending the intermediate language TDF to cover

concurrency and distribution, carried out for DRA Malvern. As you would expect, the extensions
to TDF are independent of explcit synchronization mechanisms such as thread scheduling or
busy-wait, and can be compiled for radically different control architectures. The level and style
of abstraction is similar to that used in CSP, though the concurrency operators are not identical.
The behaviour necessary for concurrent interaction is characterized using guarantees of progress,
giving independent progress for each cluster of operations contained in a different gop.

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

4

6 Higher-Order Processes and Their Models

Matthew Hennessy, matthewh@cogs.sussex.ac.uk
Matthew Hennessy presented the motivation for higher-order process algebra as a natural

progression of ideas in process algebra. In the beginning were pure process algebras, typically
applied to analysis of abstract communication structures, then came augmentation with data to
address applications to analysing distributed systems. Thence, via the A-calculus (considered as
a very primitive process algebra which allows processes to be sent and received as values), to
higher-order process algebra, where values are processes. Applications here include understanding
new-generation programming languages such as CML and FACILE, and specification languages
for distributed systems with dynamic topologies, such as ?r-calculus and CHOCS. The picture then
emerged in more detail, with the presentation of an operational semantics, and a discussion of the
extension to higher order of the characterization of 'may' and 'must' by traces and acceptance
trees respectively.

7 Specifications, Programs and Operating Systems: A Ques­
tion of Politeness

Tom Maibaum, tsem@doc.imperial.ac.uk
Tom Maibaum focussed on emergent properties of a component in a system, which are not

predictable from the component's specification, but emerge from consideration of the behaviour of
the system as a whole. Using (to the sound offaint groans from here and there in the audience) the
dining philosophers as an example, the problem emerged from an overall need for no philosopher
to starve, combined with there being no guarantee internal to any philosopher that his or her
current bout of eating would eventually stop. The detailed development was in the context of the
categorial model of compositionality developed with Jose Fiadeiro and others.

The main motivation is the construction of a specification of a system from the specifications of
the components. Components synchronize on some of their actions; synchronization is defined in
terms of shared components. The key notions characterized are part-of (the system specification),
and communication and synchronization, using a generalization of property-preserving morphisms
between theories in first-order logic. The system comes out as a colimit, with a coincidence of
objects in the software engineering and categorial sense, and interpretations between theories as the
morphisms. That the category is finitely co-complete amounts to being able to find a specification
which is a minimal interpretation of the intended meaning of the diagram. All properties of a
component are in the system (via a property-preserving morphism). And because of the colimit
property, any other system specification is an image of this one. The main function of category
theory here is to capture a notion of composition from components. (This stuff, reviewed in
this presentation, was presented by Jose Fiadeiro in the 1993 BCS-FACS Xmas workshop - no
apologies, essential background for what follows ...)

Previous work relating specifications to process models, and on characterizing refinement (reifi­
cation, implementation) doesn't give a framework which accommodates the emergent properties
as above; something is missing. How is the system to enforce the desired behaviour, when com­
bining components written to the component specifications? Options include redesigning the
components to be sociable, or having an environment which enforces the sociability (eg takes forks
off philosophers who eat too long). What is missing from the formalism, to support reasoning
about these meta-assumptions, is the formal representation of programs and their relations to
specifications. Taking this through (I really do have to cut this one short somehow ...) leads to
a situation where systems made up from components lose permissions and gain obligations, com­
pared to the components, and this accounts neatly for emergent properties. To represent formally
the notion of correctness between a system specification (made up of parts) and a system (made
up of programs corresponding to those parts), there is a translation back from a program (resp.
system) to a{nother) specification. Correctness comes from there being an appropriate structure
of morphisms between this and the original specification, represented as a pretty layered commu-

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

.5

3 Synchronous Logic Systems

David Gilbert, drg@cs.city.ac.uk
A different view of concurrency here, from the world of logic programming. This approach has

arisen using the concepts of synchronous communication and shared logic variables. Different from
process algebras-using shared variables rather than ports-like CIRCAL in some respects, and
inherently multi-party. The approach was presented in detail using the examples of a 2-place buffer,
a queue, and an expedited data queue (as in earlier version of LOTOS). There is an interpreter in
Sixtus Prolog. Asynchronous parallel constraints are becoming popular in the logic progranuning
world, and work in progress includes reformulation in a framework of constraints (the interpreter
will be moved into the constraint formalism too). There is also a forthcoming paper on algebraic
and compositional semantics, and work in hand on tools based on the semantics, aimed at the
logic progranuning world.

4 A Model of Synchronous Behaviour with Duration

Mike Shields, m.shields@mcs.surrey.ac.uk
Introduced as 'a look at what I've been playing with over the summer', this was an exhilarating

ride through a fresh look at underlying concepts for interval logics. Mike started from a view of
actions which considers them as uninterruptable, taking an exact amount of time, and with an
action having" a set time to wait for release of necessary resources after another action acts on a
component of state conunon to both. The behaviour is modelled by a function from a set of actions
to sets of open intervals in the non-negative reals, built iteratively by derivation rules, obtaining a
direct characterization of the set of behaviours via a transition system. Concurrency is modelled
by a delay of zero. The points where an action is enabled come out as a set of instantaneous
points, plus an open interval after the earliest time after which there is no (known) disabling of
the action. An alternative representation has some similarity (not yet explored) to a timed Petri
net, and can also be transformed to a state-transition representation showing things such as lack
of deadlocks.

An entertaining presentation, well scheduled to dispel any tendency to sleep after lunch.

5 Rigorous Development of Concurrent 0-0 Systems in
VDM++

Kevin Lano, kcl@doc.imperial.ac.uk; Stephen Goldsack, sjg@doc.imperial.ac.uk
This talk placed itself firmly in the context of various explorations of extensions of VDM and

Z (there are about 8 extensions of Z, and 3 of VDM, accommodating principally con currency
and objects), and also in the context of the AFRODITE project. It was a long tutorial-style
presentation. The 0-0 side was presented by Kevin Lano, concurrency by Stephen Goldsack.

The method invocation protocol is based on Ada's rendezvous facility, with the semantics allow­
ing a delay between the request and the corresponding action. Inheritance has two distinct sides
to it: representation inheritance, which provides straightforward inheritance of instance variables,
and controlled inheritance, which controls which methods are inherited, and takes that inheritance
relationship out of the subtype hierarchy. There is also support for a form of aggregation, of the
ca car has 4 wheels' variety.

VDM++ classes have extra bits for synchronization and thread characterization, the latter
partly similar to 'answer' in Ada. Synchronization of passive objects (i.e. objects without 'thread'
parts) is a problem, addressed by having a default synchronization of mutual exclusion, which can
be overridden, and by employing guard predicates as used in DRAGOON.

There was much more, but hopefully these few points adequately convey the flavour of this
work.

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

6

tative diagram showing the three layers involved. For this to work, there needs to be a functor
between programs and specifications - but functors between nice programming formalisms and
nice specification formalisms don't always exist when you want them, eg because, there is no way
to calculate the corresponding morphism between specifications, where you have clearly related
programs. This can be remedied by strengthening the system program until it can be calculated­
thus paving the way for taking the fork off the philosopher, or alternatively yielding a fairness
condition on the program, which interestingly leads to an explicit reference to the other component
in the interaction when considering obligations. Rely/guarantee conditions seem a natural way of
taking this further.

There was much more, but I hope this gives enough to grasp the idea. It was also interesting to
hear that there is related current work on agents working according to rules of cooperation being
undertaken by a series of interdisciplinary workshops including philosophers and lawyers, with a
special volume of Studia Logica due out sometime in 1995.

8 Verification of Properties of LOTOS Specifications: A
Logic and a Proof System

Carron Kirkwood, carron@dcs.glasgow.ac.uk
Carron Kirkwood described how to check LOTOS specs by a variety of means. The main

questions were how to formulate correctness in a LOTOS spec, and how to show when you've
got it. One approach was behavioural, looking at whether an implementation in a concrete level
of LOTOS satisfied a specification in a more abstract level. The verification tool P AM from
the University of Sussex helped with this. Another approach used was property testing, using
simulation and other testing techniques to ascertain reachability and other characteristiC-so A
third was to use logic, describing abstract properties. Other work in this vein has used CTL, but
this was found to be rather weak, so they moved to a modal J.l-calculus as used with CCS. One
non-trivial problem found here was that current LOTOS semantics is not valid on open terms,
and these are needed to reason about intermediate states and parts of the system.

An important conclusion was that the approaches used were not alternatives to be evaluated to
find the best one, but complementary techniques with different virtues suited to different examples.
There are papers in preparation, and some material is available by ftp-please ·ask for details by
email as above.

9 Using Z to reason about real time a la TLA and Unity

Andy Evans, A.Evans@leeds-metropolitan.ac.uk
Mike Hinchey, Michael. Hinchey@computer-Iab.cambridge.ac.uk

Andy Evans spoke to a joint paper co-authored with Mike Hinchey and cryptically entitled
"God Rest Ye Merry Gentlemen ... ". It described an attempt to extend earlier work (on the
use of Z in the specification and verification of concurrent processes-reported in the proceedings
of FME94) in which they propose the use of a non-decreasing integer state variable to model
real-time.

The idea is to specify the action of the system in Z and then extend the specification by
incorporating a real-time variable; and subsequently to to consider safety and liveness properties.

They are in good company in trying to 'add time' in this way. Unfortunately, although they
do mention TLA, they seem to have missed the recent paper by Abadi and Lamport (TOPLAS
16(5), pp1543-1571) in which time is represented by a REAL variable in extended TLA. That
paper goes on to consider safety and weak and strong fairness.

FACSEurope - Series I Vol. 2, No. 1, Summer 1995

7

10 Galois Connections in Local Reasoning in Control Sys­
tems

Michael Ingleby, m.ingleby@hud.ac.uk
Next we heard a spirited presentation from Michael Ingleby of Huddersfield and BR Research.

This work is derived from the study of (potentially very large but) finite railway routing problems.
In order to recover from errors, there is a requirement that safety is transitive-in the sense that,
under 'normal' operation all successor states of a safe state are also safe. Solving the related
graph-based problem is of exponential complexity but the application of clustering techniques
often reduces this to more resonable proportions.

Constraints on available time, and the non-standard use of familiar 'fm' notation, un~ortu­
nately resulted in this interesting sortie into Universal Algebra being rather rushed and somewhat
confusing. The derived results can be used to partition certain systems-in effect they isolate the
'prime' or 'orthogonal' bases from which the system in composed. These results were then applied
to the railway routing problem introduced earlier.

I hope this approach can be more fully explained to the F ACS community and its relevence
further investigated.

11 U sing inheritance to specify extendible synchronisa­
tion policies for concurrent distributed systems

M Ben-Gershon et al
After a short break for refreshments Kevin Lano spoke for the second time. He presented joint

work with Ben-Gershon and Goldsack, the aim of which is to support the incremental construction
of concurrent systems using ideas from DRAGOON, the synchronisation classes of McHale et al.,
VDM++ (sic), and extended C++.

Like the earlier presentation by Andy Evans, this work seeks to separate the various features of
a specification-in this case the synchronisation concerns are 'isolated'. The main proof technique
is induction over events.

The work is ongoing and the talk consisted mainly of illustrative examples.

12 Action and Control Structures

Philippa Gardner, pag@dcs.edinburgh.ac.uk
The workshop was concluded with a survey of the work being undertaken by Robin Milner and

others at Edinburgh. (IWbin, as many of you will know, has by now moved to Cambridge, and
this survey was presented by Philippa Gardiner.)

In general terms this is the search for a uniform framework for process algebra. More specifi­
cally, the group is working on 'molecular forms' as a generic structure related to CCS, Petri nets,
simple A-calculus and the 7r-calculus, and which is isomorphic to term algebra.

(Incidently, it is hoped that in the near future FACS will be able to run a meeting that will
deal in more detail with the 7r-calculus.)

Thus far, molecular forms-perceived as a general notion of hierachical 'processes'-have nice
pictorial representations but no acceptable textual syntax has been found. Related work is con­
cerned with the development of equational theories for various different v~riants of action· calculi.

By its very nature this concluding presentation could not be very technical, and that was
appropriate. Phillipa gave a very entertaining and stimulating overview of the work by herself
and colleagues at DCS/LFCS that was a fine ending to most enlightening workshop; well up to
the standards we have come to expect of the 'FACS Christmas Event'.

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

8

BCS Christmas Meeting on Formal Aspects of Computing
Science

Michaellngleby

The meeting was a symposium of theoretical ideas relating to concurrent systems, and heard
presentations on process algebras, formalisation of concurrency in VDM and Z, interval logic, etc ..
The offerings were necessarily superficial : in computing there is no clear consensus favouring
one style of reasoning about concurrent actions over others, so each proponent had to proselytise
before adherents to another style. .

From a professional theorist's point of view, the most interesting presentation was that of
T.Maibaum (Imperial) based on a categorical approach to objects/agents imbedded in systems.
Most computing scientists have some acquaintance with the branch of universal algebra deal­
ing with categories, functors and universal objects, so the topic was suited to the audience. In
mainstream mathematics, the historical name for this type of algebra is 'the theory of abstract
nonsense': Maibaum used abstract nonsense to approach the notion of 'emergent property' of a
system of interacting agents. A system property is emergent if it results from the coordinated
actions of many agents and not derivable from actions of single agents. In theoretical mechan­
ics, emergent properties are known historically as 'cooperative phenomena' and they are manifest
when a large piece of matter undergoes a phase change (gas-to-liquid, ferromagnet-paramagnet
etc.). Given the scientific culture of the participants, Maibaum wisely avoided such hard examples
and concretised discourse around the dining philosophers problem. This gave the discussion the
flavour of a Professorenseminar on deontic logic, which the naive empiricists present found too
salty.

My own, briefer theorising was made more difficult by having a basis in a branch of universal
algebra antipodal to category theory, and virtually unknown to English-speaking computer sci­
entists : the theory of Galois connections. This I reviewed quickly and superficially outlining a
German way of using it to define the concepts emerging from a data-context, and to present these
as a concept lattice. The naive empiricists present found the offering, like German food, too bland.
In a misguided attempt to accommodate their tastes, I showed how formal concept analysis can be
used to decompose a large population of concurrently acting agents into localities - small cliques
sharing system resources intimately and interacting only weakly with other cliques. The naive
empiricists present then found this too spicy, particularly when I added some of the combinatorics
of proof to the mixture.

No symposium of this type would be complete without generous servings of VDM and Z,
but the organisers worked hard to integrate these boring old staples into the rest of the menu.
Cliff Jones (Manchester) developed VDM formulations of rely and guarantee conditions on agent
behaviour - much as an American chef might assume that if pre- and post-conditions are good,
then more must be better. The same sort of assumption led Lano and Goldsack (Imperial) to
offer a VDM++ for the development of object-oriented systems with concurrency. Most of the
naive empiricists present gobbled these- up like steak and chips, but a few wanted specification
without development, an obligatory vegetarian dish of Z for real-time agents with timed actions
(Hinchey and Evans, Cambridge and Leeds). Actually, they were upstaged by M. Shields (Surrey)
who had already modelled actions with overlapping durations in a way which allows mathematical
properties of overlapping real intervals to be used in discharging proof obligations. Slipping some
real mathematics into a Z specification is a bit like dropping raw horsemeat into a dish of nut

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

9

cutlets - a few of us were amused, but the naive empiricists didn't notice, munching on the Z
regardless.

The second-most-interesting presentation came as dessert, and just about everyone enjoyed it.
Perhaps this was because it was served by Philippa Gardner (Edinburgh) who is much prettier
and better dressed than Tom Maibaum [Hmmm??-Ed.] but more than just a pretty face. The
dessert recipe from R.Milner probably had something to do with it, too: CCS, a pinch of modal
mu-calculus and an updating of the behavioural equivalences pioneered by Milner and Anderson.
The organisers should have allowed more time to savour this tasty stuff.

My account of the meeting omits some significant but unadventurous offerings which have al­
ready been described by Ann Wrightson (Huddersfield), official BCS taster for the naive empiricist
tendency. There was the computational equivalent of tripe and onions and a lot more besides.
Only someone from a tripe-eating region like Normandy or the industrial north of England could
convincingly fake enjoyment of this. But in true Christmas spirit, Ann consumed everything that
was put in front of her, showing the determination of a true north-countrywoman to eat it if it is
free and whinge afterwards. Exemplary conduct of this nature should be mentioned in dispatches:
she took enormous risks with her figure to put FACS into the guidebooks.

Postscript, on Wishful thinking . ..

What faith is placed in formal aspects of computing! I was recently reading some papers on trace­
ability of requirements, and came across this quotable quote in a paper by Gotel and Finkelstein
published in the proceedings for Requirements Engineering '93 (publ.IEEE).

Requirements traceability refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction (i. e. from its origins, th.rough
its development and specification, to its subsequent deployment and use, and th.rough
all periods of on-going refinement and iteration in any of these phases).

Any problems [in post-requirements-specification traceability] are an artefact of in­
formal development methods. These can be eliminated by formal development settings,
which automatically transform an RS [requirements specification] into an executable,
and replay transformations following change.

Putting that last paragraph in the context of the preceding definition, and putting the whole
lot into the categorial framework for compositionality used by Tom Maibaum in his workshop
talk, what do I get? Well, it looks like a working assumption that requirement fragments and
their interrelationships can be traced, forward and back, right through all layers of development
to a working program, provided you use some magic called 'formal development methods'. That
is, that there is nooooo problem in having a merry chain of functors embodying the traceability
of requirement structures step by step through to the behaviour of the machine instance fulfilling
the requirement in action. And that the structure given by these functors is not just there to trace
requirements, but directly governs the animation(= implementation?) of the RS.

Wow,·

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

10

Engineering Models for Software Development

1 Introd uction

This is a report on the talk given by Tom Maibaum at the 1995 FACS AGM, from my (Ed) notes;
comments and questions from the audience are in [brackets].

2 Context

Have Formal Methods had their chance and muffed it? Quite a few people appear to think so,
first in the UK, and also now in Europe. One result of this is that eg there's a growing feeling
that you can't say you'll be using category theory in a research proposal any more - you will, of
course, but the focus expected has shifted in the direction of industrial relevance, so you dress it
to suit.

A very basic question raised by this is: what is/should be the role of mathematics? Comparison
with other branches of engineering, concerning their view of mathematics and how it is used, leads
to the conclusion that we in software engineering haven't yet developed a view of 'our' mathematics
which makes it accessible to engineers in the same way that other disciplines have done.

On the issues of image and takeup, perhaps we can learn from comparing formal methods
with other techniques which have been taken up enthusiastically, eg 0-0. This apparently grew
up from nowhere and succeeded overnight (though there was actually a lot of predecessor work
to the currently fashionable approaches, from the 50s on, lots of it academic). [And the take up
was not always wise - my sole experience of redundancy came from the failure of a project which
decided to use the new O-O/GUI technology relying on early (1989) PC application development
tools and lots of handcrafted glue. There must have been more like this, and I guess there have
been some FM instances too. An interesting question is why 0-0 appears to have survived that
stage without a bad name ... ? Ed] Are academics perhaps studying the wrong problems? Quite
likely, but the problem lies elsewhere.

3 Engineering and Mathematics

Nearly all engineering students hate maths, and like it when they finish their studies and don't have
to do it any more! [Question: UK only?] More UK/US, but quite true overall, even in Germany.
But I can't imagine other engineers working without a very solid foundation in the relevant maths
- yet software engineers do just that. Degree programmes in computing often don't have much
maths, and there are even still companies who take on graduates in other disciplines entirely, to
train as software developers. [Question: What kinds of software developers are you meaning here
- eg do you include a business analyst or similar?] The software developers I mean are those that
other engineers would say were engineers.

Engineering is based on scientific theory, and on mathematics, in different ways. Scientific the­
ory underpins engineering methods in that scientific theories are models of physical phenomena,
and engineering deals with physical phenomena. These theories are expressed using mathematics.
But most engineers' use of maths doesn't happen like that. You may in theory be dealing with,
usually, a set of differential equations, but in practice you use a standard model which is an encap­
sulated representation of some maths which is known to be effective in particular situations. They

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

11

are simplified representations which are valid in the usual domain of use. Systems are designed to
behave like such ideal models - the model is not an empirical description of its behaviour.

Manipulations of engineering models are simple and concrete; a model uses an intuitive repre­
sentation of a physical system which is adequate for the purpose required. (Example: the use of
'poles' to describe a class of mathematical functions used in control engineering; practical design
discussions often involve highly concrete discussions based on 'moving the poles' to get the right
characteristics.) A clue here, to be taken up later, is the similarity of such uses of models to the
idea of abstract interpretation in computer science.

Engineers generally are skilled in choosing and using the right model; this is a key skill of en­
gineering design. Nowadays, CAD systems support this by providing full m'athematical capability
behind the model. In software engineering/formal methods, we don't have such models available -
where we're using maths, we're often doing the equivalent of trying -to use the system of differential
equations of the theory directly each time.

Do other engineers have any similar problems to SE? Yes. Instrument engineers have much
the same problems in the large as software engineers; their small-scale problems use well-defined
models, and are pretty routine, yet when they need to put together a: lot of sensors, have commu­
nication between them, etc., they'run into similar problems to those we know on large systems of
software.

There are also general problems in the mathematics of systems - the maths needed to build
a bridge is pretty well known, but building a transportation system, eg for a city or region, with
all its various bridges, signals, roads of various capacities and speeds, is still not well understood.
Engineers in general do not have good models to support development in the large/complex.

4 Methods and Models

In SE, it's been suggested that to overcome some of the problems of using formal methods, use
rigour instead of formality. The problem with this is that it needs greater, deeper mathematical
skiIIs to really work rigorously without the support of a formal system.

We also need to look at informal methods. The problem is that they are informal, and con­
nexions between them and formal concepts have not been properly made. And this last is why
despite their similarity in some respects, these are not engineering models, because they lack the
connexions that engineering models need to the underlying science and mathematics of the field.
But don't forget that. the informal methods we have are useful, where they are useful, because
they are meaningful to the people using them, and this is good, though not good enough.

We need something else which is more akin to real engineering models. So, for SE: what
science? what mathematics? and how to connect them? what kind of cookbooks do we need?

What mathematics? - here it is clear that logic provides for SE the equivalent of continuous
mathematics in other engineering disciplines. Just as differential equations pop up everywhere, so
theories/ specifications in SE.

What science?-not so clear! Models of comput.ation? (and if so, of what kind? domain
theory? chemical abstract machine?) '" Is 0-0 the beginnings (the witchcraft before the science)
of a scientific theory of development in the large? .. , [Cognitive science?]

Do we already have any genuine engineering models? There are a few candidates, things which
are used over and over again in a well-founded way. One is type theories and type checking;
another is relations (as used in relational databases).

'Patterns' as emerging in the 0-0 world, and 'Software Architecture', may be the beginnings
of other models.

Other models may well grow from what we have now as reusable paradigms for modelling
interrelationships. These are structures which are useful in -a number of contexts, appear to be
independent of the various formalisms and contexts in which they are used, and also look to be
more generally applicable. Here are four areas looking promising in this way.

Synchronization and interaction as (co)limits. There followed a discussion of this ap­
proach centred on the dining philosophers. (And in case you've wondered what the small curly

FACS Europe- Series I Vo1. 2, No. 1, Summer 1995

12

print is in the middle of the table on Tom's usual slide for this, it says "Manduco ergo cogito
ergo sum".) [See the report of Tom Maibaum's talk at the Xmas workshop 1994, for more on this
approach - Ed] This is a candidate for a scientific paradigm of what 'configuring a system' means,
which could be a basis for engineering models for particular purposes. Diagrams alone are not
sufficient; you need further information to support them.

For example, specifying using objects can use the idea that an object embodying a computation
is made up of computation plus interfaces (methods). This can then be developed as a model
where a computation is a composition of a kernel-body and the interfaces available to it, with
links between objects provided via the interfaces (some constructions can then collapse a link via
an interface to a link direct kernel to kernel, to allow simpler connection within an aggregate). In
the category of object-specifications, the system then appears as the colimit of its configuration
diagram.

Structure for systems via clients, servers and interfaces.
Reification/refinement/implementation understood using interpretations and conserva­

tive extensions.
KIDS is the only successful transformation system I know of. It takes a particular view of

transformation systems, and uses some knowledge-base principles to structure the transform set
based on problem classes. There is no interactive theorem-proving, but things are identified which
can be tackled by the system's proof-tools. From the US DoD involvement in the project (inspired
by their large logistics problems) the domain is scheduling and planning. They have produced
some significant programs using novel algorithms, for this domain.

The thinking here is in terms of theorems and interpretations rather than the t.raditional fare
of transforms where programs are terms. A new system 'Specware' is also being developed, with
category theory explicit as the underlying theory for modularity and composition.

Views and perspectives via something - category theory again? There needs to be some
understanding of them in terms of engineering models, or modules of large systems. [I think situa­
tion theory is the key here, probably; you think of a system as made of human and machine agents
perceiving and acting in situations (paying attention to the information flow between situations),
and the theories/specifications describing the agents are then constructed from this picture - Ed]

5 Conclusion

All this is promising, but nee des to be taken much further to provide true engineering models
for SE. The key feature of an engineering model is that it takes an abstract view of only certain
aspects of an artefact, and allows simple, concrete-feeling use of that abstract view, in a way that
in SE terms supports an abstract interpretation back into the full theory. We have various t.hings
which do parts of this, but need to develop this approach much further to support sound SE.

[There was quite a bit of lively discussion at the end, which I didn't note - probably because I
was too busy talking myself! Thanks to Tom for an interesting and thought-provoking contribution
to the AGM - Ed]

FACS Europe - Series I Val. 2, No. 1, Summer 1995

Formal Methods and Object-orientation: A Historical
Perspective

K. Lano (kcl<!ldoc. ic. ac . uk)

13

Formal methods and object-orientation are two of the most significant current ideas in software
engineering, with the latter in particular having moved successfully from research into industrial
practice. Object-orientation and formal techniques are highly compatible in a number of ways:

• object-orientation encourages the creation of abstractions, and formal techniques provide
the means to precisely describe such abstractions;

• object-orientation provides the structuring mechanisms and development disciplines needed
to scale up formal techniques to large systems;

• formal techniques allow a precise meaning to be given to complex object-oriented mechanisms
such as aggregation or statecharts.

In this article we will give some of the history behind the interaction of these two areas, and the
current state of the field.

1 The Origins of Object-orientation and Formal Methods

Object-orientation first appeared as a programming concept in the Simula language of the 1960's,
which originated the concept of a class, inheritance and methods. The explosion of interest in
object-orientation came however in the 1980's, with the development of Smalltalk and then C++,
and the widespread adoption of object-oriented programming in industry (even COBOL now has
"ob ject-orien ted" dialects).

Similarly, formal methods have been researched and applied for over 25 years, having their
origin in the work of Dijkstra and Hoare on program verification, and Scott, Stratchey and others
on program semantics. A major step was the development of mathematical languages for program
specification, of which the most established are the Z and VDM notations. The Z language was
initially created by J. R. Abrial (his paper "Data Semantics" from 1974 could be considered
the birth of this language), and expanded and industrially applied by many others in the 1980s,
with the Programming Research Group at Oxford being the focus of much key work. The VDM
language was initially developed by the IBM research laboratories in Vienna, and the University
of Manchester group led by Cliff Jones became the focus of research and tool development efforts,
leading to the Mural toolkit, and ISO standardisation.

Algebraic notations such as OBJ, PLUSS and LARCH were also developed, but remained less
widely used in industry than the "model-based" notations of Z and VDM.

The development of object-orientation has not been entirely separate from the development
of formal techniques. Indeed, both formal methods and object-orientation take inspiration from
the concept of abstract data types, and the Eiffel language has adopted many ideas from formal
specification (such as invariants and pre and postconditions).

However the main work in combining formal and object-oriented methods has taken place in
the 1990s, in two main areas:

• the addition of object-oriented structuring to formal notations such as VDM, Z and algebraic
languages;

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

14

• the addition of formal notations and concepts to object-oriented analysis and design methods.

These will be considered in the following sections.

2 The Application of Object-orientation to Formal Meth­
ods

The limitations of Z and VDM for specifying large systems in a modular manner led to various
investigations aimed at adding structuring mechanisms to these languages. For example, [20]
proposed adding a "chapter" mechanism to decompose Z specifications into modules, and [13]
identified a similar (object-based but not object-oriented) approach using a combination of HOOD
and Z. Abrial and others at BP Research also developed an object-based extension of Z, the B
Abstract Machine Notation [10], which has had major applications in safety-critical transport
systems [3]. The SmallVDM language [17, Chapter 10] combined an object-based structuring
style derived from Smalltalk with VDM notation.

Researchers and practitioners were led in the direction of object-oriented mechanisms because
these seemed to naturally complement model-based specification languages [8]. The first fully
object-oriented extension of Z was the Object-Z language [4]. This featured the key aspects of
object-oriented structuring:

• encapsulation of data and operations on that data into named modules (classes) which also
define types;

• the possibility of creating subclasses of classes via inheritance, and the ability to use oper­
ations polymorphically between a subclass and its super classes which contain a particular
operation;

• the ability to use instances of a class (ie, objects) within another class - the concept of class
composition. The class C containing instances of class D is termed a client of D, whilst D
is termed a supplier of C.

It however initially restricted composition to be acyclic (class A could not contain an instance of
class B if B contained an instance of A, or other cyclic situations). Object-orientation wa.'> found
to provide advantages in terms of ease of education [22] and in terms of convergence with domain
descriptions.

Other object-oriented extensions of Z were also developed in 1989-91, such as Z++ [14], MooZ
[19], OOZE [1] and ZEST [8]. Of these, OOZE is distinctive as the only one to be ba.<;ed on
an algebraic specification approach, using OBJ and FOOPS as its foundation but with a Z-like
syntax. In the VDM world, the Fresco language was developed as a means of providing formal
specification and verification support for Smalltalk development [23].

A number of applications of these languages were carried out, in the telecommunications and
process control fields. The work of BT using ZEST is of particular note in this respect. The scope
and power of the languages were extended as more challenging application areas were investigated.
Thus concepts of object identity and cyclic composition structures were introduced in Z++ and
Object-Z [15]. The VDM++ language represented a significantly more ambitious approach,based
on ideas from VDM, Smalltalk and the DRAGOON Ada extension [2], it included Ada-style
concurrency and synchronisation features, traces (as in CSP), and real-time aspects taken from
the ideas of Hayes [11]. As with Fusion and ZEST, the involvement of a major company (in this
case CAP Gemini) provided direct routes to significant industrial applications [9]. The toolset
for VDM++, called Venus, extendsan OMT CASE tool (Lov) with facilities to translate between
OMT object models and sets of VDM++ classes, and with facilities for the writing, analysis and
animation (via prototyping) of VDM++ specifications.

Real-time and concurrency aspects were incorporated into Z++ in a more declarat,ive manner
via the use of real-time logic [16].

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

] .f)

A significant drawback with the use of object-oriented structuring is the degree to which this
complicates reasoning about specifications. Until recently, there were no formal semantics for an
object-oriented specification language. This has now been remedied,with an axiomatic semantics
and reasoningsystem being provided for Object-Z [21J and Z++ [16J, and a denotational semantics
for MooZ [18J.

3 The Application of Formal Methods to Object-orientation

Whilst this work on formal object-oriented languages was being carried out, other groups were
investigating the converse process, of how formal specification can supplement object-oriented
development, or help to clarify the semantics of object-oriented notations and concepts.

Examples of such work include formalisation of the OMG's core object model using Z [12],
formalisation of the OOA notat.ion using Z, and the Fusion [5J and Syntropy [7J methods. The
work on OOA uncovered apparent weaknesses in its semantics, such as the lack of any relationship
between the set of object identities of instances of a subtype to those of its supertypes.

Fusion grew out of work by Coleman, Dollin and others at Hewlett Packard Labs on formal
enhancement. of object-oriented notations such as state charts [6J. It provides semi-formal notations
(structured English) for operation pre-conditions, post-conditions and invariants, and uses the
OMT object-model notation and Booch object interaction diagram notation, together with other
notations, to provide a rigorous method for sequential systems. It is now used quite extensively
within Hewlett Packard, across 15-20 divisions and in areas such as printer technology, network
management software and test software. Other companies have taken up Fusion in the USA and
Europe.

Syntropy is a more recent method in the same direction. It combines the statechart and object
model notations of OMT with object interaction diagrams, and allows the use of Z notations on
these diagrams to specify pre and post conditions, invariants and constraints. A partial formal
semantics for the notation is also provided. Unlike Fusion, a treatment of concurrency is provided.
Syntropy grew out of many years of industrial experience in consultancy, and has already been
commissioned for use in financially critical applications in the UK.

4 Conclusions

The development of highly integrated formal and object-oriented methods, with supporting tools,
appears to be an effective way of introducing formal methods into industry. Tools such as Venus
allow users of object-oriented methods to extend the rigour of their developments all the way
to fully formal and proved specification and refinement steps. The trend towards greater rigour
in object-orient.ed languages and methods· also makes it easier for formality to enter industrial
practice.

The great number of object-oriented variants of formal languages may seem to bea hinderance
to their uptake, however these languages share many common concepts and features, so that
learning one does not imply a great retraining cost if an alternative language becomes used instead.

In the UK there is a working group, EROS, involving both industrialists and researchers, which
holds regular discussions on formal object-oriented approaches, including the standardisation of
formal object-oriented languages. A number of conferences and workshops on the topic have
also been held, with the ECOOP conference being of particular relevance. The 1993 BCS FACS
Christmas meeting was on this topic. The proceedings of this meeting are to appear in a revised
and updated form as a book in the Springer-Verlag FACIT series in 1995, and gives a useful
overview of current. work in the field. The book [171 gives a collection of case studies in various
formal object-oriented notations, and there are projected books on VDM++ and on formal object­
oriented development in general.

FACS Europe - Series J Vol. 2, No. 1, Summer 1995

16

References

[1] A J Alencar and J A Goguen. OOZE: An object-oriented Z environment. In P America,
editor, ECOOP '91 Proceedings, volume 512 of Lecture Notes in Computer Science, pages
180-199. Springer-Verlag, July 1991.

[2] W D Atkinson, J P Booth, and W J Quirk. Modal action logic for the specification and
validation of safety. In Mathematical Structures for Software Engineering. The Institute of
Mathematics and its Applications Conference Series 27, Clarendon Press, 1991.

[3] J Bowen and V Stavridou. Safety-critical systems, formal methods and standards. Software
Engineering Journal, 8(4):189-209, July 1993.

[4] D Carrington, D Duke, R Duke, P King, G A Rose, and G Smith. Object-Z: An object­
oriented extension to Z. In Formal Description Techniques, II (FORTE'89), pages 281-296.
North-Holland, 1990.

[5] D Coleman, P Arnold, S Bodoff, C Dollin, H Gilchrist, F Hayes, and P Jeremaes. Object­
oriented Development: The FUSION Method. Prentice Hall Object-oriented Series, 1994.

[6] D Coleman, F Hayes, and S Bear. Introducing objectcharts or how to use statecharts in
object-oriented design. IEEE Transactions on Software Engineering, 18(1), January 1992.

[7] S Cook and J Daniels. Designing Object Systems: Object-Oriented Modelling with Syntropy.
Prentice Hall, Sept 1994.

[8] E Cusack. Object-oriented modelling in Z. In P America, editor, ECOOP '91 Proceedings,
Lecture Notes in Computer Science. Springer-Veriag, 1991.

[9] E Durr and E Dusink. The role of VDM++ in the development of a real-time tracking and
tracing system. In J Woodcock and P Larsen, editors, FME '93, Lecture Notes in Computer
Science. Springer-Verlag, 1993.

[10] H Haughton and K Lano. B Abstract Machine Notation: A Reference Manual. McGraw-Hill,
1995.

[11] I J Hayes and B Mahony. A case study in timed refinement: A mine pump. IEEE Software,
18(9), September 1992.

[12] I Houston. Formal Specification of the OMG Core Object Model. Technical report, IBM UK,
Hursely Park, 1994.

[13] P L lachini and R Di Giovanni. HOOD and Z for the development of complex software
systems. In VDM and Z, VDM 90, volume 428 of Lecture Notes in Computer Science, pages
262-289. Springer-Verlag, 1990.

[14] K Lano. Z++, an object-oriented extension to Z. In J Nicholls, editor, Z User Meeting,
Oxford, UK, Workshops in Computing. Springer-Verlag, 1991.

[15] K Lano. Refinement in object-oriented specification languages. In D Till, editor, 6th Refine­
ment Workshop. Springer-Veriag, 1994.

[16] K Lano. Reactive system specification and refinement. In TAPSOFT '95, volume 915 of
Lecture Notes in Computer Science. Springer-Verlag, 1995.

[17] K Lano and H Haughton. Object-Oriented Specification Case Studies (First Edition). Prentice
Hall, 1993.

[18] T Lin. A Formal Semantics for MooZ, PhD Thesis. Technical report, DI/UFPE, Recife/PE,
Brazil, 1994.

Cont. on p.20

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

How did software get so reliable without proof?

Notes from a lecture by C. A. R. Hoare given at South Bank University, 24/11/94, by
A.M. Wrightson

1 Surprising reliability ...

17

One starting point comes from Dijkstra about 1968: how to tell a chip is still working? (i.e. testing
reliability after installation). No one is interested in that any more - they do keep working. Also,
no one runs a system that long, keep replacing them - so that problem has gone away. [I suspect
it will come back with eg processors embedded in car control - AMW]

A second starting point: decrease in reliability with increasing size of software. Problem
originally posed in context of programs around lOk lines, known to be unreliable because of bugs
etc.-and fear of error rates potentially exploding with greater size. Again, the predicted £ortune
has not come to pass. We have large software, ill daily use-and these are of the more difficult
kinds to build right, and are also subject to evolutionary changes. Yet they do in fact work, with
adequate reliability to deliver services, and with very few accidents caused by software error.

Interesting picture from a recent survey (McKenzie) on computer related deaths. Yes there
are some, not many (a few lOOs) deaths attributable to systems involving computers. For most
of these, the survey shows the mistake occured before building the software, typically at require­
ments gathering or formulation, or are due to evolution of the environment of operation of the
system. For example, war making software used for peacekeeping, with different priorities and
parameters implied. Deaths from software errors are very rare, probably in tens not hundreds.
Best documentation is on errors in settings on X-ray treatment machine, even here the picture is
unclear.

So even very large (26M lines) programs can run continuously and reliably, for example tele­
phone switching software, while being under development all the time. These programs do contain
errors, and in principle are safety-critical, at least commercially critical. (When an exchange on
US eastern seaboard went down, the operating company lost a few billion dollars.) There is more
surprise in their success than in their failure.

Big software such as telephone systems is mostly constructed by physicists, engineers, electri­
cians, without computer science concepts. NO knowledge of proof, using developed intuition about
how programs will work. There is much intuition about dynamic operation of physical systems
used by engineers in visualizing design decision consequences for physical artefa.cts. The same
kind of intuition develops in programming. The lack of specifically spatial intuition requirements
is an advantage in writing programs.

Program testing has improved, eg by simulation of the operating environment. Testing is very
effective in leaving a program with only rare bugs (An IBM fault report analysis showed the
likelihood of a second customer finding the same fault in mature software as about 1 in 5Kyr.
That seems to be so-I don't know why. There's much the same experience in hardware-if
it passes initial tests a device will survive well in use. Software is more reliable in use than it
has any right to be! Testing is very efficient on personalworkstations, and lots of testing is
done. Amazingly, customers will pay for the privilege of finding bugs-,B-test-no other branch
of engineering managed to put this one over on their customers. (Reference here to a short story
by E. M. Forster, "The Machine Stops".) There are many small faults. They can have nasty
consequences. Small symptoms may be of larger problems [and emergent properties? AMW].

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

18

2 Observations from software engineering practice

Most of the code of the large programs (operating systems, GUls, telephone exchanges) is put
in to recover from operator or hardware error. If there is a software error it will have similar
symptoms, and will be recovered to a safe system state. The transaction may well go wrong,
but the operator can recover that too. Also, the operator never knew it was a software fault:
"you must have pressed the wrong key"-how many 'operator errors' are latent software errors,
or interaction effects?

The original assumption/conjecture that errors are cumulative is wrong, and in practice the
reverse is the case, because the bigger systems have evolved, by layered construction, over a long
time, with time to settle in at each stage. Lower layers 'learn', adapt to how they are used­
higher levels only use lower levels in certain ways, and the normal process of bug l'emovalleads to
'machine learning' over the whole structure.

Software is thus as reliable as its highest layer, this is the easiest to write, so can deliver high
reliability albeit on an insecure basis.

An analogy from a natural system-genetics, our only good example of a discrete natural
system, and it has similarities. In principle, a one-molecule change could lead to didaster, yet
there is considerable resilience in the genetic code' plus how it is expressed. Again this has come
about throug evolution, through may layers, adding new material, using old subsystems-and
there is dead code, no-one knows why it's there or what it does.

Software developers have had it easy for 15 years. Most software can ignore resource limitations.
Much has been too expensive inresources for the hardware when first delivered-then the hardware
caught up, again and again. The factors involved are incredible-a physical analogue would be
meeting a need for 'a tap which doesn't drip' by a device weighing 3 tons (and letting through
very little when on).

An interesting technique from the telecoms industry has a scavenging process loose in the
system, known as a 'software audit'. It looks at activation records, data structures etc. and uses
a test of plausibility on the data (right parameters, ranges of values, relationships between them).
If there is anything suspicious, the structure in question is reinitialized. Possible analogy here
with human immune system. Could be called 'Run-time testing of assertions'-but the people
involved don't know the concept. An improvement in length of operation without failures, from
a few hours, to a few years, reported with this technique. Using assertions in the development
would protect against these errors-wouldn't it? (and there are some companies who don't need
this technique ...).

Another phenomenon: programmers in large development teams write lots of code to protect
their own modules against external changes, and against misuse. These include checks for errors
in the code which uses their code, and in the code it uses (Le. layers above and below). This
is defensive programming, essential for developers in large teams. This is a good contribution to
software safety-what proportion of the code in really big systems is there just to do this?

Another technique widely practised is design reviews, code reviews, gatekeepers for reiease of
code into a wider environment. These reviews are remarkably effective in all engineering disciplines,
and are effective on code in particular.

3 Some hope from research (since 1968)

Modern programming languages do contribute to reliability, because of their simplicity--none of
the telephone code looked at used jumps. High-level languages with types (eg specific to a domain)
are easy to read accurately, because you can rely on the types, and this confidence is e~sential
to really understanding code. For example, there is a received wisdom that you can't maintain
systems of over 8M lines of C - is this why?

Dijkstra's famous 'goto' letter caused a furore-but now everyone does it. Strict type checking
will follow (the basic research for this happened before AlgoI68!). It can take very long for research
in this area to have an effect. Much work on 0-0 since 1967 has been inferior and obscured the

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

19

issues, compared to early work such as that which resulted in Simula67. Assertions (Turing 1947,
Hoare 1997 ...) do work, can be useful in code reviews-review based on conviction rather than
traces and examples would be more secure.

So what use is research? The future direction of CARH's research will explicitly go ba­
sic/scientific, making it clear what our understanding is of programs of various kinds, and of
relationships between them. This to include not only procedural code, functional languages, logic
programs, but also eg SQL, MATLAB, spreadsheets, visual basic.

How to understand the relationships between all of these (in principle, as compare-and-contrast,
and in practice as interaction. What should a method look like for developing applications involv­
ing all of these? What aspects are independent, of which if these, and how to specify it? When
computers are like this, how to see that interfaces are secure and don't cause problems? Surely
there is an immediate practical engineering interest, but the research needs to be in principle,
with simplification of models-and the actual motivation is curiosity.

[Interesting practical parallel here to CLieS project concerns with integration of various un­
derlying theories - AMW]

Looking now at what actual users of computers are doing, there is a noticeable contrast between
small-scale use of programs and applications, and large projects. The scale contrast is similar to a
plank bridge vs the Forth bridge. A view amongst students which inoculates against the approaches
needed for Forth Bridge type projects is encouraged by playing with small-scale examples and
packages.

Most people making big projects have to use a language which will be there in 2050AD-which
C will be, whatever you think of it otherwise-a change of language will moreover be unthinkably
expensive and risky. So, we need practical ways ahead, to get safe ways of using C, or getting
high-level languages which translate securely into C. See paper [by CARH]: 'The High Cost of
Programming Languages' - the cost is not quantifiable.

4 Discussion

Audience: In other engineering disciplines, new ways have eventually taken over, and even driven
out old equipment.

CARH: A disadvantage, and a problem peculiar to software, is that new concepts need to
propagate throughout people using it. In other areas, 1 or 2 people understanding a formula can
bring about a process or procedure which many people can follow. In computing, lots of people
have to learn concepts and techniques, and integrate them into practice, for a change to stick.
Experience now is that efforts such as (part of) IBM using the B-tool can pay locally, but you get
problems of acceptance later on-when in theory you should be getting the proper development
payoff-what happens is that people don't like it because it's not a 'normal' product

Another thing to remel~ber is that the crash of the US telephone system [mentioned earlier]
was caused by (too much) defensive code. A localized overload led to a cascade of offioading which
overloaded other modes in turn, leading to the crash. Moral: Analysis of recovery patterns should
happen early, and also as an iterated check throughout a development-some basic mathematical
techniques applied in this way would have prevented this situation.

Computers deliver such good value for money that their deficiencies are tolerated-and there
is no sign of competition changing this.

Audience: [another question]
CARH: People don't spend less on computing as it gets cheaper, they use more and more.
There is a software engineering question to be answered here-Why does software get so large?

What'sdefensive?What's dead? What's-(needlessly) copied? It's a surprise that no-one is asking
this question, and measuring carefully to get a good answer.

A udience: Is the increase linear, or what?
CARH: No-one observes actual software to see how it works. No-one removes code-so if

stable, is linear, but depends on number of programmers.

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

20

There was a recent PICT group meeting on learning from disasters. London Ambulance
project-it was crazy from start to finish, yet it's easy to imagine how it happened. Not software
faults as such, perhaps a lack of humility, lack of management conception of the project as well, in
being able to define an achievable thing. Perhaps "Never do anything with more than 6 months
delivery" a good maxim for interactive systems. Also, ensure communication and connection
between machines and databases at places where things will need to adapt. The 'legacies' in the
minds of users are more permanent and dangerous than anything the other side of the glass screen.

Tim Denvir: As we understand some development, eg the transition from assembler to high­
level language, then a bit later, automate it, and change from selling machine time to selling
programs. More recently, 20 out of 25 projects at Praxis delivered feasibility trials or specifications,
not programs. So software engineering is always "difficult", because the bit we are doing now, as
the task for people rather than machines, is the bit we don't understand well enough to automate.
And what we don't understand at present is requirements.

CARH: Agree.
Audience: Will 0-0 make systems more reliable?
CARH: No. For example, systems in C++ can run for a while, then crash. C++ can't have

good garbage collection because of lack of type checking - you can overwrite pointers '.'lithout
deallocating the associated store. Pointers are as dangerous as jumps. '

(From p.16)

[19] S R L Meira and ALe Cavalcanti. Modular object-oriented Z specific~tions. In Z User
Meeting 1990, Workshops in Computing, pages 173-192. Springer-Verlag, 1991.

[20) A Sampaio and S Meria. Modular extensions to Z. In VDM and Z, volume 428 of Lecture
Notes in Computer Science. Springer-Verlag, 1990.

[21] G Smith. A logic for Object-Z. In Z User Meeting '95, Lecture Notes in Computer Science.
Springer Verlag, 1995.

[22] P A Swatman. Using formal specification in the acquisition of information systems: Educat­
ing information systems professionals. In Z User Meeting 1992, Workshops in Computing.
Springer-Verlag, 1993.

[23] A Wills. Capsules and types in Fresco: Program verification in Smalltalk. In P America,
editor, ECOOP '91 Proceedings, volume 512 of Lecture Notes in Computer Science, pages
59-76. Springer-Verlag, 1991.

FAGS Europe - Series I Vol. 2, No. 1, Summer 1995

British Computer Society - Formal Aspects of Computing Science

IBC§=IPAC§

BCS-FACS Christmas Workshop
Imperial College, London

18/19 December 1995

SEMANTICS
Call for Papers

21

The Xmas Workshop of the Formal Aspects Special Interest Group of the
British Computer Society is a well-established event. which has
traditionally served to the FACS community a varied and interesting diet
of topics related to "fonnal aspects".

The aim of this workshop is to cover a wide range of current work in
Semantics. includin.g reviews. tutorials. and reports of v;ork L."l progress.
The two principal foci are Semantics of Computation. and Semantics as
Meaning. Understanding computation could be seen as the longest or
largest endeavour in real-world semantics in computing. and this
provides a strong connection between the two aspects of the programme.

Semantics and Logic of Computation is of course currently very active
and fruitful. especially with the input from CLiCS and other European
funded projects. Keynote presentations will convey to the FACS audience
substantial aspects of current work. and this will be complemented by
shorter presentations on more specialized areas and work in progress.
WE INVITE abstracts of presentations which are reviews. tutorials. or
reports of work in progress. and hope to have all these kinds in the
programme.

To complement this focus~ WE INVITE AND ENCOURAGE contributions
from a wide range of semantic enterprises concerned in some. way with
meaning in real-world or system development terms. Examples would
include work concerned with data. interaction. real-time. application
domain concepts etc. If the response permits. then a panel discussion
involving a diversity of semantic outlooks will be a feature of the second daY.' ., .,

Tentative list of invited speakers includes Luke Ong. Andrew Pltts. and
Alan Dix.

See overleaf: Information for Contributors

FACS Europe -- Series I Vol. 2, Nb. 1, Summer 1995

22

Information for Contributors:

ABSTRACTS (maximum of 2 pages) sUitable for distribution at the
workshop should be submitted to either organizer to anive not later than
the end of September. Authors will be informed whether their
submission has been accepted by the end of October.

Co-organizers:

Kevin Lano
Department of Computing
Imperial College of Science Technology and Medicine
180 Queen's Gate
London
SW72BZ
UK
Tel: 0171 594 8246
Fax: 0171 581 8024
Email: kcl@doc.ic.ac.uk

Ann M Wrightson
School of Computing and Mathematics
University of Huddersfield
Queensgate
Huddersfield
H013DH
UK
Tel: (01484) 472758
Fax:· (01484) 421106
Email: scomaW@zeus.hud.ac.uk

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

First Announcement and Call for Papers

BCS FACS Group
The Seventh Refinement Workshop

Theory and Practice of System DesIgn

3-5 July 1996
University of Bath, England

23

Formal techniques constitute the foundation of a systematic design. They have beneficial applications
throughout the engineering process, from the capture of requirements through specificatio.', coding and
compilation, right down to the hardware which embeds the system into its environment. The use of
refinement techniques in computing systems is increasing rapidly, as it provides the theoretical foundations
for the design of reliable systems.

The workshop is devoted to considering the problems and the solutions in computing system de­
sign. Particular emphasis will be given to examination of how well formal refinement techniques for
design,analysis and verification serve in relating theory to practical development of real time systems.
Papers are invited which address theoretical or practical issues in the development and/or application
of formal system specification, design, refinement and implementation. The organisers are aiming for a
balanced mixture of theoretical and practical material, drawn from fully refereed papers as well as invited
presentations. Some particular themes that might be addressed by authors are as follows:

• Requirement capture and analysis of safety-critical systems.

• Refinement techniques for real-time systems.

• Methods for large scale software development.

• Formal specification and design.

• Hardware/software codesign.

• Parallel software engineering

• Tools and techniques for parallel system development.

• Industrial case studies in the use of formal development techniques.

• Education and training in formal methods.

• Issues relating to the usability of formal notations.

Contributions need not be limited to these themes, but papers with clear industrial relevance are
particularly encouraged.

The proceedings are likely to be published by Springer-Verlag as part of the BCS Workshop series.
Details of the cost of the workshop and a provisional timetable will be distributed at the beginning of
March 1996.

Depending on the availability of suitably mature (and formally based) software engineering tools to
support refinement, a tool demonstration may also be possible. Anyone wishing to mount such a demon~
stration should contact the Workshop Chairman and provides a two page summary of the tool.

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

24

Dates For Authors

Authors are invited to submit full (draft) papers to the Workshop Chairman at the address below.

The following dates have been set:

Submission of papers
Notification of acceptance
Camera-ready copy of papers for publication

15th November 1995
15th January 1996
15th April 1996

Organizing And Programme Committees

Mike Ainsworth
John Cooke
Roger Hale
He Jifeng (Workshop Chairman)
Jeremy Jacob
Victoria Stavridou
David Till
Peter Wallis (Local Organizer)
Hussein Zed an .

Local Details

Praxis plc
Loughborough University
SRI International
Oxford University
York University
Royal Holloway and Bedford New College

City University
Bath University
Liverpool John Moores University

The workshop will be held at the University of Bath from 3rd July to 5th July 1996 with meals and

accommodation available on the nights of 2nd to 5th June. The cost of the workshop is still to be decided

and will be inclusive of proceedings, lunches and dinner.

The University is located in landscaped grounds on a plateau overlooking the Georgian City of Bath.

The city is well suited for ease of access by road, rail or air.

Further Details From:

He Jifeng
Programming Research Group
Oxford University Computing Laboratory

11 Keble Road
Oxford OX1 3QD, England
Tel: +44 1865 283513 Fax: +44 1865273839

Email: jifeng@comlab.ox.ac.uk

or

Peter Wallis
School of Mathematical Science
University of Bath
Claverton Down
Bath BA2 7 AY England
Tel: +44 1225 826002 Fax: +44 1225 826492

Email: pjlw@maths.bath.ac.uk

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

25

BCS-FACS

CALL FOR PAPERS

Formal Aspects of The Human Computer Interface
BCS FA CS Workshop

Sheffield Hallam University, Sheffield, UK.
10th - 12th September 1996

The field of Human Computer Interacti9n is becoming increasingly relevant owing to the growing number of unskilled
users making greater demands upon interactive systems in a wide variety of contexts. In addition. the nature of interaction
is developing rapidly with the incorporation of advanced graphical and multi-media techniques. and the potential for
multi-modal interaction. Within this context, user requirements are making high demands upon the notations involved in
formally specifying and analysing requirements for interactive systems. The use of formal methods and notations within
software engineering has provided considerable benefits to improve the quality of software development The aim of this
workshop is to demonstrate and examine the benefits and limitations of such techniques within the analysis, specification
and design of the human machine interface, and usability requirements in general.

Contributions are sought that focus upon either basic research addressing modelling techniques suitable for
accommodating advanced interface requirements or the application of formal techniques within interface design. Examples
include (but are not limited to) the following:
• Modelling human computer interaction (especially

multi-media and multi-modal aspects of interaction)
• The formalisation and analysis of usability

requirements for interactive systems
• Modelling temporal aspects of interaction
• Unifying system and user models
• Improving the effectiveness, usability and acceptance

of formal techniques

•
•

The specification of Graphical User Interfaces
The application of formal techniques in interface
design, refinement and verification

• The application of tools

The workshop is organised by BCS - F ACS (Formal Aspects of Computing Science). Accepted papers will be invited to
present their work, and it is planned that proceedings will be published by Springer-Vedag.

Panel: Proposals that focus on current controversies within a workshop topic are encouraged. Preference will be given to
panels that consist of members who have a significant presence in the field and present a diversity of views.

Submission: Submissions should not exceed 6,000 words in length, typed doubled spaced, they should
include a short abstract, a list of keywords, and full contact details for the principal author. Six copies
should be sent to: Dr. Chris Roast. Sheffield Hal/am University. Sheffield. SJ J WB. United Kingdom.

Attendmrce: The workshop will be suitable for researchers interested in the application of formal
methods, and industrialists interested in the development of quality advanced interfaces.

Organisers: Chris Roast and Jawed Siddiqi, Computing Research Centre, Sheffield Hallam
University, Sheffield, SI lWB, UK (Tel: +44 (0)114-253-3768, Fax: +44 (0)114-253-3161). Further
information on the workshop is available by email c.r.roast@shu.ac.uk and through the WWW URL
http://pine.shu.ac.uk/-cmscrr/fahci.html.

Key Dates:
Expression of interest: 13th Nov. 1995
Notification·of acceptance: 8th Mar. 1996

Paper submission: 8th Jan. 1996

Programme
Committee:

G. D. Abowd
A. 1. Dix
D. A. Duce
B. Fields
T. R. Green
M. D. H'arrison
C. W. Johnson
S. MiIner
P. Palanque
F.Patemo
C. R. Roast
J. I. Siddiqi
R Thimbleby
D. Till
P. C. Wright
A. M. Wrightson

FACS Europe -- Series I Vol. 2, No. 1, Summer 1995

26

Virtual Library Formal Methods Z Notation

Announcement: Formal Methods and the
World Wide Web

Information on formal methods, and Z notation in particular, is held as part of the World Wide Web
(WWW) global hypermedia Virtual Library under the following URL (Uniform Resource Locator):

http://www.comlab.ox.ac.uk/archive/forrnal-rnethods.htrnl

Please email lonathan.Bowen@comlab.ox.ac.uk if you know of relevant on-line information which
could be included.

Currently there are around 35 million people with Internet access and the number is doubling each
year. WWW usage has been estimated to be increasing at 1 % per day! The WWWVirtual Library
formal methods page is accessed around 150 to 200 times a day from around the world (as of May
1995) and is mentioned in the September 1994 issue of Scientific American.

Technical information: The page may be accessed on the Internet by WWW client programs such
as netscape or mosaic under X windows and lynx on ASCII terminals under Unix. Client programs
are also available for use under MS-Windows on PCs and on Apple Macintosh computers. Contact
your system manager if WWW is not accessible from your computer. .

WWW pages include underlined phrases which are hyperlinks to other URLs. These may be
anywhere in the world on the Internet computer network, accessible via anonymous FTP, NNTP
(USENET news), Gopher, W AlS, Telnet, or WWW·sownHTTPprotocol.using HTML, a
mark-up language based on SGML. As well as HTML format, files may be in PostScript (formatted
documents), DV! (LaTeX output), GIF (colour images), XBM (monochrome images), JPEG
(compressed colour images, especially photographs), MPEG (moving colour images), Sun audio
(sounds), etc., and may be compressed using utilities such as compress and gzip. Different formats
are handled by appropriate programs on the host machine.

lonathan Bowen, Oxford University Computing Laboratory.
Email: lonathan.Bowen@comlab.ox.ac.uk.

(Part of the DUCL Archive Service.)

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

Notice of Conference and Call for Participation

ZUM'95
9th International Conference of Z Users

Organized by the Z User Group
Sponsored by BT, Forbairt, Praxis and University of Limerick

Supported by BCS FACS and ESPRIT ProCoS-WG
7 -8th September 1995

University of Limerick, Ireland

27

The 9th International Conference of Z Users (ZUM'95) will be held .at University of Limerick in the
West of Ireland in September 1995. The conference is being held outside the UK for the first time.
Limerick (Shannon Airport) is easily reached by air, with several flights per day from London (Heathrow),
Leeds/Bradford and Manchester, and direct flights from major cities in Europe and the US. The following
activities are planned:

Monday - Wednesday,4-6th September 1995
Thursday - Friday, 7-8th September 1995
Saturday, 9th September 1995

Thtorials
Main meeting
Educational issues session

The following invited speakers will give presentations as part of the main sessions of the conference:

Prof. David Lorge Parnas, McMaster University, Canada
Dr. John Rushby, SRI International, USA
Prof. Jeannette M. Wing, Carnegie Mellon University, USA

The conference will also include:

• Tool demonstrations • Exhibitions by publishers • Posters or leaflets

A conference dinner will be held at historic Dromoland Castle where the after dinner speech will be given
by Prof. David Gries (Cornell University, USA)

Attendees will receive a copy of the proceedings, to be published by Springer-Verlag Lecture Notes in
Computer Science, and a special Z issue of the Information and Software Technology journal as part of the
delegate pack. To attend, please complete and return the booking form with the appropriate remittance.
We look forward to seeing you at the meeting.

For on-line information on the conference, see:

http://www.comlab.ox.ac.uk/archive/z/zum95.html

FACS Europe - Series I Vol. 2, No. 1, Summer 1995

28

BCS FACS
Department of Computer Studies

Loughborough University of Technology

Loughborough, Leicestershire

LE11 3TU
Tel: +44 509 222676
Fax: +44 509211586
E-mail: FACS@lut.ac.uk

FACS Officers

Chair
Treasurer
Committee Secretary
Membership Secretary
Newsletter Editor
Liaison with BCS
Liaison with FME

John Cooke
Roger Stone
Roger Carsley
John Cooke
Ann Wrightson
Margaret West
Tim Denvir

D.J .Cooke@lut.ac.uk
R.G.Stone@lut.ac.uk
roger@westminster .ac. uk
D.J .Cooke@lut.ac.uk
a. wrightson@hud.ac.uk

mmwest@scs.leeds.ac.uk
timdenvir@cix.compulink.co.uk

