
~FACS
FORMAL METHODS

EUROPE

The Newsletter of the BCS Formal Aspects of Computing Science Special Interest Group and
F01'mal Methods Europe.

Series I Vol. 1, No. 3 Winter 1994

Contents
Editorial ... 2
FACS AGM Minutes .. 3
A Brief History of Forlual Methods 4-17
Functional Progranlluing Cohuun 18-24
VDM EXa111ples Repository 25-27
Frequent asked questions about VDM 28
FOrIual Methods Applications Database 29-30
Report on ZUM '94 .. 31-32
Recent Books Cohuun ... 33
Evellts list .. 34
Guidelines for Contributions 35
FACS COl1lluittee .. 36

2

Editorial
Welcome to the Winter issue of FACS Europe.
We had our AGM in September, the minutes
appear on the next page. One of the con­
cerns raised was the number of lapsed mem­
bers of FACS. If you are one of these, treat
yourself to a Christmas present by completing
and sending off, before the Christmas post,
the reminder sent to you by John Cooke.

As Christmas approaches, I thought it timely
to include our version of A Christmas Carol!
A Brief History of Formal Methods by Bernie
Cohen. On reading it you will realise that
Bernie has presented a very personal view wh­
ich does not claim to be coherent or complete,
but is thoroughly selective, hence plenty of
name-dropping. Our columnists have gath­
ered for us interesting material on Z and VDM,
also included is a report of ZUM '94, and the
regular recent books column.

At the last FACS Committee Meeting, there
was some discussion as to how to best serve
the membership. How often should the newslet­
ter be published? Our wish is quarterly, but
lack of contributions has made this difficult.
Should the newsletter be electronic and avail­
able on the world-wide web? Should we stay
in the present form, or should we have the
topical information in electronic form and print
the more substantial contributions on paper
twice a year? What do you think? Let us
know your views. Write or send an email to
Anne Wrightson (University of Huddersfield,
scomaw«lzeus .hud. ac. uk).

FACS Europe - Series I Vol. L No. 3, Winter 1994

At the AGM Brian Monahan relinquished his
position as the editor and I am personally
very grateful for his contribution particularly
his input to improving the quality of presen­
tation through the use of Ib-TEX, moving it
from the packages of handwritten contribu­
tions stapled between two blue covers to this
polished form. He will continue to serve on
the committee and will continue to contribute
to FACS Europe. Brian's role is being taken
over by Chris Roast who joined Sheffield Hal­
lam University after completing his doctorate
at the University of York on Executing Mod­
els in Human Computer Interaction. His in­
terests include formal methods and HCI and
is currently working on the formalisation of
usability requirements.

Jawed Siddiqi

3

Minutes of AGM of BCS FACS

Tim Denvir Chairman

The AGM of the BCS FACS was held on 14 September at the Institution of Electrical Engineers, Savoy
Place, London. Attendance was low owing to a rail strike which was hampering travelling at that time, but a
quorum was present: Tim Denvir, John Cooke, Roger Stone, Roger Carsley, Jawed Siddiqi.

Chairman's Report

Highlights of the past year include the 1993 Xmas Workshop on the Formal Basis of Object Oriented Systems,
the Sixth Refinement Workshop on 5 - 7 January 1993, and in association with the Z User Group, the Z User
Meeting In June 1994.

Stronger links have been forged with Formal Methods Europe: the newsletter is now the joint newsletter
of FACS and FME; the formal methods tools database has been set up with the joint agreement of FACS and
FME and is operational, available by ftp from five sites globally distributed and also via the world wide web.
FACS is at present managing the FME mail list.

It was agreed to review the current free distribution of FACS Europe to the FME mail list.

Membership Secretary's Report

Benefits for members include discounted prices for attending FACS meetings, dramatically reduced rates for
subscription to the Formal Aspects of Computing Journal, receipt ofthe, admittedly intermittent, FACS Europe
newsletter, and receipt of other occasional material of interest to the formal methods community. Members can
also join and renew their subscriptions to EATCS through FACS which can save currency conversion fees and
be an added convenience.

Current membership is 141 fully paid up members. The number of paid up and recently lapsed members
(who remain on the mailing list for a limited time) is 230.

It was agreed to maintain the membership subscription at the same rate for 1995 as in 1994.

Formal Aspects of Computing Journal

The arrangement that longer papers may be split into two parts, a synopsis published in the journal as usual
and a longer version available by ftp, is now in operation. Issues 6/5, 6/6 and an extra issue 6/6A are now in
hand. They total 800 pages with an additional 100 pages of extended material available by ftp. These three
issues contain 7, 8 and 5 papers respectively. Several of these are "short communications".

Committee

Several members of the committee had volunteered to serve for a further year. There was some discussion of the
committee structure, without any firm conclusion. Since not all committee members had notified that they were
willing or otherwise to continue, it was decided to make no changes to the present committee for the moment.

Treasurer's Report

The administrative assistant, Carys Bez, had been unable to continue beyond the end of last year. There was a
hope that another member of the Loughborough computer science department would take over the tasks, but
this has not materialised. John Cooke and Roger Stone will continue to look for a substitute.

FACS has cash reserves of £24,000. This is £2,000 less than last year, but after taking into account commit­
ments, which include distribution of the Vlth Refinement Workshop Proceedings to attendees and programme
committee members, and subscriptions to the journal and EATCS still to be forwarded, the real position is a
balance of £17,000.

1

FACS Europe - Series I Vol. L No. 3, Winter 1994

4

A Brief History of 'Fonnal Methods'
B. Cohen

City University

Harbingers
Formal methods are not new.

We can trace their origins back into the dawn of

civilisation. The Babylonians (1800 BC) laid out

their astronomical data bases and mathematical

tables in first normal cuneiform. Plato (400

BC), in the Sophist, gave us structured analysis

long before we knew what to use it for. Panini,

Plato's oriental contemporary, formally defined

the grammar of Sanskrit and did it so well that he

set the standard for a thousand years (could

ISO?). Euclid defined his geometry using the

axiomatic method and Diophantus formulated

effective techniques for solving arithmetical

problems. The Pythagoreansknew they had serious

limitations, but kept them secret because the

explanation violated conventional wisdom -

anyone who has publicly questioned the soundness

of such 'standards' as SSADM or SDL will

sympathise. Al Khworizmi (800 AD) retrieved

Greek techniques from the obscurity of the dark

ages and, in gratitude, we gave them his name.

Newton, Leibniz, Laplace and Lagrange gave

us real analysis, which we needed to solve the

dynamical problems of the industrial age. The

19th century mathematicians put their calculus

into the axiomatic framework led, as usual, by

Gauss whose in situ analysis anticipated the

abstract algebra of Galois and Abel. George

Boole was putting logic on an algebraic footing at

the same time as Lady Lovelace (Ada herself),

wasconstlUcting, and proving correct, programs

for Charles Babbage's prophetic engines. Frege

formalised propositionallogic as an axiomatic

system and enunciated his denotational

imperative, the basis of formal semantics.

At the turn of the century, Hilbert and Russell

turned formalisation into a philosophical

plinciple, which inspired Godel, Church and

Turing to fonnalise computation itself. Cun),

and Schonfinkel developed the A.-calculus and

the treatment of higher order functions in it

which is now called currying (mainly because it

is not called schonfinkeling).

Although there was still little machinel), to

compute with, there was no sh011age of things to

compute. Science and engineering, business and

government (particularly its militaI)' arm) were

posing hard, numetical problems which were not

susceptible to closed fonn solution in classical

analysis. They demanded ever more sophisticated

techniques, usually involving convergent

iterative approximation. Practitioners of these

techniques, who were known as 'computors',

developed and codified them into a large body of

effective, mechanically applicable methods called

numerical analysis.

Norbert Wiener and Stafford Beer, speculating

about the mechanisation of these techniques and

their application to broad problems in human

society, combined Tming's automata theory

with the General Systems Theory of von

Bertalanffy and von Forster to form the science of

cybernetics.

George Spencer-Brown' s recursive

arithmetic, with itsminimalistnotation, presaged

the formalisation of non-convergent

computation and of non-terminating, discrete

systems.

(£)1991 B. Cohen A Brief Histo/y of 'Fol7llal Methods' page 1

FACS Europe - Series I Vol. 1, No. 3, Winter 1994

The Dawn of the Infonnation Age
By the 1930s, when Turing, vonNeumannand

Zuse were contemplating the construction of

electronic computers, much of the mathematical

framework they needed already had a long and

fruitful history. The machines that they and their

successors constructed, using that framework,

were enormously successful. To access their

unprecedented computational power, all their users

needed was the odd (and some were very odd)

programmer, skilled in the use of the machine's

impenetrable instruction set, who could cast the

appropriate numerical method into a 'code' that

the machine could follow.

For the fIrst twenty years of the new age, the

applications of computers were strictly limited by

their enormous cost and, by today's standards,

puny power. Relatively few programmers were

required and their employers needed little

understanding of the arcane art they practised, as

long as they delivered the goods. This they

undoubtedly did, although they seemed to be

unable to predict with any accuracy when the task

would be more than '90% complete' .

They did, however, notice that much of the

work of 'coding' was repetitive and mechanical

- just the job for computers themselves - and

developed their own labour-saving, computational

tools: assemblers, macros and, eventually,

compilers for 'high level programming languages' .

These were designed to enable programmers to

express their 'codes' using English-like

'statements' and arithmetic-like 'expressions'

involving 'meaningfully-named' variables. At

last, programs could be read by their own users,

although they found that legibility alone did not

provide understanding and had little effect on the

90% syndrome. Attempts to rectify these linguistic

inadequacies led to the proliferation of a huge

variety of programming languages.

5

Cmdr. Grace Murray Hopper, USN, promoted

her COBOL as being so close to natural language

that even business users could· write their own

programs in it By 1960, it was widely believed

that the days of the programmer were numbered.

. Verification Rules, OK?
In COBOL, the statement DIVIDE CAKE

INTO THREE does not mean what it says. A

con-ect compiler generates code which divides

the value of the variable THREE by that of the

variable CAKE.

There are two ways to articulate the 'meaning'

of a program: as denoting its intended

computational function and as operating on a

computer in order to effect it As long as programs

were relatively small, their operational analysis

could provide convincing evidence for their

denotational adequacy. This evidence was

presented either as a sample of the program's

'behaviour space', identified by judiciously

selected 'test cases', or by 'walking through' a

directed graph, or 'flowchart', representing the

program's operational stlUcture.

Butas applications grew in size and complexity,

and as high level languages diminished the

intimacy between program and computer

architecture, such operational arguments became

less convincing. As early as 1958, AT&T had

installed ESS NoJA, the first 'stored program

controlled' telephone exchange, operating in 'real

time' using 'interrupts' . Statisticians at Bell Labs

estimated that the number of different 'paths'

executable by its program exceeded 10
400

• To test

such a system, as a 'black box', to a 1 % level of

confidence would have required 10
398

separate

tests, which would have occupied the testers for

somewhat longer than the age of the universe.

©1991 B. Cohen A Brief History of 'Fonnal Methods' page 2

FACS Europe - Series I Vol. 1, No. 3, Winter 1994

6

A few mathematicians realised that the

verification of computer programs would require

something more analytical than testing and

flowchart walk-throughs.

BohmandJacopinishowed that all 'imperative'

programs (i.e. those executed by 'von Neumann'

machines) could be represented in flowcharts

containing only three constructs: sequence,

selection and iteration. Floyd and Hoare showed

that these constructs, together with the

'assignment' of values to variables, could be

construed as predicate transforms. Their

composition could be used in a formal proof that

the program's operation would always satisfy

some logical predicate ranging over the values of

its input and output variables. Edsger W. Dijkstra

designed a language (which did not include a

GOTO statement) whose semantics were

completely defined in this way, together with a

logic of weakest preconditions in which to

conduct the requisite proofs of correctness. He

illustrated the technique in the pyrotechnical

display of problem solving called A Discipline of

Programming.

John Goodenough and Susan Gerhardt

demonstrated, in a seminal, but sadly neglected,

paper in CACM that the selection of test data for

a sequential program requires the same internal

analysis that would be required for its proof.

Meanwhile, a totally different tradition was

being established by McCarthy, Iverson and

Landin, whose functional languages, LISP, APL

and LAMBDA, exploited the A-calculus. For

them, both execution and proof were to be

performed by applying a set of symbolic reduction

rules to the expression represented in a program.

Programming in these languages was declarative

rather than operational. Rather than 'following

the instructions' of the programmer, the corn puter

had to use the rules to fmd a solution to the

FACS Europe - Series I Vol. L No. 3, Winter 1994

eq uation expressed in the program's text.

(Colmerauer and Warren extended this idea so

that first order predicate logic, in the form of

PROLOG's Horn clauses, could be used directly

as a declarative programming language).

That the computer could be used to solve not

only numeric problems, but symbolic ones such

as mathematical proof itself, had been recognised

by Herbert Simon. His General Problem Solver

(OPS) was the first of a long line of theorem

provers, leading through Boyer-Moore, Good's

Gypsy and the Edinburgh LCF to Abrial' s B-tool.

Alarumsand Diversions
In the boom years of the 60s, little of this work

filtered through into practice. Technology was

moving apace. IBM dominated the burgeoning

market of business applications. Mastering the

quirks of the rapidly multiplying versions of

OS360, COBOL and FORTRAN required so

much detailed, but ephemeral, expertise that

demand for programmers, far from disappearing,

vastly exceeded the supply. A new craft was born,

highly lucrative and free of the professional and

academic restrictions imposed by other disciplines.

Despite such heavy commercial damping, a

few sparks burned. APLers, vowing that they

would rather die than switch, delighted in

displaying mathematically elegant, highly

efficient, provably correct, higher order, functional

one-liners that were totally unintelligible. Ivan

Falkoff, anticipating VIPER by twenty years,

gave an APL definition of the IBM360, showing,

incidentally, that almost half of its semantics lay

in the Channe t, its I/O port - an indicator which

the telecommunications community utterly failed

to notice. LISP took off in the rapidly developing

world of Artificial Intelligence, where the symbolic

dominated the numeric and empirical

©1991 B. Cohen A Brief History of 'Fol7llal Methods' page 3

experimentation dominated systems analysis

(which might well have contributed to Lighthill's

damaging report).

In 1968 and 1970. two NATO-sponsored

conferences gave the world anew term: 'Software

Engineering'. All the leading theoreticians and

practitioners were represented and the proceedings

(now sadly out of print) were widely circulated.

They called formore discipline-in requirements

analysis, in verification and validation, in

estimation and measurement, in documentation

and in management. They indicated, often with

surprising accuracy, the directions that research

and development, training, education and practice

needed to follow.

The academic institutions had been responding

as best they could. 'Computer Science' courses

concentrated on the theoretical foundations which

were then most applicable - largely those of

language theory, for compiler writers, and the

theory of computation, for algorithm designers­

and on programming praxis. 'Computer

Engineering' courses delved into the electronics

and architectural features of the new machines but

rarely ventured into the abstract world of theoretical

computation. 'Pure Mathematics' courses largely

ignored these developments and continued to

teach the right mathematics in the wrong way.

'Applied Mathematics', and most traditional

'Engineering' courses saw computers asa passing

fad, or as an occasionally useful tool, and taught

only the elements of the programming craft.

Teachers, after all, need as much professional

development as practitioners.

7

Scottery
The untimely death of Christopher Strachey,

Oxford Professor of Computation, scion of the

Bloomsbury set and author of 'Christopher's

Programming Language' - the progenitor of C,

ended a remarkable research partnership. With

Dana Scott, he had developed denotational

semantics, a mathematical framework in which

the semantics of all the imperative programming

languages could be defmed.

This relies on the definition of a domain in

which the computational effect of every

syntactically correct program can be represented.

This is much harder to do than it seems, because

all programming languages permit the expression

of programs which do not terminate; they can

legitimately enter 'endless loops', as craft

programmers know only too well. Most also

contain the GOTO statement, which Dijkstra

'considered hannful' because of its deleterious

effects on verifiability.

To accommodate such pathological behaviour,

Scott-Strachey semantics defines domains in the

lattice theory anticipated by Spencer-Brown.

The semantic function evaluates each syntactic

construct of the language to a function on the

lattice theoretic domain. It takes as additional

arguments the (recursively evaluated) syntactic

components of the statement(s) involved and the

current state of the statement's environment. The

semantics of a looping (or recursive) construct is

defined as the least fixed-point of the chain of

successively more defined functions generated

by each iteration of the loop. Since a non­

terminating loop never produces a fully defined

result, its 'value' is a function that always returns

'bottom'. The semantics of the GOTO statement

takes as its argument the semantics of the entire

program to which it 'goes' - the so-called

©1991 B. Cohen A Brief History of 'Fonnal Methods' page 4

FACS Europe - Series I Vol. L No. 3. Winter 1994

8

'continuation'. The semantics of a program is

composed from the semantics of its parts, as

demanded by Frege's denotational imperative.

Denotational semantics made it possible, in

principle, to determine whether any program, in

any programming language whose semantics were

so defined, computed the function for which it

was commissioned. There were only a few

problems. One was the enormous labour involved

in providing all the programming languages then

in use with a formal semantics. Another was the

.seemingly gratuitous complexity that emerged

whenever the semantics of a 'real' language was

analysed. Clearly, semantic cogency was not the

highest priority for language designers (although

it was hard to discern what was). A third was the

inescapable fact that the real definition of a

language's semantics, regardless of what the

designer, or even the programmers' handbook

said, lay deeply buried in its compiler.

Finally, there was the notational and conceptual

unfamiliarity oflattice theory, domain theory and

the whole paraphernalia of 'Scottery'.

Itappearedthatwecould,atlast,reasonformally

about our programs, but only if we found enough

domain theoreticians to build the semantics,

enough logicians to construct the proofs and

enough compiler designers capable of

understanding both well enough to write correct

compilers. As Scheutz said of Babbage's first

engine, 'even with all England's technical

expertise, it would be impossible to advance

further, as long as one followed the same plan'.

Peter Mosses tried to cut this Gordian

(plotkian?) Knot by constructing a compiler­

compiler that could read denotational semantics,

but the compilers it generated were too slow to be

taken seriously. They could, however, be used as

FACS Europe - Series I Vol. L No. 3. Winter 1994

benchmarks against which commercial compilers

could be (partially) checked, a procedure which

gained credence much later in the US DoD.

Denotational Semantics was taken very

seriously by computer scientists on both sides of

the Atlantic, Joe Stoy being invited from Oxford

to teach it ill MIT. His lecture notes, published by

MIT Press, constituted the main text on the subject

because the sourcebook, completed after

Strachey's death by his research student, Robert

Milne, was considered too difficult to teach from .

Tales from the Vienna Woods
Dr. HeinzZemanek, Director of IBM' s Vienna

Laboratory in the early 70s, was one of the frrst to

recognise the wider implications of formal

semantics. With astounding foresight, he sought

to provide one not only to IBM's latest 'standard'

programming language, PUI, but also to the

instruction set of the kind of processor to which it

might be compiled and to the requirements of

systems which might be implemented in it For

none of these applications did he choose to use the

Scott-Stracheyapproach.

1. A. N. Lee's book, Computer Semantics,

records the first attempt: the 'Vienna Definition

Language (VDL), which provided a tree-structured

domain in which the 'state' of a virtual processor

could be represented, its operations being modelled

by formally defined transformations on the tree.

In parallel, the PUI team, led by Hans Beki c,
were developing their own modelling framework,

a set-theoretic language called MetaN (get it?).

This proved to be more successful than VDL,

possibly because its notation posed fewer problems

to beginners. The PUI semantics was published

and shipped off to IBM's compiler development

team. History does not record their reaction, but

no PU 1 complier was ever proved to comply with

Vienna semantics.

©1991 B. Cohen A BriefHistOlY of 'FOImal Methods' page 5

Peter Lucas used MetaIV, with encouraging

~uccess, to specify a fairly complex databa'ie

application. His technique came to be known as

the 'Vienna Definition Method' (VDM), which

Dines BjS!lrner and Cliff lones, promoting it with

their books and suppOlting it with tools developed

in Copenhagen and Manchester, eventually turned

into the pan-European product now known as

RAISE.

VDM differs from the Scott -Strachey approach

in that it is founded on sets rather than lattices. A

system specification in VDM consists of a model

of the system's state space whose components

may take certain set-theoretic values, including

powersets and mappings. The collection of

components is constrained by (invariant)

predicates and the system's behaviour is modelled

by operations on the state, defined in terms of pre­

and post-conditions.

This basis was found to be powerful and

sufficient for many applications, such as Lucas' s

database, but presented significant problems for

the specifiers of programming language semantics

and of 'real time' systems.

Sets in the West
In the early 70s, Dr. Patrick Doyle, a

mathematician with the Itish Life Insurance

Company in Dublin, was commissioned to develop

a sales commission tracking system. Not being a

'systems analyst', he tackled the problem in an

unconventional way: by constructing a model of

the required system in set theory. Although he

believed that the model he had constructed captured

all the requirements of the potential users of the

system, he felt that it should be signed off as an

acceptable specification before he proceeded to

implement it. So he offered the appropriate

authority, the Board itself, an interesting

alternative: either to receive a long, rather boring

9

and probably ambiguous English-language

document, which he could derive from his model,

orto follow a ShOlt course in elementary set theory

which would enable the Board members to read

and understand his specification in its original

form. The Board took the course, read and

understood the formal specification, made some

suggestions for change and signed it off. Doyle

turned the model into a collection of precise

software module specifications which he passed

to a small team of (non-mathematical)

programmers, who coded and 'integrated' the

modules. The system worked first time! Paddy

Doyle was so far ahead of his time that he had to

publish his own book, Every Object is a System

(still available from its author),in which he presents

his unique view of the rOle of mathematics in

information system design, concluding that,

ultimately, it is an exercise in topological

manifolds.

At about the same time, Jean-Raymond Abrial

and Steve Schuman, in the IRIA laboratory in

France, were also investigating the use of set

theory as a medium for system specification.

They called their notation Z (after Zermelo and

Friinkel, who had defined the well-founded set

theory on which they relied). Z was taken up by

the Programming Research Group at Oxford

University, by then under the leadership of

Strachey's successor, Tony Hoare, where it was

enriched, supported by tools and applied to several

real problems in industry and commerce. One of

these was the CA VIAR system for administering

visitors to SlL Harlow, IIT's main laboratory.

Abrial himself interviewed the client, Gladys,

who manually maintained the records and

bookingsforthe 12000visitors who passed through

SlLeach year, and constlUcted the (very elegant)

Z specification. However, unlike Doyle, he made

no attempt to instruct Gladys in the mysteries of

©1991 B. Cohen A Brief History of 'Fol7lzal Methods' page 6

FACS Europe - Series I Vol. L No. 3. Winter 1994

10

set theory. Instead, he 'validated' his model by

deriving from it ten theorems ('emergent'

properties of the model), each of which could be

cast in the form of a simple, English-language

statement about the system, such as: 'No two

visitors shall share the same hotel room', and

asked Gladys to confllTIl, or deny, them. Gladys

gladly did so and the system was duly

implemented.

Z has since become, with VDM, one of the

main vehicles for formal specification.

Letters from America
Meanwhile, back on the ranch ... in the USA,

the need for a mathematical formal approach to

the design of computer-based systems had also

been recognised by the mid '60s. Much of the

research was being done in IBM laboratories -

in Y orktown Heights, in San Jose, in Federal

Systems Division and in the tiny Scientific Centre

on MIT's campus in Cambridge, Massachusetts.

The rest of IBM, however, then as now, paid little

heed to these impractical mathematicians and

concentrated their 'mythical man-months' on the

'real world' of OS360.

One of the most important IBM research groups

called themselves 'ADJ', which is neither an

acronym nor a clue to the authors' identity but an

abbreviation for 'adjoint functor'. Thatcher,

Wagner and Wright, together with Stanford

University' s Joe Goguen, published their 'Junction

between Category Theory and Computer Science'

in about 1975. This set of documents, together

with Eric W agner' s course notes and the elegant

papers published jointly by Goguen and Rod

Burstall of Edinburgh University, were widely

circulated and introduced many computer

scientists to the mysteries of abstract algebra.

FACS Europe - Series I Vol. L No. 3, Winter 1994

Steve Zilles, at Y orktown Heights, used

algebraic techniques for the specification of what

are now known popularly as 'abstract data types'.

John Guttag and BarbaraLiskov, of the Laboratory

for Computer Science at MIT, developed these

into the influential (and executable) specification

language CLU.

Another algebraically-inspired group was at

work just down the road from MIT at a Space

Programme spin-off company called Higher Order

Software. MargaretHamilton and Saydean Zeldin

had been software project leaders on NASA's

Apollo Programme and NASA invited them to

discover how the (relatively few) bugs in Apollo

software had escaped their stringent QA

procedures. Their analysis showed that a strictly

functional approach to design would have been

both effective and feasible and they developed

their ideas into the first of the 'formal methods' -

HOS. This toolset provides a graphical

specification language, supporting the

'hierarchical', 'top-down', 'functional

decomposition' of a system requirement. Strict

constraints apply to the structural elements used at

each level so that the leaves of the resulting tree

constitute a strictly functional program, whose

variables range over the abstract data types defined

in the associated algebraic specification language,

AXES, and whose functions are just the

constructors and derived operators defined for

those types. Translators were provided for both

the graphical language (into more popular,

structured, but less formal forms, such as HIPO,

SADT, PSLIPSAand Yourdon) and the algebraic

language (into various compilable programming

languages) so that the results of analysis and

design in HOS are presentable to the client,

velifiably consistent and executable. What more

could one ask for?

©1991 B. Cohen A Brief History of 'Fonllai Methods' page 7

HOS caused considerable excitement in certain

quarters: James Martin, the great guru himself,

liked it so much that he not only wrote a book

about it (Application Development Without

Programmers, which ushered in the era of CASE

tools) but bought the company! A lesser known

development occurred in the small Computing

Unit of the Royal Marsden Hospital, in Surrey,

where Jo Milan was seeking a way to reduce the

often repetitive labour of developing clinical and

administrative applications in a MUMPS (a

popular dbms) environment. He saw the potential

in HOS but was unable to justify the high cost of

the toolset, so he reconstructed it!

Curiously, HOS seemed to fall between two

stools: it was never taken seriously by the academic

fraternity, even in its home town of Boston, and

industrial take-up was negligible -even with the

backing of Martin and the management team he

imported, who promoted it heavily at the highest

levels of the computing industry, butneverseemed

to appreciate that, like all good engineering tools,

only those who understood its theoretical

foundations could use it effectively.

Theothermajorconcern, and source offunding,

of formalists in the USA was security, particularly

the verifiability of secure operating systems. In

the late 60s, the US DoD let a contract for a

military message switch known as SATIN4. This

contract contained a clause, unnoticed by the

prime contractor (ITT) until late in the

development, that the kernel of the operating

system be verifiably immune from unauthorised

access. In including this clause, the client had

been influenced by published research results in

program verification and mechanised theorem

proving. When the developers of SA TIN4 realised

the significance of the verification clause, they

invited appropriate research groups to quote a

price for verifying its kernel, which consisted of

11

several hundred thousand lines ofPUl. The best

offer they could get was a 'ballpark' estimate,

from Geny Estrin ofUCLA, of$l 0000 per line of

code! Although not a sensible measure of the

effort of verification, this was nevertheless

sufficient to persuade Congress to abandon the

project!

The DoD subsequently published its celebrated

'Orange Book': the Trusted Computer Base, which

defined such concepts as 'Security Policy Model'

and 'Levels of Integrity' and laid down criteria for

the evidence which would have to be submitted

when certifying systems as being acceptably secure

in different circumstances. At the highest levels,

this evidence must include a mathematical proof

that the code implements the security policy.

These demands from the security community

generated considerable support for work in

mechanised theorem pravers and formal

specification techniques. The best known theorem

provers, Boyer-Moore and Gypsy are both now

the property of Don Good's company in Austin,

Texas, but similar work was also being done by

Nagel in Ford Aerospace. SRI International led

the work in formal specification: Peter Melliar­

Smith (ex-Newcastle University) developedHDM

and used itto define and verify PSOS, the Provably

Secure Operating System, while Joe Goguen and

Jose Meseguer, working with Rod Burstall at

Edinburgh, developed CLEAR and its successors

OBJ, OBJ1 and OBJ2, which were later

commercialised by Hewlett-Packard in Bristol

under the leadership of Rob in Gallimore, who had

worked on them while in Manchester University.

Thinking in Parallel
The problems of concurrency started to plague

computing as soon as external storage devices

were connected and communication among

computers was established. These problems fall

©1991 B. Cohen A Brie/History 0/ 'Fonnal Methods' page 8

FACS Europe - Series I Vol. L No. 3, Winter 1994

12

into two categories, both of which were already

represented in classical electromechanical

systems. In control systems, from device

controllers to avionics, feedback and delay are

fundamental to the system's behaviour, but

classical control theory offered little succour to

the software designer.

In parallel processing, the problem is to predict

how communicating, sequential processes behave

in concert, particularly when they compete for the

same, scarce resources. The telecommunications

industry had built up a great deal of experience

and valuable theoretical foundation - from

Erlang's traffic theory to Moore and Mealy's

switching theory-in its development of complex

signalling systems and their corresponding relay

sets but, again, none of this seemed to solve the

software design problems.

Of course, part of the trouble was, and still is,

the reluctance of engineers in disparate disciplines

to recognise the utility of each others' design

principles. The advent of computer-based control,

and particularly the emergence of the cheap,

powerful, easily (?) reprogrammable

microprocessor, coalesced the technologies of

previously specialised application domains -

providing 'priority interrupts' , 'schedulers' and

even 'general purpose operating systems' - but

did not unify their theoretical foundations.

In 1960, Carl Adam Petri presented his Doctoral

thesis in Mathematics to the University of Bonn.

It postulated a graph-theoretic structure, the Petri

Net, as a model for concurrent processes. This

model is not equivalent to the 'finite state machine'

of switching and computational theory. The states

of the systems are notenumerated but characterised

by the 'reachable' markings, which may be

explored both analytically, using graph-theoretic

theorems, and under simulation, by 'playing the

token game'. Certain well-known pathological

FACS Europe - Series I Va!. L No. 3. Winter 1994

behaviours of composite (i.e. communicating)

state machines, such as 'Mexican stand-off ,

'resource starvation' and 'priority blocking', are

identifiable with (the absence of) net properties,

such as 'liveness' , 'safeness' and 'fairness'.

Net Theory has generated a wide following,

mainly in Petri's own Institute (part of GMD in

Bonn), in Denmark and in France Its applications

extend from the semantics of programming

languages (such as PEARL) to the analysis of

protocols and operating systems.

In the mid-60s, the problem of concurrent

processes was theme of a UKResearch Programme

called 'Distributed Computer Systems' (DCS).

This funded work both on parallel computing

architectures and on the semantic foundations of

concurrency. The main centres for the latter were

the Universities of Oxford, where Tony Hoare

developed his notation for 'Communicating

Sequential Processes' (CSP) , and Edinburgh,

where Robin Milner defined his 'Calculus of

Communicating Systems' (CCS) and its

'Synchronous' version (SCCS). These are process

algebras in which the expressions denote

(recursi ve) process definitions and their

composition: conjunctive (in parallel) and

disjunctive (through 'choice', which may be either

deterministic or non-deterministic). Equivalence

over these expressions, as defined by the axioms

of the algebra, is intended to correspond to the

indistinguishability, by mere observation, of the

processes which they denote. This 'observational

congruence' turns out to be extremely difficult to

capture algebraically (which may be a clue as to

why concurrent systems themselves seem to be so

difficult to design). The late David Park, of

Warwick University, was instrumental in defining

the aproppriate 'bisimulation' congruence ofCCS.

©1991 B. Cohen A Brief Historyof 'Fornlal Methods' page 9

The DCS Programme also supported Milner's

theorem proving work at Edinburgh. This relied

on the development of an (executable) meta­

language, ML, based on the A-calculus, in which

to define reductions and transformations of the

algebraic structures over which theorems were to

be proved. This language has become a powerful

programming system (Standard ML) in its own

right and the original theorem provers have been

developed into the LCF and Concurrency

Workbench.

Both Petri Nets and the process algebras reflect

the non-determinism inherent in the semantics

of concurrency. That is, even a complete

knowledge of the behaviours of each of the

processes in a concurrent system is, in general,

insufficient to determine the state that the system

will reach after a given sequence of external

events. One can, however, determine the set of

states (or, equivalently, the properties of those

states) which are so 'reachable'. This suggests

that to reason over the behaviours of concurrent

systems, one must discuss both the 'possibility'

and the 'necessity' that a given predicate hold;

that is, one must use a modal logic. In the early

70s, Zohar Manna and Amir Pnueli of the

Weizmann Institute, Leslie Lamport of Stanford

University and others, analysed concurrency in

termsofthetemporaI modality, whose quantifiers

, 'always' and 'eventually' apply to predicates

over states that the system might enter, now and

at some 'time' in the future.

Mostpeople who are introduced to these theories

of concurrency find it surprising that there is so

little reference to the familiar, engineering notions

of time as 'duration' and 'instant'. (The 'Timed

Petri Net' and Ben Moszkowski's 'Temporal

Interval Logic' present similar concepts, and even

they are not entirely intuitive.) Yet Einstein and

Heisenberg had pointed out the fallacies of these

13

intuitions at the turn of the century; Ivor Catt and

Chuck Seitz had identified them as the source of

the glitch, the bane of digital systems design, in

the 60s; and the more recent work on chaos has

revealed many other serious analytical problems

at the mathematical boundary between the

continuous and the discrete. Yet there are still

practising engineers who demand a fully analytical

framework for causality and performance

measurement in concurrent systems and, worse

still, there are many charlatans in the

'methodology' business who are only too pleased

to sell them one.

Roots
The rapid progress of electronic miniaturisation

soon confronted hardware designers with levels

of behavioural complexity similar to those already

seen in software. In addition, the naturally

occurring structures in the hardware world were

fundamentally concurrent; synchronisation was

both a conceptual problem and a physical one, as

the Glitch investigators knew.

The formal specification of digital electronic

systems, as branch of concurrency theory, was

investigated by several Euro-American groups,

notably the highly innovative team formed by

Carver Mead and John Gray in Caltech. This

included Chuck Seitz, who was aware of Net

Theory at a very early stage thanks to his Glitch

colleagues, Bob Shapiro and Tolly Holt Martin

Rem, one of Dijkstra's students from Eindhoven

was there, as was George Milne, who turned

Milner's CCS into CIRCAL, the first successful

discrete circuit calculus.

Meanwhile, in Cambridge University, Mike

Gordon wasdevelopingHOLforsimilarpurposes,

with the help of Ben Moszkowski and A vra Cohn

ofStanford. This was to be used in the specification

and verification of RSRE's VIPER chip, a huge

©1991 B.Cohen A Brief History of 'FonnalMethods' page 10

FACS Europe - Series I Vol. L No. 3. Winter 1994

14

undertaking whose repercussions, especially in

Australian Railways, put "fonnal methods" fmnly

into the legal and commercial arenas.

The Telecom Universities
By the mid 70s, the results of research

programmes in algebra, logic, set theory and

concurrency were sufficiently mature and well­

promulgated to encourage their exploitation in

industrial laboratories. The two industries which

led the way were defence (mainly in the security

branches whence, unfortunately, few results

emerge) and telecommunications, which, for

decades, had been pushing technology to its limits

of complexity. Centres for 'Applied Software

Research' were established, somewhatreluctantly,

in the Laboratories of the major Telecoms

manufacturers, and even some of their customers,

the PITs.

ITI had four such centres, the fIrst and biggest

inSTLHarlow (under Tim Denvir and the author),

smaller ones in BTM Antwerp (Raymond Boute)

and ITILS Madrid (Felix Vidondo); GEC had

one in its Hirst Laboratory, Wembley (Peter

Scharbach and Jim Woodcock) ; Plessey in its

Roke Manor Lab (John Smith); and Ericsson in

Stockholm (Bjame Dacker).

The STLCentre ran an influential Symposium

on 'Fonnal Design Methodologies' in 1979,

inviting many of proponents of both 'structured'

and 'fonnal' techniques of system specifIcation

and design to display their wares for critical

review by their peers and by their prospective

users. As a result of this meeting, the STL group

committed itself to formal approaches under the

following four main headings:

a) protocol specification, where Mike Shields,

working on a CASE award through Robin Milner,

showed, among other things, that no interesting

system properties were decidable over

FACS Europe - Series I Vol. 1, No. 3, Winter 1994

specifications written in SDL, which was, at the

time, the CCITf's standard protocol specification

language. This fact seemed to have had no impact

whatsoever on the standards committee!

b) model-based specification, in both Z, with

Steve Schuman at Oxford, and VDM, with Brian

Monahan at Manchester. One result was the

establishment, under Mel Jackson, of the VDM

Standardisation Group.

c) theorem provers, or rather their generation

from equational axioms, under Will Harwood,

including the development of the NIMBUS, EST

and eventually GENESIS toolsets.

d) professional development in the requisite

mathematical foundations, including internal

courses, teaching each other the skills we had

acquired separately, and external courses,

organised through HatfIeld Polytechnic, for our

colleagues in lTf's operating di visions. The results

of these educational ventures were unexpected.

The internal ones flushed out of the woodwork

many highly qualified pure mathematicians who

were already in the company's employ but who

were unaware that their mathematical skills had

become applicable. The external ones revealed

that the essential mathematical ideas were not

difficult to teach to practitioners as long as they

were presented in appropriate sequence and

context, which, unfortunately, no mathematical

textbook yet does.

This issue of professional development has

been troubling the telecommunications industry

for many years. BTM, Phillips, STC, GEC and

BT all commissioned reports on the post­

experience 'Software Engineering' curriculum.

These reports are all remarkably similar to the fIrst

one, produced in 1974 by Raymond Boute (now

Professor of Computer Science at Nijmegen),

which called for courses in classical mathematics:

control theory, queuing theory, reliability theory

©1991 B.Cohen A Brief HistOlY of 'FonnalMethods' page 11

etc., as well as the discrete mathematics underlying

computer science. Unfortunately, they also

suffered a similar fate to Boute's: shelved for lack

offunds!Threeyearsago,BTfinallycommisioned

London University to develop and teach an MSc

for its systems engineers. Following protests from

Sinc1air Stockman, the number of software

modules in the course was increased from one to

two! Plus fa change ...

The Telecoms Labs also took a serious interest

in hardware specification. Strachey's student,

Robert Milne, developed his LTS at STL and

Raymond Boute originally conceived his GLASS

while still in BTM.

Anno Mirabilis -1979
During the year following STL's FDM

symposium, three significant events took place in

Europe. The first was the Winter School on

'Abstract Software Specifications', held at the

University of Copenhagen. It brought together

most of the workers in the fields of semantics,

specification languages, concurrency and theorem

proving, from both sides of the Atlantic. It provided

a forum in which they could present their work to

each other, to research students and, significantl y,

to investigators from industrial laboratories. One

of the objectives was to discover if Meta-IV could

be improved as a semantic metalanguage without

going the whole hog of introducing Scott's lattice­

theoretic Domains. (fherewasa problem with the

semantics of GOTO, which Meta-IV handled

with a very curious construct called TlXE - or

EXIT backwards!) Although the answer was

largely negative, the confrontation was extremely

constructive and established many contacts which

would later be exploited in the ESPRIT Programme

and the ZlVDM Conferences.

15

A similar effect was produced by the Conference

on the Semantics of Concurrency held in Evian.

The relationships among theories grounded in

different mathematical frameworks were starting

to become clearer, as were their relative advantages

and disadvantages when applied to different classes

of problem and in different application domains.

Bycontrast,themeetingoftheIFIPlnformation

Processing group in Oxford that year, presented

with a mix of material similar to, and, in fact

overlapping with, that of the previous month's

FDM Symposium, preferred informal, structured

approaches (particularly those supported by

interactive, graphical tools) to the mathematically

formal ones, thereby setting a trend from which

the Information Processing industry is only now

starting to emerge.

Modem Times
The 80s saw formal methods finally emerging

from the ivory tower to which they had been

confined by industrial scepticism. The reasons for

this change of heart are not straightforward. John

Buxton attributes it to the two most powerful

human motivators: fear and greed.

The latter was encouraged by the sudden influx

of funding from the great European IT Research

Programmes, Alvey and ESPRIT (both of which

were themselves inspired by fear of a Japanese

threat). Both were heavily influenced by the

industrial giants of European IT (the 'gang of

12'), whose laboratories had been experimenting

with formal techniques in the 70s. Large amounts

of funds were also made available by agencies

which had identified real needs for these

techniques, notably the US Strategic Defence

Initiative (' Star Wars') and the National Security

people - NSA and GCHQ - on both sides of

the Atlantic.

©1991 B. Cohen A Brief History of 'Fonnal Methods' page 12

FACS Europe - Series I Vol. 1. No. 3, Winter 1994

16

Some members of the fOlmalist community

saw these as Wilde saw the protagonists in a fox

hunt: the one uneatable, the other unspeakable.

These same Government agencies were being

motivated by fear. David Parnas, who had long

promoted structured programming techniques,

presented his resignation from the SDI Programme

Office in the fonn of 12 public papers which

seriously questioned the certifiability of 'Star

Wars' systems. His main point is that testing alone

cannot produce the evidence that a complex,

adaptive system will satisfy its operational

requirements (full operational tests of SDI systems

would have to be conducted in about 4 minutes),

while fonnal proofs of correctness cannot even be

attempted without fonnal specifications of both

requirements and components.

The verifiability of security systems took on

new significance with the almost simultaneous

appearance of two opposite, and apparently

dissociated, trends:

a) the discovery, and publication, of practically

unbreakable cryptographic techniques, such as

the Rivest-Shamir-Adelman system, based on

'trapdoor' functions in Galois fields, and the

concepts of public and private keys.

b)'computer hacking', including both

unauthorised access to supposedly secure systems

often, but not always, for pecuniary gain, and the

spread of potentially deadly 'viruses', both of

which were being perpetrated by young, otherwise

respectable, computer buffs, with very peculiar

friends, who could operate from undetectable

bases over the world's computer networks.

Both of these provoked fear reactions in

Government security agencies, the first that the

public could operate computer and

communications systems that they could not break,

and the second that the very technology on which

modem security relied was its Achilles heel.

FACS Europe - Series I Vol. L No. 3, Winter 1994

These fears have given rise to some strange

policies, including the NSA's refusal to pennit

commercial systems to employ RSA (until,

presumably, they can break it themselves) and the

US Government's embargo on the export of the

Gypsy theorem prover. They have also led Europe

to develop its own, more stringent, version of the

US DoD's 'Orange Book', called ITSEC, which

calls for the use of formal techniques of

specification and verification at the highest levels

of security.

Similar fears are motivating the refonnulation

of draft standards by regulatory agencies

responsible for Safety in various sectors, including

Military (MoD 0055/0056), avionics (RTCA

186B), industrial health (the UK Health and Safety

Executive's PES) and the UN's own 'top' safety

standard, currently identified as 'Secretariat 95A' .

All of these are, somewhat reluctantly,

incorporating references to the potential rOle of

'fonnal methods' in the generation of evidence

for certification of software in 'safety-critical'

systems.

Some civil safety-critical system development

projects have already anticipated these standards,

most visibly in the domain of railway signalling,

mainly in France and Australia, and, with less

publicity, in such sensitive areas as nuclear power

station control and the avionics systems of 'fly­

by-wire' passenger aircraft. Fonnal specification

techniques, such as Z, VDM, OB}, LUSTRE and

Hare1's Statemate, have been deployed, together

with Static Analysis of the generated code (using

MALPAS, SPADE and Logiscope), to assist proof

that the system is immune from 'threats' to its

safety. In the UK, Rolls Royce Associates have

demonstrated that a development process

incorporating these can be at least as economical

and productive as one which relies on the best

informal techniques. Even taking into account the

©1991 B. Cohen A Brief Historyof 'Ponnal Metlwd5' page 13

hugecostof assembling the documentary evidence

required by the celtification authorities' standards,

they have found that safety-critical systems are no

more expensive to develop using formal techniques

than are 'normal' industIial control systems using

informal techniques.

Composition, Consistency and Agents
In the 90s, two classes of problem have presented

analytical challenges thatoffermajoropportunities

to the formalist

One is "feature interaction" in telecoms systems

(a very old problem in desperate need of a

theoretical base more powerful than the classical

"state machine"), which Bellcore have identified

as the biggest single banier to open systems. I

addressed this issue earlier this month at BNR

Europe's lab in Harlow (which used to be STL). It

will be explored further next month. at the Second

International Workshop on Feature Interaction, at

the Dutch PTT's lab in Amsterdam.

Feature interaction is not, however, confined to

telecoms systems. A British Ford Dealer recently

wanted to promote the security features of the new

Mondeo, which Ford have advertised as

'unstealable'. He challenged a car thief to get into

it in front of the local press. The thief strolled

around the car for a few minutes then kicked it

hard on the front bumper. This immediately

inflated the airbags, a safety feature which ,

correctly, overrode the security features and threw

open all the doors. The thief stepped in, hot-wired

the ignition was off in half a minute.

The second problem class is "Business Process

Reengineering", where the management

consultantcies are discoveringjusthow inadequate

is the analytical power of their current modelling

frameworks - soft systems, dataflow, entity­

relation and even object-oriented - which derive

from our own software methodologies. The work

17

of Michael Glykas, first at Cambridge and City

Universities and recently with the Greek Tobacco

Company, has demonstrated that a judicious

combination of formal and informal notations can

yield enormous gains in understanding of the

complex interrelationships among the 'agents' of

the modern corporation.

The key to both of these problem classes is the

ability to constructlargemodels by the composition

of small ones, to verify their internal consistency

and to explore the validity of their consequences,

in such a way that both the composition calculus

and the reasoning logic 'scale up' through

composition.

Both of these classes of problem also demand

a formal treatment of 'agents' - objects that

negotiate contractual relationships with each other,

if necessary changing their own obligations,

responsibilities and 'theories of the world' in the

process. We do not, as yet, have a suitable

mathematical framework for manipulating,

composing and reasoning about them.

Having explored most of the formal

specification styles over the last fifteen years, the

only one I have found that comes near to satisfying

all of these criteria is the Valiant ofZ developed by

Steve Schuman and Dave Pitt at the University of

Surrey. However, as this is practised by relatively

few people, has no proprietary tools to support it,

and is not the subject of an international

standardisation movement, it has had little impact

on the Formal Methods world.

Conclusion
At last, fear, greed and soundness seem to be

converging.

Formal Methods are about to take their place

among the Engineering Disciplines.

All we need now are the responsible,

professional engineers who will use them.

©1991 B. Cohen A Brief History of 'Formal Metlwds' page 14

FACS Europe - Series I Vol. L No. 3, Winter 1994

18

Functional Programing
Philip Wadler, University of Glasgow!

Welcome to the first functional programming column! Functional programmers and for­
mal methoders have much to say to each other, and this column is intended to further such
communication.

Functional programming supports formal methods. A large number of proof systems and
other formal methods packages have been implemented in functional languages. ML, the doyen
of functional languages, takes its name from its first application as a meta language for writing
theorem provers. Functional languages may also be suitable for writing executable specifi­
cations, for rapidly generating prototypes from specifications, or as the target language of a
system that transforms specifications into efficiently executable code.

Conversely, formal methods support functional programming. Functional languages are well
known for their amenity to mathematical reasoning, and formal methods can supply tools to
support such reasoning. The application of mathematical laws to functional programs is not
just a dream for the future - it underpins most of the techniques for generating efficient code
from functional languages.

Contributions for future columns are invited - my postal and e-mail addresses appear on
this page. I intend to interpret functional programming in the broad sense, ranging from lazy
languages with absolutely no side effects, such as Haskell, to strict languages with disciplined
use of side effects, such as Standard ML.

The first column deals with Erlang, a language of the latter sort. One impediment to the
spread of functional programming is that most of the efforts have been academic in nature, and
relatively little effort has gone into matters like programming environments that can make or
break the suitability of a system for use in industry. Mike Williams of Ericsson has led the effort
to develop Erlang, which is provides a convincing demonstration that functional languages can
have industrial relevance. All of us interested in transfering ideas from academia to industry
will be keeping an eye on Erlang to see how well it succeeds. Although it doesn't incorporate
all the latest academic niceties - for instance, it lacks a type system - if successful it may pave
the way for a generation of functional languages and other ivory tower innovations to stroll out
of the classroom and into the software houses.

Iprofessor Philip Wadler, Department of Computing Science, University of Glasgow, Glasgow G12 8QQ,
Scotland. E-mail: wadler@dcs.glasgow.ac.uk.

FACS Europe - Series I Vol. L No. 3. Winter 1994

Functional Programming Column

Erlang - A Functional Programming Language for
Developing Real-Time Products

Mike Williams, Ericcson Infocom Consultants AB2

1 Background

19

Software development is by far the largest part of the design costs for Ericsson's products. A
single AXE-IO telephone exchange, for example, has on average software corresponding to 62
million lines of source code in C, C++, EriPascal and PLEX. Reducing the cost of software
design, improving quality (fewer bugs) and cutting time to market are thus of paramount
importance.

Using a programming technology which results in smaller and more understandable pro­
grams would improve the situation. A functional language is an obvious alternative.

We have designed the functional programming language 'Erlang' for this purpose. Using
Erlang as the implementation language in several real-time system products has resulted in
considerable reduction both in the size of programs and in the work required for software
design.

2 Why do we need a new language?

Why not use ML or Haskell or some similar language? To answer this question we must describe
the problems which need to be solved.

Massive
The sort of system we are considering are massive, which means that they contain tens
of millions of lines of source code.

Long Lived
Systems must survive and evolve over a long period of time. For example, the AXE-lO
system, which is still a best seller today was designed in the mid 70's. The technology we
use now must be able to inter-work both with older software and with new technology
which no doubt will turn up in the future.

Distributed
Systems are made from a large number of different types of computers running different
operating systems and communicating with each other by a variety of mechanisms.

Concurrent
Thousands of different activities must be handled at the same time. These activities
(processes) must be able to communicate with each other. We are not primarily interested
in parallelism - splitting up a computation onto several different computers to gain speed
- we are interested in handling the massive con currency we already have!

2Mike Williams, Ericsson Infocom Consultants AB, Erlang Systems Division, Box 1153, S-164 22 Kista,
Sweden; and Ellemtel Utvecklings AB, Box 1505, S 125 25 Alvsjo, Sweden. E-mail: mike@erix.ericsson.se.

FACS Europe - Series I Vol. 1. No. 3, Winter 1994

20

Robust
Failure of a part a system, due to a hardware failure or a software fault, should have as
little effect on the whole system as possible. It must be possible to speedily recover from
failures and go on running despite the fact that parts of the system may be out of service.

Non Stop
Some systems cannot be stopped to make software changes, to correct bugs, to add new
software or to remove unused software. It must thus be possible to do this while the
system is running and to ensure the software changes are made in such a way that the
services offered are disturbed as little as possible.

Real-time
Many actions must be completed within a fixed time after receiving a stimulus. Language
implementations which cause significant pauses in execution, for example for garbage
collection, are thus unsuitable.

Very few languages or implementations of languages and operating systems meet the criteria
above. As fat as we are aware, Erlang is the only functional language designed and implemented
with these criteria in mind, criteria which apply to an increasingly large class of real-time
systems apart from telecommunication applications.

3 Erlang - The Language

For a detailed description of Erlang see [1]. It has been unkindly said that Erlang is a functional
language without proper functions and a logic language without logical variables. More kindly
(perhaps) it has been described as a sort of concurrent Lisp.

The following points give a very concise summary of Erlang:

• Dynamically typed. Single assignment variables

• All choice / selection done by pattern matching with shallow guards

• Recursion equations

• Explicit light weight processes part of the language

• Relatively free from side effects

• Asynchronous message passing between processes. Message reception is selective, a pro­
cess can wait for messages which match a number of patterns and cause other messages
to be queued.

• Primitives for detecting run-time errors, including errors in other processes

• Transparent cross-platform distribution. The message passing primitives are the same
for messages sent between processes on the same processor and between processors. The
same applies to the error detection primitives.

• Real-time garbage collection

• Modules, export and import declarations

• Dynamic code replacement - you can replace code in running systems.

FACS Europe- - Series I Vol. L No. 3. Winter 1994

21

• Foreign language interface

. The language is eager. It is also very compact and easy to learn. Everything which was
found to impair efficiency or which was difficult to implement in a distributed non homogeneous
environment was excluded from the language. The language thus does not support Currying,
higher order functions, lazy evaluation, ZF comprehension or deep guards.

The lack of higher order functions is alleviated by the built-in function apply, a function
supplied as an argument is applied to a list of arguments.

4 Implementations

4.1 J AM Implementation of Erlang

In the JAM (Joe's Abstract Machine) implementation. Erlang [2] is compiled to code for
a virtual machine, the JAM. The Erlang compiler is itself written in Erlang. The JAM is
implemented by an emulator written in "C". The emulator also implements code loading,
memory management, con currency, garbage collection, distribution (at present with TCP lIP)
and built-in functions.

Each Erlang module is compiled to a separate file of instructions which can be executed
by the emulator. The emulator loads these files as they are needed. Modules can also be pre­
loaded. Modules which are already loaded can be replaced by modified modules - even if these
modules are being used.

Garbage collection is done on a per internal Erlang process basis. This means that pauses
for garbage collection will be very short provided that there are no very large processes.

Supported versions of this implementation are available (at present) on

• SUN Workstations (both SunOS4 and Solaris 2)

• RS 6000 I AIX

• Interactive Systems UNIX on Intel 486

• VXWorks on Force 68040 and SPARC

• HP 9000 HP-UX

Unsupported versions are available for Intel 486 on MSDos.
This implementation is the most widespread implementation of Erlang and the one which

is most suitable for developing and testing software. The code emulated by the JAM (i.e. the
output of the compiler) is very compact.

4.2 VEE Implementation of Erlang

The VEE (Virding's Erlang Engine) implementation is similar to the JAM, but is based on
a different virtual machine and compiler. A real-time, two space, copying garbage collector
using a modified Baker scheme with Brook's optimisation is used. This gives better real-time
performance than the JAM.

The VEE implementation is about twice as fast as the JAM implementation.
Supported versions of this implementation are available on

• SUN Workstations (both SunOS4 and Solaris 2)

The code emulated by the VEE (i.e. the output of the compiler) is still compact, but not
as compact as in the J AM implementation.

FACS Europe - Series I Vol. 1. No. 3. Winter 1994

22

4.3 BEAM Implementation of Erlang

In the BEAM [3] (Bogdan's Erlang Abstract Machine) implementation, Erlang is compiled
(by a compiler written in Erlang) into C code. The C code is in turn compiled by the GCC,
C-compiler and linked with a run-time kernel. The linker has been specially written for Erlang
and allows incremental loading of code into running systems in the same way as the other
implementations. Garbage collection is done in the same way as in the JAM implementation.

Supported versions of this implementation are available on:

• SUN Workstations (both SunOS4 and Solaris 2)

• VXWorks on Force 68040 and SPARC

This is the fastest implementation of Erlang, its speed is comparable with non optimised
"C" code when executing sequential code. The code size is about five times larger than that of
the J AM implementation.

5 Tools to Aid Erlang Programming

Apart from the compilers and run time system needed for the implementations described above,
there are many tools available to the Erlang programmer. These include

Libraries:
Trees, lists, strings, sets, code handling, error handler, error logger, expression evaluator,
file system interface, global registration of processes, formatted io, mathematical func­
tions, networking, expression parsers, process groups, load distribution, random numbers,
and socket interfaces.

Interface to Foreign Languages:
At present only an interface to C is supported. A library written in Erlang transforms
Erlang terms to (and from) a binary representation. A library written in C can be used
to transform structs in C to (and from) this binary representation.

Tools:
Code coverage and profiling, windows based debuggers, make, pretty printer, shell, X­
windows based point and shoot interface, parser generator, lexical analyser generator and
Erlang mode for emacs.

Special Tools:
Compiler for ASN.l. SDL to Erlang Compiler Interface to X-Windows.

6 Development of Erlang

Erlang was developed at Ellemtel, a jointly owned subsidiary of Ericsson and Telia (Swedish
Telecom). Work with Erlang started with a series of experiments with the goal of determining
how software design of large real-time systems could be made easier [4]. The main conclusion
of this study was that so called declarative3 languages resulted in the shortest and clearest
programs. At that time we were very involved with Prolog and Parlog. In fact one of the
earliest references to Erlang is the STRAND book [5]. Erlang has inherited syntax and data
structures from Prolog.

3The term declarative is deliberately not defined here!

FACS Europe - Series I Vol. 1, No. 3, Winter 1994

23

It soon became clear that many things in Prolog were unsuitable for our applications. Real­
time systems, if they are to do anything useful, have side effects, for example in controlling
hardware. Backtracking in Prolog must thus be severely restricted when changes have been
made. As a simple example, in a telephone system we may cause a phone to ring. We cannot
backtrack and cause the phone to stop ringing, someone may have heard it ringing!

Controlling hardware means that operations must be done in a predecided order. When
Parlog is used, extra effort was required to ensure sequentiallity. Languages with unconstrained
parallelism are too parallel.

Using logical variables would be extremely difficult to implement efficiently in a distributed
system and would imply all sorts of hidden information passing between processes. Logical
variables were thus excluded.

All the implementations we studied had some form of stop and copy garbage collection
which were unsuitable in real-time systems.

It was also important to us that con currency is explicit .. In our applications we control a
very large number of activities at the same time. For programs to be clear, it is important
that each real life asynchronous activity be represented by a process in our system. It is also
important that processes are light weigh. The computational effort in creating and scheduling
processes and sending messages between processes should be small. The merriory required by
each process should be as small as possible and vary dynamically as the process expands and
contacts.

Erlang was being developed and used at the same time as the application described in [6].
This application was a prototype of a new PABX (Private Automatic Branch Exchange). The
designers of this prototype were mainly interested in the software architecture of their system
and needed a new language which made it easy for them to perform experiments. The users
working in this project developed several thousands of lines of code despite the fact that we
were changing the language at the same time. These users contributed much to the design
of Erlang. When we found that constructs in the language were not being used, we removed
them, when we found that users were writing unclear or convoluted code we added constructs
which alleviated their problems and made the code clear. This has resulted in a very small and
compact language which we have found easy to use and to teach to new users.

7 Use of Erlang in Ericsson

For the first few years Erlang was mainly used to build prototypes. Ericsson has been in­
volved in six projects in the European RACE programme where Erlang has been used to build
demonstrators and prototypes. An example is BIPED [7].

Erlang has been used to build many prototypes internally in Ericsson. Notable among these
are a private telephone exchange[6], an office cordless telephone system [8] and a prototype to
demonstrate user mobility in telephone networks [9]. Erlang has been used to build countless
other prototypes ranging from optical cross connect controllers to paging systems.

The success of these prototypes has resulted in Erlang being used as the implementation
language for several products which are at present being developed. For commercial reasons
the details of these products cannot be mentioned here.

The largest of these products, a complex and very specialised switching system, is being
developed by a team of about 25 software engineers. So far about 300 000 lines of Erlang source
code have been developed for this product, which is probably the largest and most complex
functional program in the world today. It has been estimated that this would have required
about three million lines of source code if this had been programmed in a conventional language .
- and would have required a much larger team.

FACS Europe - Series I Vol. 1. No. 3, Winter 1994

24

It is important to note that using a language such as Erlang effects far more than the coding
phase of systems development. The semantic gap between specifications and programs is much
smaller than if languages such as C, C++ or PLEX are used. Testing also becomes easier, there
is less code to test, the code is easy to understand and testing can be done on the symbolic
"Erlang" level. The total work required to produce software, from first specifications to testing
has, in some projects, been reduced by as much as an order of magnitude.

Erlang is thus spreading slowly into Ericsson products, starting with the newer less establish
products. It has proved difficult to get Erlang used in older established products for which
there already is a large volume of code written by an organisation which reflects a well defined
methodology.

8 Use of Erlang Outside Ericsson

The JAM implementation is available free of charge, on a non commercial licensed basis to uni­
versities and similar organisations. About 80 systems have been delivered on this basis. Erlang
is now being taught at several universities as far afield as Bejing, Melbourne and Stockholm.

Ericsson has decided to sell Erlang on a commercial basis. This task has been assigned to
Ericsson Infocom Consultants AB. The Erlang Systems Division has been set up to support,
maintain, develop and sell Erlang both within Ericsson and to external customers. A team of
consultants is available to help customers with the use of Erlang.

Courses are held regularly in Sweden and abroad. These have been attended by both a
large number of Ericsson employees and by people from other companies.

Enquires about obtaining Erlang, both for commercial and noncommercial use, should be
address to Ericsson Infocom Consultants. AB, Erlang Systems division.

9 References

[1] Concurrent Programming in Erlang, Joe Armstrong, Mike Williams and Robert Virding,
Prentice Hall, 1993.
[2] Implementing a functional language for highly parallel real time applications, Joe Armstrong,
Bjarne Dacker, Mike Williams and Robert Virding, Software Engineering for Telecommunica­
tion Switching Systems and Services, March 30 - April 1, 1992, Florence.
[3] Turbo Erlang, Bogumil Hausman, International Logic Programming Symposium, October
26-29, 1993 Vancouver.
[4] Experiments with Programming Languages and Techniques for Telecommunication Applica­
tions, Bjarne Dacker, Nabiel Elshiewy, Per Hedeland, Carl Wilhelm Welin and Mike Williams,
Software Engineering for Telecommunication Switching Systems, April 14-16 1986, Eindhoven.
[5] Chapter 3 Programming Telephony (Armstrong and Virding) from Strand - New Concepts
in Parallel Programming Ian Forster and Stephen Taylor, Prentice Hall, 1990.
[6] New Technology for Prototyping New Services, Kerstin dling, Ericsson Review no. 2 1993
[7] Control Switching Implementation of the BIPED Demonstrator, F. Monfort Second Aus­
tralian Conference on Telecommunications Software, Sydney 1993
[8] Prototyping Cordless Using Declarative Programming, Ingemar Ahlberg, John-Olof Bauner
and Anders Danne, Ericsson Review no. 2 1993
[9] A Prototype Demonstrating User Mobility and Flexible Service Profiles, Jan van der Meer,
Ericsson Review no 1 1994.

FACS Europe - Series I Vol. L No. 3, Winter 1994

VDM Examples Repository

1 Introduction

Peter Gorm Larsen
IF AD

November 15, 1994

25

Below is a list of examples which can be freely obtained using Mosaic at the URL called
http://hermes . ifad. dk/examples/examples .html or alternatively ftp'ed from the site
hermes. ifad. dk in the directory pub/vdm/examples.

All the volunteers which have submitted these examples so far have also made the source
text available. Thus, if you are interested in investigating the examples further you can play
around with the source (they all come as a tarred file which need to be saved as a binary
file and un-tarred by "tar -xvf") and if you have access to the IFAD VDM-SL Toolbox you
can actually analyse the source texts further. All the postscript versions of the documents
have been automatically generated from the source texts which have been submitted unless
the providers have explicitly produced the postscript output. Those who have submitted plain
ASCII specifications have been included in a simple skeleton. Thus, some places the line
breaks could be improved.

• Specification of an ammunition control system.
The Source file and a postscript version can be obtained.

This specification describes the safety requirements involved in adding and removing
explosives at an explosives storage site. The specification is based on United Kingdom
Ministry of Defence regulations concerning safe storage of explosives, which in turn are
based on UN regulations. Details of the specification may be found in:

P. Mukherjee and V. Stavridou, "The Formal Specification of Safety Requirements for
the Storage of Explosives", technical report DITC 185/91, NationalPhysical Laboratory,
1991.

P. Mukherjee and V. Stavridou, "The Formal Specification of Safety Requirements for
Storing Explosives", Formal Aspects of Computing, 5(4):299-336, 1993.

• Railway Interlocking Systems.
The source and postscript version of this specification will be made available by Kirsten
Mark Hansen (Technical University of Denmark/ Danish State Railways (DSB)).

• Formal Semantics of Data Flow Diagrams.
The Source file and a postscript version can be obtained.

Data Flow Diagrams are used in Structured Analysis and are based on an abstract model
for data flow transformations. This specification is a transformation from an abstract
syntax representation of a data flow diagram into an abstract syntax representation of a
VDM specification. Details can be found in:

FACS Europe - Series I Vol. 1, No. 3. Winter 1994

26

P.G. Larsen, Nico Plat, and Hans Toetenel, "A Formal Semantics of Data Flow Dia­
grams", Formal Aspects of Computing, 1994, December.

• Specification of the Single Transferable Vote (STV) algorithm.
The Source file and a postscript version can be obtained.

STY is a scheme for performing elections, as advocated by the Electoral Reform Society.
This specification formalizes the English language requirements and has been tested by
animating the specification. Details may be found in:

P. Mukherjee and B.A. Wichmann, "STV: A Case Study of the Use of VDM", Technical
Report DITC 219/93, National Physical Laboratory, 1993.

P. Mukherjee and B.A. Wichmann, "Single Transferable Vote, A Case Study of the Use
of VDM-SL", Proc. The Mathematics of Dependable Systems, ed. C.J. Mitchell, Oxford
University Press 1994.

• Specification of the MAA standard.
The Source file and a postscript version can be obtained.

The Message Autheticator Algorithm (MAA) standard is used in the area of data security
in banking and the scope of the standard is authentication. More details can be found in:

G.I. Parkin and G. O'Neill, "Specification of the MAA standard in VD M" , In S. Prehn
and W.J. Toetenel (eds), "VDM'91: Formal Software Development Methods", Springer­
Verlag, October 1991.

• The Specification of a Binary Relational Database System (NDB) which will be made
available by John Fitzgerald (Manchester University).

The Non-programmer database system (NDB) is a nicely engineered binary relational
database system invented by Norman Winterbottom of IBM. The formal Specification of
NDB was originally undertaken by Anne Walshe, who has subsequently documented the
specification and its refinement.

NDB has been used as an example problem for modular specification in VDM-SL. The ver­
sions soon to be available here will include the basic "flat" specification and a structured
form using the IFAD Toolbox's specification module syntax.

Relevant publications are:

A. Walshe, "NDB: The Formal Specification and Rigorous Design of a Single-User Database
System", in C.B. Jones and R.C. Shaw (eds), "Case Studies in Systematic Software De­
velopment", Prentice Hall 1990, ISBN 0-13-116088-5.

J.S. Fitzgerald and C.B. Jones, "Modularizing the Formal Description of a Database
System", in D. Bjorner, C.A.R. Hoare and H. Langmaack (eds), VDM '90: VDM and Z
- Formal Methods in Software Development, Springer-Verlag, LNCS 428, 1990.-

• Denotational Semantics of the programming language NewSpeak.
The Source file and a postscript version can be obtained.

The programming language NewSpeak is a language designed specifically for use in safety­
critical systems. It employs the notion of Orwellian programming - undesirable properties
are avoided by restricting the syntax of the programming language. This is a formal
semantics for the language in VDM-SL. Details of the language and its semantics:

FACS Europe - Series I Vol. L No. 3. Winter 1994

27

P. Mukherjee, "A Semantics for NewSpeak in VDM-SL". In T. Denvir, M. Naftalin,
M. Bertran (eds), "FME '94: Industrial Benefit of Formal Methods", Springer-Verlag,
October 1994, to appear.

LF. Currie, "NewSpeak - a reliable programming language". In C. Sennett (ed), "High­
Integrity Software", Pitman 1989 .

• Looseness Analysis Tool for a VDM-SL Subset.
The Source files and a postscript version can be obtained.

The specification language VDM-SL contains a notion of looseness. This is a specification
of a looseness analysis tool which given a specification written in a subset of VD M­
SL can determine which values a given VDM expression (using the definitions) may
evaluate to in the different models for the specification. This illustrates how looseness
(underdeterminedness) is combined with recursion in VDM-SL. Here the use of the test
coverage facility of the IFAD VDM-SL Toolbox is illustrated. Details may be found in:

P.G. Larsen, "Evaluation of Underdetermined Explicit Definitions". In T. Denvir,
M. N aftalin, M. Bertran (eds), "FME '94: Industrial Benefit of Formal Methods" , Springer­
Verlag, October 1994, to appear.

FACS Europe - Series I Vol. L No. 3. Winter 1994

28

TheVDMFAQ

Marcel Verhoef

The vdmjorum mailing list (announced in the Spring Issue of FACS Europe) is pleased to
present a new Frequently Asked Questions file. Compiled from contributions by researchers and
VDM users, the FAQ contains answers to basic technical questions and up-to-date information
on the sources for the VDM Bibliography and ISO VDM-SL Standard.

The first edition will be published in September in vdmjorum and newsgroups including
comp.specification, comp.specification.z and comp.software-eng.

The FAQ will be maintained by Marcel Verhoef (marcel@dutct05.tudelft.nl) and was com­
piled by John Fitzgerald (vdm-forum-request@mailbase.ac.uk). Topics currently covered in­
clude:

WhatisVDM?
What Modularity is provided in VDM?
Does VDM support object-orientation?

Can VDM handle concurrency?
Is VDM executable?

What is data reification?
How is VDM related to algebraic specification languages?

What is the difference between VDM and Z?
What is the relationship between VDM and RSL?

What is the relationship between VDM and the Refinement Calculus?
What is the semantics of VDM-SL?

Where do I start learning about VDM?
Where are the other VDMers?

Where can I find papers on VDM?
I heard there's a Standard for VDM ... ?

Who is using VDM?
What sorts of system can VDM be used to describe?

What tools are available?
A short list of books on VDM

The FAQ will be posted to the forum on a monthly basis, starting from September 1994.
Je.T}3X and hmtl versions will be announced.

FACS Europe - Series I Vol. L No. 3. Winter 1994

29

Formal Methods Applications Database

Nico Plat

The industrial use of formal methods is limited and much of the experience gained with that
industrial use is not available to the outside world. That is a pity, considering the fact that
such experience can be very useful in avoiding the pitfalls one may encounter when starting
to use formal methods in a 'serious' way. It is with this thought in the back of their heads
that a group of people active in FME (Formal Methods Europe) have come up with the idea
to start a database with examples of applications of formal methods, accessible through ftp
and WWW on a public site. The intention of the database is to give concise descriptions of -
either successful or unsuccessful - application of formal methods/specification languages that
will allow users to assess:

• whether or not formal methods/specification languages are being used for large, industrial
applications;

• what the difficulties/advantages are of applying formal methods/specification languages
on a larger scale;

• for which application domains formal methods/specification languages are being used and
which formal methods/specification languages are actually being used.

If you know of any applications of formal methods / specification languages worth considering
for inclusion in the database (i.e. you have been involved yourself or you know someone who
was involved with such an application) then it would be appreciated if you would fill in the
form below and send it to the contact person.

Name of the application: Name of the application or a one-line description of it.

Developed by organisation/consortium: Main organisation(s) involved with the development
of the application.

Formal method/specification language used: Self explanatory.

Tools used: Name of the tool used (if any).

Domain: A short characterisation ofthe application domain in which the formal method/specification
language has been applied, e.g. 'medical systems', 'railway systems' or 'Air-traffic control (ATC)
systems'.

Period: Period in time during which the application has been or will be developed. We think
this is relevant information because as time passes, the time during which something has been
developed can be used as an indication of the state of the art that has been applied.

Size: A rough indication of the 'size' of the application, in terms of lines of specification/source code
of the implementation or in terms of human resources, i.e. the number of man-years involved.

FACS Europe - Series I Vol. L No. 3, Winter 1994

30

Short description: A short (maximum 15 lines) description of the application and the way formal
methods were applied on the application, e.g. did you apply formal proofs? Which mode of
working did you use, i.e. separate specification teams/ implementation teams, did you consult a
formal method 'guru', did you use formal methods/specification languages in conjunction with
other software engineering techniques (e.g. Yourdon). Etc.

Conclusions: Any (subjective) observations on the application of formal methods/specification lan­
guages for your application. Do you feel that application of formal methods/specification lan­
guages for the case you describe was successful? If so/not, why/not? Etc.

Relevant publications: Adequate references to relevant publications, if any.

Contact: Name + address details (snail mail, phone, fax, e-mail) of a contact person who may be
approached if a person wants to have more information about a case. Fill in 'unavailable' if you
do not want to or can not be contacted for further information.

Further remarks: Any further remarks which you think may be relevant.

Leave any fields with information that you do not want to make public blank.

Please note that an electronic copy of the form can be obtained by sending an e-mail message
containing only the line:

send vdm-forum fm-appl-db-form.txt

to mailbaseCOmailbase. ac. uk, and the form will be send back to you. Alternatively, you can
pick it up on WWW at URL:

gopher://nisp.ncl.ac.uk/11/1ists-u-z/vdm-forum/files

or by anonymous ftp from:

ftp.ifad.dk (130.225.136.3) (directory pub/vdm)

Please send your contributions to (e-mail preferred): Nico Plat, Cap Volmac, Dolderseweg 2,
3712 BP Huis ter Heide, The Netherlands. Fax: +31-3404-31174. E-mail: Nico.Plat@ACM.org.

FACS Europe - Series I Vol. 1, No. 3. Winter 1994

Report on Z User Meeting (ZUM'94)

J onathan Bowen
Oxford University

Computing Laboratory
Wolfson Building

Parks Road
Oxford OXl 3QD

Mike Hinchey
University of Cambridge

Computer Laboratory
New Museums Site

Pembroke Street
Cambridge CB2 3QG

Jonathan.Bowen~comlab.ox.ac.uk Michael.Hinchey~cl.cam.ac.uk

ZUM'94, the 8th Z User Meeting, was held at St. John's College, University of Cambridge,
during the last week of June 1994. In a break with tradition, there was no Z User Meeting
in 1993. With an 18 month break between ZUM'92 and ZUM'94, the venue was greatly
enhanced by the more clement British summer climate than that which had been endured
during the previous Z User Meetings, in the previously regular December slot.

The meeting was organized by the Z User Group, in association with BCS-FACS, and
kindly sponsored by BT, Logica Cambridge and Praxis, with support from the Commis­
sion of the European Communities through the ESPRIT ProCoS-WG Working Group.
Jonathan Bowen (Oxford University) was the Conference Chair, Anthony Hall (Praxis)
was Programme Chair, and Mike Hinchey (University of Cambridge) acted as Tutorial
Chair and Local Organizer, with much support from Rosalind Barden (Logica).

With 140 delegates from 15 countries attending, the numbers were substantially in­
creased from previous years, and the conference was expanded to fill an entire working
week. Half-day and full-day tutorials on introductory Z, B and the B-method, project
management issues, dependable real-time systems, and object-oriented specification in Z,
were presented on Monday and Tuesday, 27th and 28th June, and proved to be very pop­
ular indeed. The main sessions were held on Wednesday and Thursday, 29th and 30th
June, and were followed by a half-day session on educational issues of formal methods,
held in the 12th century School of Pythagoras on the morning of July 1st. This provided
an opportunity for educators and industrialists to discuss their ideas on the teaching of
formal methods in general, and Z in particular. Four full papers were presented, and there
were a number of poster displays.

Fortuitously, the location and timing of the meeting added a historical flavour to the
event. Forty-five years previously to the week, the first ever European conference on
computer science was held in Cambridge, in which the early EDSAC computer, designed
and constructed by Prof. Maurice V. Wilkes and his team at the University of Cambridge,
was discussed. This historic event was commemorated with a highly entertaining after­
dinner speech at the ZUM'94 conference dinner by the organizer of the 1949 EDSAC
meeting, Prof. Wilkes himself. The London Science Museum and the Whipple Museum of
the History of Science very kindly organized a small display of some historical memorabilia,
including the core memory of EDSAC-2, and a fragment of Babbage's Difference Engine.

FACS Europe - Series I Vol. 1, No. 3, Winter 1994

32

During the main meeting, Mr. Robert Worden of Logica Cambridge gave the open­
ing remarks, likening the system development process to "Fermenting and Distilling" and
concluding with his belief in the benefits of formal methods and object-orientation to
software engineering, when appropriately applied. Dr. Jim Woodcock of Oxford Univer­
sity presented "The Formal Specification in Z of Defence Standard 00-56" , work that was
performed by Formal Systems (Europe) Ltd. on behalf of the UK Ministry of Defence.
Prof. David Garlan of Carnegie Mellon University described the approach taken at his uni­
versity in "Integrating Formal Methods into a Professional Master of Software Engineering
Program". Dr. Mike Gordon of University of Cambridge described an embedding of Z
in HOL (Higher-Order Logic) as a support tool for formal development in Z. Dr. Leslie
Lamport of Digital Systems Research Center, USA, described "TLZ", an extension to Z
to make it akin to his own Temporal Logic of Actions (TLA), and hence suitable for use
in the development of real-time and concurrent systems.

As well as these invited speakers, refereed papers on applications of formal methods,
object-orientation, Z semantics, methods and concurrency were presented by speakers from
the US, Australia and Europe. The published proceedings were issued at the meeting itself,
an innovation which both saves overall time spent by the editors and which seemed to be
appreciated by the attendees.

A session on standards was chaired by John Nicholls (Oxford University) including a
status report of the proposed Z standard currently undergoing international standardiza­
tion under ISO/IEC JTC1/SC22. George Cleland (University of Edinburgh) gave infor­
mation on a survey undertaken for the UK government DTI (Department of Trade and
Industry) to ascertain the best use of funding for the encouragement of the use of formal
methods. Randolph Johnson (DoD, USA) reported on the activities of the ANSI X3J21
Technical Committee on FDTs (Formal Description Techniques) including Z and VDM,
under the X3 Accredited Standards Committee on Information Processing Systems, which
is overseeing the standardization of Z. It is also interested in future developments such as
object-oriented extensions to Z and its possible standardization.

In addition to presentations, tools demonstrations, publishers' stands, and a poster ses­
sion on Internet access to information relevant to Z, and formal methods in general, on the
global on-line World-Wide Web hypermedia system were also available during the meeting.
In particular, for on-line details of Z User Meetings and other Z-related information, see:

http://www.comlab.ox.ac.uk/archive/z.html#meetings

We were even blessed with good weather throughout the week in Cambridge.
The AGM of the Z User Group was held in conjunction with ZUM'94. At this meeting,

ZUM'95, the 9th International Conference of Z Users, was announced. This will take place
at University of Limerick, Ireland, 7-8 September 1995. Jonathan Bowen (Oxford Univer­
sity) will be the Conference Chair, Mike Hinchey (New Jersey Institute of Technology) will
be the Programme Chair, and Norah Power (University of Limerick) will be the Tutorial
Chair and Local Organizer. Once again the conference will be organized by the Z User
Group in association with BCS-FACS, with kind sponsorship from BT, Forbairt, Praxis
and University of Limerick, and support from ProCoS-WG. The invited speakers will
be: Jean-Raymond Abrial (France), David Lorge Parnas (McMaster University, Canada),
John Rushby (SRI International, USA) and Jeannette Wing (Carnegie Mellon University,
USA).

FACS Europe - Series I Vol. 1, No. 3. Winter 1994

33

Recent books column

Cliff Jones

November 25, 1994

I agreed to produce listings of books which relate to the
purpose of this newsletter. Authors should send references
(BibTeX format preferred) to cbj@cs .man. ac. uk.

Authored books: [Plii90, Dev90, And91, FB94, Mit94,
Pif91, FJM94, JL92, Ban93, Ban94]

Edited book: [Bow94, Lau93]
Proceedings: [BH94,Old94]

References

[And91] James H. Andrews. Logic Programming: Op­
erational Semantics and Proof Theory. Distin­
guished Dissertation Series. Cambridge Univer­
sity Press, March 1991.

[Ban93] U. Banerjee. Loop Transformationsfor Restruc­
turing Compilers: The Foundations. Kluwer
Academic Publishers, 1993.

[Ban94] U. Banerjee. Loop Transformationsfor Restruc­
turing Compilers: Loop Parallelization. Kluwer
Academic Publishers, 1994.

[BH94] J. P. Bowen and J. A. Hall, editors. Z User Work­
shop, Cambridge 1994, Workshops in Comput­
ing. Springer-Verlag, 1994.

[Bow94] J.P. Bowen, editor. Towards Verified Systems.
Real-Time Safety Critical Systems Series. Else­
vier Science Publishers, 1994.

[Dev90] Yves Deville. Logic Programming: Systematic
Program Development. Addison-Wesley, Wok­
ingham, England, 1990.

[FB94] R. Floyd and R. Beigel. The Language of Ma­
chines: An Introduction to Computability and
Formal Languages. New York: Computer Sci­
ence Pr., 1994. ISBN 0-7167-8266-9.

[FJM94] Loe M. G. Fiejs, Hans B. M. Jonkers, and Cor­
nelius A. Middelburg. Notations for Software
Design. Springer-Verlag, 1994. ISBN 3-540-
19902-0.

[JL92] R. Janicki and P. E. Lauer. Specification
and Analysis of Concurrent Systems. EATCS
Monographs on Theoretical Computer Science.
Springer-Verlag,1992.

1

[Lau93] P. E. Lauer, editor. Functional Programming,
Concurrency, Simulation and Automated Rea­
soning. Lecture Notes in Computer Science 693.
Springer-Verlag,1993.

[Mit94] Richard Mitchell. Abstract Data Types and
Modula-2. Prentice-Hall, 1994.

[Old94] E.-R. Olderog, editor. Programming Concepts,
Methods and Calculi. North-Holland, 1994.

[Pif91] Mike Piff. Discrete Mathematics: an introduc­
tionfor software engineers. Cambridge Univer­
sity Press, 1991. ISBN 0-521-38622-5.

[Plii90] Lutz Pliimer. Termination Proofs for LogicPro­
grams, volume 446 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, Berlin, 1990.

FACS Europe - Series I Vol. 1. No. 3, Winter 1994

34

FORTHCOMING EVENTS

1995

December 15-17,1994
Fourteenth Conf. on the Foundations of Software Tech. and Theoretical Comp. Sci., Madras, In­dia. Contact: R Ramanujam, FST&TCS 14, Inst. of Mathematical Sci.s, C I Campus, Taramani, Madras 600 113, India Email: jam@imsc.ernet.in
January 3-6
Parallel and Distributed Computing: Theory, Systems and Applications, Maui, Hawaii Contact: H EI-Rewini, Dept. of Comp. Sci., Univ. of Nebraska at Omaha, Ohmaha, NE 68182, USA. Email: rewini@unomaha.edu Or B Shriver, HICSS-28, 17 Bethea Drive, Ossining, NY 105620, USA. Email: b.shriver@computer.org
January 23-25
ACM SIGPLAN-SIGACT Symp. on Principles of Prog. Lang., San Fransico, California. Contact: (Program Chair) Peter Lee, Carnegie Mellon Univ., School of Comp. Sci., 8119 Wean Hall, 5000 Forbes Avenue, Pittsburg, PA 15213 Email: petel@cs.cmu.edu
April 5-8 WIFT'95,
Workshop on Industrial-strength Formal specification Techniques, Boca Raton, Florida USA. Sub­missions to Program Chair Or appropriate Regional Coordinator; information from Organizing co-chairs PRO­GRAM CHAIR: Susan Gerhart, RICIS, Univ. of Houston-Clear Lake, Houston, TX 77058, USA, Tel: +1-713-283-3800 Fax: +1-713-283-3810 Email: gerhart@cl.uh.edu EUROPEAN COORDINATOR: Tom Docker, CITI Ltd, Challenge House, Sherwood Dr, Bletchley MK6 3DP, UK, Tel: +44-908-377800, Fax: +44-908-371257 Email: 100121.2156@compuserve.comASIANCOORDINATOR:T.H.Tse.Dept.ofComp.Sci .• Univ. of Hong Kong, Pokfulam Rd, Hong Kong, Tel: +852-859-2183, Fax: +852-559-8447 Email: tse@csd.hku.hk OR­GANIZING CO-CHAIRS: Robert France, Maria Larrondo-Petrie, Dept of Comp. Sci. & Eng., Florida Atlantic Univ., Boca Raton, FL 33431-0991, USA, Tel: (Robert): +1-407-367-3857, Tel: (Maria): +1-407-367-3899, Fax: +1-407-367-2800, email: robert@cse.fau.edu Or maria@cse.fau.edu Information can also be obtained via anonymous ftp to shark.cse.fau.edu (fpub/WIFT95/Info).
July 10-14 ICALP'95
22nd Int'l. ColI. on Automata, Lang. and Prog., Szged, Hungary. Contact: F Gecseg, J Csirik, Attila Jozesef Univ., Dept. of Comp. Sci., Aradi Vetanuk tere 1, H-6720 Szeged, Hungary Email: icalp95@inf.jate.u­szeged.hu

July 17-21 MPC '95
Third Int'l. Conf. on the MATHEMATICS OF PROGRAM CONSTRUCTION, Kloster Irsee, Germany Submission date: 1 December 1994. Contact: Prof Dr B Moller (MPC '95), Institut fur Mathematik, Universitat Augsburg, D-86135 Augsburg, Germany Fax: +49 821 598 2200 E-mail: moeller@uni-augsburg.de
September 7-8 ZUM '95
9th Int'!. Conf.for Z Users, Limerick, Ireland. Supported by BCS FACS and the ESPRIT ProCoS-WG Working Group. Sponsored by BT and Praxis. Organized by the Z User Group. Submission date: 9 Decem­ber 1994. Contact: Jonathan Bowen (Conf. Chair), Oxford Univ Computing Lab., Wolfson Building, Parks Road, Oxford OXl 3QD, UK. Tel: +44-1865-283512 (direct) 283521 (secretary) Fax: +44-1865-273839 E-mail: J onathan.Bowen@comlab.ox.ac.uk

FACS Europe - Series I Vol. 1, No. 3. Winter 1994

British Computer Society

I83CC§) = FACC§)
Formal Aspects of Computing Science

Dear FACS member

Please reply to: Or D J Cooke
Department of Computer Studies
Loughborough University of Technology
Loughborough
LE113TU
UK

tel: +44 (0)1509 222676
fax:+44 (0)1509 211586
email: D.J.Cooke@lut.ac.uk

16 December 1994

Enclosed you will find your copy of the latest issue of FACS Europe and a
membership renewal form .for 1995. The forms are usually sent out much earlier
but we thought it only right to delay sending them until you received the next
issue of the newsletter. Also enclosed are forms for renewing subscriptions to
EATCS and to the FACS journal.

The journal goes from strength to strength. Again this year (as in 1992) there is a
bonus issue - there are 7 "books" - plus 2 extra papers available via ftp. Also, at
long last, we are making considerable progress in persuading authors to write
more concisely and hence there are more papers - on more diverse topics - in each
issue; issue 6(6) contains 8 papers. The journal price to FACS members remains
as it was for 1994. Indeed, all the fees remain unchanged.

As many of you will know, we are starting to use email as a vehicle for
broadcasting FACS announcements. Please help us to avoid unnecessary email
traffic by ensuring that ·we have your correct email address; several addresses we
had on file proved to be incorrect.

Yours sincerely

Or 0 JCooke
11embership Secretary

THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS

2ND CONFERENCE ON THE MATHEMATICS OF
DEPENDABLE SYSTEMS (MDS 95)

4-6 September 1995
University of York, England

ANNOUNCEMENT AND CALL FOR PAPERS

The construction of dependable systems, by which we mean systems providing high lev­
els of reliability, availability, safety and/or security, is a problem of considerable concern
to both providers and users of information processing systems of all types. Historically,
different aspects of system dependability (e.g. reliability and security) have been studied
quite independently, albeit that many of the goals are similar. For example, the notion
of certifying functionality assurance levels applies equally to reliable systems and secure
systems. In addition, users will often require some combination of security and fail-safe
operation.

The purpose of MDS 95 is to consider the mathematical aspects of the provision of depend­
able systems, one goal being a comparison and possible unification of mathematical tech­
niques for providing safe, reliable and secure systems. A number of different mathematical
approaches have been taken to the overall problem, including probabilistic/statistical rea­
soning, formal models of safe, secure and reliable systems and logics of authentication
and access control/privilege delegation. Papers on all these areas are solicited, the unify­
ing theme being the application of mathematical techniques to the overall dependability
problem. Hence papers will be particularly welcome which cross-fertilise the application
domains. The conference will consider dependability for both hardware and software sys­
tems.

Programme and Proceedings: The conference will consist of three days of presen­
tations by contributing authors. The programme will also include invited lectures by
prominent researchers and practitioners in dependable systems theory and practice. Time
will be made available for discussions. A digest of papers will be available to participants
during the meeting and the proceedings will be published after the conference.

Invited Speakers: Monsieur P Chapront (GEC Alsthom, France), Professor J Knight
(University of Virginia, USA), Professor B Littlewood (City University, UK), Professor D
L Parnas (McMaster University, Canada), Professor F Piper (Royal Holloway, University
of London, UK) and Dr C T Sennett (Defence Research Agency).

Submissions: Five copies of complete papers (in English) should be sent to Mrs Pamela
Bye, Conference Officer, The Institute of Mathematics and its Applications, 16 Nelson

Street, Southend-on-Sea, Essex, SSl 1EF, England (Tel. +44 702 354020, Fax +44 702
354111, Email imacrh@v-e.anglia.ac.uk) by 31st March 1995. Authors will be notified of
the outcome of their submission by 26th May 1995 and will be sent the required style files.
Revised manuscripts will be due by 14th July 1995. Papers must not exceed 6,000 words
in length (with full-page figures counted as 300 words). Each paper should include a short
abstract and a list of keywords for subject classification. All papers will be refereed and
the final choice will be made by the programme committee on the grounds of relevance,
significance, originality, correctness and clarity. Submitted papers must not be published
or be under consideration for publication elsewhere in the same or similar form.

Programme Committee: Programme Chair: V Stavridou (Royal Holloway, Univer­
sity of London), D Gollmann (Royal Holloway, University of London), M Ingleby (British
Rail Research), J Jacob (University of York), N Jefferies (Vodafone Ltd), B Littlewood
(City University), R Shaw (Lloyd's Register), B Wichmann (National Physical Labora­
tory).

Location: The conference will be held at the University of York, a modern campus built
around a lake with excellent facilities. The campus is two kilo meters from the centre of
the medieval walled city of York, and 60 kilometers from the North Yorkshire coast. The
city is also well placed for the Pennines and Yorkshire Wolds. York is very well connected
by rail to London, Edinburgh and Manchester and the nearest airports are Manchester
and Leeds/Bradford.

35

Guidelines for Newsletter Contributions

Contributions may be in the form of single-sided camera-ready copy, suitable for layout and sub-editing.
They can also be sent to us using electronic media (i.e. by floppy disk (MS DOS or Mac)/e-mailfetc.), to be
formatted in the house style. As a rule, we generally accept pure ASCII text or 1E;X/UTEX in order to avoid
complications involving interchange between wordprocessing formats. We regret that we are unable to offer
typesetting facilities for handwritten material.

If contributions are sent using proprietary wordprocessor/markup language formats (i.e. MicroSoft Word 5,
FrameMaker), then these will be treated as though they were camera-ready copy. If we are unable to print
them adequately or to otherwise convert to another more suitable form then the authors may be asked to
provide paper copies of appropriate reproduction quality.

Artwork can be provided for appropriate inclusion, either using general formats (such as DVI files or Encap­
sulated PostScript) by sending camera-ready paper copy. Generally, line drawings and other high-contrast
graphical diagrams will be acceptable.

Material must be of adequate quality for reproduction. Output from high quality printers with at least 300 DPI
resolution is generally acceptable. Output from printers with lesser resolution (i.e. dot-matrix printers) tends
not to reproduce very well and will not be of sufficiently good print quality. The Editorial Panel reserves the
right to refuse publication for contributions which cannot be reproduced adequately.

Page definition information

If possible, contributions should be designed to fit standard A4 paper size, leaving a margin of at least one inch
(1") on all sides. Camera ready copy should be sent in single-sided format, with page numbers written lightly
on the back. Ideally, all fount sizes used should be no smaller than lOpt for clarity. Contributions should
attempt to make adequate use of the space, filling at least 60% of each page, including the last one. Authors
should note that all contributions may be sub-edited appropriately to make efficient use of space.

Deadlines

The production deadlines for the coming year are:

Disclaimer

Spring end of February
Autumn end of September

Summer end of May
Winter end of November

The views and opinions expressed within articles included in the FACS Europe newsletter are the responsibility
of the authors concerned and do not necessarily represent the opinions or views of the editorial panel.

Addresses

Editors:
Dr. Jawed Siddiqi & Dr. Chris Roast
Computing Research Centre
Dept. of Computing and Management Sciences
Sheffield Hallam University
100 N apier Street
Sheffield, Sll 8HD
United Kingdom

Tel: +44742533141
E-mail: J.I.Siddiqi<Dshu.ac.ukandC.R.RoasUshu.ac . uk

FACS Europe - Series I Vol. L No. 3, Winter 1994

BCS FACS Committee 94-95

General

General enquiries about the BCS FACS group, the newsletter or its meetings can be made to:

BCS FACS Membership fees 1994
Standard (i.e. non-BCS members): £25
BCS members £10

Department of Computer Studies
Loughborough University of Technology
Loughborough, Leicestershire
LEl13TU Discount subscription rates 1994

Tel: +44 509 222676
Fax: +44 509 211586
E-mail: FACS@lut.ac.uk

EATCS £10

FACS Officers

FACS Journal: £35 (6 issues, Vol. 6)

Chair
Treasurer
Committee Secretary
~embership Secretary
Newsletter Editors
Liaison with BCS
Liaison with FACS Journal

Tim Denvir
Roger Stone
Roger Carsley
John Cooke
Jawed Siddiqi & Chris Roast
Margaret West
John Cooke

FACS Committee Members

Name Affiliation Tel: E-mail

D. Blyth Incord Ltd. 0202-896834 DBlyth@cix.compulink.co.uk
J. Boarder Buckinghamshire 0494-22141 jcb@buckscol.ac.uk

R.E. Carsley Westminster 071-911-5000x3568 roger@westminster.ac.uk
D.J. Cooke Loughborough 0509-222676 D.J.Cooke@lut.ac.uk

B.T. Denvir Translimina Ltd. 081-882-5853 timdenvir@cix.compulink.co.uk
S.J. Goldsack Imperial 071-589-5111x50 14 sig@doc.ic.ac.uk

A.J.J. Dick Bull 0442-884586 J .Dick@brno.uk03.bull.co.uk
R.B. Jones ICL Winnersh 0734-693131x6536

R.J. Mitchell Brighton 0273-642458 rjm4@unix.brighton.ac.uk
B.Q. Monahan Manchester 061-275-6137 brianm@cs.man.ac.uk

M.P. Naftalin Lloyd's Register 081-681-4040 tcsmpn@aie.lreg.co.uk
C.R.Roast Sheffield Hallam 0742-533141 C.R.Roast@shu.ac.uk

J .I.A. Siddiqi Sheffield Hallam 0742-533141 J .I.Siddiqi@shu.ac.uk
D. Simpson Brighton 0273-600900x2450 ds33@unix.bton.ac.uk
R.G. Stone Loughborough 0509-222686 R.G.Stone@lut.ac.uk

D.R. Till City 071-477-8552 till@cs.city.ac.uk
M.M. West Leeds 0532-33543Q. mmwest@scs.leeds.ac.uk

A. Wrightson Huddersfield 0484-472758 scomaw@zeus.hud.ac.uk

