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Editorial 

Welcome to the Xmas Workshop '95 special 
issue. We had a goodly gathering at Imperial 
on 18-19 December, seeing out the year in tra­
ditional FACS style with a miscellany of mind­
broadening topics - this year on the theme of 
Semantics, both mathematical and meaning­
ful. A special highlight, which unfortunately 
did not leave a record which we could publish, 
was the closing panel session, ably and enter­
tainingly chaired by Martin Hyland. (Apolo­
gies to Alan Hutchinson, that his amended pa­
per does not appear in this issue. It will hope­
fully appear in the next issue.) 

Delights to come are the Refinement Work­
shop at Bath in the summer; the Formal As­
pects of HCI workshop in September, and of 
course Xmas 96 - a joint event with the BCS 
Requirements Engineering SIG. If you have 
any other ideas for events, please email them 
to FACS@lut.ac.uk, or talk to any of us ... 

Contributions Welcome ... 

Contributions to the Newsletter on any rele­
vant topic are welcome. Please send them elec­
tronically, in Jb.TEX or 'lEX form if you can; 
next best is plain ASCII. Otherwise please 
send A4 copy fit to reproduce by fast pho­
tocopying (i.e. no paste-ups), with 300dpi 
laserprint or equivalent a minimum standard. 
We will not convert WP formats or type up 
manuscripts. We will not reproduce extensive 
notices of events which are also available elec­
tronically; please send a short notice (max 1 
page) with pointers to more extensive informa­
tion where available. Please always include a 
postal or telephone contact for those without 
email. 

Please email toFACS@lut.ac.uk or to me 
or Margaret West at scomaw@zeus.hud.ac.uk, 
m. m. west@hud.ac. uk, or alternatively by 
snailmail to: 

FACS/FME Newsletter 
clo Ann M Wrightson 
School of Computing and Mathematics 
University of Huddersfield 
Queensgate 
Huddersfield 
HD13DH 
UK 

Contributions express the opinions of con­
tributors, not of FACS, FME or any organi­
zation with which they are associated (unless 
they say otherwise!). 

Letters are welcome and should be sent to 
the Editor. 
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FACS-E Recent books column 

Cliff Jones 

January 25, 1996 

I agreed to produce listings of books which relate to the purpose of this newsletter. Authors should send refer­
ences in BibTeX format to cbj @cs . man. ac. uk; we try to pick up some citations without authors intervention 
so you can also check via WWW http://www.cs.man.ac . uk/fmethods/facj /index. html to see 
whether your reference has been noted. 
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BCS-FACSXmas Workshop 1995 

Semantics 
'l(evin LanD 

Imperia[ Co{[ege 

Andrew Pitts, Andrew.Pitts@cl.cam.ac.uk 

}lnn WritJfitson 
Vni'Versity of J{ uac[ersfieCtI 

Operational Extensionality for Typed Higher Order Languages with State 

For higher-order, deterministic, sequential languages with state---such as Scheme, Standard ML, or 
Algol---there is general agreement that some form of Morris-style contextual equivalence forms 
a reasonable basis for a theory of program equivalence. The problem is that, with its quantification 
over all possible contexts, the definition of contextual equivalence is rather intractable. For typed 
languages, one can hope that at least there is some compositional characterization of contextual 
equivalence so that, for example, equivalence at a function or procedure type is explained in terms of 
equivalence at the argument and result types. In this talk, I will summarise what is known about this 
topic. In a nutshell, the situation for block-structured local state is reasonably good, whilst for 
dynamically allocated local state it seems quite bad. 

Luke Ong, Luke.Ong@cornlab.oxford.ac.uk 

Game semantics 

Game semantics is an unusual denotational semantics in that it captures the intensional (dynamical 
and algorithmic) aspects of the computation. This talk aims to give an introduction to game semantics 
for functional computation with particular reference to the so-called Full Abstraction Problem for 
PCF. We shall survey ideas in denotational semantics motivated by the Problem, and sketch the 
construction of a fully abstract game model of PCF based on (the category of) arenas and innocent 
strategies. (Joint work with Martin Hyland.) 

Duska Roscnbcrg (with Keith Devlin), Duska.Rosenberg@brunel.ac.uk 

Language at Work 

Computer Supported Cooperative Work (CSCW) is a growing field of research which looks at 
computer-based systems as one of the artefacts used by groups of people working together. One of the 
important things that happens when people use computers is that information flows from and via 
computers. The semantics of this information flow is closely related to the role of language in CSCW, 
a complex pattern which includes communication inside, outside and through a computer. This 
interplay between an information-rich artefact and human communication is at the centre of 
'Language at Work'. 
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Alan Db, alan@zeus.hud.ac.uk 

From Programs to People: Formal Methods meets the Freedom of the Human Spirit 

Program language semantics are, in common with all formal semantics, by definition meaningless. A 
formal semantics can at best give meaning relative to some context. A formal specification of a sort 
algorithm has no meaning until it is associated with a real programming language, but of course the 
language itself only has meaning with respect to a compiler etc .... 
User interfaces are to some extent different. We have a context given to us - the human user. Formal 
semantics for user interfaces do therefore have natural boundaries: the user input on one side and 
system display on the other. We can build formal models of this nature and describe some interface 
usability properties over the models. 
Unfortunately even that does not ground the semantics entirely. To really capture the meaning, we 
need to understand human perception and cognition. But people are so wonderfully unpredictable ... 
are we on a highway to nowhere, trying to formalise people? 
For modelling cooperative work the situation is more extreme. Not only do we have individual 
psychology, but also social processes at work. Again, one approach is to capture these formally, but 
perhaps that is not necessary. In cooperative work, the critical things are not so much what people are 
thinking, but the external representations that they use and their interactions with one another. In 
some ways formalising cooperative systems may be easier than those for individual users. 

* 

* 

* 

* 

* 

* 

* 

* 

The equivalence problem for semantic data-specifications 
Frank Piessens and Eric Steegmans 
Frank.Piessens@Cs.kuleuven.ac.be 

An Operational Theory of Objects 
Andrew D. Gordon 
Andrew. Gordon@cl.cam.ac. uk 

Tutorial: Introduction to Situation Semantics 
Ann Wrightson 
scomaw@zeus.hud.ac.uk 

The Semantics of Garbage Collection Rules, a Denotational Approach 
GH. Row@ulst.ac.uk 

Categorial semantics for Object-oriented Specification 
Kevin Lano and Jose Fiadeiro and Stephen Goldsack 
kcl@doc.ic.ac. uk 

Animation is Approximation 
Margaret West 
mmwest@scs.leeds.ac.uk 

Semantic Shadowing in the Software Development Process 
PJ Lundy & DW Bustard. 
p.j.lundy@ulst.ac.uk 

Formalizing Pre-conditions as Firing Conditions Using Computations 
Andy S. Evans. 
a. s. evans@comp. brad. ac. uk 

Existence and Intuitionistic All-Elimination 
Alan Hutchinson 
alanh@dcs.kcl.ac.uk 
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Abstract 

Language at Work 

Duska Rosenberg* 

December 18, 1995 
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This paper presents an analysis of "information bottlenecks" in a real working environment, 
using situation theory as the analytical framework. Our work is motivated by the need for 
feedback between groups of human experts engaged in cooperative activities. It is focused 
on the structure and function of "common artefacts" whose main role in the organisation 
of human activities is to facilitate information flow. The main aim is to discover under 
what circumstances and, wherever possible, for what reasons computerised common arte­
facts create information bottlenecks instead of facilitating interaction, communication and 
cooperation in the workplace. 

Our analysis distinguishes three areas of human expertise and praxis in the application 
domain (in this case, manufacturing computer systems): the technical expertise of computer 
engineers, the 'linguistic' constraints that govern communication via a common artefact­
the Parts Repair Form PRF-and the social structure and work practices that prevail in 
the computer industry. Each of these is captured by means of a situation. It is the facts 
supported by, and the constraints salient in, each of these situations that influence the 
various activities we seek to investigate. 

We note that these three kinds of knowledge are normally considered by analysts from 
quite different fields: technical expertise is studied by computer scientists and knowledge 
engineers working on expert systems; linguistic knowledge is studied by linguists; social 
structure and work praxis is the domain of the social scientist. Each of these disciplines 
uses distinct techniques and different forms of representation. Situation theory allows us to 
treat all three kinds of knowledge within the same, uniform framework. 

In carrying out an analysis, we use a situation-theoretic methodology as a tool for 
discovery, not as some kind of specification language. In the discovery process, we are 
constantly guided by having to seek answers to the questions: 

• What are the relevant constraints? 

• What are the situations involved, and what are the relationships between them? 

• What relevant information is transmitted? 

This forces us to adopt both a uniform framework and a consistently high degree of precision, 
even at stages that might not seem problematic. When a problem is encountered, we 'zoom 
in' on that part of the analysis, increasing the mathematical precision until a level of detail 
is reached that is sufficient to provide a resolution to the problem . 

• Joint work with Keith Devlin. 
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E-mail Addresses 

Duska Rosenberg: Duska.Rosenberg@brunel.ac.uk 

Keith Devlin: devlin@csli.stanford.edu 

All CSLI Reports are available as downloadable dvi files from the CSLI World Wide Web 

entry. 
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The equivalence problem for semantic 
data-specifications - extended abstract 

Frank Piessens* Eric Steegmans 

September 15, 1995 

The first step in the design of a large database is specifying in some sense the 
part of the real world about which we want to store information in the database. 
Such a specification is called a semantic data-specification. Essentially, the goal 
of a semantic data-specification is to build a mathematical description of this 
small part of the real world. This part of the world that interests us, is usu­
ally called the Universe of Discourse (UoD) in the database literature. Many 
formalisms for making semantic data-specifications are in use today, the most 
prominent ones being Entity-Relationship diagrams ([Ch 76]), and their various 
extensions. In this paper, data-specifications are defined to be (generalized) 
sketches, as in [Ca 95, Pi 94]. Entity-Relationship diagrams, and other popular 
data-specification mechanisms can all be translated to these sketches. Consult 
[Ca 95] for more det.ails. 

The equivalence problem 

An important problem in database design is the fact that the same UoD can be 
described in a number of different, non-isomorphic ways. Two syntactically dif­
ferent }<~ntity-Relationship diagram'3 can still be descriptions of the same UoD. 
Consider, as a very simple example, the ER-diagram with one entity class Per­
son, wit.h an attribute Sex, which could be either male or female. Compare this 
with the ER-diagram where you have two entity classes, Men and Women, and 
no attributes. These two ER-diagrams, although not isomorphic, do describe 
the same UoD. This situation is similar to the situation where two syntacti­
cally different programs compute the same function, and hence are semantically 
equivalent. We say that two data-specifications are equivalent iff they describe 
the same UoD. Note that this is not a formal criterium: "describing the same 
UoD" is an informal notion. In this paper, we consider two different possible 
formalintions of the notion of equivalence, and compare them. 

The fact that the same UoD can be specified in different ways makes the 
process of integrating a number of existing data-specifications into one large 
data-specification a very difficult process. Algorithms to decide equivalence can 
make this integration process much easier (see for instance the discussion ofthis 
fact in [Pi 94]). Therefor, we will also discuss decidability of equivalence. 

Criteria for equivalence 

In the study of process algebras, many different definitions of equivalence of 
processes are studied: bisimilarity, testing equivalence, behavioural congruence, 
etc ... , and it is not always obvious which equivalence relation must be preferred. 

*Research Assistant of the Belgian Fund for Scientific Research 
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A similar difficulty occurs with semantic data-specifications. There are at least 
two possible definitions for equivalence: 

1. Two data-specifications (considered as sketches) are equivalent iff their 
theories are equivalent as categories. 

2. Two data-specifications (considered as sketches) are equivalent iff their 
model-categories in Set are equivalent as categories. 

It should be obvious that the first definition defines a smaller equivalence relar 
tion than the second definition. The first definition captures in some sense the 
intuition that two datarspecifications are equivalent iff all the data present in 
the first one can be computed from the data present in the second one and vice 
versa. The second definition captures the intuition that two data-specifications 
are equivalent iff they have the same models (instances). Although the two 
definitions coincide in many cases, we give examples of specifications which are 
equivalent by definition 2 and not by definition 1. We also show that both 
definitions have their advantages and disadvantages, and it remains currently 
unclear which definition must be preferred. 

Decidability of equivalence 

DecidabiIity of equivalence, for the second definition of equivalence and for a 
subclass of data-specifications more or less corresponding to ER-diagrams was 
investigated in [Pi 94]. In this paper, we strengthen the decidabiIity results from 
[Pi 94] to encompass a larger class of specifications. We also show that the two 
definitions of equivalence coincide on this class of specifications. 

Conclusion 

A denotational semantics for a programming language gives a criterium to decide 
wether two programs are semantically equivalent or not: they are equivalent iff 
their denotations are equal. 

In a similar way, we have considered the equivalence problem for semantic 
data-specifications. The two definitions for semantic equivalence can be per­
ceived as definitions of a denotational semantics for data-specifications. For the 
first definition of equivalence, we define the denotation of a specification (sketch) 
to be the skeleton of its theory, and for the second definition of equivalence, we 
define the denotation to be the skeleton of its model category. 

We have also summarized the known results, and have proven new results 
concerning decidabilty of equivalence. 
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An Operational Theory of Objects 

Andrew D. Gordon 
University of Cambridge Computer Laboratory 

December 1995 

An object calculus is an attempt to capture the essentials of object-oriented pro­
gramming as a small self-contained language, suitable for theoretical study. Abadi and 
Cardelli [1] have developed a range of object calculi, mainly in an attempt to provide type 
theories capable of expressing common idioms of object-oriented programming. 

My talk will introduce one of Abadi and Cardelli's calculi and outline an operational 
theory [2]. The main result is that we characterise contextual equivalence of objects as a 
form of CCS-style bisimilarity. We use bisirnilarity as a tool to justify Abadi and Cardelli's 
equational theory of objects. In the presence of certain natural typing rules, bisimilarity 
is the only known model for Abadi and Cardelli's calculus. 

This is joint work with Gareth Rees. 
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"The Semantics of Garbage Collection Rules a Denotational Approach" 
By George Row and Averil Meehan 

Interactive Systems Centre, 
School of Information and Software Engineering, 
University of Ulster, Magee College, Derry, N. Ireland, BT48 OER 
email: GH.Row@ulst.ac.uk 

Extended Abstract 

Abstract of the Abstract 
This paper presents and discusses a formal specification of a set of rules 
for adding garbage collection to the source code of a program written 
with a naive, infinite-memory view of the machine which will execute it. 

Garbage Collection - Combining Correctness and Memory efficiency 
===============~~=============================================== 

The use of Abstract Data Types (ADTs) [Ellis 91, Thomas 88, Guttag 77,78] 
as the basis of encapsulation and information hiding [Ghezzi 91, Lamb 88, 
Parnas 72A,72B] is well established. However in languages (such as 
Modula-2, C or Ada) where the programmer has responsibility for 
dynamically allocated memory the use of ADT's has been inhibited by 
the associated memory management problems. 

Explicit 
increase 
errors. 
programs 

deallocation of dynamically allocated memory can considerably 
the complexity of a program and introduce the most subtle of 
Never deallocating, although safe restricts the scale of 
and of the problems to which they may be applied. 

The programming style used is also affected. Harrison and Schmidt 
[Harrison 93] point out the importance of the value delivering style of 
programming combined with the use of dynamic linked structures. 
However this style has such severe memory management problems as to 
cause authors such as Martin, [Martin 86], and Mitchell, [Mitchell 92], 
to advocate other programming styles. An empirical evaluation 
[Meehan 93] confirmed the extent of the memory requirement, and as a result, 
the functional style is the focus of our investigation. However the 
work is also relevant to the use of procedures with variable parameters. 

Exte~ding earlier work by Bilbe [Bilbe 85) to cope with linked structures 
and value delivering procedures, a simple set of rules for Reference 
Counting Garbage Collection (RCGC) of ADTs has been developed. (An informal 
description of these rules is included in Appendix A.) An empirical 
study [Meehan 93), has shown that when ADT's are used with the RCGC rules, 
memory is safely recycled. Programs incapable of running within available 
memory can, with the application of the RC GC rules, run using only a 
fraction of available memory. The reasoning behind the development of each 
of these RCGC rules is discussed by Meehan and Row [Meehan 94). 

The major advantage of this approach over others, [Mitchell 92) is that 
no restrictions are placed on either the programming style, or on the 
data structurg 'used to implement ADTs. The program may be written in a 
style based on an infinite-memory model and subsequently, when the program 
has beeR snown to be correct, the RCGC rules may be applied to produce a 
correct and memory efficient program. 

This leads to the additional advantage that, although the derivation of the 
RCGC rules was' based on an analysiS of the dynamics of the implementation 
of the ADT's, the rules themselves need only be applied to·· the static text 
of a~program. This gives the RCGC rules the potential for automatic 
application at cofupile time. To this end the value of a formal definition 
of these rules is investigated. 
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The Formal Specification of RCGC Rules 
====================================== 

It was found that a syntactic approach was insufficient to 
express the RCGC rules, which could only be fully defined by 
considering the programming language semantics. Unfortunately 
the techniques and theory for semantic definition are not as 
developed as syntax definition [Schmidt 86] e.g. there is no 
standard notation such as the widely used BNF for writing 
semantics. 

Stepney [Stepney 93] pOints out that the development of a compiler 
needs as a first step the mathematical definition of both the source 
and target languages. The derivation of the compiler from these 
formal semantic definitions results in a reliable compiler whose 
correctness can be proven. Our problem is rather different but 
the principle is similar. 

The source language is Modula-2 without regard to memory management 
of ADT's. The target language is Modula-2 with RCGC for ADT's. 
The transformation rules require more than a syntactic transformation. 
They are concerned with the static semantics of the language. 
We formally define both source and target constructs, for a 
sub-set of RCGC rules. 

This clearly shows the processing required to automate the application 
of these rules. It is hoped that taking this wider approach will 
provide insight not only for RCGC; but also for other static 
semantics problems. 

Our formal definition is based on denotational semantics 
[Strachey 66, Milne 76, Tennent 76, Stoy 77, Gordon 79, 
Tennent 81, SChmidt 86] which maps program code to its denotation 
using functional calculus as the metalanguage. Our reasons for 
using denotational semantics are: 

(a) its firm mathematical basis [Stoy 77, Milne 76, Scott 
76,82] which facilitates not only reasoning about programs 
but also understanding and development of concepts involved 
in denoting a wide range of constructs of programming 
languages [Stoy 77]. Mizuno [Mizuno 92] illustrates the value 
of this formal basis of denotational semantics by using it 
to derive, and prove, a security flow control algorithm. 
Aiken [Aiken 95] commends the increasing use of denotational 
semantics in the design of programming languages giving 
precision and correctness to their implementation. 

(b) Denotational semantics is not tied to any particular 
implementation so that our formal definition can easily be 
adapted for other languages which have the same 
computational model. 

(c) Denotational semantic specifications are especially useful 
for recursive programs [Pasztor 90]. Moreno [Moreno 92] 
points out that denotational semantics is suitable for 
describing functional programming languages as it is higher 
order. Recursive programs, especially written in the 
functional style, as well as recursive data structures make 
the greatest memory demands [Meehan 93, 94] and so they formed 
the main. emphasis .. ofour investigation. 

(d) compiler correctness proofs have traditionally been based 
on denotational semantics [Palsberg 92) 

In the light of our experience using denotational semantics, and also that 
of other researchers, the value of denotational semantics as a definition 

13 

FACS Europe ,-- Series I Vol. 2, No. 3, Winter 1996 



14 

tool is discussed. Criticisms which have been made of denotational 
semantics are considered in light of work within the last 10 years to 
address these. 

The discussion concludes that many of the problems of denotational 
semantics have been addressed in recent years. Our experience of using 
denotational semantics to specify RCGC shows it has: 

(a) clarified our own understanding of proposed constructs 
(b) explained the formal design precisely 
(c) prepared the way for formal development of a processor based 

on these rules 

The formal nature of denotational semantics along with its lack of 
implementation details makes our approach easily adapted to other 
imperative languages with a garbage collection problem. In addition the 
method used could also be useful for other problems whose solution is 
concerned with static semantics. 

Bibliography 

[Aiken 95] 
"Safe-A Semantic Technique for Transforming Programs in the Presence of Errors" 
Aiken A., Williams J.H., Wimmers E.L., Tech Report, to appear in TOPLAS 95 

[Bilbe 85] 
"Using the Heap for Modula-2 Opaque Types" 
Bilbe, C.R., Journal of Pascal, Ada, & Modula-2, Vol. 4, No 6, PP 24-30, 1985 

[Ellis 91] 
"Data Abstraction and Program Design" Ellis, R., Pitman, 1991 

[Ghezzi 91] 
"Fundamentals of Software Engineering" 
Ghezzi, C., Jazayeri, M., Mandridi, D., Prentice Hall, 1991. 

[Gordon 79] 
"The Denotational Description of Programming Languages" 
Gordon, M.J.C., Springer-Verlag 1979 

[Guttag 77] 
"Abstract Data Types and the Development of Data Structures" 
Guttag J.V., Comm. ACM, 20, pp 397-404, 1977 

[Guttag 78] 
"Abstract Data Types and Software validation", 
Guttag J.V., Horowitz E., Musser D.R., Comm. ACM, 21(12), pp1048-64, 1978 

[Harrison 93] 
"Data Abstraction in Modula-2" Glaser H., Harrison R. 
Information and Soft. Tech., 35, 11-12, pp 619-626, 1993 

[Lamb 88] 
"Software Engineering: Planning for Change", Lamb, D, Prentice Hall, 1988 

[Martin 86] 
"Data Types and Data Structures", Martin, J.J., Prentice Hall, 1986. 

[Meehan 93] 
"Abstract Data Types with Garbage Collection" 
Meehan, A. MSc Dissertation, University of Ulster, 1993 

[Meehan 94] 
"Guidelines for Reference Counting Garbage Collection" 

FACS Europe -- Series I Vol. 2, No. 3, Winter 1996 



Meehan, A., Row, G., 
Tech. Report. University of Ulster, 1994 

[Milne 76) 
"A Theory of Progranuning Language Semantics", Milne, R., Strachey, C. 
Chapman and Hall, 1976 

[Mitchell 92) 
"Abstract Data Types and Modula-2", Mitchell, R. Prentice Hall, 1992 

[Moreno 92) 
"Denotational Versus Declarative Semantics for Functional Programming" 
Moreno J.C.G., Gonzalez M.T .. H., Artalejo M.R. 
in Proc's CSL'91, LNCS 626, pp 134-148, 1992 

[Mizuno 92] 
"A Security Flow Control Algorithm and its Denotational 
Semantics Correctness Proof", Mizuno M., Schmidt D., 
Formal Aspects of Computing, 4, pp 727-754, 1992 

[Palsberg 92] 
"A Provably Correct Compiler Generator", Palsberg, J., 
L.N.C.S., 582, pp 418-434, 1992. 

[Pasztor 90) 
"Recursive Programs and Denotational Semantics in Absolute 
Logics of Programs", Pasztor, A. 
Theoretical Computer Science, 70, 1, pp 127-150, 1990 

[Parnas 72A] 
"On the Criteria to be Used in Decomposing Systems into Modules" 
Parnas, D.L., Conuns of the ACM, Vol. 15, No 5, PP 330-336, 1972 

[Parnas 72B] 
"A Technique for Software Specification with Modules", Parnas, D.L. 
Conununications of the ACM, Vol. 15, No 5, PP 1053-1058, 1972 

[Schmidt 86) 
"Denotational Semantics", Schmidt, D.A., Allyn and Bacon, 1986 

[Scott 76] 
"Data Types as Lattices", Scott, D., 
SIAM J. of Computing, vol. 5, pp 522-587, 1976 

[Scott 82) 
"Domains for Denotational Semantics", Scott, D., 
LNCS Vol. 140 pp 577-613, Springer-Verlag 

[Stepney 93) 
"High Integrity Compilation", Stepney, S., 
Prentice Hall, 1993 

[Stoy 77] 
"The Scott-Strachey Approach to Programming Language Theory" 
Stoy, J.E., MIT Press, 1977 

[Strachey 66] 
"Towards a Formal Semantics", Strachey, C., in [Steele 66] 

[Tennent 76] 
"The Denotational Semantics of Programming Languages" 
Tennent, R.D., Conun. of the ACM, vol. 19, pp 437-452, 1976 

[Tennent 81] 
"Principles of Progranuning Languages", Tennent, R.D., Prentice Hall 1981 

15 

FACS Europe -- Series I Vol. 2, No. 3, Winter 1996 



16 

[Thomas 8S] 
"Abstract Data Types" Thomas, P. Clarendon Press, 1988 

Appendix A 
========== 
Summary of Guidelines for Adapting Programs that Depend on ADT's 

1) To assign the value of an ADT expression to an ADT variable use 
the AssignADT procedure. This applies whether the expression is 
a variable or a call to a value delivering procedure. 

2) Expressions should be only one operation deep, so that garbage 
collection can be carried out at each step. 
Intermediate assignment may be needed to achieve this. 

Adapting Procedures 
3) All value parameters should have the UseADT procedure 

applied to them at the beginning of the procedure body. 

4) Just before the end of the procedure, ReleaseADT should be 
applied to: (a) all local variables 

(b) all value parameters 

5) Global variables and variable parameters require no special 
treatment within a procedure other than that prescribed by 
rules 1 and 2 

6) Value Returning Procedures 
(a) Any value delivering procedure which has one or more 

parameters or local variables of the ADT, whether the 
return value is of the ADT or not, requires a local 
variable called RESULT of the result type. 

(b) At the end of the procedure, the variable RESULT should 
contain the value that is to be returned. Rule 4 can then 
be safely applied and all local variables and value 
parameter Released, before the value in RESULT is returned. 

(c) If the value returned is of the ADT type, the procedure 
Prepare should be applied to it before it is returned. 

7) Higher Order and Nested Procedures 
As RCGC is encapsulated within the procedure, using procedure 
types or nested procedures does not require any special treatment. 
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This paper will out. line a semantics for concurrent and real-time object-oriented specification languages 
such as VDM++ and Z++ and identify the role played by category-theoretic concepts in providing meaning 
for inheritance, refinement and subtyping. 

1 Introd uction 

Object-oriented formal specification languages represent a significant contribution to the industrialisation 
offormal methods, and aim to combine the benefits of precise mathematical notations with the advantages 
of object-oriented structuring mechanisms. Languages in this field include Object-Z [3], VDM++ [4, 7], 
Z++ [7] and MooZ [9]. 

Because of the newness of the field, there has been more work on development of notation and identi­
fying what capabilities these languages should include, rather than on theoretical foundations. However, 
recent work has included the development of a denotational semantics for MooZ [8] and an axiomatic 
semantics for Object-Z [10]. 

The full paperl will provide a mathematical framework which can be used to give an axiomatic se­
mantics for a large part of the VDM++ and Z++ languages, and discuss the relationships between this 
framework and that of other formalisms for object-oriented specification and design [1, 5]. A particu­
lar concern is the formal definition of subtyping and its properties as an arrow in a category of class 
specifications. 

2 Extended RTL 

Our formalism is based on the Real-time Logic (RTL) of[6], with extensions to represent particular method 
invocations and the concept of a general formula holding at a time. 

For each class C in a specification there is an associated logical language Cc. The meaning of a class 
C is a theory rc in its language. 

The key features of this language are: 

• terms 4e where e is an event occurrence (E, i), and E is an event of the forms jm, lm, -+m for a 
method m of C (initiation, termination and request events), or an event (J := true, (J := false for a 
predicate (J; 

• terms e@t and Oe where e is a term, t a time-valued term - the value of eat t and at .the next 
method execution initiation, respectively; 

• event counters #req(m), #fin(m), #act(m) for m E methods(C); 

• formulae ifJ@t for formulae ifJ and time-valued terms t - "ifJ holds at time t"; 

• modal formulae oT 11' "at all future times 11' holds", OT 11' "at some future time 11' holds", and corre­
sponding versions for "method initiation times": 011', oil' and 011'. 

·Dept. of Informatics, Faculty of Sciences, University of Lisbon 
tDept. of Computing, hnperial College, 180 Queens Gate, London SW7 2BZ 
1 Available by ftpfrom theory. doe. ie. ae. uk/papers/Lano/bes95. ps. Z. 
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This language, like RTL, supports the specification of safety properties, but also overcomes the defi­
ciencies of RTL in the definition of liveness and fairness properties. 

The paper outlines an axiomatic semantics of VDM++ using this formalism. It identifies possible 
alternatives for formalising the locality principle of encapsulation: that the state of an object can only 
be changed by methods of the class to which it belongs. Preservation of locality as an axiom seems to 
conflict with subtyping, and to lead to excessively restrictive concepts of sub typing which are unlikely to 
be industrially acceptable. In addition, they have poor category-theoretic properties. 

3 Categories 

There are three categories which we will consider for object-oriented specification. Each category has 
classes as its set of objects, but there are (successively weaker) concepts of morphism f : C -+ D: 

• Ref: refinements based on adequate retrieve functions from the state ofD to that ofC, and surjective 
total renamings <p of the methods of C to those of Dj 

• Sub: subtypings based on (possibly non-adequate) retrieve functions and (possibly insurjective) 
total renamingsj 

• WSub: as Sub, but with the frame or locality requirement for D with respect to C dropped: that 
is, new methods not in ran( <p) can modify (the interpretation in D of) the state of C. Such subtyping 
morphisms are termed weak subtypings. They correspond to invasive superposition morphisms in 
[5]. 

We show that each of these define categories. The first does not possess initial objects or co-products. 
The second possesses initial objects but not co-products, whilst the final category has a natural co-product 
construction based on the "disjoint union" of features [5]. 

Of importance also is the construction of particular forms of pushout which represent repeated inheri­
tance resulting from a common class A being inherited via two distinct paths into a class D. We give the 
construction of this pushout in WSub and relate it to the pushout of programs defined in [5]. Pushouts 
are of particular relevance for the integration of separate "viewpoints" in ODP specification [2]. 
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Animation is Approximation l 

FACS Semantics Workshop, Imperial College, Dec. 1995 

M(lrgaret West, University of Leeds: mmwestCscs .leeds. ac. uk 

Introduction 

An animation is an abstraction of a required system and a proof basis for correct animations 
of Z has been identified [1]. (See [2] for the semantics of Z.) The potential of animation for 
e:rplaining formal specifications is acknowledged and the proof criteria for correctness is abstract 
appmximation, based on the notion of abstract interpretation. The example interpreter semantics 
is implemented in a lazy functional programming language. However there are advantages in using 
a logic programming language for animation purposes: it enables queries of a "what if" variety to 
be posed. This abstract provides preliminary work on the correct animation of Z using a Logic 
Pmgmmming Language (LP) and its declarative semantics. The ultimate intention is to implement 
the declarative semantics of the animation in the LP, Godel [3]; a pilot study [4] seems promising. 

Abstract Interpretation and Abstract Approximation 

The seminal work on abstmct interpretation was done by Cousot and Cousot. (See [5].) In order to 
ca.pture the underlying structure of a (richer) concrete domain Deone , an abstraction function a is 
constructed which maps between Deone and an abstract domain Dabs. Dabs is said to approximate 
Deouc. The abstraction function a : Deone -+ Dabs and concretisation function 'Y : Dabs -+ Deone 
are monotollic adjoined functions, and Dconc(I;conc), Dabs(I;abs), are posets: 

'if d : Dabs d = a("{(d)) and 'if d : Dconc d I;conc ("{(a(d)) 

Note that the abstract interpretation is an upper approximation where the top element corresponds 
to total lack of information. This is opposite to the usual ordering of domain theory. 

In contra..'lt, abstract approximation (of the Z notation) is such that the animation abstraction is a 
lowcT approximation to the concrete interpretation (Z). The animation is an abstracted approxi~ 
mation and the concrete interpretation refines the abstract. The evaluation in set-theoretic terms 
of schemas, expressions and predicates is termed the Z:F interpretation, in the Z domain ideal. 
(All other parts of Z are expanded out via e.g. the schema calculus.) In order to accommodate 
non-t.ermination or incomplete information, the sets of ideal are 'lifted" by the introduction of a 
pa.rtia.l element 1. that denotes non-termination. Sets can be incomplete, denoted SU.L' The order­
ing relation, I; on ideal is equality on integers, and co-ordinatewise on tuples. It uses a standard 
powerdomain ordering on subsets. The next sections outline preliminary work in using abstract 
approximation for correct animation in a logic programming language. 

Animation Using a Logic Programming Language (LP) 

The domain Dz corresponds to ideal and the mappings between Dz and the abstract (output) 
domain DLP, are chosen so they are appropriate for the declarative semantics of logic program­
ming. For simplicity (as in [1]) the integers, Il, form the basis of the concrete domain Dz. The 
logic programming language (LP) is assumed to allow negation, and to have built in constructor 
functions which allow for list and set ter'ms. Equality (unification) on sets allows for duplication 
and permutation of elements as in the LP Godel [3]. It is assumed that the (sequential or parallel) 
implementation is sound with respect to the semantics. 

If [VAR] represent a set of variable names within schemas, Z expressions are evaluated (using 
set.- theoretic considerations) in environment p z : VAR -++ Dz. The evaluation of expressions in 

J A longer version is being prepal'ed as ftp://agora.leeds.ac.uk/scs/doc/reports/1995 
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DLP involves an environment PLP : VAR -++ DLP and a concretisation function, is constructed 
h : DLP -++ Dz). If x : VAR; val : Dz ; t : Du belong to the appropriate functional domains, 
then ,(PLP(X)) = ,(t) = val and pz =,0 PLp. , maps recursively as follows: integers in Z are 
represented by integers in the LP, sets by set terms, and n-tuples by functions of arity 71. The 
representation of schemas in DLP will be explained further in the next section. Note that for a 
particular implementation, a computation can fail to terminate while determining the value of a 
term, so that sets, lists, and so on can be incomplete, or contain elements which are themselves 
incomplete. The non-termination value 1- in DLP maps to 1- inDz. 

Evaluation in the LP of Z Expressions, Predicates and Schemas 

Syntactic expressions c are interpreted in Dz with environment pz using set-theoretic mnsidera­
tions by E[c]pz. In particular a schema evaluates to a set expression, of bindings of variables to val­
ues. A schema is interpreted in the LP via. its characteristic predicate: Schema <= A1 1\ ... 1\ As, 
where the variables of Schema correspond to the declared schema variables and each Ai is an atom. 
For each declared variable, there is a corresponding atom, declaring the variable type; other atoms 
interprat.e the schema predicate. For each i, 1 ~ i ~ s, the predicate Pi in Ai is defined by a set 
of st.atements of the form A <= :F in the program, where :F is a formula in FOL and A is an atom 
with Pi. Atoms can either be used to check variable values from PLP, or, constructively to evaluate 
them and augment PLP. 

A goal (query) ? Schema has, a (possibly empty) set of answer substitutions. Each of these corre­
sponds to a binding (J' for the schema so that A1(J', ... , As(J' is a logical consequence of the program. 
P( z, :1:1, ... , Xk) could interpret an operation such as set union, where {Xl, . .. ,:/,"d is a subset of 
dom P LP. Assuming that a correct answer for P (z, t1 , ... , td is a binding, z = t: 

where t, tl, ... , tk are terms of DLP. An evaluation function Q[c] gives the interpretation in DLP 
of syntactic expressions c in an environment PLP. If z denotes c then Q[c] is defined: 

[la] Q[c]pLP = t {::} (z = t) 1\ (Xl = td 1\ ... (:t'k = td 1\ P(z, ·1:1"", Xk) 

[lb] Q[Xi]PLP = ti {::> (Xi = ti) 1\ true, (Xi EdompLP). 

In order to prove correctness it is necessary to show that the interpretation in DLP is built recur­
sively for each operator of Z represented in (la, 1b). Recalling that E[c]pz interprets ( in Dz , 
criteria also include the following approximation rule: 

For example evaluating "2x" where :t. has value 71, in an implementation where 271 exceeds the 
largest integer available in the system may result in non-termination: 1- = ,(1-) = bW[2x]PLP)) r;;; 
211 (the value obtained when interpreting in Dz, the concrete interpretation). 
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Although formal methods have been used successfully in a number of specific 
application areas, such as in the development of safety critical systems and in the 
definition of international standards, progress towards their acceptance as a routine 
aspect of all software development still seems some way off. This paper describes 
work based on the premise that such general use is desirable. The strategy involved 
has been to examine ways of reducing associated costs on the assumption that the 
cost-benefit balance can eventually be brought down a level where formal modelling 
becomes cost-effective. 

Method Integration 
The basic approach taken is one of method integration [1], in which formal 
techniques are introduced in a supporting role to an existing software development 
process. Figure 1 shows the general scheme with respect to the V -life cycle model [2] 
- a typical software development process. 

Project 
Initiation 

Requirement 
Specification 

Code & 
Unit Test 

Operation & 
Maintenance 

Acceptance 
Test 

Integration 
& Test 

Figure 1: The V-Life Cycle with Formal Modelling· 

Product 
Phaseout 

In this life cycle, the development process moves through a series of phases (shown 
as rectangles), each generating a phase product. The left hand-side of the V is 
concerned with analysis and design, while the right hand-side covers implementation 
to satisfy the specification and design. Each phase product, such as the 'specification', 
has a base description and, optionally, one or more associated formal models. The 
thick lines in the diagram imply a need for consistency among the phase products that 
they link. Thus, for example, the accepted software must match its specification, 
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including any formal models of the system specified. Also, if formal models are 
created at various stages of the process these too must be consistent. 
The purpose of a formal model in each case is to (i) improve the quality of the base 
description by highlighting inconsistencies and promoting a greater understanding of 
what is being defined; (ii) provide a more precise reference description against which 
the next development phase can be undertaken; and (iii) provide a more precise 
definition against which the implementation can be verified. 

Cost - Benefit Considerations 
The level and use of formal models within any instantiation of this development 
process will be dictated by cost-benefit considerations. Thus, for example, it might 
be decided that the greatest gain is at the requirements specification level and that the 
cheapest approach is to use a consultant to build suitable formal models. 
Alternatively, it might be believed that the greatest gain is in the documentation of 
software designs and introduce formality at that level as a general programming aid. 
Regardless of where formality is potentially of greatest benefit, costs must be kept 
down if it is to be used at all. This means making formal models as easy as possible to 
construct and maintain. 

Deriving A Formal Model Of Requirements. 
The earliest opportunity in the life cycle to benefit from formality is by producing a 
formal model of requirements and, as discussed above, it is desirable to integrate this 
with the existing approach to requirements engineering. In this work the integrative 
approach is used to give a precise semantic interpretation to informal models in the 
RACE requirements engineering method [3]. RACE is currently under development 
at the University of Ulster and involves the integrated use of business and computing 
analysis. In essence, the business analysis sets the context for a computing system. 
Informal behavioural models are developed through the business analysis and 
formality offers the opportunity to clarify the business system and also strengthen the 
link to the computing analysis phase that follows. The basic method [4] facilitates the 
initial building of formal descriptions in LOTOS [5] from informal models and on­
going work is addressing attempts to deal with the more difficult problem of 
maintaining formal models as the system involved changes [6]. Plans for future work 
are also outlined. 
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1 Extended Abstract 

Recently, there has been growing interest in the use of state based notations 
such as Z for the specification of reactive and concurrent systems [1,2, 3, 4, 
5]. Central to much of this work is the assumption that pre-conditions may 
be viewed as firing conditions. That is, the pre-conditions of an operation 
may be thought of as defining the conditions that will cause the operation 
to execute or 'fire' - outside these conditions the operation is impossible. By 
representing the events of a reactive or concurrent system in this way, one 
is able to model the eventual and parallel excecution of the events of the 
system. 

Unfortunately, the firing condition interpretation of pre-conditions goes 
directly against their established meaning in Z. Z specifications concentrate 
on the 'static' system behaviour. This is why they define operations using 
state before and after. Furthermore, an 'interpretation' provides a poor 
basis on which to gain a formal understanding of other aspects of 'firing 
conditions' such as refinement and proof. 

The aim of this paper is to examine ways in which firing conditions 
can be formalised in Z, without having to extend the notation in a.ny way, 
and which also allows for a separation of concerns between the static and 
dynamic properties of the specification. 

Our approach is very simple: we specify the static behaviour of a con­
current or reactive system in the traditional way using state and operation 
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schema.s. In order to specify 'firing' behaviour, we show how this specifi­
cation can be extended with a computation specification, an additional Z 
specification which formalizes the execution of the specification in terms of 
the allowable state-transitions that the system may partake in. We pro­
vide some generic definitions which allow a computation specification to be 
straightforwardly generated for any Z specification of the state and opera­
tions of a concurrent or reactive system. Because this specification is also 
written in standard Z, we show that there is no need to extend the semantics 
of Z to model concurrent systems. 

Finally, we show how to extend the approach with 'fairness' constraints 
requiring the eventual execution of enabled operations and look at ways in 
which divergance can be expressed within the. model. We also report on 
work in progress to develop proof and refinement techniques based upon the 
firing condition approach to specification. 
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