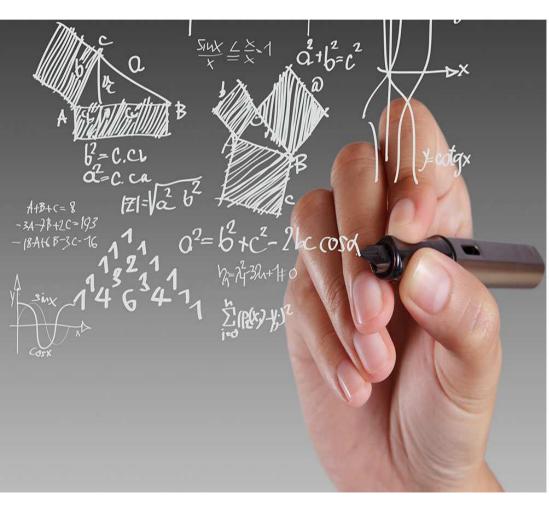


Anti-microbial resistance: Informing or telling primary care clinicians what to do? Knowledge Support System to provide information during consultation

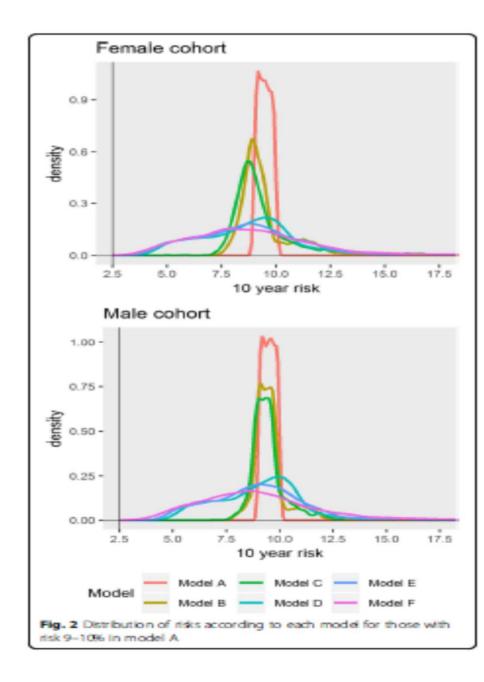
Prof. Tjeerd van Staa tjeerd.vanstaa@manchester.ac.uk



HDRUK Health Data Research UK Public Health England

Telling clinicians what to do? Give GPs an algorithm??

Welcome to the QRISK[®]3-2018 risk calculator https://qrisk.org


This calculator is only valid if you do not already have a diagnosis of coronary heart disease (including angina or heart attack) or stroke/transient ischaemic attack.

Reset	Information	Publications	About	Copyright	Contact Us	Algorithm	Software	UKC/
About you Age (25-84): 64 Sex: Male O Female Ethnicity: White or not stated V UK postcode: leave blank if unknown Postcode:			This site calcu score describe • <u>Develop</u> <u>cardiov</u> It presents the	ed in this academic oment and validatio ascular disease: pro e average risk of pe	k of developing a he paper: <u>n of QRISK3 risk pre ospective cohort stur</u> ople with the same r	<u>ediction algorithms</u> <u>dy, BMJ 2017;357;j</u> isk factors as those	t <u>o estimate future ri</u> 2099 e entered for that pe	sk of rson.
-Clinical informal Smoking status Diabetes status Angina or beart	non-smoker	♥ ee relative < 60? □	The algorithm has been developed by doctors and academics working in the UK Natio based on routinely collected data from many thousands of GPs across the country who data to the QResearch database for medical research. It has been developed for the UK population, and is intended for use in the UK. All mer be taken by a natient in consultation with their doctor. The authors and the sponsors a					e freely conti decisions nei
•	disease (stane 3-4)	-	be taken by a patient in consultation with their doctor. The authors and the sponsors accept no response for clinical use or misuse of this score.					

The uncertainty with using risk predicti models for individual decision making: exemplar cohort study examining the prediction of cardiovascular disease in English primary care

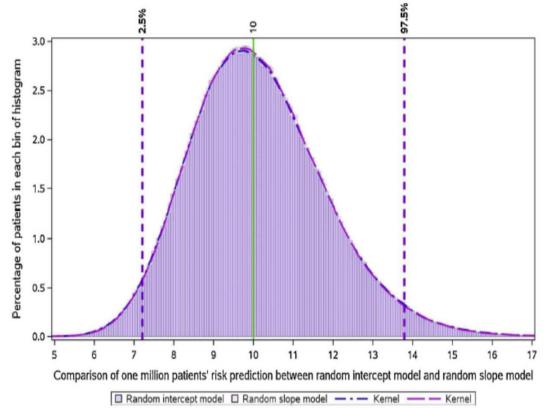
Alexander Pate¹^{*}⁽¹⁾, Richard Emsley², Darren M. Ashcroft^{3,4}, Benjamin Brown^{4,5} and Tjeerd

QRISK2 + adjusting for additional risk factors, a secular trend, geographical variation in risk and the method for imputing missing data when generating a risk score (**model A-model F**).

Examining the impact of data quality and completeness of electronic health records on predictions of patients' risks of cardiovascular disease

Yan Li^a, Matthew Sperrin^a, Glen P. Martin^a, Darren M. Ashcroft^{b,c}. Tieerd Pieter van Staa^{a,d,e,*}

"The considerable unmeasured heterogeneity in CVD incidence between practices was not explained by variations in data quality or effects of risk factors. QRISK3 risk prediction should be supplemented with clinical judgement and evidence of additional risk factors."



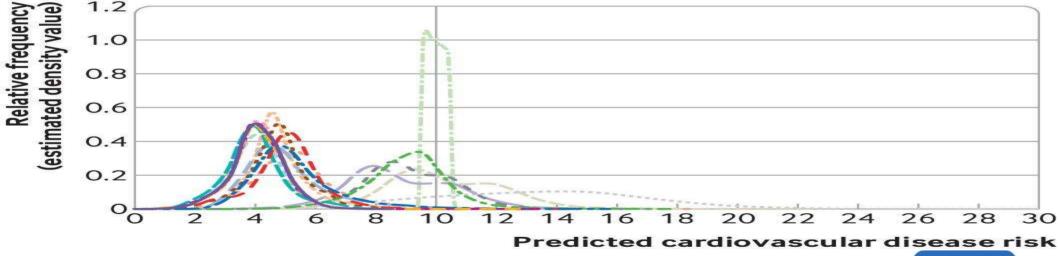
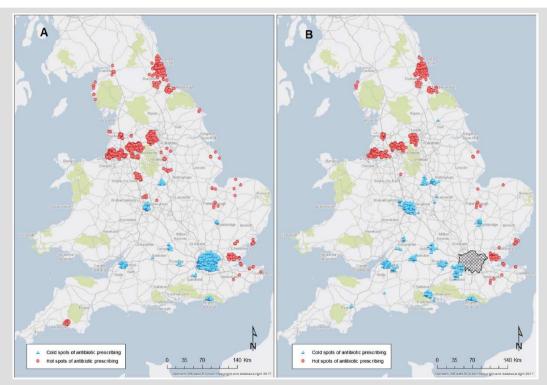


Fig. 4. Comparison of the CVD risk predictions between the random intercept and slope models for patients with a QRISK3 risk of 10 % (in a patients with 50 % males and 50 % females).

Artificial intelligence: hype or real?

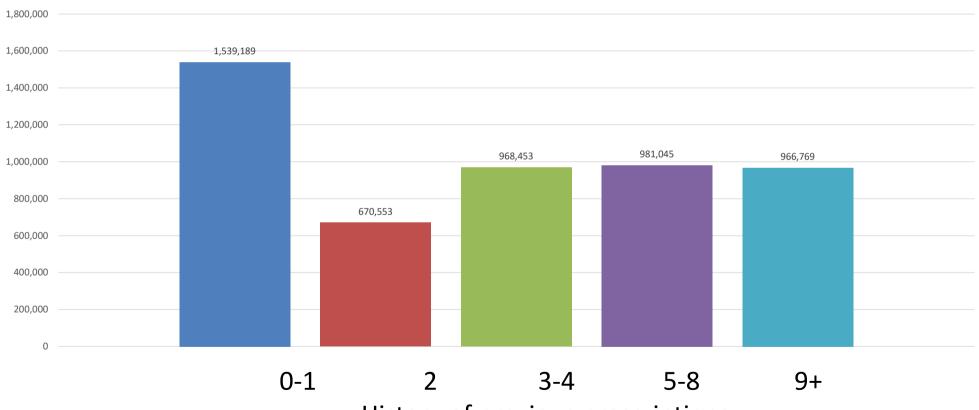
Distribution of individual risk predictions with machine learning and statistical models in overall cohort for patients with predicted cardiovascular disease risks of 9.5-10.5% in QRISK3 (Cox model)



thebm

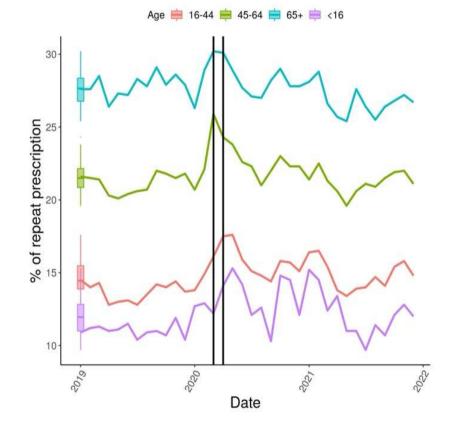
ANTIBIOTIC OVERPRESCRIBING IS CLUSTERED IN THE NORTH OF ENGLAND

Data source for analysis: NHS Digital



Hot and cold spots of antibiotic prescribing in English GP practices in 2016. A: All GP practices. B: Excluding GP practices located in the London CCGs.

Antibiotic prescribing patterns in general medical practices in England: Does area matter? Anna Mölter et al (2018). DOI: 10.1016/j.healthplace.2018.07.004


Frequent antibiotic prescribing very frequent (in 3 years before)

Count of Ab Rx

History of previous prescriptions

Repeat antibiotic prescribing

The impact of COVID-19 on antibiotic prescribing in primary care in England: Evaluation and risk prediction of appropriateness of type and repeat prescribing

Antibic	Antibiotic types					95% CI
	n>= 3		H		1.80	1.75,1.84
Q5	n= 2			4	1.83	1.73,1.93
	n= 1		⊢− •−−−1		1.71	1.56,1.88
	n>= 3	H●H			1.33	1.3,1.37
Q4	n= 2	⊢∙⊣			1.34	1.29,1.39
	n= 1	⊢⊷			1.19	1.12,1.27
	n>= 3	⊢ ⊷⊣			1.26	1.2,1.33
Q3	n= 2	r⊷-i			1.18	1.14,1.23
	n= 1	⊢ •−1			1.10	1.03,1.17
Q2	n= 2	HeH			1.11	1.08,1.14
QZ	n= 1	⊢●⊣			1.08	1.05,1.13
Q1	n= 1	н			1.03	1.01,1.05
		1.0 1	1.5	2.0		
		1.0	1.0	2.0		

OR by N prior antibiotics and N types

Repeated antibiotic exposure and risk of hospitalisation and death following COVID-19 infection (OpenSAFELY): a matched case-control study

Repeat antibiotic prescribing

The Impact of Oral Antibiotics Prior to Cancer Diagnosis on Overall Patient Survival: Findings from an English Population-Based Cohort Study

Eleni Domzaridou ^{1,*}⁽⁰⁾, Tjeerd Van Staa ^{2,3}⁽⁰⁾, Andrew G. Renehan ⁴, Natalie Cook ^{5,6}⁽⁰⁾, William Welfare ⁷, Darren M. Ashcroft ^{1,8}⁽⁰⁾ and Victoria Palin ^{2,9}

Exposure Group	Crude HR [95% CI]	Adjusted HR [95% CI]
Recent	1.34 [1.17–1.52]	1.32 [1.16–1.51]
Previous	1.12 [0.98–1.26]	1.11 [0.98–1.26]
Past	reference	reference
Recent	1.26 [1.12–1.41]	1.22 [1.08–1.36]
Previous	1.13 [1.01–1.26]	1.09 [0.97-1.22]
Past	reference	reference
Recent	1.22 [1.05–1.43]	1.19 [1.04–1.36]
Previous	1.07 [0.93–1.24]	1.09 [0.96-1.23]
	Recent Previous Past Recent Previous Past Recent	Exposure Group [95% CI] Recent 1.34 [1.17–1.52] Previous 1.12 [0.98–1.26] Past reference Recent 1.26 [1.12–1.41] Previous 1.13 [1.01–1.26] Past reference Recent 1.22 [1.05–1.43]

ORs of emergency hospital admission for antimicrobial resistance or Clostridium Difficile infection

	case	control	CDI or AMR (ICD-10) adjusted ³ ORs (95% CI)
No AB exposure	4332	47137	Reference
count 1, type 1	2396	16988	1.37 (1.29-1.46)
count 2-3, type 1	670	3818	1.67 (1.51-1.86)
count 2-3, type 2-3	1154	5904	1.73 (1.59-1.89)
count 4+, type 1	476	2316	1.64 (1.45-1.87)
count 4+, type 2-3	3633	12160	2.42 (2.27-2.57)
count 4+, type 4+	2789	4377	4.76 (4.43-5.12)
			CDI or AMR testing (SNOMED)
No AB exposure	6640	78642	Reference
count 1, type 1	3821	27125	1.44 (1.37-1.52)
count 2-3, type 1	1068	5875	1.86 (1.71-2.02)
count 2-3, type 2-3	1780	9072	1.90 (1.78-2.03)
count 4+, type 1	762	3336	2.21 (2.01-2.44)
count 4+, type 2-3	5900	17717	3.09 (2.95-3.24)
count 4+, type 4+	4731	6445	6.25 (5.91-6.62)

OpenSAFELY

Risk-based prescribing of antibiotics

	LRTI	URTI	UTI
Deciles ¹ of predicted risk	N cases	N cases	N cases
	(Rate)	(Rate)	(Rate)
Decile 1 (lowest)	1,030 (4.3)	1,465 (2.0)	945 (3.6)
Decile 2	2,100 (8.7)	4,545 (6.1)	1,845 (7.0)
Decile 3	2,650 (11.0)	5,665 (7.6)	2,440 (9.3)
Decile 4	3,020 (12.5)	6,300 (8.5)	2,820 (10.8)
Decile 5	3,725 (15.5)	7,155 (9.6)	3,605 (13.7)
Decile 6	4,690 (19.5)	8,350 (11.2)	5,090 (19.4)
Decile 7	6,225 (25.8)	9,735 (13.1)	7,490 (28.5)
Decile 8	9,065 (37.6)	13,600 (18.3)	11,280 (43.0)
Decile 9	13,185 (54.7)	21,940 (29.5)	15,740 (60.0)
Decile 10 (highest)	17,995 (74.7)	38,270 (51.4)	23,435 (89.3)

Risk-based prescribing of antibiotics

Incident LRTI 1.0 Incident URTI Incident UTI Mean probability of prescribing antibiotic 0.8 0.6 0.4 0.2 0.0 2 3 5 9 10 1 4 6 8 7 Decile of predicted risk of infection-related hospital admission

OpenSAFELY

Clinical and health inequality risk factors for non-COVID-related sepsis during the global COVID-19 pandemic: a national case-control and cohort study

type		OR (95% CI)	OR2 (95% CI)	OR3 (95% CI)	
IMD					
IMD 1(Most deprived)	÷ **	1.80 (1.77 to 1.83)	1.90 (1.87 to 1.93)	1.44 (1.39 to 1.49)	
IMD 2		1.48 (1.46 to 1.50)	1.54 (1.51 to 1.56)	1.27 (1.23 to 1.31)	
IMD 3	- T	1.25 (1.23 to 1.27)	1.28 (1.26 to 1.30)	1.14 (1.11 to 1.18)	
IMD 4	2	1.14 (1.12 to 1.16)	1.15 (1.13 to 1.17)	1.10 (1.06 to 1.13)	
Ethnicity					
Mixed	-	0.96 (0.91 to 1.02)	0.96 (0.90 to 1.02)	0.98 (0.87 to 1.10)	
South Asian	2	1.09 (1.06 to 1.11)	1.09 (1.06 to 1.12)	1.08 (1.03 to 1.13)	
Black		0.96 (0.92 to 1.00)	0.97 (0.93 to 1.02)	0.90 (0.83 to 0.99)	Outcome
Other		0.81 (0.77 to 0.85)	0.79 (0.75 to 0.84)	0.86 (0.78 to 0.95)	 Community + Hospital Community
вмі					
Underweight (<18.5 kg/m2)		1.72 (1.68 to 1.76)	1.73 (1.69 to 1.78)	1.68 (1.59 to 1.78)	
Overweight (25-29.9 kg/m2)		0.87 (0.86 to 0.88)	0.87 (0.86 to 0.88)	0.85 (0.82 to 0.87)	
Obese I (30-34.9 kg/m2)		1.05 (1.03 to 1.06)	1.08 (1.06 to 1.10)	0.92 (0.89 to 0.95)	
Obese II (35-39.9 kg/m2)		1.38 (1.35 to 1.41)	1.45 (1.42 to 1.49)	1.13 (1.08 to 1.18)	
Obese III (40+ kg/m2)		- 2.22 (2.16 to 2.27)	2.53 (2.47 to 2.60)	1.28 (1.21 to 1.36)	
Smoking					
Former		1.35 (1.34 to 1.37)	1.35 (1.34 to 1.37)	1.36 (1.33 to 1.39)	
Current	· ·	1.80 (1.78 to 1.83)	1.91 (1.88 to 1.95)	1.45 (1.41 to 1.50)	
	1 1.5 2	2.5			

User design workshops BMC Health Serv 2022

Antibiotic

Knowledge

Support

Personalised risk scores

Resistant bacteria Adverse outcomes

AB failure

-

-

Infection complicatio...

Patient summary

Previous AB useRelevant comorbidities

Personalised guidelines

- EMIS/Snomed coded symptoms and scores

Patient communication

- Patient leaflet
- Discussion prompts

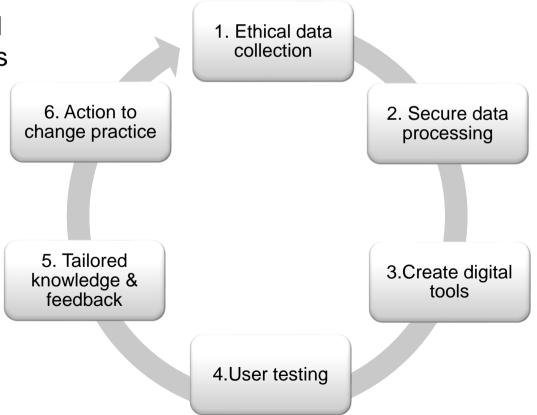
NICE and computable guidelines (common infections)

- Plan for KSS to include *personalised* guideline information (i.e., present information relevant for patient)
- BUT: NICE treatment guidelines <u>not</u> computable
 - Core concepts not well defined and incomplete (e.g. high risk)
 - NICE as collaborator: can not present selected parts of guideline
- BUT: Frequent clinical challenges <u>not</u> addressed in guidelines
 - About 20-25% prescribed an antibiotic get repeat one
 - Repeated antibiotic frequent

Building Rapid Interventions to improve antibiotic prescribing

Aim: to implement digital and analytical tools to support clinicians and patients in management of common infections in primary care

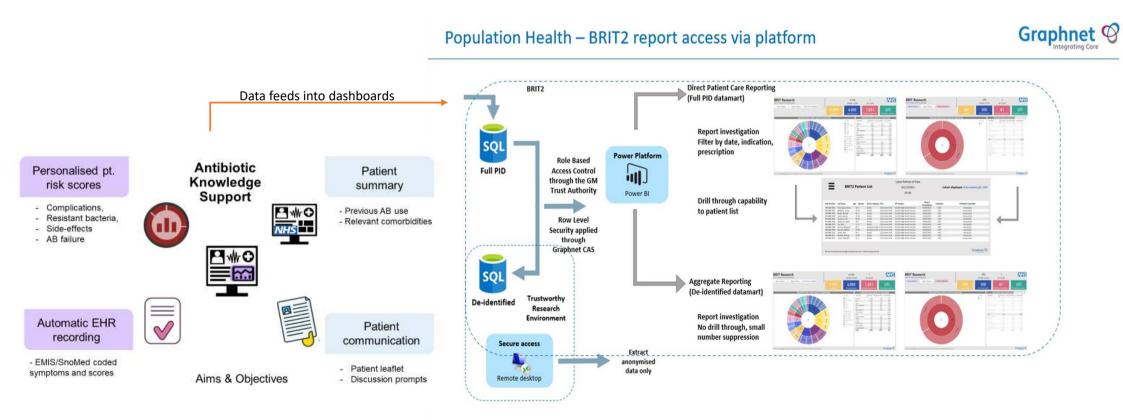
Approaches


- 1. Advanced data analytics using large national datasets combined with participating practices (> 10 million records)
- 2. Dashboard feedback to general practices
- 3. Knowledge Support System during consultation (integrated with EMIS)

\Rightarrow Effectiveness evaluation in ongoing <u>cluster</u> randomised trial

SUPPORTED BY

NIHR National Institute for Health and Care Research



BRIT 2: KSS - Patient Summary				- 0			
	BRIT2 Knowledge Support System: Acute sore Patient Summary	throat					
Mr Demo Patient 13/09/1948 74 y/o				prescribing and			
	Indicators:						
Diagnosis Selection	-	Antibiotic allergies: No entries found					
Symptom Survey	Diabetes: Yes						
	Flu vaccine in last 12 months: No entries found						
Patient Risk 🧭	Comorbidities:						
Patient Summary	Renal: No entries found Liver: No entries found						
Treatment Decision	Other comorbidities:						
Treatment Decision	Type 2 diabetes mellitus; Congestive cardiac failure						
Patient Leaflet							
Update Medical Record Prescribing over the last 12 months							
	Antibiotic	Issue date	Dosage	Quantity			
	Phenoxymethylpenicillin 125mg/5ml oral solution	20/07/2022	2	1 ml			
	Benzylpenicillin 600mg powder for solution for injection vials	06/07/2022	15	1 vial			

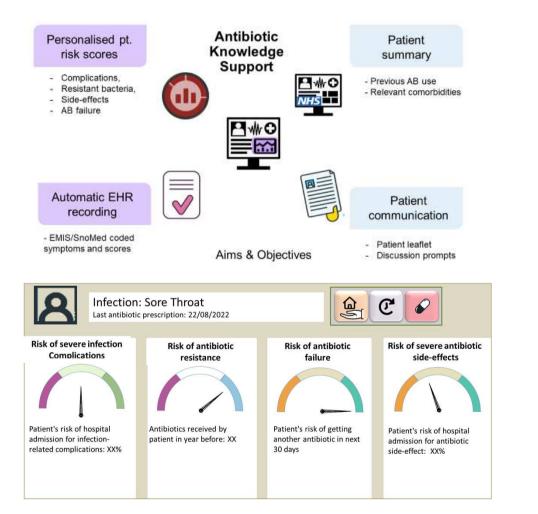
BRIT 2: KSS - Symptom Survey			- 0	×	
	BRIT2 Knowledge Support Sy Symptom Survey	stem: Acu	ite sore throat		
Mr Demo Patient 13/09/1948	① Please indicate presence of common symptoms below FEVERPAIN				
74 y/o	Fever (during last 24hr)	⊘ Yes	O No/unknown		
Diagnosis Selection 🛛 🔗	Purulence/ Exudate	✓ Yes	O No/unknown		
	Attended rapidly (<= 3 days of onset)	⊘ Yes	O No/unknown		
Symptom Survey >	Severely inflamed tonsils	Yes	O No/unknown		
Patient Risk	Cough or coryza	O Yes	No/unknown		
Patient Summary	Systemically very unwell	⊖ Yes	⊘ No		
Treatment Decision			FEVERPAIN Score: 4		
Patient Leaflet					
Update Medical Record					
i About the KSS	Up to Diagnosis Selectio	on	Down to Patient Risk 🕁		

BRIT 2: KSS - Patient Risk BRIT2 Knowledge Support System: Acute sore throat Patient Risk **Risk of hospitalisation** Mr Demo Patient The patient's risk of hospital admission for infection-related 13/09/1948 complications such as pneumonia if patient is not prescribed an 74 y/o antibiotic today. The risk represents the number of admissions per 100 similar patients in **Diagnosis Selection** the next 30 days. Symptom Survey 4.7% Main contributing factors to risk score: CCI score, Patient sex, Flu Patient Risk vaccine status Patient Summary Risk of repeat antibiotic prescribing This is defined as the prescribing of another course of antibiotics in the Treatment Decision next 30 days if the patient would get an antibiotic today. i.e., the Patient Leaflet number of repeat courses per 100 similar patients in the next 30 days. Update Medical Record 25.3% Risk of adverse events C 1 Up to Symptom Survey Down to Patient Summary *i* About the KSS


BRIT2 research study – data and GP dashboards

Knowledge support system

Antibiotic prescribing dashboards


Antibiotic prescribing dashboards

Notes: depends on quality of SNOMED coding

- Analytics by University of Manchester
- Designed by UoM and Graphnet Health Ltd using Microsoft PowerBI.
- Access requests through ICB to <u>any</u> practices in Greater Manchester, Cheshire and Merseyside
- Patient level patients identifiable to Practice only
- Phase 1:all practice antibiotic prescribing by indication and medication (not EPACT2 data)
- Phase 2: benchmarking, time series, repeat prescribing, risk based prescribing – user feedback changes
- Live dashboards, daily updates.

Knowledge support software

- Designed by GPs and patients (acceptability)
- Developed by University of Manchester (expertise)
- Approved by EMIS (quality standards) / clinical risk assessment
- Installed into practice computers by IT service provider (security)
- Activated by practice manager (control)
- To be used at the point of consultation with patients (decision by user)
- Feedback used to update dashboards (responsive research team)

Practice recruitment

- Research study recruitment GP practices across Greater Manchester, Cheshire and Merseyside
- EPR EMIS (TPP SystmOne in development)
- Easy, paid research opportunity up to £1860
- No patient recruitment, no need for training or special expertise
- Require 124 GP practices across Greater Manchester and Cheshire and Mersey (currently 96, - looking for more in Merseyside and Cheshire)
- 124 with access to dashboards and 62 get KSS (48 in KSS arm now)
- Data collection over 12 months (using EHRs)
- Analysis will include use of dashboards and KSS, Effectiveness of interventions and health economics

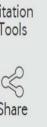
To take part in this study contact francine.jury@manchester.ac.uk

Challenges and opportunities

Opportunity	Challenges
 Health care record managed by data centre Anonymised data access for practices signed up to study. TRE with secure access to authorised personnel Collaborative approach to problem solving 	 Access to data needed committee approval even though NHS ethics approval already in place DSA / DPIA had to be ICB driven not through research process Slow processes, lots of cogs in the machine
 Over 1000 GP practices in area to recruit 124 Support from clinical research network Payment by local areas to reduce AB prescribing Enthusiastic support from GP partners 	 Capacity for practices to get involved in research CRN - research active practices (bias) Communicating to practices – lack of wide reach co-ordinated communication channels
 NHS England / NHS digital support; Move to introduce better digital tools to improve prescribing 	 Slow project management incorporated into usual business operations Timeline for change management not suited to research timelines
 Support from Local IT service providers to install KSS 	

BMJ Open

Latest content Archive


We recommend

Home / Archive / Volume 13, Issue 8

Email alerts

General practice / Family practice Protocol

Knowledge support for optimising antibiotic prescribing for common infections in general practices: evaluation of the effectiveness of periodic feedback, decision support during consultations and peer comparisons in a cluster randomised trial (BRIT2) – study protocol a

D Tjeerd van Staa¹, Anita Sharma², Victoria Palin³, Ali Fahmi¹, Harriet Cant¹, D Xiaomin Zhong¹, Francine Jury¹,

Armitage ¹⁰, Philip Couch¹, Georgina Moulton¹, Edward Tempest¹, ¹⁰ Iain Edward Buchan¹¹

Correspondence to Professor Tjeerd van Staa; tjeerd van staa@manchester.ac.uk

Natalie Gold⁴, William Welfare⁵, Darren Ashcroft⁶, 💿 Jung Yin Tsang⁷, 💿 Rachel Ann Elliott⁸, Christopher Sutton⁹, Chris

Antibiotic prescribing ra reactive protein testing to ambulatory care (AR cluster-randomized pra-Jan Yvan Jos Verbakel

Protocol for an 'efficient controlled trial to evalua improve antibiotic presc to primary care with acu infection: the CHICO st Penny Seume et al., BN

Personalise antidepres: depression combining i data (PETRUSHKA); ra *

13:29

27/10/2023

H

へ 🖆 腐 🕬

bmjopen.bmj.com/pages/authors/