
,~. 

FO Rmal methods and TESTing (FO RTEST) 
Dr R. M. Hierons, Proposal Coordinator 

1 Project Overview 

With the growing significance of computer systems within industry and wider society, techniques that assist in 
the production of reliable software are becoming increasingly important. The complexity of many computer 
systems requires the application of a battery of such techniques. Two of the most promising approaches are 
formal methods and software testing. FORTEST is a cross-community network that will bring together expertise 
from each of these two fields. 

Traditionally formal methods and software testing have been seen as rivals. Thus, they largely failed to inform 
one another and there was very little interaction between the two communities. In recent years, however, a new 
consensus has developed. Under this consensus, these approaches are seen as complementary [14]. This opens 
up the prospect of collaboration between individuals and groups in these fields. 

While there has already been some work on generating tests from formal specifications and models, FORTEST 
will consider a much wider range of ways in which these fields might interact. In particular, it will consider 
relationships between 8tatir: te8ting (verification that does not involve the execution of the implementation) and 
dynamic testing (executing the implementation). 

FORTEST will build a new community that will explore ways in which formal methods and software testing 
complement. This will allow these fields to inform one another in a systematic and effective manner aI),d thus 
facilitate the development of new approaches and techniques that assist the production of high quality software. 
The significance of this topic and the lack of any large UK groups, working on links between testing and formal 
methods, make it vital that such a network is established in the near future. 

This proposal is timely because of the recent increased national and international interest in this subject 
which makes the formation of a community both feasible and desirable. It. is anticipated that the existence of 
this network will lead to further collaboration and thus to a significant increase in the quality and quantity of 
research produced in this area. 

The main aims of FORTEST are 

• to bring together academics and industrialists interested in formal methods and software testing; 

• to stimulate collaboration between individuals and groups in these fields; 

• to disseminate problems and results to researchers and practitioners in these two fields and to the wider 
Software Engineering community. 

The dissemination of this information will lead to a greater awareness of the links between software testing 
and formal methods. It will also widen the use of methodologies that assist the development of reliable software. 

The network will focus on the following problems. 

• How can the relationships between formal methods and software testing be utilised? 

• How can the software development process be adapted in ways that simplify the utilisation of these 
relationships? 

• How can techniques, developed to utilise the relationships between formal methods and testing, be auto
mated? 

1.1 Background 

The use of a formal specification or model eliminates ambiguity and thus reduces the chance of errors being 
introduced during software development. Where a formal specification exists, both the source code and the 
specification may be seen as formal objects that can be analysed and manipulated. The use of a formal 
specification thus introduces the possibility of the formal and, potentially, automat.ic analysis of the relationship 
between the specification and the source code. This is often assumed to take the form of a proof, but such a 

1 



proof cannot guarantee operational correctness. For this reason, even where such a proof exists, it is important 
to apply dynamic testing [8]. 

Testing may be seen as any process that provides information that might either det'ect faults or 'provide 
confidence in the implementation under test (IUT). Thus, as noted earlier, there are both static and dynamic 
test techniques. Each form of testing provides some information about the IUT. 

Static and dynamic testing have very different characteristics and so provide very different types of informa
tion. Static testing relies upon some underlying model that describes the link between the source code and the 
behaviour exhibited by the IUT. This model might, for example, be the semantics of the prograIl1Illiilg language 
and in this case any analysis relies upon the correctness of the compiler and hardware. Static testing may 
provide general information about a model of the system, but cannot be applied directly to the leT. Dynamic 
testing, in contrast, provides specific information about the IUT. One challenge is thus to combine these two 
forms of testing in order to provide general information about the IUT. 

1.1.1 Formal Methods and Dynamic Testing Complement 

Software testing is an important and, traditionally, extremely expensive part of the software development 
process. Studies suggest that testing often forms in the order of fifty percent of the total development cost 
[3]. Where form;u specifications and models exist, these may be used as the basis for automating parts of the 
testing process [1, 2, 19, 6, 21, 20, 10, 11, 5, 16, 22, 13]. This may lead to more efficient and effective testing. 
It may thus transpire that the automation of parts of the software testing process is one of the most significant 
benefit.s of using a formal Rpedfication language. The linkR between testing and formal methods do, however, 
go well beyond generating tests from a formal specification. 

The presence of a formal specification or model makes it possible for the tester to be clearer about what it 
means for a system to pass a test. This may be achieved through the use of test hypotheses [9] or design for 
test conditions [17, 18, 15]. Similar ideas may be found in the generation of checking experiments from finite 
state machines [4, 23, 12]. "Csing these approaches it is possible to generate tests that determine correctness 
under certain well understood conditions circumventing Dijkstra's famous aphorism that testing can show the 
presence oebugs, but. never their absence [7]. Program analysiR might be used in order'to either prove that 
thcse conditions hold or to provide confidence in these conditions holding. 

Information gathered by dynamiC testing may assist when using a formal specification. Testing may be used 
in order to provide initial confidence in a system before effort is expended in attempting to prove correctness. 
Where it is not cost effective to produce a proof of conformance, the developers may gain confidence in the im
plementation through systematic testing. This might be complemented by proofs that certain critical properties 
hold. A proof of correctness might also use information derived during testing. Finally, a proof of correctness 
relies upon a model of the underlying system and dynamic testing might be used to check this 'model. An 
interesting challenge is to generate tests that arc likely to be effective in detecting errors in the assumptions 
inherent in a proof of correctness. 

2 The goals of FORTEST 

FORTEST is a three year project that will develop a new community in order to investigate ways in which the 
relationships between formal methods and software testing may be exploited. It will raise the awareness of the 
links between these fields and disseminate new methods and techniques developed by the community. The main 
goals are thuR 

1. to develop a community; 

2. to disseminate current results and problems and new results produced by this community. 

The deliverables of FORTEST include: 

1. a workshop to be held approximately six months after the start of the project in order to establish an 
initial community and to formalise the set of problems; 

2. a workshop approximately eighteen months after the start of the project in order to widen the range of 
problems considered and approaches used; 

2 



.~ ''00 

3. a workshop in the last six months of the proj~ct to disseminate the results; 

4. research meetings, that are internal to the network, to be held quarterly (except where they would coincide 
with a workshop); 

5. an internet structure that includes a mailing list and a web site containing information about the project. 

References 

[1] A. V. Aho, A. T. Dahhura, D. Lee: and M. U. Uyar. An optimization technique for protocol conformance 
test generation based on LIO sequences and Rural Chinese Postman Tours. In Protocol Specification, 
Testing, and Verification VIII, pages 75 86: Atlantic City, 1988. Elsevier (North-Holland). 

[2] N. Amla and P.Ammann. Using Z specifications in category partition testing. In COMPASS '92, Seventh 
Annual Conference on Computer Assurance, pages 15 18, Gaithersburg, :\iD, USA, 1992. 

[3] B. W. Boehm. Software Engineering Economics. Prentice-Hall: 1981. 

[4] T. S. Chow. Testing software design modelled by finite state machines. IEEE Transactions on Software 
Engineering, 4:178 187, 1978. 

[5] J. Derrick and E. Boiten. Testing refinements of state-based formal specifications. Journal of Software 
Testing, Verification, and Reliability, 9:27 50, 1999. 

[6] J. Dick and A. Faivre. Automating the generation and sequencing of test cases from model-hased specifica
tions. In FME '93, First International Symposium on Formal Methods in EltrOpe, pages 268 284, Odense, 
Denmark, 19-23 April 1993. Springer-Verlag, Lecture l\otes in Computer Science 670. 

[7] E. W. Dijkstra. Notes of structured programming. In O. J. Dahl, E. W. Dijkstra: and C. A. R. Hoare: 
editors, Structured Programming. Academic Press, 1972. 

[8] J. H. Fetzer. Program verification: The very idea. Communications of The ACM: 31:1048-1063, 1988. 

[9] M. C. GaudeL Testing can be formal too. In TAPSOFT'95, pages 82 96. Springer-Verlag, March 1995. 

[10] R. M. Hierons. Testing from a finite state machine: Extending invertibility to sequences. The Computer 
Journal, 40:220 230, 1997. 

[11] R. M. Hierolls. Testing from a Z specificatioil. Journal of Softwar·e Testing, Ver·ification and Reliability, 
7:19 33, 1997. 

[12] R. \1. Hierons. Adaptive testing of a deterministic implementation against a nondetermistic finite state 
machine. The Computer Journal, 41:349-355, 1998. 

[13] R. M. Hierons, S. Sadeghipour, and H. Singh. Testing a system specified using Statecharts and Z. Infor
mation and Software Technology: 43:137-149,2001. 

[14] C. A. R. Hoare. How did software get so reliable without proof? In Proceedings of Formal Methods Europe, 
96 (Lecture Note.~ in Computer Science 1051), pages 1 17. Springer-Verlag: 1996. 

[15] M. HoIcombe and F. Ipate. Correct Systems: Building a Business Process Solution. Springer-Verlag, 1998. 

[16] Hyoung Seok Hong: Young Gon Kim: Sung Deok Ch a, Doo Hwan ilae, and Hasan UraI. A test sequence 
selection method for statecharts. Joumal of Software Testing, Ver·ification and Reliability, 10:203-227, 
2000. 

[17] F. Ipate and M. HoIcomhe. An integration testing method that is proved to find all faults. International 
Journal of Computer Mathematics, 63:159 178, 1997. 

[18] F. Ipate and M. HoIcombe. A method for refining and testing generalised machine specifications. Intema
tional .Journal of Computer Mathematics, 68:197 219: 1998. 

3 



[19] G. Laycock. Formal specification and testing: A case study. Journal of Software Testing, Verification and 
Reliability, 2:7-23, 1992. 

[20] H. Singh, M.Conrad, and S. Sadeghipour. Test case design based on Z and the elassification-tree method. 
In First IEEE Conference on Formal 'Engineering Methods, pages 81 90, Hiroshima, Japan, November 
1997. IEEE Computer Society. 

[21] P. Stocks and D. Carrington. A Framework for Specification-Based Testing. IEEE Transactions on Software 
Engineering, 2:777-793, 1996. 

[22] H. Ural, K. Saleh, and A. Williams. Test generation based on control and data dependencies within system 
specifications in SDL. Computer Communications, 23:609--627,2000. 

[23] H. Ural, X. Wu, and F. Zhang. On minimi?:ing the lengths of checking sequences. IEEE Transactions on 
Computers, 46:93 99, 1997. 

4 


