Coup., . (1Y

Comparing Test Sets and Criteria
in the Presence of Hypotheses

Rob Hierons, Brunel University

Structure of this talk

Motivation and background
Some previous comparators
A new comparator
Comparing test sets
Incremental test generation
Cbmparing criteria

Future work

Conclusions

‘Motivatioﬁn

* When testing we would like to answer
questions such as:
— What is the best technique/criterion to use?

— How might I extend my test to make it more
effective? |

— Is it worth adding the following test case?

* In each case we would like to make some
comparisons regarding test effectiveness.

Notation

- S will denote the set of specifications.
P will denote the set of programs.

X will denote the input domain of the
programs being considered.

Y will denote the output domain of the
programs being considered.

Test hypotheses and fault models

* A test hypothesis is some property the tester
believes the implementation has.

e A fault model is a set F of behaviours where
the tester believes that the implementation
behaves like some unknown element of F.

Testing 1n the presence of test
hypotheses and fault models

It may be possible to produce a test set that
determines correctness under the
assumption being used.

Note: such tests need not be practical

The Uniformity Hypothes1s for ,
partition I1

. Here it 1s assumed that:

— For every meIl, if any value in 7, leads to a
failure, all values in 7, lead to failures.

* A test containing a value from each me I1
determines correctness under this
assumption.

- Testing 1 context

« When testing a component p within a
context C we might assume that C is
correct:

— a failure may only occur through a fault either
in p or in the interaction between p and C.

Fault models and testing from a
| finite state machine

* When testing from a finite state machine
(FSM) M 1t 1s normal to assume that the
implementation behaves like some |
unknown FSM M, with the same input and
output alphabets as M.

~ « Often we assume that M 1s contained in
- some fault model. |

Examples of fault models

e The following are commonly used:
— There are only output faults.
— M; has no more states than M.
— M has at most m states (some predefined m).

* In each case, we can test to determine
correctness under the assumption made.

Test criteria

A test criterion C is a function that takes a
specification, a program, and a test set and
returns a boolean that states Whether the test
set 1s ‘sufficient’.

~+ Guven criterion C, specification s and
program p, C(s,p) will denote a function
that takes a test set T and returns C(s,p,T).

Previous comparators

- Comparing test criteria with <

« C, <C, if and only if, for every s S, p €P:
— 1f there exists a test set T, such that C,(s,p,T5,)
1s true and p fails on T, then for every test set
T, such that C,(s,p,T) 1s true, p fails T;.
“+ This means: if we can determine that a
program is faulty using C, we must do so

using C,.

‘Comparing test sets with <

 We can extend < to test sets: |
— T, <T,1fand only if for all se S,p €P, if p -
fails on T, then p fails on T,.
 Where this 1s the case, we know that by
using T, instead of T, we cannot lose
anythlng in terms of our ablhty to show that
~ a program 1s faulty. |

- Problems with <

o All effective (feasible) monotonic test
criteria are incomparable under <.

« Assuming P contains a representative of
every computable function from X and Y,
T,<T,ifandonly if T, C T,.

The subsumes relation

* Criterion C, subsumes criterion C, if and only 1if:
— ForallseS,peP, T c X, C,(s,p,T) = C,(s,p,T)
* Many criteria are comparable under the subsumes
relation but this need not tell us anything about
fault detecting ability. ‘

« A test generation technique for C, may be better
than some test generation techniques for C;.

An observation

 When testing a program we ohly need to
consider how good our test set or criterion
is for that program. |

"« Thus: we might make our comparisons .
“specific to the program (and specification)
being considered: |

— W€ may utilise known system propertles

Comparing test sets under <

* Given test hypothesis H, test set T, isat
least as strong as test set T, under Hifand -~
only if: | | -

— whenever p satisfies H and p fails T, then p
fails T,.

* This is denoted T, <, T;,.

Extreme test hypotheses

* The following will be useful when
demonstrating properties of <;.
o Hmin
— H_,,, will denote the hypothesis that the
program 1s correct. -

will denote the minimal hypothesis

A lower bound on <

e T,cT,=>T,54 T,

e These may be equivalent — simply let
- H=H__.

e In effect under H

min?

<, is equivalent to <.

An upper bound on <

* It is possible that all test sets are
comparable under <. |

* This happens when H=H___.

* Note: from this we can see that a non-empty
test set may be no more effective than the
empty test set. |

Further relationships

« We will say that T, and T, are equivalent
under Hifand only if T, <; T, and T, <
1.

* This 1s denoted T, =, T,.

« T,<T,if T,<; Tyand not T; <, T,.

Example

» Consider the application of the uniformity
hypothesis H; with partition II={x,,..., _}.

e Then a test set T determines correctness
under Hy; if and only if T contains one or
more elements from each ..

Comparisons under Hy

« The following are clear (and as expected):
. T,<, T, ifand only if:

— {m. elllnNT, # {}} < {r, elljn.NT, # {}}
e T <, TU{t} if and only if:

— t € m, for some 7, € {7 eHIan {}}

Comparisons: testing in context

e Suppose we are testing a system composed
of p and context C with hypothesis H that
states: C 1s correct.

* Let X denote the set of elements of X that
lead to p receiving mput.
* Then T, <; T, if and only if:
~T,nX, cT)nX,

Further results

T, <, T, if and only if
- I,NX, cTiNX,

 T,=, T, if and only if
- T,nX, =T,NX,

Observation

* (Given test set T and test te X\T, 1t 1s
- possible that: |
- Tu {t} =4 T.
e Thus: extending a test set mlght not make 1t
- more effective.

Testing from FSM M: output
* faults

 Suppose hypothesis H states:
— only output faults can occur
o T, <, T, if and only if:
— When T, and T, are executed on M, T, covers
every transition covered by T,.

Incremental Test Development

Observations

o If T={t,,...,t.} is a minimal (non-redundant)
test set then for all 1 <1<n:
o {tla'“ati} <H {tla"atiﬂ}

 If T does not determine correctness under H
then there 1s some test case t such that:

Incremental test development and

“H

~» Under H it is only worth extending test set

T by test case t 1if:

- T <y Tu {t}

~» We might start with the empty set and at
each step add tests that strengthen the test

set. |

* Note: we might still have redundant test

cases. -

Refining hypotheses

« Hisa refinement of H if H’=H.

* Observe that if H’=H then:
~T,<y T, = T, <p By

» This suggests we might refine test
hypotheses and test sets together (though
—(T, <z T, = T, <g- T,) so this might
reduce the test efficiency). |

- Refinement and the uniformity
' hypothesis

* One instance Hyy, of the uniformity
hypothesis i1s a refinement of another
instance H, 1f and only if:

— Each subdomain of I12 is the union of a set of
~ subdomains from IT1.

Comparing test criteria using <y

* We can extend <, to test criteria by, C, <y
C, 1if and only 1if: |
— For every pe P that satisfies H, if there is some
non-redundant test set T, that satisfies C,(s,p)
such that p fails T,, then for every non-
redundant test set T, that satisfies C,(s,p), p
fails T;. | |
* Note the use of ‘non-redundant’ (without it
we get the same problems as <).

Observations

 All test criteria are equivalent under H__..

Comparing the strength of test
criteria

* Given test criteria C, and C, it might be
~interesting to know the answer to:

— What is the weakest hypothesis H under which
C, <4 C,? |

Future work

* Consider probabilistic comparators.
e Investigate alternative hypotheses and
criteria.

~« Investigate weakest hypotheses that allow
criteria to be compared.

Conclusions

« It is useful to be able to compare test criteria
and test sets.

* By including a test hypothesis, we can
utilise properties of the problem.

~» Comparisons between test sets might drive
~ incremental test development.

