Comparing Test Sets and Criteria in the Presence of Hypotheses

Rob Hierons, Brunel University
Structure of this talk

- Motivation and background
- Some previous comparators
- A new comparator
- Comparing test sets
- Incremental test generation
- Comparing criteria
- Future work
- Conclusions
Motivation

• When testing we would like to answer questions such as:
 – What is the best technique/criterion to use?
 – How might I extend my test to make it more effective?
 – Is it worth adding the following test case?
• In each case we would like to make some comparisons regarding test effectiveness.
Notation

- S will denote the set of specifications.
- P will denote the set of programs.
- X will denote the input domain of the programs being considered.
- Y will denote the output domain of the programs being considered.
Test hypotheses and fault models

• A test hypothesis is some property the tester believes the implementation has.

• A fault model is a set F of behaviours where the tester believes that the implementation behaves like some unknown element of F.
Testing in the presence of test hypotheses and fault models

- It may be possible to produce a test set that determines correctness under the assumption being used.
- Note: such tests need not be practical
The Uniformity Hypothesis for partition Π

- Here it is assumed that:
 - For every $\pi_i \in \Pi$, if any value in π_i leads to a failure, all values in π_i lead to failures.

- A test containing a value from each $\pi_i \in \Pi$ determines correctness under this assumption.
Testing in context

- When testing a component p within a context C we might assume that C is correct:
 - a failure may only occur through a fault either in p or in the interaction between p and C.
Fault models and testing from a finite state machine

- When testing from a finite state machine (FSM) M it is normal to assume that the implementation behaves like some unknown FSM M_1 with the same input and output alphabets as M.
- Often we assume that M_1 is contained in some fault model.
Examples of fault models

- The following are commonly used:
 - There are only output faults.
 - M_I has no more states than M.
 - M_I has at most m states (some predefined m).

- In each case, we can test to determine correctness under the assumption made.
Test criteria

- A test criterion C is a function that takes a specification, a program, and a test set and returns a boolean that states whether the test set is ‘sufficient’.

- Given criterion C, specification s and program p, $C(s,p)$ will denote a function that takes a test set T and returns $C(s,p,T)$.
Previous comparators
Comparing test criteria with \leq

- $C_2 \leq C_1$ if and only if, for every $s \in S, p \in P$:
 - if there exists a test set T_2 such that $C_2(s,p,T_2)$ is true and p fails on T_2, then for every test set T_1 such that $C_1(s,p,T_1)$ is true, p fails T_1.

- This means: if we can determine that a program is faulty using C_2 we must do so using C_1.
Comparing test sets with \leq

- We can extend \leq to test sets:
 - $T_2 \leq T_1$ if and only if for all $s \in S$, $p \in P$, if p fails on T_2 then p fails on T_1.

- Where this is the case, we know that by using T_1 instead of T_2 we cannot lose anything in terms of our ability to show that a program is faulty.
Problems with \leq

- All effective (feasible) monotonic test criteria are incomparable under \leq.
- Assuming P contains a representative of every computable function from X and Y, $T_2 \leq T_1$ if and only if $T_2 \subseteq T_1$.
The subsumes relation

- Criterion C_1 subsumes criterion C_2 if and only if:
 - For all $s \in S$, $p \in P$, $T \subseteq X$, $C_1(s,p,T) \Rightarrow C_2(s,p,T)$

- Many criteria are comparable under the subsumes relation but this need not tell us anything about fault detecting ability.

- A test generation technique for C_2 may be better than some test generation techniques for C_1.
An observation

• When testing a program we only need to consider how good our test set or criterion is for that program.

• Thus: we might make our comparisons specific to the program (and specification) being considered:
 – we may utilise known system properties.
Comparing test sets under \leq_H

- Given test hypothesis H, test set T_1 is at least as strong as test set T_2 under H if and only if:
 - whenever p satisfies H and p fails T_2 then p fails T_1.
- This is denoted $T_2 \leq_H T_1$.
Extreme test hypotheses

• The following will be useful when demonstrating properties of \leq_H.
 – H_{min} will denote the minimal hypothesis
 – H_{corr} will denote the hypothesis that the program is correct.
A lower bound on \leq_H

- $T_2 \subseteq T_1 \Rightarrow T_2 \leq_H T_1$.
- These may be equivalent – simply let $H = H_{\text{min}}$.
- In effect, under H_{min}, \leq_H is equivalent to \leq.
An upper bound on \leq_H

- It is possible that all test sets are comparable under \leq_H.
- This happens when $H = H_{corr}$.
- Note: from this we can see that a non-empty test set may be no more effective than the empty test set.
Further relationships

- We will say that T_1 and T_2 are equivalent under H if and only if $T_1 \leq_H T_2$ and $T_2 \leq_H T_1$.
- This is denoted $T_1 \equiv_H T_2$.
- $T_2 < T_1$ if $T_2 \leq_H T_1$ and not $T_1 \leq_H T_2$.
Example

- Consider the application of the uniformity hypothesis \(H_\Pi \) with partition \(\Pi = \{ \pi_1, \ldots, \pi_n \} \).
- Then a test set \(T \) determines correctness under \(H_\Pi \) if and only if \(T \) contains one or more elements from each \(\pi_i \).
Comparisons under H_{Π}

- The following are clear (and as expected):
- $T_2 \leq_{H_{\Pi}} T_1$ if and only if:
 - $\{ \pi_i \in \Pi | \pi_i \cap T_2 \neq \{\} \} \subseteq \{ \pi_i \in \Pi | \pi_i \cap T_1 \neq \{\} \}$
- $T \leq_{H_{\Pi}} T \cup \{t\}$ if and only if:
 - $t \in \pi_k$ for some $\pi_k \in \{ \pi_i \in \Pi | \pi_i \cap T = \{\} \}$
Comparisons: testing in context

• Suppose we are testing a system composed of p and context C with hypothesis H that states: C is correct.

• Let \(X_p \) denote the set of elements of X that lead to p receiving input.

• Then \(T_2 \leq_H T_1 \) if and only if:
 - \(T_2 \cap X_p \subseteq T_1 \cap X_p \)
Further results

- $T_2 <_H T_1$ if and only if
 - $T_2 \cap X_p \subseteq T_1 \cap X_p$
- $T_2 \equiv_H T_1$ if and only if
 - $T_2 \cap X_p = T_1 \cap X_p$
Observation

- Given test set T and test $t \in X \setminus T$, it is possible that:
 - $T \cup \{t\} \equiv_H T$.
- Thus: extending a test set might not make it more effective.
Testing from FSM M: output faults

- Suppose hypothesis H states:
 - only output faults can occur

- \(T_2 \leq_H T_1 \) if and only if:
 - When \(T_1 \) and \(T_2 \) are executed on \(M \), \(T_1 \) covers every transition covered by \(T_2 \).
Incremental Test Development
Observations

• If $T=\{t_1, \ldots, t_n\}$ is a minimal (non-redundant) test set then for all $1 \leq i < n$:
 - $\{t_1, \ldots, t_i\} \leq_H \{t_1, \ldots, t_{i+1}\}$

• If T does not determine correctness under H then there is some test case t such that:
 - $T <_H T \cup \{t\}$
Incremental test development and \lesssim_H

- Under H it is only worth extending test set T by test case t if:
 - $T \lesssim_H T \cup \{t\}$
- We might start with the empty set and at each step add tests that strengthen the test set.
- Note: we might still have redundant test cases.
Refining hypotheses

- H' is a refinement of H if H' \Rightarrow H.
- Observe that if H' \Rightarrow H then:
 \[T_2 \leq H T_1 \Rightarrow T_2 \leq H, T_1 < H. \]
- This suggests we might refine test hypotheses and test sets together (though
 \[\neg(T_2 < H T_1 \Rightarrow T_2 < H, T_1) \] so this might reduce the test efficiency).
Refinement and the uniformity hypothesis

- One instance H_{Π_1} of the uniformity hypothesis is a refinement of another instance H_{Π_2} if and only if:
 - Each subdomain of Π_2 is the union of a set of subdomains from Π_1.
Comparing test criteria using \leq_H

- We can extend \leq_H to test criteria by, $C_2 \leq_H C_1$ if and only if:
 - For every $p \in P$ that satisfies H, if there is some non-redundant test set T_2 that satisfies $C_2(s,p)$ such that p fails T_2, then for every non-redundant test set T_1 that satisfies $C_1(s,p)$, p fails T_1.
- Note the use of 'non-redundant' (without it we get the same problems as \leq).
Observations

- All test criteria are equivalent under H_{corr}.
Comparing the strength of test criteria

- Given test criteria C_1 and C_2 it might be interesting to know the answer to:
 - What is the weakest hypothesis H under which $C_2 \leq_H C_1$?
Future work

- Consider probabilistic comparators.
- Investigate alternative hypotheses and criteria.
- Investigate weakest hypotheses that allow criteria to be compared.
Conclusions

• It is useful to be able to compare test criteria and test sets.
• By including a test hypothesis, we can utilise properties of the problem.
• Comparisons between test sets might drive incremental test development.