Comparing Test Sets and Criteria in the Presence of Hypotheses

Rob Hierons, Brunel University

Structure of this talk

- Motivation and background
- Some previous comparators
- A new comparator
- Comparing test sets
- Incremental test generation
- Comparing criteria
- Future work
- Conclusions

Motivation

- When testing we would like to answer questions such as:
 - What is the best technique/criterion to use?
 - How might I extend my test to make it more effective?
 - Is it worth adding the following test case?
- In each case we would like to make some comparisons regarding test effectiveness.

Notation

- S will denote the set of specifications.
- P will denote the set of programs.
- X will denote the input domain of the programs being considered.
- Y will denote the output domain of the programs being considered.

Test hypotheses and fault models

- A test hypothesis is some property the tester believes the implementation has.
- A fault model is a set F of behaviours where the tester believes that the implementation behaves like some unknown element of F.

Testing in the presence of test hypotheses and fault models

- It may be possible to produce a test set that determines correctness under the assumption being used.
- Note: such tests need not be practical

The Uniformity Hypothesis for partition Π

- Here it is assumed that:
 - For every $\pi_i \in \Pi$, if any value in π_i leads to a failure, all values in π_i lead to failures.
- A test containing a value from each π_i∈ Π determines correctness under this assumption.

Testing in context

- When testing a component p within a context C we might assume that C is correct:
 - a failure may only occur through a fault either in p or in the interaction between p and C.

Fault models and testing from a finite state machine

- When testing from a finite state machine (FSM) M it is normal to assume that the implementation behaves like some unknown FSM M_I with the same input and output alphabets as M.
- Often we assume that M_I is contained in some fault model.

Examples of fault models

- The following are commonly used:
 - There are only output faults.
 - $-M_{I}$ has no more states than M.
 - $-M_I$ has at most m states (some predefined m).
- In each case, we can test to determine correctness under the assumption made.

Test criteria

- A test criterion C is a function that takes a specification, a program, and a test set and returns a boolean that states whether the test set is 'sufficient'.
- Given criterion C, specification s and program p, C(s,p) will denote a function that takes a test set T and returns C(s,p,T).

Previous comparators

Comparing test criteria with \leq

- C₂ ≤C₁ if and only if, for every s∈ S, p∈ P:
 if there exists a test set T₂ such that C₂(s,p,T₂) is true and p fails on T₂, then for every test set T₁ such that C₁(s,p,T₁) is true, p fails T₁.
- This means: if we can determine that a program is faulty using C_2 we must do so using C_1 .

Comparing test sets with \leq

- We can extend \leq to test sets:
 - $-T_2 \le T_1$ if and only if for all $s \in S$, $p \in P$, if p fails on T_2 then p fails on T_1 .
- Where this is the case, we know that by using T₁ instead of T₂ we cannot lose anything in terms of our ability to show that a program is faulty.

Problems with \leq

- All effective (feasible) monotonic test criteria are incomparable under ≤.
- Assuming P contains a representative of every computable function from X and Y, T₂ ≤ T₁ if and only if T₂ ⊆ T₁.

The subsumes relation

- Criterion C₁ subsumes criterion C₂ if and only if: – For all $s \in S$, $p \in P$, $T \subseteq X$, $C_1(s,p,T) \Rightarrow C_2(s,p,T)$
- Many criteria are comparable under the subsumes relation but this need not tell us anything about fault detecting ability.
- A test generation technique for C_2 may be better than some test generation techniques for C_1 .

An observation

- When testing a program we only need to consider how good our test set or criterion is for that program.
- Thus: we might make our comparisons specific to the program (and specification) being considered:

- we may utilise known system properties.

Comparing test sets under $\leq_{\rm H}$

- Given test hypothesis H, test set T₁ is at least as strong as test set T₂ under H if and only if:
 - whenever p satisfies H and p fails T_2 then p fails T_1 .
- This is denoted $T_2 \leq_H T_1$.

Extreme test hypotheses

- The following will be useful when demonstrating properties of \leq_{H} .
 - $-H_{min}$ will denote the minimal hypothesis
 - H_{corr} will denote the hypothesis that the program is correct.

A lower bound on $\leq_{\rm H}$

- $T_2 \subseteq T_1 \Longrightarrow T_2 \leq_H T_1$.
- These may be equivalent simply let H=H_{min}.
- In effect, under H_{min} , \leq_H is equivalent to \leq .

An upper bound on $\leq_{\rm H}$

- It is possible that all test sets are comparable under \leq_{H} .
- This happens when H=H_{corr}.
- Note: from this we can see that a non-empty test set may be no more effective than the empty test set.

Further relationships

- We will say that T_1 and T_2 are equivalent under H if and only if $T_1 \leq_H T_2$ and $T_2 \leq_H T_1$.
- This is denoted $T_1 \equiv_H T_2$.
- $T_2 < T_1$ if $T_2 \leq_H T_1$ and not $T_1 \leq_H T_2$.

Example

- Consider the application of the uniformity hypothesis H_{Π} with partition $\Pi = \{\pi_1, \dots, \pi_n\}$.
- Then a test set T determines correctness under H_{Π} if and only if T contains one or more elements from each π_i .

Comparisons under H_{Π}

- The following are clear (and as expected):
- $T_2 \leq_{H_{\Pi}} T_1$ if and only if: - $\{\pi_i \in \Pi | \pi_i \cap T_2 \neq \{\}\} \subseteq \{\pi_i \in \Pi | \pi_i \cap T_1 \neq \{\}\}$
- $T \leq_{H_{\Pi}} T \cup \{t\}$ if and only if:
 - $-t \in \pi_k \text{ for some } \pi_k \in \{\pi_i \in \Pi | \pi_i \cap T = \{\}\}$

Comparisons: testing in context

- Suppose we are testing a system composed of p and context C with hypothesis H that states: C is correct.
- Let X_p denote the set of elements of X that lead to p receiving input.
- Then $T_2 \leq_H T_1$ if and only if: $-T_2 \cap X_p \subseteq T_1 \cap X_p$

Further results

- $T_2 <_H T_1$ if and only if $-T_2 \cap X_p \subset T_1 \cap X_p$
- $T_2 \equiv_H T_1$ if and only if - $T_2 \cap X_p = T_1 \cap X_p$

Observation

• Given test set T and test t∈ X\T, it is possible that:

 $- T \cup \{t\} \equiv_{H} T.$

• Thus: extending a test set might not make it more effective.

Testing from FSM M: output faults

- Suppose hypothesis H states:
 only output faults can occur
- $T_2 \leq_H T_1$ if and only if:
 - When T_1 and T_2 are executed on M, T_1 covers every transition covered by T_2 .

Incremental Test Development

Observations

• If $T = \{t_1, \dots, t_n\}$ is a minimal (non-redundant) test set then for all $1 \le i < n$:

 $- \{t_1, \dots, t_i\} <_H \{t_1, \dots, t_{i+1}\}$

• If T does not determine correctness under H then there is some test case t such that:

 $-T \leq_H T \cup \{t\}$

Incremental test development and

- Under H it is only worth extending test set T by test case t if:
 - $-T \leq_H T \cup \{t\}$
- We might start with the empty set and at each step add tests that strengthen the test set.
- Note: we might still have redundant test cases.

Refining hypotheses

- H' is a refinement of H if H' \Rightarrow H.
- Observe that if H' \Rightarrow H then: - $T_2 \leq_H T_1 \Rightarrow T_2 \leq_{H^2} T_1 \Rightarrow$
- This suggests we might refine test hypotheses and test sets together (though $\neg(T_2 <_H T_1 \Rightarrow T_2 <_H, T_1)$ so this might reduce the test efficiency).

Refinement and the uniformity hypothesis

• One instance $H_{\Pi 1}$ of the uniformity hypothesis is a refinement of another instance $H_{\Pi 2}$ if and only if:

- Each subdomain of $\Pi 2$ is the union of a set of subdomains from $\Pi 1$.

Comparing test criteria using $\leq_{\rm H}$

- We can extend $\leq_{\rm H}$ to test criteria by, $C_2 \leq_{\rm H} C_1$ if and only if:
 - For every p∈ P that satisfies H, if there is some non-redundant test set T₂ that satisfies C₂(s,p) such that p fails T₂, then for every non-redundant test set T₁ that satisfies C₁(s,p), p fails T₁.
- Note the use of 'non-redundant' (without it we get the same problems as ≤).

Observations

• All test criteria are equivalent under H_{corr} .

Comparing the strength of test criteria

• Given test criteria C₁ and C₂ it might be interesting to know the answer to:

- What is the weakest hypothesis H under which $C_2 \leq_H C_1$?

Future work

- Consider probabilistic comparators.
- Investigate alternative hypotheses and criteria.
- Investigate weakest hypotheses that allow criteria to be compared.

Conclusions

- It is useful to be able to compare test criteria and test sets.
- By including a test hypothesis, we can utilise properties of the problem.
- Comparisons between test sets might drive incremental test development.