
" '-

.'.1:

Comparing Test Sets and Criteria
in the Presence of Hypotheses

Rob Hierons, BruneI University

Structure of this tall(

• Motivation and background

• Some previous comparators

• A new comparator

• Comparing test sets

• Incremental test generation

• Comparing criteria

• Future work

• Conclusions

•

'Motivation

• When testing we would like to answer
questions such as:
- What is the best technique/criterion to use?

- How might I extend my test to make it more
effective?

- Is it worth adding the following test case?

• In each case we would like to make some
I

comparisons regarding test effectiveness.

•

Notation

• S will denote the set of specifications.

• P will denote the set of programs.

• X will denote the input domain of the
programs being considered.

• Y will deno'te the output domain of the
programs being considered.

•

Test hypotheses and fault models

• A test hypothesis is some property the tester
believes the implementation has.

• A fault model is a set F of behaviours where
the tester believes that the implementation
behaves like some unknown element of F.

·' . •
Testing in the presence of test
hypotheses and fault models

• It may be possible to produce a "test set that
determines correctness under the
assumption being used.

• Note: such tests need not be practical

•
The Uniformity Hypothesis for

partition II
• Here it is assumed that:

- For every 1tiE IT, if any value in 1ti leads to a
failure, all values in 1ti lead to failures.

• A test containing a value from each 1tiE IT
deteIl)1ines correctness' under this
assumption.

•

Testing in context

• When testing a component p within a
context C we might assume that C is
correct:
- a failure may only occur through a fault either

in p or in the interaction between p and C.

•
Fault models and testing from a

finite state machine
• When testing from a finite state machine

(FSM) M it is normal to assume that the
implementation behaves like some
unknown FSM MI with the same input and
output alphabets as M.

• . Often we assume that MI is contained in
some fault model.

•

Examples of fault models

• The following are commonly used:
- There are only 9utput faults.

- MI has no more states than M.

- MI has at most m states (some predefined m) . .

• In each case, we can test to determine
correctness under the assumption made.

e.

Test criteria

• A test criterion C is a function that takes a
specification, a program, and a test set and
returns a boo lean that states whether the test
set is 'sufficient'.

• Given criterion C, specification sand
program p, C(s,p) will denote a function
that takes a test set T and returns C(s,p,T).

•

Previous comparators

•

Comparing test criteria with ~

• C2 <Cl if and only if, for every SE S, PEP: _
- if there exists a test set T2 such.that C2(s,p,T2)

is true and p fails on T 2' then for every test set
T 1 such that Cl (s,p, T 1) is true, p fails T 1-

• This means: if we can determine that a
. program is faulty using C2 we must do so
using Cl- -

•
, ,

. Comparing test sets with ~

• We can extend < to test sets:
- T 2 < T 1 if and only if for all SE S, PEP, if P

fails on T 2 then P fails on T 1 .

• Where this is the case, we know that by
using T 1 instead of T 2 we cannot lose
anything in terms of our ability to show that
a program is faulty.

•

. Problems with ::::;

• All effective (feasible) monotonic test
criteria are incomparable under <.

• Assuming P contains a representative of
every computable function from X and Y,
T2 < Tl if and only ifT2 c Tl .

•

The subsumes relation

• Criterion Cl subsumes criterion C2 if and only if:
- For all SE S, pEP, T c X, C1(s,p,T) => C2(s,p,T)

• Many criteria are comparable under the subsumes
relation but this need not tell us anything about
fault detecting ability.

• A test generation technique for C2 maybe better
than some test generation techniques for Cl .

•

An observation

• When testing a program we only need to
consider how good our test set or criterion
is for that program.

• Thus: we might make our comparisons .
specific to the program (and specificatiol1)
being considered:
- we may utilise known system properties.

•

Comparing test sets under ::;H

• Given test hypothesis H, test setT 1 is at
least as strong as test set T 2 under H if and -
only if:
- whenever p satisfies Hand p fails T 2 then p

fails T 1.

• This is denoted T 2 <H T 1 ·

•

Extreme test hypotheses

• The following will be useful when
demonstrating properties of <He

- Hmin will denote the minimal hypothesis

- Hcorr will denote the hypothesis that the
program is correct. -

•

A lower bound on :::;H

• T2 cTt =>T2 <H Tt·

• These may be equivalent - simply let
H=Hmin·

• In effect, under Hmin, <H is equivalent to <.

•

An upper bound on ~H

• It is possible that all test sets are
co~parable under <H.

• This happens when H==Hcorr.

• Note: from this we can see that a non-empty.
test set may be no more effective than the
empty test set.

•

Further relationships

• We will say that T I and T 2 are equivalent
under H if and only ifTI <H T2 and T2 <H
T I -

• This is denoted T I =H T 2-

• T2 < TI ifT2 <H TI and not Ti <H T2-

•

Example

• Consider the application of the uniformity .
hypothesis Hn with. partition I1={ It I ,· · ., Itn}.

• Then a test set T determines correctness
under Hn if and only if T contains one or
more elements from each Iti .

•

Comparisons under HIT

• The following are clear (and as expected):

• T 2 <HnT 1 if and only if:
- {1ti E rrl1tinT 2 -:j:. {} } c {1ti E rrl1tinT 1 i:- {} }

• T <Hn Tu{ t} if and only if:
- t E 1tk for some 1tk E {1ti E rrl1tinT == {} }

•

Comparisons: testing in context

•. Suppose we are testing a system composed
of p and context C with hypothesis H that

J

states: C is correct.

• Let ~ denote the set of elements of X that
_ lead to p receiving input.

• rhen T 2 <H T 1 if and only if:
-.T2nXp c Tln~,

•

Further results

• T2 <H T} if and only if
- T2nXp C Tln~

• T2 =H T1 if and only if
- T2nXp == Tln~

•

Observation

• Given test set T and test tE X\ T, it is
possible .that:

- Tu {t} =H T.

• Thus: extending a test set might not make it
more effective. .

•
Testing from FSM M: output

faults
• Suppose hypothesis H states:

-' only output faults can occur

• T2 <H Tl if and only if:
- When T 1 and T 2 are executed on M, T 1 covers

every transition covered by T 2-

•

Incremental Test Development

•

Observations

• If T=={ t1, ... ,tn } is a minimal (non-redundant)
test set then for all 1 ~ i < n:

- {t 1 , . · . , ti} <H {t 1 , · · , ti + 1 }

• If T does not determine correctness under H ,
-

then there is some test case t such that:

- T <H Tu{t}

",.

•
Incremental test development and

<H
• Under H it is only worth extending test set

T by test case t if:
- T <H Tu {t}

• We might start with the empty set and at
each step add tests that strengthen the test
set.

• Note: we might still have redundant test
cases.

eo

Refining hypotheses

• H' is a refinement ofH ifH'=>H.

• Observe that ifH'=>H then:
- T2 <H Tl => T2 <H,Tl<r!l:::>

• This suggests we might refine test
hypotheses and test sets together (though
-,(T 2 <H T 1 => T 2 <H' T 1) so this migi?-t
reduce the test efficiency).

•
Refinement and the uniformity

hypothesis
• One instance HITI of the uniformity

hypothesis is a refinement of another
instance HIT2 if and only if:
- Each subdomain of Il2 is the union of a set of

subdomains from IT 1.

•

Comparing test criteria using ~H

• We can extend <H to test criteria by, C2 <H

Cl if and only if:
- For every pE P that satisfies H, if there is some

non-redundant test set T 2 that satisfies C2(s,p)
such that p fails T 2, then for every non
redundant test set T 1 that satisfies Cl (s,p), p
fails T 1-

• Note the use of 'non-redundant' (without it
we get the same problems as <).

•

Observations

• All test criteria are equivalent under Hcorre
..

•
Comparing the strength of test

criteria·
• Given test criteria Cl and C2 it might be .
. interesting to know the answer to:

- What is the weakest hypothesis H under which
C2 <H Cl?

•

Future work

• Consider probabilistic comparators.

• Investigate alternative hypotheses and
criteria.

• Investigate weakest hypotheses that allow
criteria to be compared.

.le

Conclusions

• It is useful to be able to compare test criteria
and test sets.

• By including a test hypothesis, we can
utilise properties of the problem.

• Comparisons between test sets might drive .
incremental test development.

