test @

- Test Generation for Embedded Software B
- what works, what is needed? |

Paul J. Krause
Philips Research Laboratories
&

Surrey University

= PHILIPS

Contents

e3Software and Philips Electronics
- 3 Automated testing to the rescue
3Two Issues with Test Generation
- 8The Move to Components
3Conclusions |

S PHILIPS

Software - benefits and risks

& PHILIPS

The Drive for Software Quality

High User
Satisfaction

PHILIPS

But Testing 1s:

@3 Time consuming

& writing test cases

&=executing test cases

(%Err L

PHILIPS

N >*‘h5

Contents

esSoftware and Philips Electronics
3 Automated testing to the rescue
3 Two Issues with Test Generation
3The Move to Components

3Conclusions

¥
b

PHILIPS

UniS

Test Case Execution:

= PHILIPS

est Case Execution: Video Feedback

Colour

2
e
7
i

3 PHILIPS

iy

Capture Replay 1s not Test Automation

= PHILIPS

Contents

3Software and Philips Electronics
(3 Automated testing to the rescue
3Two Issues with Test Generation
3The Move to Components

3 Conclusions

2
b

=] PHILIPS

evision - State based module testing

Microwave Oven

i

e

R S
e

G
G
G

Closed

= PHILIPS

Questions

3How to link “abstract” test cases to a specific user
interface?

@3How to control the state space explosion for
system-level test generation?

 PHILIPS

Example state-based tests

nitial Mute Final
Status Volume

ound not Volume

uted ncremente
ound not olume not Se

uted ncremente
ound olume

uted ncremente
ound olume not

Muted ncremente

= PHILIPS

User Actions that Generate Events

3Increment Volume
& Volume up on Remote Control
& Cursor right on local keyboard (may vary)
&Possibly a voice command

3Increment Brightness

& Sequence of commands on Remote Control (Menu
Navigation - may vary across model variants)

& Combination and Sequence of commands on Local
Keyboard

 PHILIPS

Re-use vs. Re-generation

@3For many products
&»the underlying state-behaviour 1s quite stable
& User-interface varies as a visible differentiator
3Could use one large model, but

&=does not conform to standard way of working
& would lead to duplication of common state-behaviour

= PHILIPS

vision - State based module testing

icrowave Oven

Door
Closed

T = Light

= PHILIPS

How to control state-space explosion?

3Modularise the specification

&»find distinct groups of FSMs, together with the state
relations that describe the interactions between those
FSMs

3Generate a feasible number of test cases for each
module
&using well founded selection rules

3Integrate these test cases into test suites for the
complete system

8

& PHILIPS

1g Problem!

5 PHILIPS

Contents

3Software and Philips Electronics
3 Automated testing to the rescue
3 Two Issues with Test Generation
3 The Move to Components

3 onclusions

= PHILIPS

Unis

The Move to Software Components

3Consumer Electronics products are members of
complex family structures

3Exhibit diversity in:
&product features
&=user control style

&supported broadcasting standards
&hardware technology

3Need to create new products by extending and
rearranging elements of existing products

8

& PHILIPS

UniS

The need for components

30bject-oriented frameworks enable multiple
applications to be created from shared structure
and code
&but changing the structure significantly 1s difficult

3Component-based approaches let engineers
construct multiple configurations with variations
in both structure and content

&component - an encapsulated piece of software with an
explicit interface to its environment

&components - can be used in many different
configurations

b

& PHILIPS

PROBLEM
Product 1 Product 2

Importing Bl into A: So A cannot also

e gives A access to Bl combine with B2

e but puts knowledge
of B1 inside A

SOLUTION
Product 3

Take binding knowledge out of the
components.

e A reguires an interface of a
certain type.

e B1 and B2 provide such an
interface.

e Binding made at the product level

The Koala Model

3Components
&=units of design development and reuse

3Interfaces

@a component communicates with its environment
through interfaces

&=an interface 1s a small set of semantically related
functions

3 A component provides functionality through its
interfaces

@3To do so, it may also require functionality through
its interfaces

| PHILIPS

Y
& E

= PHILIPS

Interface definitions

3Uses a simple Interface Definition Language
(IDL) in C syntax. E.g.

interface Ituner

{
void SetFrequency(int f);

int GetFrequency(void);

j

' PHILIPS

Component descriptions

3Describe the boundaries of a component in a
Component Description Language

component CTunerDriver
{
provides [Tuner ptun;
[Init pini;
requiresli2c r12c;

}

2

& PHILIPS

unis

Configurations and Compound Components

3 A configuration is a set of components connected
together to form a product

&=all requires interfaces must be bound to precisely one
provides interface

&e=each provides interface can be bound to zero or more
requires interfaces
31t may be useful to compose Compound
Components from basic components

&But always, when binding interfaces there must be a
unique definition of each function, but a function may
be called by many other functions

& PHILIPS

Emergent behaviour for software components

With Mike Shields, David Pitt and Samantha West at
Surrey University

3Need for minimal specifications for interacting
components
&unnecessarily constraining the context in which a
component can be used militates against re-use
3Investigate necessary and sufficient conditions to
ensure that products developed from compositions
of components do not show pathological
behaviour

<) PHILIPS

Overview of strategy

3 Work at the semantic model level

&»to describe and reason about generic issues related to
components and compositions of components

@3Develop a simple model of a component

& what properties of components ensure that the
behaviours have “sensible” properties?

& What are the conditions on pairs of components that
guarantee that the “sensible” properties of the
individual properties are preserved on their
composition?

3 PHILIPS

Background

possible

@3Draws on foundational work by Mike Shields that
provides automata with an operational semantics
expressive enough to model

&non-determinacy
fooCONCUITENCY

&simultaneity

PHILIPS

ny

Overtaking in Asynchronous Periodic Systems

3 Three conditions together are necessary and
sufficient to guarantee periodicity
&=coherence - viewers agree on numbers of cycles
a=extensibility - local liveness

&no overtaking

Asview: &% & €|4 5 L

Bs view: % & & %

. e, &x e, & &
S View:

This behaviour exhibits an overtaking. Viewer 4 sees
the e, period and then the e; period. However, Viewer
B sees the e, period, then the e, period.

= PHILIPS

Contents

»3Software and Philips Electronics
3 Automated testing to the rescue
@3 Two Issues with Test Generation
@3The Move to Components
3Conclusions

= PHILIPS

UniS

Conclusions

3 Test generation from specifications 1s necessary
technology

3 There are still some tricky problems to solve

3 A more creative use of formal methods may be
helpful 1n support of the move to component-
based development

= PHILIPS

Uni$

