
Testability Transformation
seminar for ForTest Network

Mark Harman
Brunei University

Joint work with

Rob Hierons, Lin Hu, Marc Roper and Joachim Wegener

•
181

vervlew

• Test Data Generation

• Problems for Evolutionary Test Data Generation

• Testability Transformation

• Two Examples

•

Automatic Test eneration

Generating good quality test data is hard

Knowing what good quality means is hard

I do not propose to answer that question today

Starting point: structural test adequacy criterion

Specifically t~at some path or branch is to be covered

•

Structural Test Data Generation
..,

There are five possible methods:
- H urrian analysis

- Random Testing

- Symbolic Execution

- Constraint Solving

- Evolutionary Testing

This talk focuses on Evolutionary Testing

But testability transformation applies elsewhere too

•

volution ry Testi 9

. To execute a branch:

Define a fitness function for the predicate

Fitness function guides a search for test input

This has been shown to work well

... but there are problems

••

Problem ith volution ry Testing

Program structure inhibits the fitness function formation

Examples of structure problems include:

-' Side effects
- Unstructured control flow
- Flag ,variables

•

Paradox
,

We are testing to cover structure
. ~. but the structure is the problem
So we transform the program

... and this alters the structure

So a question arises:

Are we still testing according to the same criterion?
We need to co-t~ansform the test adequacy criterion

•

Informall

A transformation is a partial function on programs

We need to pair the program and test adequacy criterion

- call this the test pair

-
A testability transformation is a partial function on test pairs

such that. ..

•

Testabi lityTransformation

Test data
which

.
IS

adequate for the transformed test pair
.
IS

adequate for the original test pair

•

Trivial xample
Informally, this is already done:

"Branch coverage is MC/DC coverage when
we expand out if statements"

if (a && b)
s1" ,

else s2;

. if (a)
if (b) s 1 ;
else s2;

else s2;

•

More Formally

Definition 1 (Testing-Orientated Transformation)
Let P be a set of programs and C be a set of testing criteria .

. A program transformation is a partial function in P ~ P.
A Testing-Orientated Transformation is a partial function in
(P x C) ~ (P x C).

Definition 2 (Testability Transformation)
A Testing-Orientated Transformation, ~ is a Testability
Transformation iff for all programs, p and crit~ria c,

if ~(p, c) = (p', c') then for all test sets T, T is adequate for
!

p according to c if T is adequate for p' according to c'.

•

Reversible Testability T14 ansfonnations

A testability transformation only guarantees that sufficient
test data will be generated to meet the original test
adequacy criterion.

A Reversible Testability Transformation guarantees that
test data generated is necessary and sufficient:

Definition 3 (Reversible Testability Transformation)
A testability transformation, ~ is a Reversible Testability
Transformation iff its inverse is a testability
transformation.

•

Examples

We now look at two examples

The first is 'particular to Evolutionary Testing

The second is a general problem in test data generation

The first illustrates how the adequacy criteria may need to
change during Testability transformation

The second illustrates the way Testability Transformation may
lead to novel transformations

•

The I 9 Pro lem

Flag variables ~ 'coarse fitness landscape'

Possibly a large plateau of low equal fitness

Possibly a small plateau of high equal fitness

No guide from low to high

Can not find high plateau

Worst case:
Evolutionary te~ting degenerates to random testing

•

Flag Removal Transformation

n == n° - - ,
flag == (n' %2====0)?0:(n' <4);

if (a[i] !== '0' && (n- %2====0)?0:(11' <4))

•

Nothin Ne

These are all standard transformations

But we require a change in the adequacy criterion
Depends upon the interpretation of 'node of the CFG'

But test data :

which is adequate for MC/DC on the transformed

is adequate for branch on the original

•

"nstru tur dn ss

Unstructured control flow presents problems

Seek transformation to single-entrylsingle-exit

Such a transformation is always possible
(Note: Due to Cooper not 86hm and Jacopini)

Unfortunately the approach is to introduce flags

~ .. and to massively. alter the structure

•

Equivalence
Definition 4 (Functional equivalence)

Program p is functionally equivalent to program q if
they always produce the same output for the same
input.

Definition 5 (Path equivalence)
Program p is path equivalent (or strongly equivalent) to
program q if, for all inputs, the sequences of test and

. actions performed by the two programs are identical.

For us, path eq·uivalence seems a natural choice

•

Path Equivalence is restrictive

Knuth and Floyd: 'regular expression flowchart semantics'

Regular expression captures possible paths through flowchart

gotos cannot always be removed under path equivalence

R describes paths through structured programs

Hopcroft showed that

is not in R.

•
Diagrammatically

71 1 72 11 P 1 pi
(start

•
)

T T 1 ab

T F 1 ab

F T 23 ac

F F 24 d

stop

This does not preserve (strict) path equivalence

•
C nnection

. This means that branch coverage of the transformed program
corresponds to branch coverage for the original

So here we do not need to co-transform the adequacy 'criterion

but new concepts of equivalence and new transformations

Conjecture:

In theory, we never need to co-transform the adequacy criterion

•

Dispos le Transf rm tions

We generate test data using the transformed program

because it is easier

... then throwaway the transformed program

Transformation as a means to an end not an end in itself . .

Do the transformations even need to preserve meaning?

•
Conclusion

Test data generation is hard

... anything which helps is good

Test data generation can be impeded by structure

... so transform the structure

To avoid throwing baby out with bath-water

... also transform adequacy criterion

This allows the application of transformation to testability

... and the generation of new transformations

•

Futur or
Other non-meaning preserving transformation

Transformation as a means to an end

Would like branch coverage preserving transformation

Variable dependence preserving too·

Other Preserving?

Implementation
flags - some results

side effects - done but no results

restructuring - to do

Testability Transformation Conjecture: post transform to preserve adequacy?

