
t •

.An Odd Take on Formality and Testing
A Title Best Left Unannounced???

.. : ::. :

John AClark
Senior Lecturer in Critical Systems

Dept. of Computer Science
. Univers of Yo UK

g ork.a k
Brunei 26.03.2002

•
• Im

11 Largely to pose some questions and h" hEight
issues that may be u ul in defining the
relationship between formality and t lOng.

11 What are formal methods?
•. What's a spec?
• What's a Fault?

III Some non sta,ndard issues.

•

i What are formal methods?

11 A formal method typically comprises ••••
11 a notation for describing systems
• calculus for reasoning about properties of systems

(including refinement)
11 'guidelines for refining.

11 We may not be able to insist of all of the a
componen 11

11 The so of systems are changing and we will
typically need to test them.

•

Established Models
..... :

11 Formal spec + random or directed testing
using spec as oracle. Test and eck.

III Degree of directness varies a little. E.g. Z
specifications or program annotation languages (e.g.
Spark annotations).

11 You can view formal specifications as being created
by some of the evolutionary testing based tools (e.g.
for attaining structural coverage).

11 Specifications generate formal constraints that
define (after solution) test cases.

11 Z specs or after symbolic. execution from programs in
the form of augmented path traversal conditions etc.

•

/

Other ta li h d M del
".':',

11 Worst case timing analysis. Some degree of
rmal applies here 11

l1li Given specific formal assertions about subpath
feasibility a calculus can provide good bounds
on worst case execution time.

11 In the absence of formal proof it is really hard to see
how standard approaches to testing (iother than
evolutionary approaches can really hope to exhibit
extreme execution times.

•

1234: What are we testing for?
:.:: ,.::::::::::".:: .

•

yTe ting ~ r wh t?
11 Academically concentration on small things
11 Also emphasis on f'unctionai COlA

11 But ere are many
bothered about

11 timing, stress testing, resource usage, modifiabiliy
(???), security

•

Where Refinement is NP-h rd

•

NP-Hard Refinements
11 Common say that formal specification is

hard and refinement is harder ..
11 But sometimes we may lack a real refinement

method.
11 for example, for distributed systems the some

allocations of tasks to processors may well
result in tasks missing deadlines

•

And what planet are you on? .
What quantum world are you in?

":',; ':.::::::.:.:::::::::::-" .

•

ntum for ali ms
',' ':.',

11 We have a good understanding of what
programs do.

III atrix alg ra
III unitary transformations
11 projections (state collapse)

III Unfortunately given a specification it seems
very hard do the refinement!

11 We can map down certain constructs onto gate level
but general refinement is hard.

• But qQuantum progs are probabilistic and so
.. correctness' needs interpretation.

III Need to consider faults in quantum world.

•

When the Refinem nt Isn't
.... ; .. :;.;.::::: .. :::.

•

Relaxing Rigidity

11 U don't want too much d I1 in e
s cation.

11 You may be prepared to deviate m the
specification in the name of practicality

11 Formal spec might have reals.
11 Implementation might have fixed point.

hat are e implications for testing?

•

Where e n ci· the
individual behaviours but not
t eir sum

•

rties
_______ ~w ,,,.,'"',...,x·,,:·::·:·:·:·:·x·:·:·:·:::::.:-:.:.:.:.:.:.:.:.:-:.:-:-:.:-:.:.::.:.:.:.:.:.:.:.:.,.::.:.:.:.:.:-:.,.,.:.:.:.:.,.:::.:.:.:.::.::: .. ,.,.,.:-,.,.:: .. "::,

III There are some systems we can dIne
formally but not refine well.

III Systems comprising many interacting
components the behaviour of each defined
typically by some set of rules

11 For example Conway's 'Game of Life'
• Gives rise to the concept of 'gliders' passing across

the screen
11 BUT - given the concept of gliders we lack a

refinement approach to generate the rules for each
block

/

•

.Syste s with Em rgent Pro rties

Each node

is a simple

state machine

with state and

outputs

defined by state

and

NSEWinputs

:.
"

. Emergent pr p III

les
11 Reasoning and, testing these sorts of systems

and their emergent properties will become
increasingly im rtantll

11 Game of life is a toy example but it illustrates a
point.
,Ii More interesting examples of emergent properties

might include load balancing, provision of quality of
services etc.

11 What properties would we actually want to
, 'specify, how might we test these, and what
are e in ractions between specification and

ing?

•

It just looks a bit non­
stand r

.... .. ;:;.,. =::::::::::::::::::::::::::.:'

•

Non- t nd rd rchit ctures
11 hat work is being done in fPGA testing an

links with formality?
11 FPGAs are industrially very important. Some

work on high level formalisms and their
refinement/compilation to FPGA hardware.

11 What else can be done?
11 FPGAs are built for fault injection. A program is a BIG

fault.
11 Break free of the standard computational paradigm.

•

h r the spec comes last~

•

Data -T ests-Data -T ests-Data

11 Reverse engineering seeks to im se a snappy
description on test data obtained.

11 Good example here is Michael Ernst's work on
speciflea "on ge"neration

III start with loads and loads of predicates that could be
invariants and remove those that are inconsistent
with the test results.

11 What's left is a 'spec'.

11 But can use directed testing attack those
at remain and so improve matters. '

.' "

,. "

•

Neural Network Descriptions

III Neural nets-work! But what are they doing.
11 Fo·r certain of stem their use is

arguably advantageous technically but
reasoning a ut them and testing them is
difficult.

11 Work at present aims to get NNs to provide an
'explanation' of their decision making ... e.g. a
formal characterisation of class" cation
grouping"s.

11 These are 'sp~cs' or 'assertions' and opportunities for
falsification testing.'

m Or actually just testing!

•

When Nine ut f Ten Testers
Agree (It must e wrong)

... ;

. The testing of statistical prope "es

•

tWhat is a Test of a pro erty?

11 For systems where formal requirements are
s ified in statistical terms no one "'test' will
suffice.

11 Need a test sequence
• Actually sets of test sequences, since we need to

allow for oddities such as initial conditions and lack
of strong connection in behavioural graphs (e.g.
initial operations may preclude interesting states
ever being reached).

11 How do we go about getting such test
sequences?

11 Typical approaches would be random from some
distribution (e.g. operational). What else can be
done?

•

What i a F ult?

•

What is a Fa u It?
.......

11 This varies.
11 For statistical requirements we need some form of

confidence, interval approach (or similar)
III for rule based networks, a fault could be a node with

a disturbed rule set.
a Or possibly a perturbation in the input distribution or

initial state assumptions?
11 Other interpretations?

•

'liSummary
11 Aimed simply to indicative some ways of

deviating from standard views on formal
meth sand t ing.

11 Some areas are not well pinned down yet.
III How far should we limit ourselves?

