
FACS
A
C

L F

FM E

Issue 2005·1
March 2005

A ACM
C T

1
S

METHODS C

BCS

BC S R
M

Z A
UML

IFMSIG
E
E
E

E
E

S C· S r \...,- - .,-"'"

6FACS
The Newsletter of the Formal Aspects of

Computing Science (FACS) Specialist Group

ISSN 0950·1231

FACS FACTS Issue 2005-1 MARCH 2005

FACS FACT.sIISSN: 0.950.:1231] is the rievvsleff~r
Group onFQH;:n~mA::;pects of Computing Ane,"
distributediii ~~leQtrohiotQrmto all FACSnlennbe,rs.'

'-:-: "',:::'

As from 2o.o.5 , I=ACS FACTS will be ~ubl iS." h: '~· C F'fo
June, September and December.

:Ple.ase . . 37 for

Y:::k '·5 SUE'S ~1~~~~~~~~I~III~~I!li:~

Newsletter Editor

Editorial Team

Columnists

Paul Boca [illii!Q[j~!Q§!~§j!J[Q

Jonathan Bowen, JudithCarlton, John Cooke,
Kevin Lano, Mike Stannett ", .. -,;

t-r:~~ +:/~I~K~: ::i:?"

Dines Bj0rner (The Railwaypomairm
Adrian Hilton

: : : :" - ~ -,: '.: ::

Contributors to this',..::'"""'·''''''

Rob Arthan,. Dines Bj0rner, Paul Boca, Jonathan Bowen, Judith Carlton,
John Derrick, Joh.n Fitzgerald, Stephen Gilmore, Jane Hillston, Adrian Hilton,
Roger Bishop .Jones, Kevin Lano, Greg Michaelsor], Teresa Numerico,
Monika Seisenberger, Helen Treharne, EmU Sekerinski, Marcel Verhoef

:<:mdh~(::,::i:>: - .

2

,

FACS FACTS Issue 2005-1 MARCH 2005

Contents•.••..••.•... 3

Editorial. 4

FACS Away Day 5

The 5th Symposium on Trends in Functional Programming , Munich 7

FACS Christmas Meeting : The Verified Software Repository 8

Letting Formal Methods in through the back door: The UML and MDA 16

Program Verification and Semantics : Further Work , Science Museum, London 18

TRain: The Railway Domain ... 27

The RefineNet Column 29

Formal Aspects of Performance Evaluation 32

Z in Hol in ProofPower 39

FORTEST Network: Final meeting 56

Book Review 57

Workshop and Conference Announcements 60

Jobs 65

FACS Com mittee 67

Formal Methods Coffee Time 69

And Finally 71

3

FACS FACTS Issue 2005-1 MARCH 2005

Welcome to the first issue of FACS FACTS in 2005. We would like to begin by
apologizing to Professor Steve Schneider (University of Surrey) for inadvertently
omitting details of his talk from the report on 25 Years of CSP in Issue 2004-3 of
FACS FACTS. Steve's talk on Verifying Security Protocols: an application of CSP
was both engaging and informative, and his participation helped make the event a
success.

FACS ended 2004 with a Christmas meeting on the Verified Software
Repository, part of the Grand Challenge 6 effort. The meeting, which was held at
the new BCS London offices, was a great success and a full report can be found in
this issue. A report on the Program Verification and Semantics event held at the
Science Museum in London is included too, as are reports on other meetings.

This issue of FACS FACTS has attracted two
technical articles. The first is written by Jane Hillston and
Step hen Gilmore, both from the University of Edinburgh, on
Formal Aspects of Performance Modelling. Jane Hillston
was the recipient of the first BCS Roger Needham Award in
2004. This award, sponsored by Microsoft Research
Cambridge and established in memory of the late Roger
Needham of Cambridge, is for a distinguished research
contribution in computer science by a UK-based researcher
within ten years of their PhD. Jane won the award for her

work on PEPA (Performance Evaluation Process Algebra) and compositional
approaches to performance modelling . The winner of the award also has the
opportunity to give a public lecture at the Royal Society, London. Jane's lecture, to
a packed out audience, took place on 8 December 2004. Congratulations to Jane
on her achievement.

The second technical article in this issue is provided by Rob Arthan (of
Lemma One, Reading) and Roger Bishop Jones. It describes the Z proof tool ,
Proofpower, in particular, Z in HOL in ProoIPower.

This issue welcomes a new columnist too: Dines Bj0rner (Technical
University of Denmark, and currently on sabbatical at the University of Singapore).
Dines wi ll be reporting on TRain: The Railway Domain. Dines joins Adrian Hilton
(Praxis High-Integrity Systems, Bath) who is reporting regularly on the UK
government funded EPSRC RefineNet Network. A report from Adrian Hilton
appears in this issue.

FACS is planning to organize some interesting events in 2005. Discussions
are already underway for the 2005 Christmas Meeting; details will be announced in
due course on the FACS website and mailing list. Paul Boca, Jonathan Bowen and
Jawed Siddiqi are currently engaged in organizing a series of evening seminars to
be held at the BCS offices in London. Further details can be found in this issue.

Finally, all BCS-FACS members are very welcome to submit to FACS
FACTS. Please do send items for possible inclusion, whether technical or non
technical, to the newsletter editor at any time. We hope you enjoy this issue and
can contribute in the future! •

4

,

FACS FACTS Issue 2005-1 MARCH 2005

On Saturday 23 October 2004, the FAGS
committee met in London (at the Union Jack
Glub near Waterloo Station) to discuss the
future of the group. There were two main
reasons for holding this meeting: to define a
new mission statement, as the current one
was out of date and no longer represented
the group accu rately, and to make progress
towards drawing up a five-year plan for

FAGS. Lively discussions took place and our expert facilitator Jawed Siddiqi
kept us on track and ensured everyone had the opportunity to put their points
forward. This report summarizes the main decisions made during the eight hour
meeting.

We set about formulating the mission statement with two brainstorming
sessions. In the first one we individually selected the areas on which, in our
individual opinions, FAGS should focus. These were discussed in detail as a
group and commonalities between them identified. In the second brainstorming
session, each committee member put forward a list of the objectives that they
felt FAGS should be trying to achieve. Once again, these were discussed (in
great detail) as a group. The results from both sessions were debated and, after
much deliberation and redrafting, we agreed on the following new mission
statement for FAGS:

To promote the awareness, development and application of'

• a mathematical basis for computer science;
• theories underpinning practice in computing;
• rigorous approaches to information processing

in computer-based systems.

The committee felt that this new Mission Statement more accurately reflected
the aims of the group and encompassed a wider selection of areas than the
existing statement (on the website).

Progress was made regarding drawing up a five-year plan for FAGS too.
The committee agreed, after a substantial debate, that in order to take the
group forward, effort would need to be focused on the following:

• Encouraging our community [Paul Boca)
• Facilitating knowledge exchange between academia and industry [Judith

Garlton)
• Supporting education [Mike Stannett)
• Promoting dissemination [Jonathan Bowen)

- 5

FACS FACTS Issue 2005-1 MARCH 2005

• Providing representation to government [Jawed Siddiqi]
• Evolving the discipl ine [John Cooke]

A committee member has been assigned to oversee each of these efforts, as
noted above. Some progress has already been made on encouraging our
community: Paul Boca, Jonathan Bowen and Jawed Siddiqi are currently
engaged in organizing a series of free evening seminars, to be held at the
BCS London offices. Four seminars will be given in the series by Dines Bj0rner
(Technical University of Denmark, and currently on sabbatical at the National
University of Singapore), Muffy Calder (University of Glasgow), Steve Reeves
(University of Waikato, New Zealand) and Jim Woodcock (University of York).
Full details will be announced in due course on the BCS-FACS mailing list and
website [http://www.bcs-facs.org/events/EveningSeminars] . Progress on the
other efforts will be reported in future issues of FACS FACTS.

Ultimately FACS exists to
serve the interests of its members.
The committee would therefore
welcome feedback on the decisions
taken at the meeting; comments may
be emailed to info@bcs-facs.org.uk.
FACS plans to organize another
away day in eighteen months time to revisit the ideas discussed at this meeting,
review progress and determine what it has to do to serve the formal methods
community more effectively. •

. '.-,

Jo!ringOlher SQ~ietie$ arid Groyps
:':::::- . ;:'{~< . :::::>- t(:::··:;·: .:::,:: .. , .:.)::):,)(;:}" }:(::~< . ,.

6

FACS FACTS Issue 2005-1 MARCH 2005

For its fifth instantiation, Trends in Functional Programming (TFP) ventured
beyond Scotland to enjoy the hospitality of Hans-Wolfgang Loidl and his
colleagues at Ludwig Maximillian University, Munich, Germany, 22-26
November 2004 [http://www.tcs.informatik.uni-muenchen.dei-hwloidIITFP04].
This lively Symposium was attended by 35 international participants spanning
Austria , Brazil, England , Estonia, France, Germany, Hungary, Italy, Netherlands,
Scotland , Spain and Turkey.

At TFP, all participants are encouraged to present papers, enabling first
airings of evolving ideas and providing a critical but supportive forum for PhD
students to engage with more experienced peers. At TFP'04, 27 papers were
presented in two days. As typifies TFP, almost all the papers had strong explicit
formal underpinnings. However, I think that the following will be of particular
interest to BCS-FACS readers as they exemplify the use of formal techniques in
establishing properties of programs:

• G. Hutton & J. Wright, Calculating an Exceptional Machine: uses
transformation techniques to successively refine an abstract machine
from the formal definition of a simple language.

• C. Dubois, T. Hardin, V.viguie & D. Gouge, FOCAL: an Environment for
Developing Certified Components: presents a language framework for
constructing certified software from specification to implementation with
tools that generate COQ code for automatic verification .

• N.Popov & T. Jebelean, Verification of Functional Programs in
Theorema: discusses the development of a system for generating
verification conditions for recursive programs.

• G. Grov, A. Ireland & G. Michaelson, Model Checking HW-Hume:
considers the compilation of Hardware-Hume programs to Promela for
model checking.

• L.Lensink & M. van Eekelen, Induction and Co-Induction in Sparkle:
extends the Sparkle proof assistant for Clean with proof techniques for
mutually recursive functions and data types.

• T. Altenkirch & J. Grattage: a Functional Quantum Programming
Language; introduces the QML language for quantum computations on
finite types, based on categorical semantics.

The refereed proceedings will be published later in 2005 by Intellect as "Trends
in Functional Programming 5", edited by Hans-Wolfgang Loidl.

The Symposium was enlivened by excellent food, a modicum of
weissbier and gluhwein, and the banquet held in the Augustinerkeller.

TFP'05 will be held in Estonia and TFP'06 in Nottingham. See the TFP
website [http://www.tifp.org] for further details. •

7

FACS FACTS Issue 2005-1 MARCH 2005

On Tuesday 21 December 2004, the BCS-FACS group held a one-day meeting
on a proposed Verified Software Repository, to store verification tools and
challenging case studies. This effort is part of the Grand Challenge 6 initiative in
the area of Dependable Systems Evolution [http://www.fmnet.info/gc6]. Seven
Grand Challenges for Computing Research, in the style of Hilbert, have been
proposed [http://www.nesc.ac.uk/esi/events/Grand Challenges], and this
meeting provided a small initial step towards part of one of these. For further
information , see a recently published report, edited by Tony Hoare and Robin
Milner, summarizing the progress on all seven Grand Challenges in computing,
available for download from the BCS website [http://www.bcs.org/NR/rdonlyres/
CFC7C803-DBA 7 4253-85E712AF5B984 721/0/gcresearch.pdf].

The event was held at the excellent new British Computer Society (BCS)
[http://www.bcs.org] offices in central London, near Covent Garden. Forty-three
people attended the event; most were based in the UK, but some delegates had
travelled from further afield (for example, from Australia, Canada, and Japan).
This mix of delegates, with different backgrounds and experiences, gave rise to
fruitful discussions both during and after the talks. The newly appointed BCS
President, David Morriss, was able to attend for part of the day too and
welcomed delegates to the new BCS venue. This was fitting, as the BCS is a
major supporter of the Grand Challenge programme.

In this report, we give a summary of the six talks that made up the
programme. The interested reader may down load the speakers' slides from the
event website [http://www.bcs-facs.org/events/xmas2004] . A selection of
photographs taken at the event by Pierre-Yves Schobbens and Jonathan
Bowen is available on the event website too, as are two papers on the Verified
Software Repository.

Morning Session

The first session, chaired by Jonathan Bowen, began with a
motivational talk by Tony Hoare (Microsoft Research) on the
verifying compiler and the need for a verified software repository.
Hoare explained that a verifying compiler is a tool that uses
theorem-proving technology to prove the correctness of programs
before they are executed. Correctness is specified with annotations
such as type information, assertions and specifications, which
accompany the programs to be compiled. Such a tool would reduce the
number of avoidable programmer errors occurring in software systems, saving

8

FACS FACTS Issue 2005-1 MARCH 2005

between 22 Million and US$60 Million per year (according to US Department
Commerce Planning Report 02-03, May 2002).

The verifying compiler problem has been studied for over 30 years, with
notable contributions made by Turing in the 1950s (with the introduction of
assertions), Floyd in 1967 (suggesting that a verifying compiler could check
assertions with a theorem prover), Dijkstra in 1968 (suggesting that assertions
are written before code) and Hoare himself in 1969 (with the use of axioms).
Previous attempts to make progress towards a practical verifying compiler have
failed for reasons that are now well understood. Technology and theorem
proving capabilities have moved on significantly since those early days, and so
Hoare believes that the verifying compiler is now achievable (this century at
least!). There is sti ll a great deal of work to be carried out and the timescale set
for the project is 15 years.

Hoare explained that a first step towards producing a verified compiler
was to set up a verified software repository. The intention is for the repository
to contain a number of tools, such as program analysers, theorem provers,
model checkers, and so-called challenge codes. The challenge codes are
intended to be case studies of varying sizes, expressed in different languages,
such as programs, specifications and requirements on which to run these tools.
The logistics of how this repository would be set up was explained in the final
talk, given by Juan Bicarregu i.

Hoare stressed that the success of the project would rely on various
people working together; in particular, it would require involvement of program
theorists, programming tool-set builders, compiler writers and optimisers, design
pattern architects, sympathetic users to test the assertions, open-source code
contributors, developers of proof tools and model checkers, and teachers and
students who will carry out a significant amount of work.

Colin O'Halloran (QinetiQ) was the first
speaker given the opportunity to rise to the
Grand Challenge laid down by Hoare.
O'Halloran's experience is that most errors
in software development are due to issues
in the requirements or the design. It is at
these stages that formal methods can be
most effective. This was illustrated with the
non-trivial case study of the Eurofighter Typhoon. The requirements for the
Eurofighter were specified in Fortran - for historical reasons rather than by
choice! - and turned into Simulink diagrams. The ClawZ tool was then used to
help transform the Simulink diagrams into formal Z notation, later to be refined

9

FACS FACTS Issue 2005-1 MARCH 2005

to an implementation using the SPARK Ada programming language (see Rod
Chap man's talk) .

The correctness of the resulting Ada was verified with varying degrees of
success, due to limitations of· the verification tools themselves, proof
classification problems, specification mismatches and in one case lack of time.
The Flight Control Law was the most successful of the three different Simulink
specifications (the other two were Autothrottle and Autopilot), verified with 97%
of its verification conditions discharged automatically. About 80% of the
verification conditions in the other two cases were automatically discharged.
The likely reason for the lower percentage is that the specifications were not as
mature as the specification for Flight Control Law.

Michael Butler (University of Southampton) brought the
morning session to a close with a talk surveying applications
using and tools for the B formal development approach. A
number of such tools are available, having different
functionalities and uses. Butler focused on Atelier-B (from
ClearSy, France), the B-toolkit (from B-Core, UK), the BZ
Testing Tool and the Southampton "home-grown" UMLlB, U2B
and ProB model checker.

An impressive list of applications developed using the B approach was
then discussed. The driverless metro for the Paris Charles De Gaulle airport
contains 180,000 lines of B (specifications and refinement), 140,000 lines of
Ada and 43,000 proof obligations. All of these obligations have been proved ,
98% of them automatically. Other examples were given, including work in
progress at Peugeot where the specification contains 350,000 lines of B.

Butler cited the European collaborative MA TISSE project (Methodologies
and Technologies for Industrial Strength Systems Engineering)
[http://www.matisse.ginetiq.comj, which finished in 2004, as a good source of
applications in B. The application domains studied in this project were railways,
smartcards and healthcare.

The new EC-funded RODIN (Rigorous Open Development for Complex
Systems) project [http://rodin.cs.ncl.ac.ukj, which began September 2004 and
will run until 2007, will have a large B element too. Some software will be
formally specified using B, and some parts will be formally verified. For
example , the model checker ProB will be verified in B. Butler explained that
several case studies are planned : position calculation for 3G phones, engine
fai lure management, mobile internet application, air traffic display and ambient
campus. The formal developments will be made publicly available in due
course . For more information on RODIN, please visit the website above, or see
the article in issue 2004-3 of the FACS FACTS newsletter [http://www.bcs
facs.org/newsletter/facts200411.pdf]. There is a workshop on RODIN at FM'05

10

,

FACS FACTS Issue 2005-1 MARCH 2005

in July 2005, which some readers may be interested in attending. Further
details can be found on the FM'05 event website [http://www.csr.ncl.ac.uk/fm05/
main workshops.php?mode=info&language=engl ish&workshop=10J.

Afternoon Session

Jim Woodcock chaired the afternoon session . The first talk by
Tom Melham (University of Oxford) reflected on two previous
theorem-proving projects: PROSPER and Forte. PROSPER
[http://www.dcs.gla.ac.uklprosper/J was an ESPRIT-IV project
that developed a framework for embedded custom verification
tools. PROSPER consists of a core proof engine for HOL 98
(which understands theorems and inference rules) written in ML. Custom proof
engines are constructed by writing new proof procedures in ML and connecting
with external plug-in components for BOOs, SMV, SAT, ACL2 and HOL libraries,
and "glue code" in ML. An integration interface is provided too for
communicating between the various components.

Melham explained how the PROSPER project demonstrated that the
architecture worked and how it promoted the idea of componentization. There
were some disadvantages, however; for example, considerable engineering
overhead was required and the decision to use a functional programming
language was perhaps not ideal. With hindsight, Melham suggested that it
would have been better to have used standard solutions such as XML and
CORBA, and separate the data scripting (which was in ML) from the control
scripting (using Python).

Forte [http://www.intel.com/research/scl/fortefl.htmJ is a hardware
verification system developed by Intel. It consists of a lightweight theorem
prover, symbolic simulation and abstraction , temporal logic model checker and
a functional programming language ca lled FL. The FL language is central to
Forte and has several roles, including scripting verifications, customizing the
environment, controlling model checkers, and is the term language for the
higher-order logic of the theorem prover. The methodology has several
advantages: it is realist ic, structured, incremental, gives feedback and supports
regression as well as reuse. Intel has used Forte for various verifications,
including an IA32 instruction-length decoder and verification of gate-level
floating point implementations against IEEE specifications. In summing up,
Melham stressed that verifying industrial-scale designs was an interactive
programming activity, requiring deep insight into the capabilities of the tool and
design itself. The methodology was realistic, based on the way designs are
carried out.

Rod Chapman (Praxis High-Integrity Systems) continued
the theorem-proving theme in his talk on SPARK
[http://www.praxis-his.com/sparkada/spark.aspJ . SPARK is an
annotated pure subset of Ada. The annotations support design
by contract, including pre- and post-conditions. A verification
environment, consisting of a verification condition generator
and theorem prover, is available for SPARK, which can be used to prove
"interesting" properties, partial correctness and the absence of runtime errors.

11

FACS FACTS Issue 2005-1 MARCH 2005

This tool is a commercial product, and its customers demand fast
discharge of verification conditions; that is to say, minutes (such as the time
taken to have lunch) rather than hours. The SPARK team at Praxis has risen to
the challenge/demand of its customers, spending a considerable amount of
effort on improving the proof engine for SPARK. Tactics have been added to
deal with typical "patterns" arising in designs. Chapman presented some
encouraging results. Four major releases of the theorem prover were applied to
five example programs - the SPARK Examiner (a static-analysis tool for
SPARK), SHOLlS (a safety-critical naval information system), SAWCS (marine
stores management system), a ballistic simulator and US National Security
Agency (NSA) Tokeniser (part of a biometrics access control system) - using
the same verification condition generator running on the same computer
hardware. The elapsed time together with the percentage and absolute number
of verification conditions discharged were noted. In each of the examples, the
elapsed verification time increased but so did the number of the verification
conditions automatically discharged by the tool. SAWCS had 18704 verification
conditions; 97 .3% of these could be discharged with the latest version of the
prover, reducing the number of verification conditions that could not be
automatically discharged to just S1 0 (from 968).

Chapman then explained how Praxis could contribute to the verified
software repository. Although it would not be possible to donate SPARK itself
(as it is not open source and is unl ikely to be so for the foreseeable future), or
some of the case studies discussed (which were either proprietary or of a
sensitive. nature), Praxis could donate the Ballistic Simulator, developed by
Adrian Hilton as part of his doctoral thesis. It may be possible to donate the
NSA Tokeniser example too. The tokeniser is an ideal candidate challenge
code because the security requirements are formally specified in Z in line with
Common Criteria Evaluation Assurance Level S (EALS), the core system is
100% SPARK, it is amenable to proof and several outstanding proofs remain to
be carried out. Chapman urged the Grand Challenge 6 committee to approach
NSA to request that the code for the tokeniser be donated to the repository.

The final talk by Juan Bicarregui (CCLRC, Rutherford Appleton
Laboratory) focused on the logistics of setting up the proposed
verified software repository, and how it would be managed and run.
Bicarregui explained that a Grand Challenge 6 committee to
oversee and steer the project had been set up, consisting of: Keith
Bennett, Juan Bicarregui, Jonathan Bowen, Tony Hoare, Cliff Jones,

John McDermid, Colin O'Halloran, Peter O'Hearn , Brian Randell, Martyn
Thomas and Jim Woodcock (Chair). The committee meets at regular intervals.
(The first meeting in 200S took place on 26 January at the BCS London offices .)

Regarding management of the repository itself, Bicarregui reminded the
delegates of the vast experience CCLRC has in managing scientific repositories
(at least 16, covering various disciplines). A thorough infrastructure for setting
up and maintaining the repository was then proposed, involving several stages:
developing the content of the repository, technology required (e.g. web-based
interface for accessing the tools and making submissions), user support (e.g .
helpdesk, materials, training), as well as management and dissemination.

A subcommittee would oversee the management and dissemination
aspects, and would also monitor the use of resources. A forum would be set up

12

,

,

FACS FACTS Issue 2005-1 MARCH 2005

as well, allowing tool providers, users and providers of challenge codes to give
feedback on the verified software repository and its facilities.

The aim is to publicise the repository as widely as possible; ideas that
will be explored include a possible newsletter, a dedicated scientific journal, and
dedicated workshops/events (such as this one). So far two such workshops are
planned for 2005: one at ETAPS 2005 joint conferences at Edinburgh in April
[http://www.dcs.qmul.ac.uk/-ohearn/DSE-Workshop/etaps05.html). considering
software verification applications for the repository, and another at FM'05,
Newcastle upon Tyne in July [http ://www.fmnet.info/qc6/fm051. covering tools,
applications and theoretical issues. An annual Marktoberdorf-style Summer
School providing training in that year's tools and challenge codes will be
considered too.

To get the repository up and running, developers will be invited to
contribute their tools and challenge codes. The following tools are under
consideration for inclusion in the repository: the Daikon dynamic invariant
checker, SLAM, the Splint static analyser, the Alloy, FDR and Spin model
checkers, ACL2, HOL, Proof Power, PVS and ZlEves theorem provers, ESC
and Java optimisation framework, the B-Toolkit, JML, SPARK Ada, and the
Cyclone safe dialect of the C programming language.

Following Bicarregui 's talk, a lively discussion ensued, with many of the
delegates in the audience participating. Several delegates were keen to receive
clarification on the kinds of challenge code that could be deposited, and how the
tools deposited would be used. Suggestions for possible items to be included
came from the audience too, as did a list of possible outlets where the
repository could be publicised. Jonathan Bowen suggested that Turing's first
program could be deposited. As Turing laid the foundations for the work, this
would seem a fitting tribute to the British founder of computer science.
Discussions and networking continued afterwards at the festive wine (and
mince pies!) reception.

Delegates during the wine reception

Conclusion

The meeting was a success and the feedback received from the delegates and
speakers was positive. All of the speakers gave informative and thought
provoking talks, and the enthusiasm and passion they felt for their work was
apparent to us all. We were in the presence of some great minds, and were
privileged to witness the launch of a project that could have great impact on the
development of dependable systems in the future. FACS wishes the Grand
Challenge 6 committee well with the Verified Software Repository project and
hopes it will be able to help publicise the achievements made via reports in
FACS FA CTS and through update meetings. If you feel you are able to

13

FACS FACTS Issue 2005-1 MARCH 2005

contribute in some way to the project, please contact Jim Woodcock on
jim@cs.york.ac.uk.

The meeting has hopefully helped relaunch the FACS Christmas meeting
series. It has set a high standard , which we aim to maintain and build upon if
possible. Discussions on the 2005 Christmas meeting, to be held once again at
the BCS London offices, have already begun. John Cooke (Loughborough
University, FAC joumal liaison officer for FACS) will organize this meeting, with
help from Jonathan Bowen, Paul Boca and others. Further details will be
announced in due course. In the meantime, please make a provisional note in
your diaries for December 2005! Information will appear on the BCS-FACS
web site in due course [http://www.bcs-facs.org/events/xmas2005/l. Information
on the work of the Grand Challenge 6 Committee on Dependable Systems
Evolution, including the Verified Software Repository, is also available online
[http://www.fmnet.info/gc6J.

Left 10 right: Tom Me/ham, Fiona Po/ack,
Michae/ Butler, AIi Abdallah, Sieve Schneider

Acknowledgements

The British Computer Society (BCS) [http://www.bcs.orgl
provided the wonderful new facility at their offices in central
London, near Covent Garden, free of charge. The EPSRC
funded Interdisciplinary Research Collaboration on
Dependability [http://www.dirc.org.ukJ provided financial support for the event.
FACS and the organizers of the event would like to thank both the BCS and
DIRC for their generosity.

Several people helped make the event a success. Juan Bicarregui
(CCLRC, Rutherford Appleton Laboratory) and Jim Woodcock (University of
York and Grand Challenge 6 Chair), the technical co-chairs, assembled an
excellent group of speakers from academia and industry. Jonathan Bowen
(London South Bank University, and FACS Chair) and Paul Boca (FACS
Newsletter Editor) were the organizational co-chairs, assisted by Michelle
Hammond (PhD student, London South Bank University) and Teresa Numerico
(Leverhulme Research Fellow, London South Bank University).

Further information is available on the BCS-FACS website
[http://www.bcs-facs.org/events/xmas20041. •

14

FACS FACTS Issue 2005-1

Formal Methods
2005

MARCH 2005

18-22 July 2005 - Newcastle upon Tyne, UK
www.csr.ncl.ac.uk/fmOS

Open for e-Registration from 7 March

~
Full Scientific Programme 20-22 July

Invited Speakers:
Mathai Joseph (Tata Research & Development, Pune, India)

Marie-Claude Gaudel (Universite de Paris-Sud, France)
Chris Johnson (University of Glasgow, UK)

Industry Day: 20 July

Co-located Conferences (18-19 July):
Calculemus 2005

Formal Aspects of Security and Trust (FAST) 2005

Workshops (18-19 July):
Grand Challenge Workshop on Dependable Systems Evolution

Web Languages and Formal Methods (WLFM 2005)
Overture - the future of VDM and VDM++

Practical Applications of Stochastic Modelling (PASM 2005)
Workshop on Rigorous Engineering of Fault Tolerant Systems (REFT 2005)

The Railway Domain (TRain 2005)

Tutorials (18-19 July) :
The SpeC# Programming System: an Overview

Formal Aspects of Software Architecture
Increasing Dependabil ity of Smart Card Based Systems

Perfect Developer
SPARK

Petri-nets in Asynchronous Circuit & Systems Design
Verifying Industrial Control System Software

Organiser:
Claire Smith, tel : +44 (0) 191 2227999, email : claire.smith@nci.ac.uk

General Chair:
John Fitzgerald, email : john.filzgera ld@ncl.ac.uk

15

FACS FACTS Issue 2005-1 MARCH 2005

The Unified Modelling language (UMl) has become the most important "semi
formal" software specification and design language, since its origin from the
unification of the Booch, OMT and OOSE methods in the mid 90s. UMl was
adopted as a standard by the Object Modelling Group (OMG) in 1997. UMl
contains a wide range of notations, from class diagrams to a version of Harel
Statecharts, and provides a capability for formal description of class invariants,
and operation pre- and post-conditions via the "Object Constraint language"
(OCl). Z was one of the original influences on OCl, via the Syntropy method of
Cook and Daniels. A major revision of UMl, to version 2, is due for release in
2005, and many aspects of this revision are already available from the OMG's
web site [http: //www.omg.org/uml]. The revision attempts to rationalise and unify
the many notations and concepts in UMl, and solve some of the problems,
particularly in semantics, which were present in earlier versions of the language.
OCl has also been revised, with a more comprehensive type system and the
removal of some peculiarities (in the original version of OCl, sets could not be
elements of other sets, and so all sets were automatically "flattened" to remove
such nesting).

As an example of the style of OCl specification, the constraint (on a Bag
class) that the number of letters in the bag with symbol 'e' is at most 12, is:

bagletters->select(symbol = 'e')->sizeO $ 12

In Z, this could be written as

{ x : bag letters I x.symbol = 'e' } $ 12

At the same time that UMl has been evolving to support more
declarative and formally precise models, the need for such models has been
recognised within another major OMG initiative , the "Model-Driven Architecture"
(MDA). The MDA aims to raise the level at which software development takes
place, from programming language code to diagrammatic models, such as
those of UML. It envisages a situation where developers will focus their effort on
the construction of "Platform Independent Models" (PIMs), free from
implementation bias, and that from these, "Platform Specific Models" (PSMs)
will be generated, possibly with a high degree of automation. PSMs describe a
version of the system tailored to a particular environment, such as J2EE. From
a PSM, automated code generation can take place to produce an executable
version of the system for the platform.

The MDA initiative should provide a good opportunity for the formal
methods community to contribute to and influence mainstream software
engineering practice. The use of models as "programs" means that these
models must have a clear and unambiguous semantics, and that analysis

16

FACS FACTS Issue 2005-1 MARCH 2005

techniques, for animation or detecting errors - at the model level - are needed.
One application of formal methods to UML and MDA has been in the
development of model-checking techniques for UML. Translations from UML
into the notations of model-checkers such as SMV, SPIN and Promela have
been used for verifying UML models, and producing counter-example traces
when a model fails to satisfy a specification. Other formal methods, such as B
and Alloy, have also been used to verify UML specifications, avoiding the state
explosion problem which limits model checking, but requiring human
intervention in the proof process.

Another issue that is central to the MDA approach is the correctness of
transformations on models - such transformations may be used to improve the
quality or abstraction level of a PIM, or map a PIM to a PSM. A precise
semantics for models is again essential in order that transformations can be
certified as correct and used in tools. Some current work on transformations
which uses formal techniques is available online [http://www.qvtp.orgJ.

Apart from the OMG's website, the best source for the latest on the MDA
and precise UML approaches is the Software and Systems Modelling Journal
(SoSyM) [http://www.sosym.orgJ. •

Formal M~thods 2006 {
. ";.:. ,.: .•....

. McMa~te" Unive~sitY; HarTthton;oni~Pi6;· Canada
21 - 28 August 2006

http://fm06.mcmaster.ca .
Websile underconslruclion .

. ,

First Announ.cement and Call for Satellite Events and Worksh~ps

We are inviting proposals for satellite .events and workshops. In particular,
but not exclusively, we encourage proposals forr,acoc()rdinated series cif

. satellite events and workshops on application domainsi like the autornotive,
railway, and aviqnics ~ectors ; AI~p, withsafe!y anq ;-cerfification . issues
related to software becoming mdreprominEmt, we thinki it would be useful to
have a workshop on the topic of certification. Parties ipterested in helping to
organise relattid workshops . should contact iT orn .' Maibaum •.•. on
tom@mcmaster.ca .

.... , ..

Confere~ce ch~ii: Eiihil S~~~rin~~i ; M6M1ste; univei~~.~~iI@~6maii~i.ca
program Chairs: .: Jayadev Mi~~a ; U~iversitY of ~exas: ~:stin

. Tobias Nipkow, TU Munich

Workshop Chair:.
Tutorial Chair:

. Poster and Tool Exhibition Chair: M~rsha Chechik, UbiversitY ofTorontci

17

FACS FACTS Issue 2005-1 MARCH 2005

A follow-on of a 2001 meeting, in which some of the major computer
scientists in the area presented their early experiences in the field.

"Semanticists should be the obstetricians of programming languages,
not the coroners." - John Reynolds (2 December 2004)

In the suitably historical location of the Fellows' Library and the adjoining
Director's Suite of the London Science Museum, a meeting on "Program
Verification and Semantics: Further Work" was held on Thursday 2 December
2004, under the joint auspices of the BCS Computer Conservation Society
(CCS) fhttp ://www.bcs.orglsglccs) and BCS-FACS [http://www.bcs-facs.orgJ. It
was a follow-up of a previous meeting held in 2001, entitled "Program
Verification and Semantics: The Early Work" 2 . The invited speakers at the 2004
event were chosen as being among the most important pioneers in formal
methods; they were John Reynolds (Carnegie Mellon University, USA), Gordon
Plotkin (University of Edinburgh) and Cliff Jones (University of Newcastle upon
Tyne). The meeting was introduced by Roger Johnson (Birkbeck, University of
London), Chair of the CCS. The meeting was split into two sessions, with Cliff
Jones chai ring the first half, including presentations from Reynolds and Plotkin ,
and Jonathan Bowen (London South Bank University, BCS-FACS Chair)
chairing the second half.

Left /0 right: Gordon Plo/kin, Cliff Jones and John Reynolds

1 Or. Teresa Numerico is a Visiting Research Fellow at London Sou th Bank University, funded
by the Leverhulme Trust [hllp: flwww. leverhulme.org.uk), on leave from the University of Salerno,
Italy.
2 For more details on the 2001 Program Verification and Semantics event, see the associated
website [hllp :lfvmoc. museophile.org/pvs01 J.

18

,

FA CS FACTS Issue 2005-1

John Reynolds of Carnegie Mellon University, Pittsburgh ,
USA was the first speaker [http://www.cs.cmu.edu/-jcrJ. In his
talk "The discoveries of continuations,,3 he concentrated on the
invention and application of the concept of continuations, a key
idea in the field of program verification and semantics4

. He
believed that continuations and related concepts were
discovered and rediscovered many times in different contexts.
This was due only partially to the lack of communication
between scientists; instead it was largely the outcome of the

MARCH 2005

different environments in which the idea could be applied. Continuations allow a
wide range of program transformations that can be useful both in the
interpretation of programs (e.g., through an operational semantics) and in
denotational semantics, in the style of Scott and Strachey. Continuations were
useful because they were an abstraction of "the rest of the program", in terms of
a function or procedure, that clarified the control structure of imperative
programs. Considering the multi-functionality of the concept, it is not surprising
that continuations were independently rediscovered several times, and cannot
be attributed to a single person.

When the Algol 60 language [http://en.wikipedia.org/wiki/ALGOLJ was
launched, there was a burgeoning of research on formal programming
languages and their implementation. In an Algol compiler, the representation of
a return address or the target of a jump had to provide both the relevant object
code and a dynamic environment (Le., a stack reference). In retrospect,
according to Reynolds, this pair was a representation of a continuation.
Similarly, in Peter Landin's abstract SEeD (Stack Environment Control Dump)
machineS, the dump, which described the computation to be executed after the
control was concluded, was a representation of a continuation.

Perhaps the earliest description of a use of continuations was given by
Adriaan van Wijngaarden6 in 1964 at the IFIP Working Conference on Formal
Language Description Languages held in Baden bei Wein, whose proceedings
were published two years later7

. When he began to investigate the history of
continuations, Reynolds was surprised that Van Wijngaarden's presentation did
not seem to establish the concept within the computer science community,
particularly since Dijkstra, Hoare, McCarthy, Mcllroy and Strachey all
participated in the recorded discussion of the presentation , and other
conference attendees included Bohm, Elgot, Landin and Nivat. However, van
Wijngaarden's contribution fell on fallow ground; even Strachey was unaware of

3 The talk was based on his homonymous paper: Reynolds, J . (1993) "The discoveries of
continuations", Lisp and Symbolic Computation, 6:233-247 .
, For an online explanation of continuations with many hyperlinks, see the Wikipedia entry
\hltp:llen. wikipedia.org/wiki/Conlinuation] .

See: Landin, P. (1964) "The mechanical evaluation of expressions", The Computer Journal
6(4}:30B-320. Nole thal Peler Landin {htlp:/lwww.dcs. gmul.ac. uk/-oeterl] was a speaker allhe
previous Program Verification Semantics meeting and an atlendee at this meeling. His research
has had an important influence on Ihe work described by alllhree speakers at this event.
• Wijngaarden (1916-1987) was an eng ineer who was also a founding falher of compule r
science in the Nelherlands. A short online biography is available
thttp://www.answers.com/topirJadriaan-van-wi jngaardenl.

Sleel, T. B. (1966) Formal language description languages for computer programming, North
Holland.

19

FACS FACTS Issue 2005-1 MARCH 2005

the similarities between that work and Wadsworth's later description of
continuations.

It is possible that the lack of communication was due to philosophical
differences between van Wijngaarden and other researchers, particularly his
abhorrence of abstract syntax and his belief that proper procedures were more
basic than functions. A more likely cause, however, was his failure to pinpoint
continuations themselves as a significant concept. As pointed out in Mcllroy's
private recollection to Reynolds: " ... an idea can be understood without all its
ramifications being seen, even by its originator. Since van Wijngaarden offered
no practical examples of continuation passing, nor any theoretical application,
save as a trick for proving one isolated and already known result, the value of
continuations per se did not come through."

In December 1969, the Pol ish researcher Antoni W. Mazurkiewicz
circulated a working paper entitled "Proving algorithms by tail functions"a, in
which he used an automaton-like concept of an algorithm, for which he
proposed a semantics using a "tail function". This is an environment that maps
labels into command continuations, similar to the continuation semantics of an
imperative language with labels and "go to" instructions. Reynolds felt it was
unclear whether this was a discovery of continuations or a precursor. However,
Wadsworth has explicitly acknowledged that his later work was inspired by that
of Mazurkiewicz9

A discovery due to F. Lockwood Morris was presented during a
colloquium given at Queen Mary College London in November 1970'0 in which
he gave a definitional interpreter for a call-by-value functional language with
extensions for assignments and labels. Reynolds was in the audience of that
lecture and from the very beginning appreciated the possibility of using different
styles of definitional interpreters varying in their abstractness and circularity,
making use of continuations.

Reynolds was himself involved in the spread of these ideas; during a visit
to Edinburgh in December 1970, he described Morris's talk to Rod Burstall and
Chris Wadsworth - and Wadsworth explained that he had been pursuing the
same idea in the context of denotational semantics. Subsequently, Strachey
described the idea in a seminar at the Institut de Recherche d'informatique et
d'Automatique in May 1973" , but Reynolds is inclined to believe that though the
paper was written by Strachey the idea should be attributed to Wadsworth.

The idea of continuations was rediscovered by other researchers, such
as James H. Morris. In 1971 , he submitted a paper to the ACM in which he
used continuations to transform Algol 60 programs. When the referee pointed
out that van Wijngaarden had described a similar transformation seven years
earlier, the paper was reduced to a letter to the editor, in which Morris showed

8 The final version of the paper was printed two years later: Mazurkiewicz. A. W . (1971) "Proving
algorithms by ta il functions", Information and Control, 18(3):220-226.
9 Wadsworth, C.P. (1992) Electron ic mail to Amr A. Sabry, 24 December.
10 Morris, F. L. (1993) "The next 700 formal language descriptions", Lisp and Symbolic
Computation, 6(3/4):249-256 . Original manuscript dated November 1970.
11 Strachey, C . (1973) "A mathematical semantics which can deal with full jumps", in TMorie
des Algorithmes, des Langages et de la Programmation, IRIA (INRIA), Rocquencourt, France,
175-193: and Strachey, C. & Wadsworth, C. P. (1974) Continuations, A Mathematical
Semantics for Handling Full Jumps, Technical Monograph PRG-11, Oxford University
Computing Laboratory. January.

20

FACS FACTS Issue 2005-1 MARCH 2005

that the transformation could be used to eliminate procedures that returned
compound or higher-order values.

In 1972, at the ACM Conference on Proving Assertions about Programs
in Las Cruces in New Mexico , Michael J. Fisher presented a paper in which he
introduced continuations. This paper is notable for including the first proof about
the semantics of continuations. It proved that the Continuation-Passing Style
(CPS) preserves meaning . The result was obtained in a setting where A
expressions 12 denote closures.

In 1973, in a short paper at the first Computer Science Conference, held
in Columbus, Ohio, and in a longer preliminary report, S. Kamal Abdali used
continuations, which he called "program remainders", to translate Algol 60 into a
pure call-by-name A-calculus, rather than the call-by-value A-calculus used by
Landin. In linking call-by-name in Algol 60 with call-by-name in the A-calculus,
this work was a precursor of the view of Algol-like languages by Oles and
Reynolds in the 1980s.

Reynolds wanted to stress two concepts in his contribution: on one hand
he claimed that original ideas such as continuations and related concepts are
never discovered once, but they keep on being reinvented in different
environments and used for various properties that they exhibit; on the other
hand he argued that the relevance of continuations was also due to the fact that
it was applicable both in denotational and in operational semantics contexts.
According to Reynolds the two approaches are actually complementary, giving
original resul ts in the program semantics field .

The second speaker was Gordon Plotkin, University of
Edinburgh [http://homepages.inf.ed.ac.uk/gdpl. who ~ave a talk
on "The origins of structural operational semantics'" . This was
a personal reconstruction of his studies in the area and , being
a major researcher in the field, also a recollection of the
evolution of operational semantics itself, as well as a
passionate account in favour of the use of the operational
approach for all semantic deSCriptions of programming
languages. The reconstruction was so enthusiastic that at some points during
the talk it was hard to grasp all the deep and thoughtful details of the story. But
the general feeling of the audience was that he was telling an account in which
he had strongly contributed and indeed largely initiated, so there was a personal
feel to his presentation, giving a privileged view of the research covered. The
audience not only heard oral testimony, but also witnessed slides hand-written
during Plotkin's influential visit to Aarhus.

As a postgraduate, Plotkin learnt A-calculus and was impressed by the
abstract SECD Machine of Peter Landin, as well as McCarthy's contributions to
the field , such as the 1962 introduction of abstract syntax, a fundamental tool
for all semantics of programming languages. Moreover there was the Vienna
Definition Language (VDL) that was used by the Vienna School to specify a real
programming language for the PUI ("Programming Language One")

12 See the Wikipedia entry on the lambda calculus for further information
\http://en.wikipedia.orglwikiILambda calculus].
J The talk was based on : Plotkin, G. D. (2004) "The origins of Structural Operational

Semantics", Journal of Logic and Algebraic Programming, 60-61(2):3-15. See also the
Wikipedia entry for operational semantics [htlp:llen.wikipedia.org/wiki/Operal ional semantics].

21

FA CS FACTS Issue 2005-1 MARCH 2005

[http://en.wikipedia.org/wiki/PUI] abstract machine. The speaker did not care for
this way of doing operational semantics because it was too complex, burying
the semantic ideas in technicalities.

From the end of the 1960s, denotational semantics was popular; e.g.,
see Mike Gordon's thesis on pure LISP, supervised by Rod Burstall from 196914

The work by Dana Scot! on LCF (the Logic of Computable Functions), a simply
typed A-calculus, was very influential and, in particular, Plotkin wrote a paper 15

on PCF (Programming Language for Computable Functions) in which he gave
an operational semantics for typed A-calculus with Booleans, natural numbers
and recursion at all types. The idea behind PCF, according to the speaker, was
that it was possible to consider the term calculus of the logic as a programming
language only if one had an operational semantics. However, Scot! did not
completely agree with this. Obviously there were also other influences involved
in the development of operational semantics, but these are some of the most
relevant ones.

Plotkin also pointed out the role of teaching in developing "toy"
languages that were suitable for students as well as for the progress of the
research itself. In 1973, at the University of Edinburgh, he taught third year
undergraduates and, instead of teaching a course on A-calculus, he tried
McCarthy-style recursive function definitions. Subsequently, in 1975, Robin
Milner taught SIL (Simple Imperative Language) to students. He later worked on
a structural operational semantics for con currency, developing the Calculus of
Communicating Systems (CCS). In 1979, Milner spent six months in Aarhus on
a visi ting lectureship that resulted in his classic CCS book 16 .

Two years later Plotkin himself was invited on the same visiting
lectureship, during which he developed Structural Operational Semantics (SOS).
He realized at th is point that researchers were then concentrating on proving
the adequacy of an operational semantics with regards to the denotational
semantics, but that the rule-based operational semantics was both
mathematically elementary and simpler than the denotational one. So Plotkin
imagined the possibility of dropping the denotational semantics, and tried to
follow up this idea in his course on this subject in Aarhus 17. Many of the
linguistic ideas he employed came from denotational semantics, such as Bob
Tennant's principles of abstraction, correspondence and qualification.

In his recollection of the development of SOS, Plotkin focused on two
major ideas. The first was that the configurations of SOS were those of an
abstract machine but without low-level detail; rules were used to avoid these
complexities.

The second idea related to compositionality: denotational semantics is
compositional in the sense that the meaning of a phrase in a language is given
as a function of the meaning of its immediate subphrases; in contrast, with an
operational semantics, the meaning of a program is, essentially, the collection

' 4 Gordon, M. C. J . (1973) Models of Pure LISP, Ph.D. Thesis, Experimental Programming
Reports: No. 31 , School of Artificiallnteli igence, University of Edinburgh.
15 Plotkin, G. D. (1977) "LCF Considered as a Programming Language", Theoretical Computer
Science, 5(3) :225-255.
16 Milner, R. (1980) A Calculus of Communicating Systems, LNCS, Vot. 93, Be ~in : Springer
Ve~ag .

17 Plotkin, G. D. (1981) A Structural Approach to Operational Semantics, DAIMI FN-19,
Computer Science Department, Aarhus University, published in Joumal of logic and Algebraic
Programming 60--61 (2): 17-139.

22

FACS FACTS Issue 2005-1 MARCH 2005

of all the transitions it can make. This is given by the rules and is primitive
recursive (structural) rather than compositional in the subphrases, hence the
term "structural."

Accord ing to the speaker, looking back at what has been done so far
makes it even clearer that there remains much to do, for example:

1. giving a semantics for a real (not toy) language that is complete,
readable, natural, modifiable, and extendable;

2. understanding the relationship with other forms of operational semantics;

3. the creation of useful software tools based on operational semantics.

Denotational and operational semantics can be seen as counterparts with
respect to offering semantics for programming languages; Plotkin was strongly
convinced that the operational approach is the more useful for certain goals of
formal methods and his talk tried hard to argue in favour of this position.

Peter Mosses during question time

The final speaker was Cliff Jones 18, University of Newcastle upon
Tyne [http://www.cs.ncl.ac.uk/people/home.php?name=cliff.jonesl .
who focused his talk on "Language Semantics: the Vienna part of
the story". His contribution gave a wide and well-organized
historical account of the different approaches of language
semantics between the 1960s and the present day. He
concentrated more on the "Vienna" group side of the formal
languages semantics history because he spent some time in
Vienna working for the IBM research group based there. As already pointed out
by John Reynolds, one of the milestones of the language semantics research
was the 1964 IFIP Conference at Baden bei Wien, whose proceedings were
printed two years later and included the major discussions by participants.

Between 1965 and 1968, the Vienna Group faced the task of defining the
very large PUI. As well as including a multiplicity of features, PUI was
challenging because it included complex constructs such as "goto", "on units",
tasking, etc. The Vienna Group called their semantics Universal Language
Definition (U LD-III); however their operational semantics notation was more

18 For some more information on the history of semantics of formal methods see: Jones, C. B.
(2003) "The Early search for tractable ways of reasoning about programs", IEEE Annals of the
History of Computing, 25(2):26-49 and Jones C. B. (2003) "Operational Semantics: concepts
and their expression", Information Processing Letters, 88:27-32.

23

FACS FACTS Issue 2005-1 MARCH 2005

widely known as Vienna Definition Language (VDL). At that time. the semantic
approach was operational. Included in the list of the influential researchers were
Elgot. Landin and McCarthy with different backgrounds. The effort did achieve
its objectives. and even resulted in clarifications of PLlI. But the definitions of
the language tended to use "grand states" that gave great difficulty when used
in proofs about VDL descriptions. These problems. together with a shift in the
interests of the semantics community. pushed the Vienna Group towards a
change in the paradigm. resulting in a move to what became called denotational
semantics.

If we consider the operational semantics approach similar to the creation
of an interpreter for the language. we can think of the denotational semantics
model as the creation of a compiler for the language: but a compiler that maps
to mathematical objects (functions). Strachey and Landin were the first
researchers to move towards the denotational semantics perspective 19. and
Dana Scot! solved some of the theoretical problems of the denotational
approach during the 1960s.

The Vienna GrouP. during the 1970s. worked on a comfiler for PLlI that
was developed from a denotational definition of PLlI 2 • The Vienna
Development Method (VDM) [http://www.csr.ncl.ac.uklvdm] did not use
continuations to model various kinds of jumps (for example. "goto" statements)
as advocated at the Programming Research Group in Oxford. Instead. an exit
mechanism based on an earlier "functional semantics" of Algol 60 by Jones and
col leagues in the IBM UK Laboratories at Hursley Park near Winchester was
used.

Denotational definitions could be advantageous in the sense that they
expressed more efficaciously the meaning of the syntactic constructs. but they
could not completely substitute the operational definitions. In particular. they are
technically inadequate to give a correct denotation of concurrency. If operational
semantics could avoid the use of unneeded mechanistic features. as in the
successful proposal of the structured operational semantics (SOS) made by
Gordon Plotkin during his Aarhus visit in 1981. as already mentioned. the
advantages of operational semantics are even clearer.

The speaker. during the 1980s. was convinced that the only correct
approach to semantics was the denotational one. When he switched to an
academic career in 1981 he decided to teach students the mathematically
heavy denotational methods for modelling semantics of programming
languages. Jones declared that later he changed his view about the best
approach to presenting semantics. He is now convinced that operational
semantics. particularly using the rule-oriented approach introduced by the
previous speaker. Plotkin. is more useful for modelling non-determinacy and
concurrent processes. According to Jones. operational semantics is very good
as a "thinking tool" for creating a programming language. helping to avoid
useless complexities.

19 Landin. P. J. (1964) "The mechanical evaluation of expressions", Computer Journal, 6(4):
308-320 and (1965) "A correspondence between ALGOL-60 and Church's Lambda-Notation",
Communications ofthe ACM, 8(2):89-101, 158-165.
20 Bekic, H., Bj0rner, D., Henhapl, W., Jones, C. B. & Lucas, P. (1974) A formal definition of a
PUI subset, Technical Report 25.139, IBM Laboratory, Vienna, Austria.

24

FACS FACTS Issue 2005-1 MARCH 2005

Left to right: Brian Monahan, Jawed Siddiqi, Peter Landin,
John Reynolds and Paul Boca, at the end of the meeting

Conclusion

In summary, the meeting was well-attended by an audience of around 75
people that contributed to the success of the event with questions and
anecdotes. Having a joint event between the BCS Computer Conservation
Society and FACS boosted numbers considerably and ensured a good mix of
people interested in the history of computing and formal methods.

The speakers tried to reconstruct the history of the field from the early
stages during the 1960s to the major achievements of the 1970s and the 1980s,
putting this into context with the most recent advances. The passion and
wisdom of the speakers was contagious for the audience and gave a sense of
the challenges faced during those early years as well as the opportunity to
share with the speakers various concerns and the possibi lities for the future of
the field .

For further details about the meeting, including photographs and slides
from the talks, see online information under the Virtual Museum of Computing
website [http://vmoc.museophile.org/pvs04]. We hope it will be possible to hold
a third instalment in the Program Verifi cation and Semantics series in due
course.

Acknowledgements

John Reynolds, Gordon Plotkin and Cliff Jones all provided very helpful
feedbac~ on their sections in th is report . Paul Boca also gave useful comments
on an early draft. BCS-FACS provided financial sponsorship for the event. •

:.:-::,,-: .. ::: :::=::-

•.... Formal M~thods

hitp:llvl.fmneUnfof
'. ";'::;,,-:"

.-::.::,:, '~::::~;.:' "'1"'"''·:'''

:'0:::'::' .

hks '
B FACS ..

http://www,bcs-fats.org

25

FACS FACTS Issue 2005-1 MARCH 2005

26

FACS FACTS Issue 2005-1 MARCH 2005

The aim of this FACS FACTS note is to convince some readers to join a loosely
knit group of researchers with the aim of - together - researching and
developing theories about "The Railway Domain", abbreviated 'TRain'.

TRain is essentially a
"Grand Challenge" project in
computing science - (also) using
formal specification & verification
(theorem proving, model checkers,
formal specification based testing,
etc.) techniques, such as along
the lines of ASM, B (and event B),
CafeOBJ, CASL, CSP, Duration
Calculi (DC), RAISE/RSL, TLA+,
VDMNDM-SL, Z (ZlEves, TCOZ),
etc. , - with these being possibly

,~~-_.,.,.
.JoIoO>r.O>,...
"-tA""
'

_c'<!<
-:-....--....-"" ,,... M __ .-

;&
'iV

,~.

integrated with one another (to wit: RAISE with Timing + DC) or with
visual/diagrammatic (formal) techniques: CTPs, MSCs, LSCs, Petri Nets,
Statecharts, UML Class Diagrams, etc., etc. I refer you to the TRain website
(front page pictured above) [http://www.railwaydomain.orgn for further details.
These web pages are currently being revised, updated and extended.

You may think of yourselves as working in verification, or in formal
testing , or in model checking, or in integrated formal techniques ('methods'),
maybe not so much in 'railways' - or in the larger, but strongly related area of
transportation systems.

Fine, excellent - but I am sure that railways pose significant challenges
also in your area, as an application. Therefore I want your kind consideration.
"Turn" your recent reports and papers around: And you may have a non-trivial
contribution to the understanding of The Railway Domain, whether just to the
domain itself, void of any reference to requirements to computing systerns, or to
requirements to railway systems, or to the design of such systems.

The way I see TRain is - for example - as follows, i.e. , by analogy:
Mechanical engineers, designing, say transmission systems, make use of the
classical theory of mechanics; aircraft designers of aerodynamics, ship
deSigners of fluid dynamics, etc., etc. So engineers make use of theories of
physics. But which theory should software engineers designing software for
railways, for example, base their work on? Before software can be designed its
requirements must be understood, but before requirements can be finally
formulated one must understand, we claim, the domain. So TRain is about
understanding the railway domain.

I would like you to respond to this note, to me Dines Bj0rner
[b jorner@comp.nus.edu.sg] and Martin Penicka [penicka@fd.cvut.czl who is
mastering our web pages, in either of the following ways:

27

FACS FACTS Issue 2005-1 MARCH 2005

[NO] Sorry, Dines, It's a great idea - but I am busy otherwise. Good luck!

[YES] Yes, great idea, let's do something. Then select one or more of:

[MAILING LIST] Keep me posted on what is happing in TRain

[REPOSITORy] Please attach .pdf or .ps files of reports and papers
that YOU think should go into the TRain repository -
please copy the email to Martin Penicka
[penicka@fd .cvut.cz].

[BIBLIOGRAPHY] Please include details (for example BibTeX entries)
of reports that YOU think should be included in the
Train Bibliography.

[INTERESTS] Please indicate which areas within Railways YOU
are interested in:

Please look under

• Allocation & Scheduling
• Interlocking
• Network Planning
• Rostering
• Signall ing
• Time Tabling
• Train Control Systems

etc

• http://www.railwaydomain.org/index.php?page=docs&subpage=pre-conference
• http://www.railwaydoma in.org/index.php?page=docs&subpage=pre-reports
• http://www.railwaydomain .orglindex.php?page=docs&subpage=reports
• http://www.·railwaydomain .org/PDF/tb.pdf

for representative documents with formal models of various facets of the railway
domain.

I look forward to hearing from you. •

28

FACS FACTS Issue 2005-1 MARCH 2005

RefineNet is an EPSRC-funded collaboration of UK university research
departments and companies from industry. The first network meeting of 2005
was held at Sheffield University on 10 - 11 January, and focused on the
foundations of refinement.

Monday's session opened mid-afternoon. Martin Henson (University of
Essex) was first up, presenting the nuZ wide-spectrum logic system. This
modifies the original Z specification language by using total- rather than partial
correctness . Everything is characterized by introduction and elimination rules,
and the actual language is quite small. You can derive a range of refinement
rules, swapping conditional logic for a relational logic of refinement. nuZ was
devised for reasoning about specifications and programs, and for deriving
programs from specifications.

John Derrick (University of
Sheffield), pictured on the far right
with Steve Schneider, followed,
examining temporal logic properties
under refinement. Properties
expressed in the standard temporal
logics, e.g. l Tl, by operators such
as "always" and "eventually" are
not necessarily preserved. The
problem comes when the structure of the state during the operation changes
between the original and refined version, and an assertion related to the original
state structure. This arises when you have an odd number of negations in the
assertion you define. If you have an even number of successive negations then
it all works out OK. CTl has similar problems with the "there exists a path"
operator, and the mu-calculus encodes l Tl and CTl so you get failures
accordingly.

Chris Thomson, a doctoral student at the University of Sheffield, used the
last session to present his work on observing software change in software
developments. The data as it stood showed no clear refinement process since
the developments were continually reacting to events (e.g. requirements
changes) all of the time. Can we define the out-of-sequence activities as
refinement? In the ideal model yes, but in the observed studies no. There is a
notion of "change" which isn't refinement and which is non-linear, unexpected,
and unpredictable except late in the development cycle.

Tuesday's session opened with guest speaker Steve Dunne (University
of Teesside). He aimed to convince us that there are as many varieties of
refinement between abstract data types as there are between processes (e.g.,
the trace, failures, divergences refinements in CSP). Sure enough, he showed a
hierarchy of refinements and claimed that the classical simulation ordering on
ADTs just corresponds to plain trace refinement of processes. This led to some
spirited technical discussion!

29

FACS FACTS Issue 2005-1 MARCH 2005

Ana Cavalcanti (University of York) presented on angelic
non determinism and the Unifying Theories of Programming (UTP). The theme
was examination of the varying healthiness conditions for set-based relations in
UTP, establishing two-way maps between binary multirelations and set-based
relations. That ended up defining refinement in the binary multirelations as
implication, and subset in the binary model. Tony Si mons (University of
Sheffield) followed with a talk on specifying "object machines", a form of
hierarchical state machine, and how to improve on the currently allowed
refinements.

The meeting concluded
with a business meeting,
discussing the forthcoming
Refinement Workshop at
ZB2005 and the next few
RefineNet meetings. We also
discussed setting up some joint
publication work. A very
productive and informative couple of days overall; thanks to John Derrick for his
organization.

Notes of this meeting, including PDFs of the presentations made, are
available on-line [http://www.refinenet.org.uk/sheffieldnotes.htm!]. The next
RefineNet event will be a public workshop at ZB 2005 at the University of
Surrey, 12th April. The meeting after that will be at Manchester University in
early July, exact date to be determined. The theme will be automation and
mechanisation.

The RefineNet web site [http://www.refinenet.org .uk] includes a list of the
current members, details of past meetings, a schedule of future meetings and
contact details. Enquiries are welcomed: enquiries@refinenet.org.uk . •

30

FACS FACTS Issue 2005- 1 MARCH 2005

n w

2005
El

University of Surrey, Guildford, UK

12 April , 2005 - Tutorials and Refinement Workshop
13-15 April , 2005- Main Conference

JniS
;-;:1 u'-::nlv-c-e,-'-.Ity"'".'-;-t :;C-Su--,."..-

Supported by the APCB and the Z User Group

31

FACS FACTS Issue 2005-1 MARCH 2005

1. Introduction
Computer systems need to provide services that meet, or exceed, expectations
of correct function and timely response. In the context of computer software,
correctness of functions is a well-studied subject. Most practising computer
scientists understand very well the notions of proving implementations correct
with respect to a high-level specification; developing an implementation
stepwise by verified refinement steps; calculating programs by the application of
algebraic laws of programming; or extracting a program from a formal
constructive proof. In comparison, timely response is less well studied, and less
well understood.

A very coarse notion of timely response is sometimes used in program
verification, separating partial and total correctness. That is, determining
whether the program will ever respond at all. A more discriminating evaluation is
provided by an analysis of the asymptotic complexity of the program, describing
its run-time as a function of the size of the input. Such an analysis differentiates
algorithms with linear, polynomial or exponential running times but this is still far
removed from a typical users' perception of program efficiency, even if only
because it elides constant factors from expressions for run-times.

A different form of quantitative analysis seeks to evaluate systems with
respect to performance metrics such as throughput, response time and
resource utilisation. Such performance evaluation has sound mathematical
foundations, dating back to Erlang's pioneering work on telephone exchanges
at the beginning of the last century. However, the size and complexity of many
modern systems make it infeasible to work directly with the mathematical model
(typically a Continuous Time Markov Chain (CTMC)).

A variety of system description languages, equipped with varying
degrees of formality, have been introduced to ease the task of generating the
mathematical model. Such languages must incorporate the quantitative
information needed to carry out the performance analysis as well as a mapping
to a CTMC. PEPA (Performance Evaluation Process Algebra) is a process
algebra designed for this purpose.

2. The PEPA project
The PEPA project [http://www.dcs.ed.ac.uk/pepalJ started in Edinburgh in 1991.
It was motivated by problems encountered when carrying out performance
analysis of large computer and communication systems, based on numerical
analysis of CTMC. In the early nineties the most common intermediate system
description languages were queuing networks and stochastic Petri nets (SPN) .
Queuing networks, whilst very powerful when applicable, have limited
expressiveness and lack formal interpretation. SPN models have formal

32

FACS FACTS Issue 2005-1 MARCH 2005

interpretation but do not have the explicit structure found in queuing networks,
which greatly eases model construction. Process algebras offer both
compositionality and formal interpretation, but from a performance perspective
they lack the quantified timing information essential to derive performance
estimates. Therefore PEPA associates an exponentially distributed delay with
each activity of the process algebra, thus making it suitable for generating a
CTMC.

The PEPA project has sought to investigate and exploit the interplay
between process algebra and the underlying CTMC. Equivalence relations have
played a fundamental role within this work. PEPA has been equipped with a
number of different equivalence relations, which have been shown to be useful
for a variety of purposes [11] . The most significant is strong equivalence,
sometimes termed Markovian bisimulation, a bisimulation in the style of the
probabilistic bisimulation defined by Larsen and Skou. This has been shown to
form a lumpable partition on the underlying CTMC, meaning that if a new
stochastic process is formed by associating one state with each partition, then it
will be a CTMC. This makes the equivalence relation a suitable basis for model
simplification based on aggregation (taking a quotient based on equivalence).
Further work has sought, with some success, ways in which the compositional
structure can be exploited for decomposed analysis of the underlying
CTMC [12].

3. Applications
It is unwise practice to develop theory without checking it against real
applications. PEPA has been applied to study the performance characteristics
of a number of computer and communication systems. Initial examples focused
on well-known standard performance evaluation abstractions such as multi
server multi-queue systems [11] and various queuing systems [15]. However,
over time, more realistic case studies emerged, both from the PEPA group and
from others. For example:

• In [5] the performance impact of fault-tolerant protocols within a
distributed system framework is evaluated.

• A team from the PRiSM Laboratory at the University of Versailles
considered a problem of dimensioning in a cellular telephone network.
They used a PEPA model to study the impact on call blocking and
dropping of allocating bandwidth resources between micro and macro
cell level [8].

• In an investigation of ways in which to ease the development of parallel
database systems, the STEADY group at the Heriot-Watt University
proposed the use of performance estimators. PEPA was used to verify
the output of the performance estimators for a number of particular
configurations and therefore improve confidence in the approach [7].

• In recent work a group at the PRiSM Laboratory of the University of
Versailles are working on a novel active rule-based approach to active
networks (networks in which intermediate nodes supplement routing of
data with some computation). A PEPA model has been used to study
the impact of the "active" traffic on the non-active cross-traffic in terms of
loss rate and latency within an active switch [13].

33

FACS FACTS Issue 2005-1 MARCH 2005

4. Tool support
Case studies of the size and complexity described in the previous section are
only possible if the modelling process has adequate support. The PEPA
formalism is fortunate to be supported in a number of different tools offering a
variety of different analysis techniques.

The PEPA Workbench: This tool provides a parser which can apply the
operational semantics to derive the derivation graph capturing all possible
evolutions of the model. It can render this as the infinitesimal generator matrix
of a CTMC in formats suitable for both internal numerical solvers (biconjugate
gradient algorithrn or successive over-relation) and external numerical
cornputing platfonms such as Maple and Matlab. In addition it includes facilities
to automatically derive sorne perforrnance rneasures such as throughput, and a
one-step debugger which can show the evolution of a model one activity at a
time [9,4).

The Imperial PEPA Compiler (IPC): The recently developed IPC tool
incorporates an alternative parser for PEPA models in such a way as to provide
a bridge to alternative analysis tools, Dnamaca and Hydra, developed at
Imperial College by Knottenbelt and his group [14,1). Analysis of models by
Hydra allows the computation of passage-time quanti/es which detail the
probability of passing through the system evolution from a start state to an end
state (or set of starting states to a set of end states). This includes measures
such as the probabi lity that a 10-node cluster should be able to process 3000
database transactions in less than 6 seconds.

The PEPAroni simulation engine: Simulation has proved to be a useful
alternative to numerical analysis of the underlying CTMC in two cases. Firstly, if
the size of the model is prohibitively large for numerical analysis simulation can
be used, although issues of run length can arise. Secondly, in the context of
extending the expressiveness of PEP A with general distributions [2) numerical
solution is no longer exact in most cases. Principally motivated by this second
case, Clark implemented a simulator for PEPA models, called the PEPAroni
simulator.

The PRISM model checker: This tool was developed by Kwiatkowska's group
at the University of Birmingham. It supports discrete time Markov chains and
Markov decision processes as well as CTMCs. The standard input to PRISM is
a model described in a simple reactive modules language. PEPA was
integrated into the tool via a compiler which translates PEPA models into this
language. Integration into PRISM enables model checking of the CTMC
underlying a PEPA model against properties expressed in Continuous
Stochastic Logic (CSL) [15). It also provides access to the efficient numerical
solutions of PRISM based on MTBDDs [10) and sparse matrix representation.

The Mobius modelling platform: The M6bius modelling framework [3) was
developed at the University of Illinois Urbana-Champaign. It is both a multi
formalism and multi-paradigm modelling tool, i.e. it aims to offer the user a
choice of model description techniques and solution methods. Moreover it is
designed to allow a model to be composed of submodels which may be

34

FACS FACTS Issue 2005-1 MARCH 2005

expressed in different formalisms. Integrating PEPA into M6bius offered
opportunities to explore the possibi lities of interaction between modelling
formalisms [6].

5. Conclusions
Markovian process algebras such as PEPA provide an expressive high-level
language with enough structure to support the description of the large Markov
chains needed for performance analysis of modern computer systems. They are
amenable to formal analysis using both the logical and algebraic methods of
classical process algebras and the analyti cal and numerica l methods of
performance models. All of the charms of more familiar process algebras are
still here: the languages are small and defined formally by structured
operational semantics; natural equivalences exist to relate processes which an
external observer could not distinguish; and complicated processes may be put
together as the composition of simpler parts.

If these formal approaches to performance evaluation such as PEPA
bring about an increase in our capability to express more sophisticated designs
then model simplification and approximate solution techniques must surely be
destined to play increasingly important roles. One of the most promising
aspects of the work on stochastic process algebras is the prospect that these
techniques may be better understood by more users, leading to them being
appl ied to ensure timely responses from a greater number of computer systems.

References
[1] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Extracting
passage times from PEPA models with the HYDRA tool: A case study. In S.
Jarvis, editor, Proc. of 19th annual UK Performance Engineering Workshop ,
pages 79-90, University of Warwick, July 2003.

[2J G. Clark. Techniques for the Construction and Analysis of Algebraic
Performance Models . PhD thesis, The University of Edinburgh, 2000.

[3] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J . M. Doyle, W. H.
Sanders, and P. Webster. The M6bius mode ling tool. In Proc. of 9th Int.
Workshop on Petri Nets and Performance Models, pages 241 -250, Aachen,
Germany, September 2001.

[4] G. Clark, S. Gilmore , and J. Hillston. The PEPA performance modelling too ls.
In J. Hillston, editor, Proc. of 7th Workshop on Process Algebra and
Performance Modelling, Zaragosa, Spain, September 1999. University of
Zaragosa Press.

[5J G. Clark, S. Gilmore, J. Hillston, and M. Ribaudo. Exploiting modal logic to
express performance measures. In Computer Performance Evaluation:
Modelling Techniques and Tools, Proc. of 11th Int. Cont. , number 1786 in LNCS,
pages 211- 227, Schaumburg, Illinois, USA, March 2000. Springer-Verlag.

35

FA CS FACTS Issue 2005-1 MARCH 2005

[6] G. Clark and W.H. Sanders. Implementing a stochastic process algebra
within the Mobius mode ling framework. In Proc. of 1st PAPM-PROBMIV
Workshop , volume 2165 of LNCS, pages 200-215, Aachen, Germany,
September 2001. Springer-Verlag.

[7] E. W. Dempster, N. T. Tomov, J. LU, C. S. Pua, M. H. Williams, A. Burger, H.
Taylor, and P. Broughton. Verifying a performance estimator for parallel DBMSs.
In Proceedings of EuroPar (EuroPar'98), September 1998.

[8] J.M. Forneau, L. Kloul, and F. Valois. Performance modelling of hierarchical
cellular networks using PEPA. Performance Evaluation, 50(2-3):83-99, 2002.

[9] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a
Process Algebra-based Approach to Performance Modelling. In Proc. of 7th Int!.
Conf. on Modelling Techniques and Tools for Computer Performance
Evaluation, number 794 in LNCS, pages 353-368, Vienna, May 1994. Springer
Verlag.

[10] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi-terminal binary
decision diagrams to represent and analyse continuous time markov chains. In
Proc. of 3rd Int!. Workshop on the Numerical Solution of Markov Chains, pages
188- 207, 1999.

[11] J. Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

[12] J. Hillston. FMPA Lecture Notes, chapter Exploiting Structure in Solution:
Decomposing Composed Models. Springer-Verlag, 2001 .

[13] J. Hillston, L. Kloul, and A. Mokhtari. Active nodes performance analysis
using PEPA. In Proc. of 19th UK Performance Engineering Workshop , pages
244-256, 2003.

[14] W.J. Knottenbelt. Generalised Markovian analysis of timed transition
systems. Master's thesis, University of Cape Town, 1996.

[15] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic
model checker. In Proc. of 12th 1nl. Conf. on Modelling Tools and Techniques
for Computer and Communication System Performance Evaluation, number
2324 in LNCS, pages 200-204, London, UK, April 2002. Springer-Verlag.

[16] N. Thomas and J. Hillston . Using Markovian process algebra to specify
interactions in queueing systems. Technical Report ECS-LFCS-97-373, LFCS,
The University of Edinburgh, 1997. •

36

FACS FACTS Issue 2005-1

3 May 2005 .
- " ..

w~ welco~e contributions for the,
particular:

•
•
•
• • ' rs ."
• WQrkshopannouncements
.Seminaranii6uncements" .
• Formal methods websites
• of

.•
•

MARCH 2005

."' .--':: ,: .: ,; ',-.. . '<::--':.:: . :;.""; :. -.:; .:' ',,- .
If you would like to bean official FACS FACTS reporteroraguest columnist,

'" please contqcHheEdilor. . .,

37

FACS FACTS Issue 2005-1 MARCH 2005

Formal Techniques Industry Association - ForTIA

Subgroup of Formal Methods Europe

INDUSTRY DAY 2005

PRELIMINARY ANNOUNCEM ENT

Wednesday 20 July 2005

University of Newcastle-Upon-Tyne (UK)

Formal Methods Europe [www.fmeurope.orgl is an independent association
whose aim is to stimulate the use of, and research on, forma l methods for
software development. FME has been notably successful in bringing together
innovators and practitioners in precise mathematical methods for software
development, industrial users as well as researchers.

A separate subgroup of FME was recently established, called ForTIA (Formal
Techniques Industrial Association), which focuses on dissemination of research
results and promotion of formal techniques in industry and also to feed lessons
learnt from industry back towards academia. ForTIA was founded in 2003 and is
currently supported by some 30 companies (for more detai ls check out
www.fortia.org). One of the key activities of ForTIA is to organize so-called
Industry Days, small events targeted at industrial practitioners rather than
academics. It is a forum to share experiences on the use of formal techniques in
an industrial setting. We invite you to participate in this event.

The theme for I-Day 2005 is: "Formal Methods Going Mainstream - Costs,
Benefits and Experiences". A very provocative title, which was selected on
purpose; we invite you to challenge it! Potential sub-topics will be:
• Formal techniques successfully applied to ensure quality of product
• Formal techniques successfully applied to improve efficiency of development
• Fai lure of formal approaches, especia lly why they did not work
• Impact of formal approaches on the development process

(managerial and other less-tangible aspects)
• How do I select the right tool for the job?

Which (formal) method to use for what kind of problem?

The day will consist of a number of invited ta lks - we are in the process of
completing the program. It wi ll be organized as a parallel track to the main
FM'05 symposium. The provisional program will be announced as soon as
possible . If you have any questions or suggestions for I-Day at FM'05, please
contact the organizing committee:

Bernard Schalz [schaetz@in .lrn.del
Marcel Verhoef [MarceI.Verhoef@chess.nll

Deta ils on the I-Day program and registration will be published on the FM'05
conference website [http://www.csr.ncl.ac.uk/fm051 as soon as it becomes
avai lable.

38

FA CS FACTS Issue 2005-1 MARCH 2005

1. Introduction

The development of tools to assist with mathematical activities is a subject with
a long and fascinating history. Since the earliest days of electronic computation,
researchers have endeavoured to produce mechanised tools to assist with the
development of formal mathematical theories. The possibi lity of using formal
mathematics to improve the rigour of hardware and software systems design
has spurred this research. The result has been the development during the past
20 years or so of practical systems to support rigorous formal mathematics and
its applications.

ProofPower is one such system for mechanised formal mathematics. It
is a tool supporting formal specification in Higher Order Logic (HOL). It also
supports, by semantic embedding [6] and other techniques, various other
languages, including the Z specification language. ProofPower is a proof tool
following the LCF paradigm [8] . It was orig inal ly conceived as a re-engineering
of the Cambridge HOL system. Cambridge HOL was developed by Mike
Gordon et al. [5, 7] for research into hardware verification and was based on
Cambridge LCF, itself derived (mainly by Larry Paulson [10]) from Edinburgh
LCF.

As well as syntax- and type-checking specifications, and managing a
hierarchy of theories in which these specifications are stored, ProofPower
provides the user with a high level functional programming language (Standard
ML [11]) for constructing (and checking, on-the-fly) proofs in its core logic. The
HOL logic is a polymorphic variant (following Robin Milner [15]) of the elegant
and simple reformulation by Alonzo Church [4] of the Theory of Types [16]
which Russell devised for use in Principia Mathematica [1]. HOL is well-suited
not just to hardware verifi cation but to almost any practical problem domain in
which mathematics has a part to play.

The combination of th is logical strength in the object language, and the
power of the metalanguage, has resulted in a global user community for th e
Cambridge HOL system and its descendants (includ ing ProofPower). This
community is applying the tools to a range of applications which was never at
first imagined.

ProofPower combined from its earliest days these important elements of
the LCF/HOL line of research with the somewhat different subculture of formal
methods originating in Oxford and embodied in the Z specification language [18,
9]. Many of the distinctive features of ProofPower arise from creative friction
between these two formal methods ideologies. Hard experience of the use of
formal methods in industry added further elements. The end result is a tool
which, while bearing the marks of its intellectual history, is unique in its
capabili ties.

Thi s article gives an overview of some aspects of the design of
ProofPower which have not previously been widely reported. In particular, we

39

FACS FACTS Issue 2005-1 MARCH 2005

discuss our original motivation for using HOl to underpin work in Z, the impact
this had on our re-engineering of an HOl support tool and our use of a
semantic embedding in HOl to support Z. In addition to any historical interest it
may have, we hope the article will stimulate further interest amongst formal
methods practitioners in practical tools for formal mathematics.

2. Beginnings

The original motivation for developing ProofPower was in information security.
During the 1980s, the US govemment had set out guidelines for the
development of secure systems which included the use of mathematical
methods in their design and implementation [12]. The UK was the first country
to follow the US with its own national certification standards, which were later
superseded by harmonised European standards. In 1985 International
Computers Ltd. (ICl) established a Formal Methods Unit within its Defence
Technology Centre to build a capability to meet the evolving UK standards,
which at the highest levels required systems to be formally modelled and for
critical properties of the models to be formally proved .

Z had been identified by UK government as the preferred formal
specification language for work on secure systems and so familiarisation with Z
was an early priority, as was gaining experience in the proof technologies which
seemed most promising for the kind of work expected . Experience was gained
with two proof tools, NQTHM (otherwise known as the Boyer-Moore prover) and
Mike Gordon's Cambridge HOl system, both of which had also been used at
RSRE, Malvern for the formal treatment of digital hardware.

Of these two the Cambridge HOl system seemed to offer the best
prospect of success in reasoning about specifications in Z, in default of any
proof tool for Z itself. The main factors in this assessment were:

the HOL language: this is much closer in logical expressiveness to Z
than was the restricted first order logic of NQTHM.

the LCF paradigm: this gives the user a powerful programming
language for programming proofs and adapting and extending the
system.

To reason formally about systems specified in Z, the method adopted at ICl
prior to ProofPower was to transcribe the specifications into HOl keeping the
semantic correspondence (even at a low level) as close as possible. Proofs
were then undertaken in HOL. Success stories with this technique included the
formal aspects (specifications and proofs) of a communications device. The end
product was certified at the highest level and was for many years the only
system to have achieved this level of certification.

Cambridge HOl provided no special facilities for document preparation,
expecting ASCII specification and proof scripts to be treated just like computer
programs. Z on the other hand had a culture of presenting specifications
embedded in a natural language document using mathematical symbols and
special graphical layouts. We implemented a Z-like notation as a presentation
layer for Cambridge HOL with a custom font and a couple of UNIX filters

40

FACS FACTS Issue 2005-1 MARCH 2005

providing the GUI and with troff (and later LaTeX) providing typeset
documents.

3. Re-engineering HOL

In 1990, ICL began a programme of research in collaboration with Program
Validation Ltd. and the Universities of Cambridge and Kent. While proof support
for Z was high on our list of priorities, we believed that the best route to that
goal was via the logically simpler HOL language. We therefore concentrated at
first on a re-engineering of the HOL system to address some of the problems
that we had encountered in high-assurance applications and to try to ease the
path towards a proof tool for Z. The resulting re-engineered HOL system
became the basis for the ProotFower tools and we discuss some of the salient
features of the re-engineering below.

3.1 The Logical Kernel

ProotFower is based on the "LCF paradigm", in which theorems are proved by
computing values of type T/-/ M. This type is an abstract data type in a strongly
typed functional programming language - in our case Standard ML [11]. The
constructor functions of the type THM implement the primitive inference rules of
the logic, suitably parameterised to make them into functional relations. For
example, there is a rule rejl_conv implementing reflexivity of equality, which we
can see in the computation of a value of type THM in the example below. This
shows the Standard ML (SML) input and corresponding output from an
interactive session with ProotFower:

tlai a_ thrn = f- x + 1 = x + 1 : THAt

The great advantage of the LCF approach is that proof procedures of
arbitrary power and complexity can be programmed freely. If a value of type
T!-IM is ca lculated, it can only have been obtained by composing primitive
inference rules and therefore must be a theorem of the logic. An error in a
complex proof procedure can result in no theorem at all being computed or in
the wrong theorem being computed, but it cannot result in an unsound theorem.
Thus the abstract data type provides a logical kernel in which is concentrated all
the code that is critica l to the soundness of the tool.

Our implementation of the logical kernel is underpinned by a formal
specifica tion of the HOL language, semantics and deductive system [2] . This
supports a formal specification of the critica l properties that the logical kernel
must satisfy to be sound . The implementation of the logical kernel was then
carried out against a formal design articulating the mechanisms used to meet
the cri tical properties.

41

FA CS FACTS Issue 2005-1 MARCH 2005

3.2 The Theory Hierarchy

For theorem proving in the context of large specifications some way of
structuring the logical context is desirable, and in LCF-like tools this is done
through a hierarchy of "theories", which in this context are a kind of hybrid
between the logician's notion of a theory and the computer scientist's notion of a
module. Each theory provides a collection of zero or more axioms and
definitions together with a record of the theorems that the user has chosen to
prove and save in the theory. Theories are organized in a hierarchy allowing
modular access.

The Cambridge HOL system and its precursors offered very limited
facilities for navigation in the theory hierarchy or for making changes.
Modifications to axioms or definitions would generally require rebuilding theories
from modified scripts in a new session. ProofPower was designed to offer more
flexibility both in navigation and in modifying the theory hierarchy.

3.3 Document Preparation

It is the Z style of literate formal specification which determined that
ProofPower is oriented around processing of formal texts extracted from LaTeX
documents. The document processing facilities are steered by tags which
introduce the different kinds of formal material which may be included in a
document. The same document may be processed in different ways for different
purposes, e.g., to convert it into LaTeX to be typeset or to extract a formal
specification for type-checking. We have found this "document-centric" way of
working extremely convenient and found it surprising that so many users of
proof tools developed in academia continue to carry out their work with ASCII
text that has to be manually transcribed into mathematical notation when a high
quality document is needed.

3.4 Multiple Object Languages

Terms in the HOL language are represented using an abstract data type TERM
whose constructor functions correspond to the primitive abstract syntax
constructors of the language. Like other LCF-style systems, Proof Power ML
supports quotations allowing object terms to be entered and parsed using a
convenient concrete syntax. The pretty printer for ML values then formats object
language terms as concrete syntax for display.

The ProofPower syntax uses an extended character set for mathematic
al symbols (which are also available for forming ML names). These features
may be seen in the following example in which a function application term is
ca lculated using quotations for the function (Sin) and its operand (m • n-). The
"Qui ne corners" (r and "'1) here are the symbols that delimit the quotations. The
pretty printer responds by displaying the term using the concrete syntax that we
could have used to enter it in the first place:

42

FA CS FACTS Issue 2005-1 MARCH 2005

5?o.t L

vIII (.L tm, = m.k~ app(r Sin ." r 1U *' if c);

In Cambridge HOl, the quotation facilities were restricted to HOl terms,
types and to embedded Ml expressions (called anti-quotations). This was
generalised in ProofPower to a system supporting general mixed language
parsing and pretty-printing. This was primarily intended for Z, but has been used
experimentally for various other purposes. Multiple languages, e.g., HOl and Z,
can be mixed together in a single term quotation, fragments of HOl being
included inside Z or vice-versa.

The system automatically maintains an association of HOl constants
and object languages. The pretty printer uses this to decide how to process
different parts of a polyglot term. Mixed language quotations are not normally
encountered in working with Z specifications and proofs since the proof facilities
and other tools are generally smart enough to keep everything in Z. However
mixed language quotations are very useful both for programming proof
procedures and, as we shall see in this article, for peering under the covers to
see how an object language like Z has been implemented.

3.5 The Subgoal Package

As we have described it above, the lCF style implements forward proof: the
inference rules are functions that compute new theorems from old . A goal
oriented approach working backwards from the conjecture one wishes to prove
is usually much more natural and productive . In common with other systems in
the lCF family, ProofPower provides a "subgoal package" supporting this way
of working, following ideas of Paulson.

The user starts the search for a proof by passing to the subgoal package
the desired conjecture. At each step in the proof search which follows the
subgoal package presents to the user a current goal and the user then
nominates a "tactic" to be applied to this goal. If the tactic is successful , it
responds with some subgoals, i.e., a possibly empty list of new goals. If the list
is not empty, the subgoal package presents the first goal in the list as the new
current goal. If the list is empty, the tactic has completed the proof of the current
goal and the subgoal package will move on to the next goal if any remain.

For example, consider the goal:

This kind of goal is amenable to a widely used tactic called strip _lac whose
(configurable) approach is to do the logically obvious and uncontroversial thing .
In this case , applying strip_tac once would reduce the problem to the goal:

1/2 E {y 11/4 < !i } /\ 1/2 E {x 1 [3 < 1'-9.}

43

FA CS FACTS Issue 2005-1 MARCH 2005

Repeated applications of strip _ (ac might produce the two subgoals:

1/ 4 < 1/2
(1/2P < (1/2n

These subgoals can readily be proved e.g., using a standard rewriting tactic.
Behind the scenes, the tactics provide the subgoal package with the

inference rules it needs to ca lculate the theorems corresponding to the goals. A
library of combinators (called tacticals) for creating new tactics from old, e.g. , by
composition, iteration and alternation, is provided. These give a powerful
language for conducting proof searches.

Tactics are not infallible, not only may they fail to offer a step in the
desired proof at all , they may make a promise which they later fail to keep. I.e. ,
the inference rule the tactic provides may fail to do the job when the subgoals
are all discharged. It is very inconvenient to discover an error in a tactic only at
the point of apparent completion of a large proof attempt. The subgoal package
in ProofPower was designed to be immune to this problem. Instead of
remembering a tree of subgoals and proof functions the state of the subgoal
package is coded up as a theorem in which the assumptions are (codings of)
the outstanding subgoals, and the conclusion is a coding of the target goal (a
constant is used which mimics the semantics of the sequent turnstile). The
construction of this subgoal package state theorem involves invocation of the
proof function at the same time as the tactic is invoked so that its failure is
detected immediately.

3.6 Proof Contexts

"Proof contexts" are a general mechanism for making the proof support
sensi tive to a context in which reasoning is being conducted. The "context"
referred to here might be a particular theory, say a theory of arithmetic, or a
library of theories, say the ProofPower-HOL library of Z-like operators on sets,
functions and lists, or the support for a complete embedded language and its
libraries such as Z and the Z toolkit.

A proof context is essentially a package of parameters to the various
proof tools; selection of proof context can have radical effects upon the
behaviour of the proof facilities. For example, in the example of the previous
section it is the proof context that caused a goal of the form x E A () B to
be reduced to the conjunction x E, A /I x E B . In fact, the proof of the
example goal

1/ 2 E {y 11/4 < y} () {x 1 x-3 < 2;-Z}

is completed in one fully automatic step by the standard rewriting tactic in the
right proof context.

The proof context idea combined with careful design of the basic tactics
has proved very successful. For example, strip_tac is derived from what
appeared to be an attempt in the early development of LCF to provide a tactic
which knows the basic natural deduction rules for the predicate calculus and
automatically applies the rule relevant to the current goal, provided that this can

44

FACS FACTS Issue 2005-1 MARCH 2005

be done without extra information (such as an existential witness). If this idea is
thought through it becomes apparent that a slrip _lac can be implemented which
is complete for the propositional calculus (i.e., repeated application of the tactic
will prove any propositional tautology). By parameterisation via the proof context,
slrip_Iac serves as a decision procedure for the propositional fragment of many
useful theories and as a valuable general purpose tool in every problem domain,
including embedded languages such as Z.

4. Z in HOL

In essence, Z is just a polymorphic typed set theory, and, as such, it is logically
equal in strength to polymorphic simple type theory, i.e., HOL. So in principle, at
least, one can interpret Z in HOl. The challenge is to devise an interpretation
which works well in practise, i.e. which can be implemented in a proof tool to
yield effective support for proof in Z.

The kind of interpretation we have in mind has become known as a
semantic embedding. A semantic embedding of one language into another
treats the first language as if it were an altemative syntax for certain
expressions in the second. The idea is that some capability in respect of the
second language is thereby transferred to the first. In this case the primary
capabil ity of interest is proof construction and checking.

The advantages of providing proof support via an embedding are
substantia l. One important advantage is that by this means proof capability can
be rea lised where the semantics are known but the proof rules are not.
Soundness of inference is guaranteed by the soundness of the proof system for
the target language, provided that the embedding is semantically correct. A
second advantage is that sharing between the languages of that most precious
and costly commodity, theorems, is maximised. Thus a theory of integer or real
numbers developed for HOl will be substantially re-usable in Z, together with
domain specific proof automation such as a linear arithmetic prover.

Both Z and HOl are typed languages. The semantic embedding we use
respects an injection of the type system of Z into that of HOL. This ensures that
the embedding preserves many pleasant properties of the Z language. We will
begin our discussion of the embedding by describing this injection.

4.1 The Type Injection

The Z type system is built from ground types (called given sets) using the power
set type constructor, and a labelled product type constructor called the schema
type constructor. Unusually for a typed language, Z has no syntax for writing
down a type. One works round this by writing down a set-valued expression for
the set that compri ses the universe of the type. A signature (i.e. , a list of
variable declarations) in square brackets is used to express the set of values in
a schema. Thus, for example, [x : Z; y ; l?Zj can be used to denote the
schema type with components labelled x and y ranging over integers and sets of
integers respective ly.

The main difficulty in mapping the Z type system into that of HOl is
caused by the schema type constructor, since its parameter is a finite map from

45

FA CS FACTS Issue 2005-1 MARCH 2005

component names to component types. whereas type constructors in HOl take
a finite sequence of types. To solve this problem. we use an infinite family of
type constructors in HOl to represent the schema type constructor. The names
in the signature of the schema are encoded into the names of each of the HOl
type constructors in a canonical order. The types associated with the names in
the signature are then passed as parameters to the HOl type constructor in the
corresponding order.

Z has a number of built-in operators on values of schema type. These
operators cannot be assigned a type in the Z type system. not even a
polymorphic or generic type. They act as if they have a family of types indexed
by the signatures of the operands. These operators are represented in HOl as
infinite families of HOl constants. In the implementation. the definitions of the
labelled product types that represent schema types and of the constants that
represent schema operators are introduced automatically when the Z constructs
that need them are translated into HOL.

In addition to its schema types. the Z concrete syntax also has unlabelled
product types . called tuple types. Borrowing a trick from Standard Ml. the types
of n-tuples in Z can. at least in principle. be treated as schema types with
component names given by the natural numbers 1.2 •...• n. (The implementation
actually uses a somewhat more optimal representation.)

The power set constructor is easily represented in HOl. sets being
represented by boolean-valued functions. The types of given sets in Z are
represented by nullary HOL type constructors. The predefined given sets such
as the integers are represented by corresponding HOl types for which the
relevant theory has been developed.

So far we have discussed monomorphic types in Z. Z also has generic
values. whose types are therefore generic types. Polymorphic values in HOl
are values whose types contain type variables. These values can be
instantiated by substituting types for the type variables. Generic values in Z are
values parameterised by sets. not merely values polymorphic over type
variables. Generic values are represented in HOl as polymorphic functions. For
example. the generic value X..... Y defined in the Z tool kit has generic
type !l'P(X x Y) with generic formal parameters X and Y . The HOl
representation of the generic value is the (HOl) function that maps a pair of
sets (X. Y) to the set of all (Z) functions from X to Y. The HOl representation of
the generic type is then just the HOl type of that function.

4.2 Mapping Predicates and Expressions

The terms "predicate" and "expression" in Z correspond in the usual terminology
of first order logic to "formula" and "term" respectively.

In the ProofPower embedding of Z into HOl. predicates are represented
by HOl terms of type BOOL and expressions are represented by terms whose
type is determined from the type of the Z expression by the type injection
described in the previous section.

Generally speaking. each constructor in the abstract syntax of Z is
represented by a HOl constant or family of constants. Each so-called semantic
constant must correctly capture the semantics of the relevant constructor.
Where appropriate. e.g .. for equality. a predefined HOl constant with the

46

FACS FACTS Issue 2005-1 MARCH 2005

appropriate semantics is used (which helps with reuse of proof machinery). As
discussed in the previous section, families of semantic constants are used for Z
constructs such as schema operators, which are too general to be represented
by an individual polymorphic constant.

In essence, the semantic constants comprise a many-sorted algebra
over HOL terms isomorphic to the algebra that comprises the abstract syntax of
Z. The semantic embedding can then be thought of as a homomorphism
defined by primitive recursion over the abstract syntax of Z.

However, there are important features of the Z notation which complicate
the semantic embedding. The following sections discuss some of the more
significant problems and our solutions to them.

4.3 Undefinedness in Z in HOL

Proofpower adopts the simplest treatment of 'undefinedness' in Z which is
consistent with the semantics in the Z standard [9]. For uniformity, we fix on
definite description as the primitive source of undefinedness. We define it as
one might in pure first order set theory by giving a loose definition of definite
description, in which the definite description operator always retums a value
whether or not the description is uniquely satisfied, but the value retumed is not
known (i.e. , not required to be the same in all models) if the description is not
uniquely satisfied. This approach avoids the need to introduce a special value
for undefined terms and bypasses all the complications to the logic which such
values involve.

Function application is the other Z construct that can introduce
undefinedness and this is defined using definite description. The defining
properties of the semantic constants Z'll and Z' App that represent definite
description and function application respectively are as follows:

V :". $"Z',," {x} "'" x

v f X . Z'App f x = $" Z'p:' {yln~; , 11)' E f}

Here the special syntax $" Z'p." is used to allow the character string Z'jj, which
does not conform to the HOL rules for identifiers, to be used as the name of an
HOL constant. In general, the names of the semantic constants in the Z
embedding follow a naming scheme designed to avoid clashes with the user's
HOL and Z name spaces.

Note that these defining properties are theorems expressed in the HOL
language. The second theorem contains a nested Z quotation, since, as we
have mentioned above, Z tuples are represented as a special kind of schema
type and not as HOL pairs.

4.4 Hidden Variables

The denotation of a schema expression used as an expression in Z is a set of
labelled tu pies (cal led "bindings" in the Z terminology). For example, the
schema expression: k, 11: Z I x < 111 denotes the set of all bindings such

47

FACS FACTS Issue 2005-1 MARCH 2005

as (7 -= 2, Y -= ,'I) with components labelled x and y, the fo rmer being smaller
than the latter, In the schema expression: [x, y: Z I x < 111 the signature
variables x and y are not free variables, just as they are not free variables in the
set comprehension: {x, y: Z I x < y} .

An unusual linguistic feature in Z comes from the ability to use a schema
as an abbreviation for the predicate it embodies. When a schema is used in this
way, the effect is exactly that of a predicate in which the names in the signature
of the schema appear as free variables. Thus [x, y: Z I x < yl as a predicate
is equivalent to the predicate x < y in which x and y appear free.

Now all of the above applies to arbitrary schema-valued expressions,
and in particular, to what are traditionally called schema references, i.e., the
names of schema-valued constants. Thus the names in the signature, which
become the free variables of the predicate, will not, in general, appear in the
schema-valued expression itself: they are hidden away in the invisible type of
the expression. These variables must be made explicit when the schema-as
predicate is represented in HOL. Schema-valued expressions may also be used
as declarations in Z, and again the representation in HOl must make explicit
what is being declared.

All occurrences of hidden variables in Z predicates or declarations are
reducible to occurrences of what Z calls O-expressions: O[x , y: 21:1 being a
linguistic abbreviation for the binding: (x -= x, 11 -= y) in which each component
name is associated with the expression formed by the free variable of the same
name. A schema-valued expression used as a predicate can then be treated as
an ellipsis for the assertion that a O-expression is a member of the schema, i.e.,
we can treat S used as a predicate as the assertion that OS E S. A similar
approach may be used for declarations.

The problem of hidden variables in general therefore reduces to the
problem of hidden variables in O-expressions. This is dealt with by using
knowledge of the type of the O-expression to represent it as an expression
which is semantically identical with the binding that the O-expression
abbreviates but marked with a semantic constant which causes the pretty
printer to preserve the concrete syntax.

4,5 Variable-binding Constructs

It is unfortunate that Z terminology uses the term "binding" for its labelled tuples,
since the use of the term in its normal logical sense is unavoidable. So the
reader is warned that the term "binding" will be used in two senses. In this
article we will say "variable-binding" for the normal logical use of 'binding ' i.e. for
what a quantifier (or other variable-binding construct) does to the variable(s)
that it declares and plain "binding" for an element of a Z schema type.

Rather than just one variable, the variable-binding constructs in Z all
admit an arbitrary signature, including set constraints and possibly schema-as
declarations. These must all be represented in HOl , in which there is only one
variable-binding construct (A-abstraction) which binds a single variable subject
only to a type constraint.

The HOl representation of any variable-binding construct in Z must
include a nested HOl A-abstraction to bind each of the names which are bound
explicitly or implicitly by the Z construct. In general, the representation of the Z

48

FACS FACTS Issue 2005-1 MARCH 2005

construct will then comprise a suitable semantic constant which will take the A
abstraction as one of its operands. In the body of this A-abstraction will appear
the translation of all the Z which is in the scope of the Z variable-bindings (since
this is the only way that the HOl variables representing the Z variables can
become bound in Z).

The A-expression construct in Z provides an informative example. We will
now work through the representation of this construct in more detail. We do this
using Proo1Power itself to interrogate the representation of a Z A-expression
into HOl. To begin our investigations, we first enter an example of a Z A
expression , and give it an Ml name as shown below:

1}(11 Z[" = P . T:N; y:Z I x > 1 • Y * T';

'val zle = p, x : N: y : Z I x > 1 • Y * 1: " : TERM

The output just tells us that the Ml compiler has given zle the value we
entered . The pretty printer for Z recognises this value as a Z term and so prints
it back in Z. This is, of course, just what we want when using Proo1Power to
reason in Z, but not so helpful for us here, since we want to look under the
covers.

Before delving deeper, we should remind ourselves of the intended
meaning of the Z A-expression. The expression comprises three parts: (i) a
declaration (here x : N ; y : Z), (ii), a predicate (here x > I) and, (iii), an
expression (here y • x). The A-expression denotes a function. The declaration
and the predicate together determine the domain of the function, which in this
case is a set of pairs of integers of which the first must be greater than 1. The
value of the function at a point in the domain is given by the value taken by the
expression at that point.

One excellent way of exploring the meaning of a Z construct in a proof
tool is by carrying out proofs! Forward proof is particularly useful for this kind of
purpose. The proof support for Z in Proo1Power includes a large number of
forward proof rules for operating on specific Z constructs and, in particular, for
expressing "derived" constructs in terms of more primitive ones. These are
primarily intended for people programming new proof procedures, but they are
also useful for exploratory purposes and in interactive proof work. Here, the
proof rule Z_ A _conv automatically proves for us a theorem which explicates our
A-expression as equal to the set-comprehension that was implicit in our informal
description of the meaning of the expression given above:

SMt

Z _ :LC07tV ~,\ x :N; y:Z [2: > 1 • Y :« x";

val it =
f- (,\ x : N; y : Z I x > 1 • y • x)

"" {x : N; y : Z i x > 1 • ((x, y) , y • xl} : 1'HM

49

FACS FACTS Issue 2005-1 MARCH 2005

In general, a A-expression in Z has three constituents (some of these
may be omitted in the concrete syntax, in which case the language defines
default va lues for them). The three constituents together define the function
denoted by the A-expression and are as follows:

(d) a declaration part introducing variables to be used in specifying the values
of the function.

(p) a predicate giving constraints on the domain of the function (additional to
any constraints implicit in the sets appearing in the declaration: e.g. , in the
example above, x is required to be both greater than 1 and a member of
N).

(b) an expression giving the value of the function.

These constituents are combined as a Z binding into a single value in the
body of a HOL A-abstraction . The binding also includes a component giving a
pro forma, called the characteristic tup/e in Z parlance, for a parameter to the
function denoted by the Z A-abstraction. The component names are the letters
used above in listing the explicit constituents, together with the letter "t" for the
characteristic tuple.

The semantic constant maps the HOL A-abstraction into a set of ordered
pairs giving the graph of the required function (as required by the Z conventions
for representing functions). An ordered pair p will be a member of this set iff.
there exists an assignment of values to the bound variables which , when
supplied to the function, gives a binding whose b component is the second
element of p, whose t component is the first element of p and whose d and p
components are true.

To see how this works, let us dismantle our example Z A-expression . To
do this we look at the translated Z expression in terms of the primitive HOL term
constructors. The function dest_simple_term is convenient for this:

val it =
App

(VS" Z' >-[2]"",
!;:r), x 11

• ~(d £; ,ft.dccLo!r;.[:t : Ni 11 : ZP', p ;2 x > 1, t £; (:c, y),
v "" 11 * X)TT") : DES1'_ TEItAf

The constructor App here indicates that the term is a function application .
The arguments of the constructor give the function and the argument to which it
was applied . The pretty printer starts out trying to print these term arguments in
Z but drops into HOL when it finds a subterm which does not appear to be in the
image of the Z embedding , so inside the Z metaquotes we find some nested
HOL metaquotes.

50

FACS FACTS Issue 2005-1 MARCH 2005

The function in the function application is the semantic constant which
captures the semantics of a A-expression over a signature with two names in it.
The constant is called "Z'.\ [2]" (as already remarked, a name like this sometimes
has to be wrapped in quotes and paid a dollar when used as an identifier in
HOL concrete syntax).

The parameter in the function application is the HOL A-abstraction
described above. In its body, we see a Z binding display. The binding display is
nearly all Z, except for one component, which is the declaration part of the A
expression. A declaration is not syntactically valid as an expression in Z, and so
cannot appear in a binding display in Z. Furthermore , the Z parser will only
accept in Z metaquotes a Z predicate (formula) or a Z expression . So the pretty
printer uses a trick here to display the declaration part. It uses an ML
expression to extract the declaration part from a horizontal schema expression
which contains the required declaration.

To see how the representation of the Z A-expression works semantically
we need to look at the definition of the semantic constant called "Z'.\ [:I]" . We
can retrieve the definition for this constant using the following ML command:

mu.

gei.spec r$ " Z'-\[2] "';

lIal it =
f- rv pack

• ~r$1I Z''\ [2} If pack j ,

= {x
13 aZ a2

• V pad : (11 Q.2~. d~

,\ r;:rpnck <11 a.2'.p'
,\ r.;rpnck <11 a2'. t' = r.;x . l ~

/ \ ~'I" puck al u2'. v" = £" x . E'}" : 'l'Hl\:J"

This is a definition in HOL including some nested fragments of Z. It tells
us that the value of a Z A-expression described by the "package" of constituents
pack. This package is actually a function (the HOL A-abstraction described
above whose arguments (a/ and a2) correspond to the variables declared in the
Z A-expression. The value in HOL that represents the Z A-expression is the set
comprising precisely those ordered pairs x such that:

• the predicate implicit in the declaration of the Z A-expression is true
• the predicate part of the Z A-expression is true
• the 'tu pie ' expression is equal to the first element of x
• the body of the A-expression is equal to the second element of x

which is just what the value of the Z A-expression should be.

51

FA CS FACTS Issue 2005-1 MARCH 2005

4.6 The Z Mathematical Toolkit

The Z Mathematical Toolkit gives an immediate and fruitful source of early
challenge problems to test the effectiveness of the proof tools. An exposition of
the Proofpower treatment of the Toolkit is given in [3] . For the present article,
we just mention a highlight or two.

The Z Toolkit follows "plain old-fashioned mathematics" in modelling lists,
which Z calls "sequences", as functions, a list of n elements being a function
whose domain is the integer interval l .. n. The definition of the set seq X of
sequences of elements of a set X is given as:

seq X = {f : N X I dam f = 1 .. # J}

Here N X denotes the set of finite partial functions from N to X and # f
denotes the size of the finite partial function f. This is evidently not at all like a
computer scientist's view of lists as defined by an induction principle. It is
entirely equivalent to something like:

sl:q X = U {1'1 : N • 1 .. 1t X}

which makes no mention of finiteness or sizes of finite sets and is much easier
to work with. However, the Z Toolkit says what it says and to get started on
reasoning about sequences, you need to sort out the basics of finiteness and
the size function. You can view this as an irritation or as a challenge. Accepting
the challenge means you have to work through some of the most basic
mathematics there is. Done in the right frame of mind, this can be quite
entertaining.

Again, Z follows plain old mathematics in defining finite sets to be the
images of integer intervals. It is indispensable to prove the finite set induction
principle (if pea) holds when a is the empty set, and if pea u { x }) holds
provided pea) holds, then pea) holds for all finite a}. From which follow
elementary combinatorial principles such as:

V a, b : (Ii<' _) •
a U b E (IF _) /\ # (a U 1» + # (a n b) = # a + # b

'i u : (IF _) • # a = 0 ~ a = {}

Whence the following gem:

'v'1t : IF (IF _) I -# (U u) > # 1L. 3 a : 11 • -# a > 1

which is the pigeon-hole principle (11 being the finite set of finite sets
representing the sets of letters grouped by pigeon-hole). The proof is by finite
set induction on 11. Its realisation in Proofpower takes 18 tactic applications,
generating about 3,400 primitive inferences and executing in about 90
milliseconds on a commodity desktop PC.

52

FACS FACTS Issue 2005-1 MARCH 2005

5 Subsequent Work

The support for Z via the semantic embedding approach has proved remarkably
successful. A very important test of the power and extensibility of the technique
was the development of the Compliance Tool (or "DAZ") component of the
ProofPower suite, a verification system for Ada programs using Z as a
specification language. The approach is based on ideas of Chris Sennett [17].

The Compliance Tool was designed and implemented against a
specification written in Z by the Defence Research Agency (now QinetiQ) [13].
The specification was subsequently ported into ProofPower-Z and continues to
be maintained as the tool evolves.

The Compliance Tool has been extensively used by QinetiQ for the
verification of avionics control systems. This usage has fed back into further
development of ProofPower to improve its performance and ease of use and to
add new features, e.g., support for reasoning about the real numbers (to
support Ada real data types). In conjunction with ClawZ, a tool that generates
ProofPower-Z specifications from Simulink specifications [14], very large
problems are being tackled with considerable success.

6 Further Information

ProofPower is one of several very successful systems whose origins can be
traced back to Mike Gordon's original Cambridge HOl. Others include HOl 4,
HOl light and Isabelle-HOl. Many concerns dealt with in the design of
ProofPower have also been addressed in one way or another in these systems,
though the ernbedding of Z described here is unique to ProofPower. The HOl
4 web site [http://hol.sf.net/] is a good starting point for information on these
systems.

ProofPower is an open source system supported and developed by
lemma1 Ltd. The software, documentation and further information may be
obtained from the lemma 1 web site [http://www.lemma-one.comn.

References

[1] A.NWhitehead and B.Russell. Principia Mathematica. Cambridge University
Press, 1910. 3 vols.

[2] R.D. Arthan. HOl Formalised: Language and Overview. lemma 1 Ltd.,
http://www.lemma-one.com. DS/FMU/SPC001 .

[3] R.D. Arthan. Analysis of Compiled Code: a Prototype Formal Model. In
Jonathan P. Bowen, Steve Dunne, Andy Galloway, and Steve King, editors,
Proceedings of ZB 2000, LNCS 1878. Springer-Verlag, 2000.

[4] Alonzo Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5:56-, 1940.

53

FACS FACTS Issue 2005-1 MARCH 2005

[5) Michael J.C. Gordon. HOL:A Proof Generating System for Higher-Order
Logic. In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis. Kluwer, 1987.

[6) Michael J.C. Gordon. Mechanising Programming Logics in Higher Order
Logic. In G. Birtwistle and P. A. Subrahmanyam, editors, Proceedings of the
1988 Banff Conference on Hardware Verification. Springer-Verlag, 1988.

[7) Michael J.C. Gordon and Tom F. Melham, editors. Introduction to HOL.
Cambridge University Press, 1993.

[8) Michael J.C. Gordon, Arthur J. Milner, and Christopher P. Wadsworth.
Edinburgh LCF. Lecture Notes in Computer Science. Vol. 78. Springer-Verlag,
1979.

[9) International Standards Organisation. Information Technology - Z Formal
Specification Notation - Syntax, Type System and Semantics. ISOIIEC
13568:2002.

[10) L.Paulson . Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, 1987. Cambridge Tracts in Theoretical Computer
Science 2.

[11) Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised) . MIT Press, 1997.

[12) Dept. of Defense. Department of Defense Trusted Computer System
Evaluation Criteria , 1985. DoD 5200.28-STD.

[13) C O'Halloran, R Arthan, and D. King. Using a Formal Specification
Contractually. Formal Aspects of Computing, 9(4), 1997.

[14) C O'Halloran and A. Smith. Verification of Picture-Generated Code.
Proceedings of the 14th IEEE Intemational Conference on Automated Software
Engineering, 1999.

[15) RMi lner. A Theory of Type Polymorphism in Programming. Joumal of
Computer and System Sciences, 17:348-375, 1978.

[16) B. Russell. Mathernatical Logic as based on the Theory of Types. American
Joumal of Mathematics, 30:222 - 262, 1908.

[17) C. T. Sennett. Demonstrating the Compliance of Ada Programs with Z
Specifications. In RShaw, editor, 5th Refinement Workshop, Workshops in
Computing. Springer-Verlag/BCS-FACS, 1992.

[18) J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall , 1989. •

54

FACS FACTS Issue 2005·1 MARCH 2005

The FACS sel-nlflarsel·ie.

55

FACS FACTS Issue 2005-1 MARCH 2005

On Thursday 10 March 2005, the
EPSRC FORTEST Network held its final
meeting at Cumberland Lodge
[http://www.cumberlandlodge.ac.ukl. a
wonderful 17th Century country house in
Windsor Great Park, now used for
workshops and other meetings. The
following talks were delivered to around
twenty attendees:

Cumber/and Lodge

1. Paul Baker (Motorola), The UML2.0 Testing Profile
2. John Clark (Univ. of York) and Rob Hierons (Brunei Univ.), Semantic

Mutation Testing
3. lan Craggs (IBM), Results From Model-Based Testing an IBM Product
4. Mike Poppleton (Univ. of Southampton), Product Line Engineering: UML,

B, Refinement and Testing
5. Tony Cowling (Univ. of Sheffield), Reflections on the Impossible Test

Frame
6. Tony Simons (Univ. of Sheffield), Refinement and Regeneration: or the

Failure of Regression Testing
7. David King (Motorola), A UML 2.0 Testing Environment
8. Yuan Zhan (Univ. of York) , Automatic Test Set Generation and

Management Framework
9. Yongyan Zheng (Univ. of Surrey), Using Dependency Analysis to reduce

the State Space Explosion for State-based Testing

Mike PoppJeton demonstrates
that formal methods and

The slides from the talks will be available on the
FORTEST website [http://www.fortest.org.uk] for those
that would like further information. Overall, this was a very
enjoyable finale to the Network, which has been running
since 2001 but officially finishes in April. However, future
meetings are planned, some of them hopefully to be
supported by FACS. Further information will be issued in
due course. •

56

FACS FACTS Issue 2005-1

From Object-Orientation to Formal Methods:
Essays in Memory of Ole-Johan Dahl
By Olaf Owe, Stein Krogdahl & Tom Lyche (Eds.)
Springer, Lecture Notes in Computer Science, Volume 2635
X+389pp. £37.00/48.00 €.
ISBN 3-540-21366-X
Published March 2004

MARCH 2005

Ole-Johan Dahl [http://www.ifi.uio.noi-olejohanJ. born in 1931, is widely
accepted as Norway's most famous computer scientist. Together with Kristen
Nygaard, second only to Dahl in the country, he produced the initial ideas for
object-oriented (00) programming in the 1960s at the Norwegian Computing
Center (NCC) as part of the Simula I (1961-1965) and Simula 67 (1965-1968)
simulation programming languages [http://en.wikipedia .org/wiki/Simula]. They
were the first to develop the concepts of class, subclass (allowing impl icit
information hiding), inheritance, dynamic object creation, etc., all important
aspects of the 00 paradigm. An "object" is a self-contained component (with a
data structure and associated procedures or "methods") in a software system.
These are combined to form a complete system. The object-oriented approach
is now pervasive in modern software development, including widely used
imperative programming languages such as Java and C++.

Dahl became a full professor at the University of Oslo in 1968 and was a
gifted teacher as well as researcher. Here he worked on Hierarchical Program
Structures, probably his most influential publication, which appeared co
authored with C. A. R. Hoare in the influential book Structured Programming of
1972 by Dahl, E. W. Dijkstra and Hoare, perhaps the best-known academic
book concerning software in the 1970s. He was in the good company of two
other giants in the field of provably correct software development.

As his career progressed, Dahl became increasingly interested in the use
of formal methods, to rigorously reason about object-orientation for example.
Like all good computer scientists, his expertise ranged from the practical
application of ideas to their formal mathematica l underpinning to ensure the
validity of the approach.

The original idea of the book under review was that it would be a
celebratory gift to Dahl in his retirement, but unfortunately 2002 was a sad year
for Norwegian computing since both Dahl and Nygaard died within weeks of
each other. His Structured Programming co-author, Edsger Dijkstra, also died in
the same year so could not contribute to the book. However, this "Festschrift"
volume is still a fitting posthumous tribute to Dahl by close colleagues and
highly respected computer scientists from around the world.

57

FACS FACTS Issue 2005-1 MARCH 2005

The book starts with a good six-page overview biography of Dahl by the
book's editors, followed by a comprehensive bibliography. The first full chapter
is appropriately by Dahl himself (previously published in an almost identical
form in 2002). It gives a historical introduction to the development of the Simula
programming languages and the start of object orientation, including an
assessment of the cultural impact on computing.

As well as in Europe, US computer scientists keenly took up 00 ideas
and it is here that much of the more recent practical development has taken
place. Simula 67 was a simulation language and as such was directly useful for
companies like Intel (inventors of the microprocessor) in the design of VLSI
chips. Leading US research centres such as MIT and Xerox PARC also
adapted 00 concepts for use in languages like CLU and Lisp.

Nowadays, the tool-supported Unified Modeling Language (UML) is very
widely used in industry for 00 system design and development. The Common
Object Request Broker Architecture (CORBA) is utilized by many companies for
interfacing 00 systems. C++, Eiffel and Java are important 00 programming
languages in current use. More specifically, the Microsoft Component Object
Model (COM) is an important aspect of programming languages such as C#.
Much practical software development is undertaken in an object-oriented
manner and a university computer science degree course would find it
extremely hard to justify ignoring the approach.

Rather than covering all the chapters, many of which are largely
academic and specialist in nature, it is perhaps more interesting to pick a small
number of highlights, especially where the authors had a close affinity with Dahl,
as demonstrated by the comments in the opening or closing remarks in their
chapter.

Tony Hoare's chapter covers the Verifying Compiler, a computer science
"Grand Challenge" in the style of the mathematician Hilbert, where a program
compiler could check that Boolean assertions in the code being compiled are
always true as part of the compilation process. Currently in practical situations,
such assertions can only be checked later when the program is actually run , as
part of the testing process for example. Hoare hopes that such a compiler could
be created some time this century.

Hoare also remarks on a presentation that Dahl made at a symposium in
Oxford during 1999 to mark his own retirement from Oxford University. There
was a power cut in the middle of the talk and, with only dim emergency lighting,
no visual aids were possible. However, typically and with great aplomb, Dahl
said he thought that he could continue and did so in the darkness to a rapt
audience. Many lesser speakers would have floundered and delayed until the
restoration of full power, which was not reinstated for some time in this case.

Eugene Kind ler of Ostrava University in the Czech Republic provides an
interesting account of the influence of Simula behind the Iron Curtain, where the
very idea of computer simulation was regarded with suspicion by central
bureaucrats. Computers were generally considered only useful as an auxiliary
aid for mathematics, so his research interests were considered as somewhat
su bversive.

Donald Knuth at Stanford University, California, is one of the leading
computer scientists in the world, with a great interest in algorithms, as illustrated
by his chapter. He visited the University of Oslo (1972-1973) and Dahl visited
Stanford (1977-1978), leading to fruitful collaboration on the science of

58

FACS FACTS Issue 2005-1 MARCH 2005

programming, not to mention four-hand piano playing due to shared musical
interests too!

Other very well-known contributors include Dines Bj0rner, Manfred Broy,
Joseph Goguen, Hans Langmaack, Jose Meseguer, Bertrand Meyer and Michel
Sintzoff. Meyer (the original developer of the Eiffel 00 language) covers object
oriented event-driven software design, including a comparison of the approach
with Microsoft's .NET for connecting web services.

Dahl confesses to a degree of luck in his success with regard to the
influence of his 00 work, especially considering his geographically peripheral
location. No doubt object-orientation would have emerged in some forrn as a
paradigm, but as history has actually proceeded, he and Nygaard can be
rightfully considered as the progenitors of the 00 approach.

Despite his academic standing (and physical height), Dahl was a
delightfully modest and unassuming person, with a very thoughtful but
approachable manner ("a gentleman of the old school" with "good taste and
elegance" as one dedication puts it). He was also a gifted classical pianist, often
together with his wife on the violin . Another contributor describes Dahl as "a
genial scientist, an excellent musician and a very good person." He will be
missed by all that knew him.

This book will be of interest to any computer scientist who met Dahl or
knows him by reputation . Anyone concerned with formal methods research will
also find this a useful set of papers; all the contributors are of international
calibre and many are very well-known computer scientists. Any object-oriented
programmer who does not know the provenance of the approach they are using
could do well to dip into this book, especially the initial three contributions. All
academic libraries covering software engineering would benefit from a copy. It
is sad that Dahl did not live to see the book's publication, but I think he would
have approved of the content.

ESPRIT ProCoS Working Group, Augus/199S, including O. -J. Oahl, far/eft, and
chapter authors H. Langmaack and C. A. R. Hoare, centre, left and right of the sign

Acknowledgement

A version of this book review originally appeared in the Times Higher Education
Supplement [http://www.thes.co.uklsearch/story.aspx?story id-2019317]:

Pioneer who Prepared the Ground (or Road to Java. The Times Higher Education
Supplement, 1677:34, 4 February 2005. Review of From Object-Orientalion to Formal
Methods: ESS8\,S in Memory o(Ole-Johan Dahl, Dial Owe, Stein Krogdahl and Tom Lyche
(eds .), Berlin: Springer-Verlag. Lecture Notes in Computer Science, Volume 2635, 2004

It is reproduced here with permission.

59

•

FACS FACTS Issue 2005-1 MARCH 2005

60

FACS FACTS Issue 2005-1 MARCH 2005

:::>UJ)mISSlon: 28 March a .
http://www,soe,ucsc,edu/concur05

61

FACS FACTS Issue 2005-1

7 - 9 ~~J~~~::1~:i
Submission: 18 .. and 1 April
http://sefm2005.uill:koblenz.de

SAS'05: The >i~t~ ln.ternational Static Analysis
London ·E "i . .i;;;' .;; ",:,:::::::::}:'::'::;'
7 - 9 Septemberi'•.......
Submi$sion: 11 APril
http://www.doc.idic.uk/-clh/sasOS.htm

CPA2005: COmmGnicating Process Architecture
The Netherla.rids ..
18 - 21 September ..
http://www.wotug.org/cpa2005Iindex.shiiTIl

FORTE 2005: 25th IFIP WG .B.1 IntemationaI:C:6nf'erence
TechniqLje$it9LNetV;'orked and Dis;tritlutIB.clSYl>tems
TaiPei" 'T~iwan i;':IL?'
2 - 5 dCto6ef};.,::::::::::_:_;_:,:/~/:·:···'·
SLjbmisslon:1 Of\prii \
http://cc.ee.ntu.edu.tw/-forte05

CHARME. 40Q5~131h Advanced Research Wa~rkirlgIC(~i)f!~t
Hardware. Design and Verification Methods
SaarbrOckeri, Germany '
6 - 9 October
Submission: 2QMarch
http://www.chaime2005.com

...•.•..•.•... ,-:-:.:.c;

ICT AC OQ: , ig;~t~~tionaIColloquium on Th~6rEltical
Hanoi, Vietnam.•. \)\... .• .

"':':",;.: ;

17 - 21 Oclober co[C
$ubmissiom?!;ir.1ay

• http://www.iisfurid:edu/iclac05 ,,
... , ::::.;:;::.;:::n:.:;.: ... ·.,·;. ':.. :.;: ... ,":,~:.

62

MARCH 2005

Oc::1:ob4:lr 2005

FA CS FACTS Issue 2005-1

London" LT§::Z
December {;

'~-'- . '.~

MARCH 2005

... , ..

63

FACS FACTS Issue 2005-1 MARCH 2005

64

FACS FACTS Issue 2005-1 MARCH 2005

65

FACS FACTS Issue 2005-1 MARCH 2005

r~~~~~~r~I;;~.~~~~:~ ~o;~~~e~~~li~:~ng Research

University of Southampton

.iAPPlication~ea~.~~~~i ;~i~~r Z,005' ii!./b l i)i,···· •••.

YApplications a;el ;jn~iiE;;:riora· c~~'(r.· iiWF;;"n~j····MethOds
.{Computer Scienge 'ai" the University of Soulhampion. The 'SchoOl is one of most

successful and largest of its kind in the UI<. The School consistenlly achieves the highest
·ratings for both its research and teaching (5' in both Computer. Science and Electrical and
Electronic Engineering in RAE 2001. and now rated 6' by HEF.<::E)..

... :.::,:,~;):

•.•.• The new chairwmj)£> ' in the Declar<!ti;~;systems ' andSd~re Engineeringi Xpsil6
:iResearch .GI9jJpl JWWw,dsse,ecs.soton'ablkr·Which ha~m~jili es.tablishediii~~rch
il programmesinform:al methods. software ' engineering and· GR1Cr middlewar<l. Otir formal

methods research·" includes leading woik ···on refinement techniques, model checking,
algebraic methods aod method integration. The group has stroogcollaboratlon with vailous
industrial organisations on the practical application olfo(mal methods.

This new appointm<lnt will extend and enhance our formaf h:nethodS <lxpertfse thfough
;.;·personal and collaborative research. We seek applicants with a track record of research.fuHy
• commenSurate with the School's 6'ratlngsand. proven qualitl~s of academic research

. J~actershlp. We are ·especlally keen to.make an appointment Iq automated verification arid/or
. model checking.> bufappl icatiorts from outstanding individuals with .olher related re.search

expertise are also very welcome. ...

Information about the School can be found at www,ecs,sotQn,@g,uk. informal enquirill!;may
be made to the Head of the DSSE Research Group. Professor Peter Henderson
Jph@ecs,soton,ac,ukl; or 10 Professor Michael Butler [mjb@ecs:soton.ac,ukj

.Salary will be on the proles.sorial scale. '.;.". ".;..

Further details from: .li'.:: . i
htlp:lJwww . jobs.soton .ac.ukfadm inwebnsp.10bs/sJobview.jsp?functiQn~View&jd~04P{)496 or
http://www.ecs.soton.ac.uki-mjbi ·(e.' .

Application deadline: 6 May 20(15.

Paid-up FACSrvikmbers receive th~+ollowingbenefit~: (
::'" ..

- substantialdi~count on the Formal Aspects of Computing journal '
subscription fee

- discount$ atFACS evemt.E;('I)'h.er

- 25% diSpoililfoi1spri~~·dfl:r;~;~~;i
- 20% disqqY9td~ the

66

FACS FACTS Issue 2005-1

Jonathan Bowen
FACS Chair
ZUG Liaison

Paul Boca
Membership Sec.
Newsletter Editor

John Fitzgerald
FME Liaison

SCSC Liaison

Judith Carlton
Industrial Liaison

Jawed Siddiqi
Treasurer

John Cooke
FAC Journal
Liaison

Margaret West
BCS Liaison

Kevin Lano
UML Liaison

67

MARCH 2005

Roger Carsley
Secretary

Ali Abdallah
Events Coordinator

Mike Stannett
Webmaster
LMS Liaison

Rick Thomas
LMS Liaison

FACS FACTS Issue 2005-1 MARCH 2005

FACS is always interested to hear from its members and keen to recruit
additional Committee members. Presently we have vacancies for officers to
handle publicity and help with fund raising, and to liaise with other specialist
groups such as the Requirements Engineering group and the European
Association for Theoretical Computer Science (EATCS). If you are interested in
helping the Committee, please contact the FACS Chair, Professor Jonathan
Bowen, at the contact points below:

You can also contact the other Committee members via this email address.

Please feel free to discuss any ideas you have for FACS or voice any opinions
openly on the FACS mailing list [FACS@jiscmail.ac.uk]. You can also use this
list to pose questions and to make contact with other members working in your
area. Note: only FACS members can post to the list; archives are accessible to
everyone at http://www.jiscmail.ac.ukllists/facs.html .

68

FACS FACTS Issue 2005-1 MARCH 2005

1 2 3

4
~ rs--

~ 0

~ 1/ 7S A
f--

J1 I G- M rp I -=r r-- 'il
r-- - - 9

1 s c k
1 ~ fJ 1 H 1 r I I T ~ fJ C 1.-'

r-- r-- r--
l
n

-
1L

Down

1
3
4

5

6
8
11
13
14
17
18
21

0 c .,.
- -

1A tJ
.,. t1 G
~

13 1~

1
16 I 17

19 20

22

sort of bridge
lady of Ihe higher order?
Greek letter Ihat sounds like a un it of
resistance but is not used as the symbol for it.
programming language named for him - but not in
French
fifth letter of the Greek alphabet.
a journey, literally
seventh letter of the Greek alphabet.
Greek letter used to indicate a very small quantity.
not an old Greek letter?
motto Across

r ~ 1

1

1

possible speech impediment
initials of "Mr WWW" a net or dish

~ r--

1f-. E I A

r;s r--
c.
I 21

r2- B
-

P L
~ -

2
7
9
10
12
15
16
19
20
22

Greek letter used for summation.
kind of logic

69

could be taxing for children
in UK, may be red next
Greek letter for Z
melhodical
Significant Fortran developer
a conslraint
get some spin on with Ihis!

BCS
iIj FACS

FACS membership application/renewal (2005)

Title (Prof/Dr/Mr/Ms) __ First name ______ Last name ____ _

Email address (required for opl ions'below), _____________ _

BCS membership No. (or sister society name + membership number)

Address

Postcode _____ _ Count~ ___________ ___

I would like to take out membership to FACS at the following rate :

o £15 (Previous member of BCS-FACS now retired , unwaged or a student)

o £15 (Member of BCS or sister society with web/email access)'

o £30 (Non-member or member of BCS or sister society without web/email access)

In addit ion I would like to subscribe to Volume 17 of the FAC journal at the following rate:

o £46

For electron ic only journal subscription', please tick here D . No further discount given.

The total amount payable to BCS-FACS in pounds sterling is £ 151 30 / 61/76
(delete as appropriate). I am paying by:

o Cheque made payable to BCS-FACS (in pounds sterling)

o Credit card via PayPal (instructions can be fou nd on the BCS-FACS website)

o Direct transfer (in pounds sterling) to:

Bank: Lloyds TSB Bank, Langham Place, London
Sort Code: 30-94-87
Account Number: 00173977
Title of Account: BCS-FACS

If a receipt is required, please tick here 0 and enclose a stamped self-addressed
envelope.

Please send completed forms to :

Dr Paul P Boca
PO BOX 32173
LONDON N4 4YP
UK Re~e~ved by FAGS Dr.:t8. IrWals:

FACS FACTS Issue 2005-1 MARCH 2005

Solution to crossword on page 69

~

~
Q

cM r=-
rf- r-L
5 C
1~ NIH IE R 1

r-b- ~
Q N

1i 11
n) R 0

T
1~ A

1 ~ E T R
3
1 ~ 1l ~ 5

75 f-'-

eN- IGM A eA 8
rI- B 5 1
R

9p R E D 11 C A T E
T A N C lE r-b- cA ~

~ T L ch B.
cl lA MB E RI A

IN lZ E T A
C E D U R lA L

t
...L

X 0
C K U 5 2~ N V AIR 1 A N ~

0 ~ ~
~RO M E L AI ~ ~

The Forma/Aspects of (FAC) journal
has been accepted in Citation
Index Expanded, CompuMath Citation Index and
Current\ Cbntents/Engineering, and Tec:hoc)logy,
Coverage wiUbegin this year/ ;f

. ;';:::::~:~;;f\'~:::-(::::::

FACS members are entitled to a substantial discourit.on the FACjCJyrnal
subscription fee. · For further details on how to s&hscribe to the)current
volume of the journal , please see the membership form on page 700tliisit
.the FACS website Jl1ttp:llwww.bcs~facs.orgl . .

71

