
''1':
"-, .. >

, 14 "

A Discussion Of Formal Models

Frank Knowles
Gould, Inc. '

Computer Systems Division - Urbana
1101 East University Avenue

Urbana, ILL 61801
U. S. A •

•) GOUlD Nov 15, 1985
Electronics

A DISCUSSION OF FORMAL MOC~LS

This talk is divided into tiO parts.

The firlt part isan ex~o~ition of the aell la Padula
model. Tht med.l referrtd to is that described in the
report, "Unif1eo Exposition and Multics Interpretation."
model ~as be.n transl.ted into a VERUS speciflcation, and
versions of some mod.l constructs are presented.

(B-l)
MITRE
This

VERUS

The second part is a sketch of a model (not formal) tor a 61
level U~IX.

The 8-l model 11 the most discussed sec~rity model for operating
Sy3t.~S, so it 11 a~pro~riat. to start with it if ene is
inttrest.d in ~r~ting a ~od'l for a secure s~itam.· In a
sentenct, the B-l model is I state machln. Model for an operating
system _ith four access Rode5 (r.ad, write, read-!nd-write,
execute;, eignt generic stata transformations <give-permi!iion,
rescind- permission, get-access, release-accai5, creat.-obj.ct,
deleta-obJect, changi-current-subJect-Ievel, ehange-object
level), and t~rea state invariants (simple-security, star-
5ecurit~, discretionary-security).

Th. model is not int.ndtd tc adoress cov9rt chann~ls or system
integrity, nevertheless it is a re3sonable first step In
describing tnose aspects of an operating system that could r~sult
in the ~nd.sirable tr~n!fer of information.

Some as~tcts of the model ara unclear. Giving and taking of
permissions is incomplat91y specifled and tha r~les regarding
perm1ssions are itated ciffErently in different ~~rts of th.
paper.

The rules for
unsatisfactory.
3ft~r creeting in
to it.

iCC$ISins obJecti in a hlirarchy are
They r9q~ir. a user to changa security leve13
obJact in order to gain rlad-and-~riti ~ccass

The pro~os.~ mooil for a ~l laval UNIX limits transfer of
information bet.aen obj~cts of different cla3s1fication ltivtls in
th~ spirit of the 6-L medal, but equal emphasis is given to
trust9d subjects and acclss rastriction5 that gucrant~e system
integrity.

-1-

BELL- LA PADULA SECURITY MODEL
. -

knowles

Section

1

2

3

4

5

6

7

8

9

10

11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11

12

13

B-L Model

verus

CONTENTS

INTR.ODUCTION ••••••••••••••••••••••••••••••••••••••

SUBJECTS AND OBJECTS ••••••••••••••••••••••••••••••

TYPES OF ACCESS •••••••••••••••••••••••••••••••••••

OBJECT HIERARCHIES ••••••••••••••••••••••••••••••••

ACCESS MATR. IX

PERMISSION MATRIX'. ~
SECURITY LEVELS •

UNDERLYING STATE MACHINE MODEL ...•.....••.••.......
SECURITY POLICY •

COMPATIBILITY •

TR.ANSFORMATION RULES . .- .
Get ... Read•..........•......... " .. "•......
Ge t ... Append •
Get,. Execute •••••••••••••••••••••••••••••••••••••
Get ... Write •••••••••••••••••••••••••••••••••••••••
Release~Access ••••••••••••••••••••••••••••••••••
Give ... Permission •••••••••••••••••••••••••••••••••
Rescind ... Permission ••.••••••••••••••••••••••••••••
Cr ea te ... Obj ect •
De1ete.,.Object •••••••••••••••••••••••••• i.~ ••••••

Change.,.Subject.,.Current ... Level ••••••••••••••••••••
Change.,.Object ... Level •••••••••••••••••••••••••••••

SOME CRITICISMS OF THE MODEL •

THE PROBLEM WITH HIERARCHIES• ~ •........

Page

1

1

1

2

2

3

3

7

7

10

10
11
12
12
12
13
15
16
17
17
17
18

19

20

ii 16·Nov 85

THE BELL - LA PADULA MODEL

This is an exposition of the Bell - La Padula (B-L) model. I
will describe the underlying state machine model, the elements of
the model, the security policy, and the transformation rules.
The exposition is based upon the MITRE report, "Unified
Exposition and Multics Interpretation."

There are some differences between the exposition in the first
three papers on the model and the fourth. For instance, there
are change-level rules, and discretionary access is incorporated
into the security requirements. Nevertheless, I will pretend
that there is just one model and it is the "unified" one.

I will also identify points of incompleteness or ambiguity and
problems that will arise if the model is applied to a real
system.

1 INTRODUCTION

The B-L model is the best known abstract security model for
operating systems. It is a reasonable first step in analyzing a
system for unwanted data flow. As the authors say in their
informal discussion, the model does not address covert channels
or system integrity. The primary goal seems to be to present a
set of rules -that disallow a direct transfer of data from a
storage object at a high level to a storage object at a lower
level.

As a pr-eparation for this talk,' the model was recast in the VERUS
language and each rule was proven to be security-preserving.
Some examples of VERUS declarations and proofs will be presented.

2 SUBJECTS AND OBJECTS

The model is concerned with access of subjects (users, processes,
etc.) to objects (files, memory segments, etc.). The set of
subjects may overlap the set of objects.

Subjects are of two types, trusted and untrusted. In general,
trusted subjects are subject to lesser checks than untrusted
subjects when requesting an access.

3 TYPES OF ACCESS

There are four types of access of subject to object

16 Nov 85 -1- B-L Model

'.

verus knowles

execu~e no observation or alteration of the object

read

append

write

Standard interpretation is "run" for a data file
and "search" for a directory.

observation of the object only

Standard interpretation is riread" for a data file
and "list" for a directory.

alteration of the object only

Standard interpretation is "write" for a data file
and creation or deletion of files for a directory.
The name is an unfortunate choice.

both observation and observation of the object

Standard interpretation is "read and write" for
both data files and directories. The name is
another unfortunate choice.

4 OBJECT HIERARCHIES

Objects are assumed to be arranged in an hierarchy. A. hierarchy
is the usual directory structure limited to directed graphs~
That is, links that yield a circular path are outlawed and
children cannot have more than .one parent.

These details of object struc;.ture are largely irrelevant as far
as the proofs of security go except when it comes to deleting an
object--all objects below are affected. The compatibility
principle (see below) is a relationship between parent and child,
but it is not mentioned in the security policy (see below), hence
it is not security-relevant.

5 ACCESS MATRIX

The current activity in the system can
matrix with each row representing
representing an object.

be be visualized as a
a subject and each column

The entry for (subject, object) is the set of current accesses
being requested (and presumably being acted upon) by the subject·
for the object. .

B-L Model -2- 16 Nov 85

(.

knowles verus

6 PERMISSION MATRIX

As we shall see, one aspect
accesses be "permissibl~"
permissible are represented
(current) access matrix.

of a "secure" state is that all
accesses. Those accesses that are

by a permission matrix similar to the

Each row represents a subject, and each column represents an
object, and each entry is a set of accesses, just as in the
access matrix. The entry, (subject, object), in this case, is
the set of "permissible" accesses of subject to object.

7 SECURITY LEVELS

Each subject and each object has associated
level (or label). A subject has both
current level. The maximum level must
current level. The exact structure of
important in the security proofs as long as
the levels hold.

with it a security
a maximum level and a
always dominate the

the levels is not
certain axioms about

The set of security levels forms a partially ordered set. That
is, we can talk about Ll >= L2 (Ll dominates L2), or Ll is not
comparable to L2, where "dominates" satisfies three axioms:

1. Ll >= Ll

2. L1 >= L2 and L2 >= Ll implies Ll = L2

3. Ll >= L2 and L2 >= L3 implies L1 >= L3

A level will actually consist of a "classification" and a set of
"compartments." For instance, a level might be the tuple,
(secret, NATO, Nuclear). In this example, "secret" is the
classification and the set consisting of the other elements, NATO
and Nuclear, is the set of compartments. The first component of
the level comes from a totally ordered set where all elements are
related (none are non-comparable). Such a set might look like:

top secret, secret, confidential, unclassified

where "top secret" is greater than "secret"; "secret" is greater
than "confidential", etc.

The second component of the level is a set of compartments.
These elements do not have any relation to each other. They are
intended to represent a "need to know" requirement. Such a set
might look like:

NATO, Nuclear, CRYPTO

16 Nov 85 -3- B-L Model

verus know1es

Now we can say how two security levels can be compared. L1)= L2
means that the classification component of L1 is greater than or
equal to that of L2 and the set of compartments of L1 includes
the set of compartments of L2.

Two levels can be non-comparable if the level of one is greater
than or equal to that of the second but the set of compartments
of the second is not a subset of the set of compartments of the
first. For example, these two levels are not comparable:

(top secret, NATO) and (secret, NATO, Nuclear).

It is easy to see that the set of levels as we have defined them
satisfies the requirements of a partially ordered set as given
above. From now on, we can forget how the levels actually look.

The declarations in VERUS of some of these system components look
like this:

B-L Model -4- 16 Nov 85

knowles

$ TYPE PECLARATIONS
$ Entity includes both subjects and Objects.·

TYPE EntitYl
TYPE Subject OF EntitYl
TYPE Object OF EntitYl

TYPE SecurityLevell

$ Dec~are access modes.

TYPE Access = (e.access, r.access, a.access, w.access)l

$ Declare access elements.

$ Declare access elements as a type.

verus

TYPE Eltl
TYPE EltSetl $ We will also need sets of access elements.

$ SET MACROS

$ Use the SetDefs macro to the pull in the definitions of
$ set operations for setg of elements.

SetDefs(Elt, EltSet)

$ This is part of the output of the SetDefs macro applied to elements:

$ Declare "i~ a member of" primitive for sets of elements.

DECLARE InEltSet(Elt, EltSet) : BOOLEANl

$ Axiom of set union.

DEFINE UnionEltSet(setlEltSet, set2EltSet)
BY

FOR eltlElt
EQUIV
{

EltSet

InEltSet(eltlElt, UnionEltSet(setlEltSet, set2EltSet»1
OR

} 1

{
InEltSet(eltlElt, setlEltSet)1
InEltSet(eltlElt, set2EltSet)1

} 1

$ Besides the basic operations, axioms for set equality and the
$ empty set are generated.

16 Nov 85 -5- B-L Model

verus

$ MORE TYPES

$ Each Elt is a triple, (Subject, Object, Attribute):

DECLARE SubjectOf(Elt) : Subject~
DECLARE ObjectOf(Elt) : Object~
DECLARE AttributeOf(Elt) : Access~

$ Declare the current access set.

DECLARE CurrentAccess(Time) : EltSet~

$ Declare the access permission matrix as a function
$ of subjects and objects.

knowles

DECLARE Permissions(Time, Subject, Object) : AccessSet~

$ Declare security level functions.

DECLARE MaxLevel(Subject) : SecurityLevel~ $ maximum level
DECLARE ObjectLevel(Time, Object) : SecurityLevel;
DECLARE CurrentLevel(Time, Subject) : SecurityLevel; $ current level

$ Declare the "dominates" relation for security classes.

DECLARE Dominates(SecurityLevel, SecurityLevel) : BOOLEAN;

$ Define some notions associated with the hierarchy of objects.

DECLARE Parent(Time, Object, Object) : BOOLEAN;

VAR obj, objl, obj2 Object~

DEFINE Root(t, 6bj : BOOLEAN
BY

FOR objl NOT Parent(t, objl, obj);

$ This is a recursive definition of objl being inferior to obj2:

DEFINE Inferior (t, objl, obj2) : BOOLEAN
BY

OR
{

} ;

Parent(t, obj2, objl);
EXIST obj

AND
{

} ;

Inferior(t, obj, obj2);
Parent(t, obj, objl);

B-L Model -6- 16 Nov 85

knowles verus

8 UNDERLYING STATE' MACHINE MODEL

I will not follow the presentation of the underlying state model
as it is ,presented in the report. It is awkward and more
complicated that it needs to be. Instead, I will present the
state machine model as it is usually formalized in VERUS.

The underlying state machine consists of the "state" (the
collection, with current values, of subjects, objects, a~cess
matr ix, ,permission matr ix, and secur ity level functions descr ibed
earlier), a state requirement (a conjunction of statements that
must be true of the initial state and all succeeding states), and
a set of state transformations (rules). I will specify the state
requirement in the next section. Let's call a state that
satisfies the state requirement, a "secure" state.

The burden of presenting a state machine model consists of
defining all the things just alluded to and of proving that the
initial state satisfies the state requirement and that each
transformation sends secure states into secure states. Thus, all
reachable states are secure.

We need to define an initial state of'the state. In the model
the, following state is suggested. The Initial State consists of
a set of subjects, a set of objects, a permission ,matrix, the
three level functions previously defined, and an EMPTY access
matrix. Since there are no current accesses, it follows easily
from the state requirement in the next section that this is a
secure state.

To complete the definition of the B-L model we need to define the
state requirement, and the transformation rules.

9 SECURITY POLICY

This section defines the state requirement or "security policy"
of the model. A "secure" state is a state in which the following
three things are true.

For the set of current accesses, both the simple security
property and the star property must hold, and between the entries
in the access matrix and the permission matrix, the discretionary
contr 01 requir ement must hold.

16 Nov 85 -7- B-L Model

verus

A precise statement expressed in VERUS looks like this:

$ STATE REQUIREMENT

$ Declare the security properties of the system.

DECLARE SimpleSecurity(Time) : BOOLEAN;
DECLARE Star Pr oper ty (Time) : BOOLEAN;
DECLARE DiscretionarySecurity(Time) : BOOLEAN;

DEFINE StateRequirement(t) : BOOLEAN
BY

$

AND
{

} ;

SimpleSecurity(t);
StarProperty(t);
DiscretionarySecurity(t);

$ Define the simple security condition.
$ Note: InEltSet is defined in SetDefs.l.
$ It is the relationship of set membership between
$ access elements and sets of access elements.
$
DEFINE SimpleSecurity(t) : BOOLEAN
BY

FOR elt
IF AND
{

InEltSet(elt, CurrentAccess(t));
ObserveAccess(elt);

}
THEN Dominates(MaxLevel(SubjectOf(elt»,

ObjectLevel(t, ObjectOf(elt»);

B-L Model -8-

knowles

16 Nov 85

knowles

$ Define the *-property.

$ If Trusted (subj) Then subj is a trusted subject.

DECLARE Trusted(Subject) : BOOLEAN:

DEFINE StarProperty(t) : BOOLEAN
BY

FOR elt
IF AND
{

}

InEltSet(elt, CurrentAccess(t)):'
NOT Trusted(SubjectOf(elt»:

THEN AND
{

IF AttributeOf(elt) = a.access
THEN Dominates(ObjectLevel(t,ObjectOf(elt»,

CurrentLevel(t,SubjectOf(elt»):

IF AttributeOf(elt) = w~access

verus

THEN ObjectLevel(t,ObjectOf(elt» = CurrentLevel(t,SubjectOf(elt»

} :

IF AttributeOf(elt) = r.access
THEN Dominates(CurrentLevel(t,SubjectOf(elt»,

ObjectLevel(t,ObjectOf(elt»):

$ Define discretionary security~
$ Note: InAccessSet is similar to InEltSet except that it denotes
$ set membership between access attributes and sets of access
$ attributes.

DEFINE DiscretionarySecurity(t) : BOOLEAN
BY

FOR elt
IF InEltSet(elt, CurrentAccess(t))
THEN InAccessSet(AttributeOf(elt),

Permissions(t, SubjectOf(elt), ObjectOf(elt»):

16 Nov 85 -9- B-L Model

verus knowles

10 COMPATIBILITY

In B-L, "compatibility" means that the level of the parent of an
object is dominated by the level of the object.

I suppose that this is called "compatibility" because otherwise
you can create objects that, in normal circumstances, you
wouldn't be able to access. The motivation for this requirement
is discussed on page 29 of the report. The argument is that
having

L < level (D)
would mean that U could never write F. The reason is that to
access any file in D, U must have execute access to D so level of
U)= level of D, but to write F, level of U <= L, which is <
level of D!

11 TRANSFORMATION RULES

This section contains a description of the state transformation
rules. In the model, these rules are described in three
different places. Firstly, they are given a multics flavor using
segment field values and dfagrams·. Secondly, they are stated
with mathematical fanfare. Thirdly, they are stated informally.
Finally, proofs are given that each rule preserves security.

I will state each rule but, except for one, I will skip the proof
that the rule preserves security. All of the proofs are easy to
derive informally, and only one or two cause any difficulty when
using VERUS. I will illustrate the VERUS proof style by showing
a simple proof. ..

B-L Model -10- 16 Nov 85

knowles verus

11.1 Get.Read.

Get.Read (5, 0) is a request that subject 5 obtain read access to
object O.

This request is granted if the following is true:

The permission matrix shows that 5 may have read access to 0

the maximum level of 5 dominates the level of 0 AND either 5 is
trusted or the current level of 5 must also domininate the level
of o.

If the request is granted then an access of 5 to 0 in read mode
is added to the current access matrix.

This seems to imply that trusted subjects are subject to
discretionary access control.

16 Nov 85 -11- B-L Model

verus knowles

11.2 -Get~Append.

Get~Append (S, 0) is a request that subject S have append access
to object O.

This request is granted if the following is true:

The permission matrix shows that S may have append access to 0

AND

either S is trusted or the level of 0 domininates the current
level of S.

If the request is granted then an access of S to 0 in append mode
is added to the current access matrix.

Notice that untrusted subjects may "write up."

11.3 Get~Execute.

Get~Execute (S, 0) is a request that S have execute access to O.

This request is granted if the following is true:

The permission matrix shows that S may have execute access to 0

If the request is granted then an access of S to 0 in execute
mode is added to the current access matrix.

Seems odd to me that there is no mandatory check for execute.

11.4 Get~Write.

Get~write (S, 0) is a request that subject S have write access to
object o.

This request is granted if the following is true:

The permission matrix shows that S may have write access to 0

AND

the maximum level of S domina tes the level of 0 AND ei ther S is
trusted or the current level of S equals the level of O.

If the request is granted then an access of S to 0 in write mode
is added to the current access matrix.

B-L Model -12- 16 Nov 85

knowles verus

11.5 Release.Access.

ReleaseM,Access(S, 0, A) means that S releases access to 0 in
mode A. .

Here is the VERUS specification of this rule.

VAR x.access : Access;
CONST Cx.access : Access;
CONST CxM access2 : Access;
CONST Celt : Elt;

DEFINE ReleaseAccess(subj, obj, x.access)
BY

AND
{

FOR elt
IF AND
{

}

SubjectOf(elt) = subj;
.0bjectOf(elt) = obj;
AttributeOf(elt) = x.access;
InEltSet(elt, CurrentAccess(OLD));

BOOLEAN

THEN NOT InEltSet(elt, CurrentAccess(NEW))
ELSE

IF NOT InEltSet(elt, CurrentAccess(OLD))
THEN NOT InEltSet(elt, CurrentAccess{NEW))
ELSE InEltSet(elt, CurrentAccess(NEW));

$ We also need to specify that no other state functions change:

} ;

SamePermissions;
SameCurrentLevel;
SameObjectLevel;
SamePar ent;
SameHier archy;

16 Nov 85 -13- B-L Model

'verus knowles

Here is the VERUS proof that Release~Access preserves security.

$ Declare instantiation constants.

CONST Csubj, Csubjl, Csubj2, Csubj3
CONST Cobj, Cobjl : Object;

Subject;

PROVE

{

};

IF AND
{

}

StateRequir ement (OLD) ;
EXIST subj EXIST obj EXIST x.access

ReleaseAccess{ subj, obj, x_access);

THEN StateRequirement(NEW);

PROVE SimpleSecurity(NEW);
{

EXIST subj EXIST obj EXIST x.access
ReleaseAccess(subj, obj, x_access);

SimpleSecurity(OLD);
} ;

PROVE StarProperty(NEW);
{

} ;

EXIST subj EXIST obj EXIST x_access
ReleaseAccess(subj, obj, x.access);

starProperty(OLD);

PROVE DiscretionarySecurity(NEW);
{

} ;

EXIST subj EXIST obj EXIST x.access
ReleaseAccess(subj, obj, x_access);

DiscretionarySecurity(OLD);

B-L Model -14- 16 Nov 85

knowles verus

11.6 Give",Permission.

Give",Permission (SI, S2, 0, A) means that subject SI gives
permission to subject S2 to have access to object 0 in mode A.

Comment: There are different definitions of this rule in the
report. I will give the slightly simpler one. GIVE(Sl, 0) means
that S2 may give permissions to o. This is not further defined
in the r epor t.

This request is granted if the following is true:

o is not the ROOT, and SI has current write access to the Parent
of 0

OR

o is the ROOT, and GIVE (SI, 0)

If the request is granted then the permission matrix will now
show that S2 may have access to 0 in mode A.

16 Nov 85 -15- B-L Model

verus

11.7 Rescind .. Permission.

Rescind .. permission(5l, 52, 0, A) means
permission for 52 to access 0 in mode A •.

that

knowles

51 rescinds

Comment: RE5CIND(5, 0) means 5 may rescind permissions for access
to o. This function is not defined further in the model.

This request is granted if the following is true:

o is not ROOT, and 5 has write access to Parent(O)

OR

o is ROOT, and RE5CIND(5, ROOT);

If the request is granted then A is removed from the entry (52,
0) in the permission matrix, and any access by 52 to 0 in mode A
is removed from the current access matrix.

B-L Model -16- 16 Nov 85

knowles verus

11.8 Create.Object.

Create.Object(5, 01, Ll, 02) means that 5 creates 01 at level Ll
and 02 is the Parent of 01.

This request is granted if the following is true:

5 has either append or write access to 02.

AND

Ll dominates the level of 02.

If the request is granted then 01 is a new object with Parent 01
and the level of 01 is Ll.

Evidently ROOT exists in the initial state.

11.9 Delete~Object.

Delete.Object (5, 0) means that 5 deletes 0 and all objects
inferior to it.

This request is granted if the following is true:".

o is not ROOT and 5 has write access to the parent of o.

If the request is granted then all current accesses toO and all
objects inferior to 0 are removed from the current access matrix
and all permissions for access to 0 and objects inferior to 0 are
removed from the permission matrix.

11.10 Change.5ubject~Current_Level.

Change.Subject.Current.Level(5, L) means that the new current,
level of 5 is L.

This request is granted if the following is true:

the maximum level of 5 dominates L AND either 5 is trusted or all
current accesses by 5 obey the star-property assuming that the
current level of 5 is L

If the request is granted then the new current level of 5 is L.

16 Nov 85 -17- B-L Model

verus knowles

11.11 Change~Object~Level.

Change~Object.Level(S, 0, L) means that S changes the level of 0
to L.

This request is granted if the following is true:

S is trusted and the maximal level of S dominates the level of 0
or the current level of S dominates Land L dominates the level
of 0

AND

if any subject T has access to 0 in read or write mode then the
current level of T dominates L

if O's level were changed to L then the star-property still holds
for all current accesses to 0

AND

if O's level were changed to L then the compatibility property
would still hold in the object hierarchy

AND

CHANGE(S, 0) is true, which means that S may change the level of
O. CHANGE is not defined further in the report.

If the request is granted then the new level of 0 is L.

B-L Model -18- 16 Nov 85

knowles verus

12 SOME CRITICISMS OF THE MODEL

Now that we are familiar with the model, I would like to indicate
some of the problems with it.

In general, the notation is hard to follow. In
explanation of the underlying state machine and
concerning security-preserving rules, on pages
unnecessarily complicated.

particular, the
themetatheorems

87 to 99, is

It should have been pointed out somewher e that "simple secur ity"
is implied by the "star property" unless the access is being
requested by a trusted sUbject. Otherwise, one is tempted to
think the use of maximal level of a subject in some places and
the use of current level of a subject in others are typographical
er ror s.

The informal statement of Rule 6 and its formal statement differ.
The rules for Give~Permission (rule 6) and Rescind.Permission
(rule 7) are incomplete because the functions GIVE and RESCIND
are not completely defined--indeed they are not mentioned
elsewhere in the report! In fact, the security policy has no
requirements regarding modification of the permissions matrix.
This seems to me to be a poor choice for later refinement. Rules
for altering the permission matrix are at least as important as
the rules for writing (other) objects.

CHANGE, in Rule 11, is also not defined formally.

The rules for an object hierarchy imply an awkwardness in
creating and editing files. It turns out that if one is working
in a multi-level directory, then one must change one's level in
between creating a file and editing it. This is clearly not
desirable in a real system. This particular·featur.e is presented
in detail in the next section •.

Including Change.Subject~Level and Change.Object.Level
transformations puts an extra burden on the implementation of a
secure system. To be specific, the system must be capable of
tagging individual process memory buffers with security labels
and checking for improper access if the process ever changes its
label. If this is not done, then it is easy to do' an
unauthorized "write down." Just read a file at one le~elinto a
program buffer, change level, and write the buffer into a file at
a lower level.

16 Nov 85 -19- B-L Model

....

verus

13 THE PROBLEM WITH HIERARCHIES

This section discusses a problem that
typical file hierarchy if the access
strictly adhered to. This discussion
(subjects).

knowles

arises in working in a
rules of the B-L model are
concerns UNTRUSTED· users

I are interested in what the B-L model would imply, when a user
creates a file in a directory and proceeds to edit that file. I
contend that the model's rules imply

EITHER

the user must change (actually "raise") his/her current security
level after creating the file and before opening the file for
read-and-write access;

OR

the directory and the new file and the user must all be at the
same security level.

Thus an inconvenient and (possibly insecure) c~ange-level
operation must frequently take place, or painless text processing
can occur only in single-level subtrees.

A real system is likely to adhere to a tr anquil i typr inciple for
untrusted subjects though trusted subjects would be able to
change their level and the level of objects. Such a system
cannot follow the security requirements of the B-L model and be
user friendly.

Let's now consider the scenario in detail and show that the
problem really does exist.

Suppose a user U decides to create a new file F in a already
existing directory D. The request takes the form, Create (Ui F,
D, L), where L is the proposed security level of F.

The applicable rule is #8 Create~Object, p. 118.

There are two conditions that must be true in order for this
request to be granted.

1. U must have access to D in either read~and-write or
write mode

2. L >= level (D) (compatibility requirement)
,;

B-L l-1odel -20- 16 Nov 85

knowles verus

In order for U to have write access to 0, it must be true by the
star-property (p. 86) that

level (U) <= level (0)

Thus, at the time F is created, we have

level (U) <= level (0)' <= L

Assume now that 0 decides to edit F WITHOUT CHANGING ANY
SECURITY LEVELS. That is, 0 proceeds to immediately access F in
~ead-and-write mode.

The applicable rule is #4 (Get.write), p. 115.

In order for this request to go through, it must be that

level (U) = level (F)

But,

level (F) = L.

Combining this with the previous inequality we see that

level (U) = level (0) = level (F)

Thus, if creating and editing of files is to be painless, all
users and files must have the same level!

what ever happened to multi-level security? The only way out of
the bind just presented is to relax the requirement for writing
directories. The other alternatives--allowinglow level subjects
to browse high level directories or allowing untrusted subjects
to write down--are not acceptable.

In the model for a Unix file system which I will describe next, I
will present an interpretation of directories that will make a
relaxation of the star property seem reasonable.

16 Nov 85 -21- B-L Model

B1 - LEVEL SECURE UNIX FILE SYSTEM·

knowles

section

1

2

3

4

5

6

7

8

9
9.1
9.1.1
9.1.2
9.1.3
9.2
9.2.1

'9.2.2
9.2.3
9.3
9.4

10

verus

CONTENTS

INTRODUCTION •••••••••••••••••••• ' •••••••••••• ' ••••••

SECURITY LABELS (LEVELS) ••••••••••••••••••••••••••

USERS: PRIVILEGED AND ORDINARy ••••••••••••••••••••

Bl-LEVEL SECURITY •

DISCRETIONARY ACCESS CONTROL ••••••••••••••••••••••

LINKS, HARD AND SOFT ••••••••••••••••••••••••••••••

DIRECTORIES AS CONTAINERS •

SINGLE-LEVEL DIRECTORIES ••••••••••••••••••••••••••

FILE SYSTEMS ••••••••••••••••••••••••••••••••• • ' ••••
Dir ector ies• • "•.•.........

Access Modes ••••••••••••••••••••••••••••••••••
Mandatory Policy (Rules About Labels) •••••••••
Discretionary. policy (Rules About Modes) ••••••

Ordinary Files And Links ••••••••••••••••••••••••
Access Modes ••••••••••••••••••••••••••••••••••
Mandatory Policy (Rules About Labels) •••••••••
Discretionary Policy (Rules About Modes) ••••••

Root-Owned Files ••••••••••••••••••••••••••••••••
Device Special Files ••••••••••••••••••••••••••••

SUGGESTIONS FOR FILE SETUP ••••••••••••••••••••••••

Page

1

1

2

2

5

5

6

7

7
7
7
8
9
9
9

10
11
11
11

12

Bl file system ii 16 Nov 85

A SECURE FILE SYSTEM FOR A Bl-LEVEL UNIX

1 INTRODUCTION

The definition of Bl-Level security is contained in the United
States Department of Defense publication, "Department of·Defense
Trusted Computer System Evaluation Criteria" (the Orange Book).
It is widely assumed that these criteria for certification will
increasingly become a standard for computer systems that handle
classified data or that perform sensitive tasks within the U. S.
Government. Since Unix is a popular operating system with the
government, there is a great deal of effort going into producing
certifiably secure Unix systems.

This model for the Unix file system is one subset of the software
design decisions that could be imposed on a standard Unix to
yield a Bl-Level secur e system. Nothing will be said about··
implementation choices. It will be obvious in some places that,
although software is being discussed, hardware and firmware
design is addressed implicitly.

I would like to emphasize at the outset that nothing in the realm
of formal methods applicable to producing secure systems cannot
also be applied to producing systems that must meet other
requirements such as very high reliability or, at a smaller
granularity of concern, absence of deadlock.

It's silly to identify formal techniques of specification and
verification with a single application of those techniques.

Before describing the model for file system access I will cover
some background material.

2 SECURITY LABELS (LEVELS)

In a secure system, users and their processes and objects such as
files and devices have security labels associated with them. It
doesn't matter for our discussion what these labels look like or
how they are compared as long as we know that it is always
possible to decide of two given labels, Ll and L2, that either Ll
= L2, Ll <= L2, or that Ll and L2 are not comparable.
Inevitably, mandatory checks require either that Ll dominates L2
or that Ll equals L2. The check always fails if the labels are
not comparable.

In this talk, "security level" and "security label" or just
"level" or "label" are used interchangeably.

16 Nov 85 -1- Bl file system

verus kriowles

An important point is that in this talk the system is assumed to
obey a Rtranguility principle." That is, once a user or an object
comes into being ~ith a level attached to it, that level never
changes. In practice, that means that to change levels, a user
must logout and login again. Each user has a maximum level at
which he/she may operate, and when logging in a level dominated
by the assigned maximum is selected for that session. A file
must be copied or renamed in order to change classification.
This assumption greatly simplifies analysis of a security policy.

3 USERS: PRIVILEGED AND ORDINARY

In standard Unix there is just one privileged user, the "root",
that has ALL privileges. Other users are constrained by
discretionary access controls and specific checks for the root
id. Unix operates in two modes, single user and multi-user. In
single user mode, the "root n is the only user.

In a secur-e Unix, there would be still be the distinction between
single-user and multi-user mode. Only in single user mode, would
a "root" user be allowed. Unless stated otherwise, we are always
describing behavior when the system is in multi-user mode. Ina
secure system, there would be different categories of privileged
users, none of which would have all of the privileges of a root
user. In the rules given later, exceptions for privileged users
are always stated explicitly. For simplicity however, we will
not distinguish among categories of privileged users. In
general, privileged users may ignore discretionary access
controls, and mandatory controls on security level will oft~n be
relaxed to refer to the maximum level of a privileged user
instead of the current level.

New processes spawned from old processes always have a subset of
the privileges of the parent. In particular, the security level
of the child process is the same as that of the parent. This
implies that the set-user-id and set-group-id modes of an
executable file that enable a process to assume a new id and
group while executing the file are not present in our secure
Unix.

Privileged processes may change their levels and the levels of
objects.

4 BI-LEVEL SECURITY

My main discussion--file system security--is only a part of
security as defined by the Orange Book. I will review briefly
the total security picture as the Orange Book sees it. In
general, these aspects of a secure system will not be discussed
in succeeding sections.

BI file system -2~ 16 Nov 85

knowles verus

Following the Orange Book, security is divided into the following
areas

1. Security Policy

16 Nov 85

A security policy is a set of requirements that
security-related parts of the system must meet. Put a
little differently, a security policy is a statement of·
how the system will behave in matters that are relevant
to the prevention of an undesirable flow of information.
This flow is usually visualized as an undesirable
copying of data from a highly classified file to a file
of lower classification (as a first step towards a more
sinister migration).

However, "security" is more than the leaking of
classified data. Security of a system involves correct
operation of its parts and the protection of those parts
from corruption, either deliberate or accidental.

A policy must address discretionary and mandatory
control mechanisms, object reuse, and security labeling
of system objects.

Object reuse requirements guarantee that when a system
resource, a disk sector, say, is reused, the data
previously contained is deleted.

Discretionary and mandatory control mechanisms for file
systems and the labeling of files will be discussed
later on. How€ver, I won't discuss labeling other
objects such as memory segments, devices, and human
readable output.

Discretionary control rules are rules whereby a user may
at his/her own discretion allow other users access to
certain system objects under his/her own control.

Mandatory controls, however, are controls that the
operating system enforces for all users and all objects.
Exceptions must be written into the rules themselves. A
specific mandatory policy is introduced at the Bl level.
Put simply, it says that a user at level A may read an
object at level B only if level A dominates level B, and
a user may write the object only if level B dominates
level A. These two requirements are frequently refered
to as "simple security" and "star property",
respectively. The second is also refered to as "no
write down." As we shall see, this policy causes some
problems in dealing with directories.

-3- Bl file system

verus knowles

It is important to note that access to an object is
granted only if BOTH discretionary checks are passes and
mandatory checks are passed.

2. Accountability

This area includes user identification and auditing.
Secure systems will probably include, in addition to
what the Orange Book mandates, the features described in
a document published just this year, nDepartment of
Defense Password Management Guideline n• It is likely
that this guideline will become a satellite standard.

A superior Bl system would include the B2-level
requirement of a nTrusted Path" between the user
terminal and the operating system for use during login.

3. Assur ance

System architecture requirements fall into this area. A
recent hardware evaluation guideline issued by the
National Computer Security Center (NCSC) mandates that
at even at the C2 level the hardware must enforce at
least two domains of main memory, system and user: and
process isolation between users and between all users
and the system.

A superior Bl system would also include the B2-level
requirement of separation (in software) of operator and
administrator privileges.

Another requirement in this area is a formal or informal
model of a security policy. This talk is an effort to
define such a policy. A formal policy is required for a
B2 system.

Requirements for a test suite fall within this area. I
won't say anything about testing except that testing and
documentation together account for about half of the
effort of a Unix system upgrade to certifiability.

4. Documentation

This talk doesn't address documentation requirements.

Bl file system -4- 16 Nov 85

knowles verus

5 DISCRETIONARY ACCESS CONTROL

Though not required by the Orange Book, it's likely that every Bl
system will have access control lists. For our purposes we lose
no generality by assuming that the discretionary access control
mechanism is the standard Unix owner-group-public mode bits.

Each file and each process has associated with it a group id.
Processes may belong to any of several authorized groups but at
anyone time a process belongs to a single group. There is a
command to change from one group to another one. Each file in
Unix has a mode word that contains nine bits--three each for
owner privileges, group privileges, and public privileges. For
example, if the mode word is displayed as

-rwx-r-x-r--

Then the owner of the file may read, write, and execute the file.
Someone not the owner but a member of the same group as that of
the file may read or execute the file. Someone not the owner nor
a member of the group of the file may only read the file. A
privileged user, however, may exercise read, write, or execute
access regardless of the mode settings.

The owner of a file is the user that created it. Only the owner
or a privileged user may change the access modes of a file.

6 LINKS, HARD AND SOFT

A hard link to an already existing file is simply another path to
that file that cannot be distinquished from the file itself.
Creating a file is simply establishing the first link. As far as
the security policy goes, the requirements for making a link will
be the same as those for creating the file if this is the first
link, or at least as strict as copying the file if the link is to
an already existing file.

The idea is that if security can be violated with a link, then it
can be violated without the link.

Symbolic (soft) links, on the other hand, can be distinquished as
links and exist as separate files which contain a pathname to the
file being linked to. Symbolic links exist so that links into
different mountable file systems can be made. This implies that
a symbolic link to a file that doesn't exist or is not now
visible is permitted. Creation of a symbolic link is subject to
the same checks as creation of an ordinary file.

16 Nov 85 -5~ Bl file system

verus knowles

Access to a file through a symbolic link is permitted only if the
link is accessable and the file pOinted to is accessable. For
example, if A is a symbolic link to B, then a user U can read B
only if U can read the file A and can read the file B. A file
cannot be deleted using only a symbolic link to it. Only the
symbolic link is deleted.

7 DIRECTORIES AS CONTAINERS

Directories are often thought of as containers of files or as
containers of file names. Either way, the star property makes
directories as data files difficult to deal with.

The problem is easily stated. To "read" a directory or have
"execute" access to it, a user's level must dominate that of the
directory. To create a file in that directory, the user must
have "write" access to the directory thus the level of the
directory must dominate the level of the user. These two things
require the level of the user and that of the directory to be the
same. On the other hand, if the user, after creating the file
now attempts to edit it; that is get simultaneous read and write
access to the file, then the level of the user must be equal to
the level of the file. Thus all levels, user, directory, and
file are the same!

What ever happened to multi-level security?

The way out of this is to consider directories as corridors
instead of as containers. Thus the check for write access can be
relaxed. We will think of directories as corridors providing
access to file names, but just as you may walk into a corridor
and come to a door you can't open, so you may read a directory
but not be able to see a particular file name. Reading a
directory will not be an all-or-none operation. Each file name
in the directory has a security level. The level of a file name
is the same as that of the file. A file name will be displayed
only if the user has read access to the directory and has read
access to the file.

In this scheme, as far as mandatory checks go, if you can read, a
directory, you can write it, and a directory may contain file
names at a higher level that that of the directory. Only a
privileged user may place a name in a directory where the level
of the name is lower than the level of the ditectory.

A similar problem of interpretation arises with execute access
when considering a pathname composed of two or more directories.
Suppose a user requests execute access to /A/B. The user must
first be given access to A and then, in a separate check, be
given access to B. This shouldn't be a surprise. It is exactly
the way discretionary access works.

Bl file system -6- 16 Nov 85

knowles verus

8 SINGLE-LEVEL DIRECTORIES

Each directory is either a "multi-level" directory or a "single
level" directory. A multi-level directory may include file names
at levels different from its own level. A single level directory
includes only names at the same security level as the directory
itself. This implies that all files in the subtree beneath a
single-level directory are at the same level, and that all
directories below a single-level directory are single-level
directories at that level. Not even privileged users may place a
file in a single-level directory at a level different from the
directory.

Single level directories give administrators the option to
separate files according to security levels. Using single level
directories avoids obvious covert channels which exploit the
collision of names at different levels and avoids the nuisance of
not being able to see all of the files in a directory at one
time.

9 FILE SYSTEMS

This section defines a security policy for file systems in a Bl
Level Secure Unix.

9.1 Directories.

9.1.1 Access Modes.

In this section we review what the three access modes, read,
write, and execute mean when applied to a directory.

To read a directory is to read the names of the files for which
the directory provides direct access. Only the names of files
that the user has read access to can be read.

To write a directory is to change the list of names in the
directory. Thus, creating and deleting files constitutes writing
the directory that contains the names of those files.

As we shall see, deleting a file requires write access to the
file as well as the directory.

Execute access toa directory simply means that further access,
of any kind, to files in the subtree under the directory is now
possible but not automatic--actual access being subject to checks
at the file level. This is sometimes described as a "search"
property. If one does not have execute access to a directory
then one cannot read, write, execute, create, or delete any file
whose name is in that directory.

16 Nov 85 -7- Bl file system

verus knowles

9.1.2 Mandatory Policy (Rules About Labels).

In the rules that follow, U denotes any user, privileged or not.
A lesser requirement applicable if a user is privileged is always
explicitly stated. D denotes a directory. F denotes either a
directory or an ordinary file unless specifically described as a
link. L denotes a label (level), and L(U), say, denotes, the
current label (level) of U.

In order for any access to be possible to a file, the user must
have execute access to all directories superior to the file.

execute

read

write

Bl file system

If U gains execute access to D, then L(U)
)= L(D).

If U is privileged, then the maximum level
of U must dominate L(O).

If U gains read access to D, then U must
already ~ave execute access to D.

If the name of a file F, or a hard link to
F is displayed during a read access, then
L(U))= L(F).

If U is privileged, then the maximum level
of U must dominate L(F).

If F is a ~ymbolic link, then the name is
displayed only if the level of U dominates
the level of the link itself--NOT that of
the file actually pointed to by the link.

If U is privileged, then the maximum level
of U must dominate the level of the link.

If U gains write access to D, then U must
already have execute access to D.

If D is a single-level directory, then L(U)
= L(D).

If U creates or deletes a file F or a hard
link to an already existing file F, then
L(U) = L(F).

If U deletes a file F or a hard link to F,
then U must already have discretionary
access to F in write mode.

If F is a symbolic link (and thus a file

-8- 16 Nov 85

knowles verus

separate from the file being linked) and is
being created or deleted, then L(U) = L(F).
A symbolic link is created at a level of
the user not at the level of the file being
linked. If a symbolic link is deleted,
then only the link itself is deleted. The
file that was linked, if it exists, is
untouched.

If U is privileged and U is creating or
deleting any kind of file F, then only the
maximum level of U need dominate the level
of F. However, not even a privileged user
may create a file in a single-level
directory if the level of the file is not
that of the directory. Also, directories
under a single-level directory are all
single-level.

9.1.3 Discretionary Policy (Rules About Modes).

The discretionary checks are those described earlier in the
section on Discretionary Access Control. Privileged users are
not subject to discretionary access checks.

9.2 Ordinary Files And Li~ks.

9.2.1 Access Modes.

If a file is designated as an executable file by the system, then
execute access means that the file or the file being linked may
be executed by the user.

The meaning of read access to an ordinary file or to a file
through a link is what the name suggests--the way is clear for
the contents of the file to be copied into the address space of
the user.

write access to an ordinary file or to a file through a link
means that the way is clear for the user to modify the contents
of the file.

However, in all the above cases, access to a file through a
symbolic link is possible only if access is granted to the link
and to the file being linked.

16 Nov 85 -9- Bl file system

verus knowles

If the user also has write access to the directory containing the
name of the file, then the user may delete the file.

If there are multiple hard links, only the specified link is
deleted.

If a delete request is made using a symbolic link then only the
specified symbolic link is removed.

9.2.~ Mandatory policy (Rules About Labels).

In the rules that follow, U denotes any user, privileged or not.
A lesser requirement applicable if a user is privileged is always
explicitly stated. F denotes either an ordinary file or a link.
L denotes a label (level), and L(U), say, denotes, the current
label (level) of U.

In order for any access to be possible to a file, the user must
have execute access to all directories superior to the file.

execute If U has execute access to F then L(U))= L(F). If
F is a symbolic link then the level of U must also
dominate the level of the file that F points to,
and U must have execute access to all directories
superior to the file being pointed to.

If U is privileged, then only the maximum level of
U need dominate L(F). If F is a symbolic link,
then only the maximum level of U need dominate the
level of the link and the level of the file being
pointed to.

read If U has read access to F then L(U))= L(F). If F
is a symbolic link then the level of U must also
dominate the level of the file that F points to,
and U must have execute access to all directories
superior to the file being pointed to.

write

Bl file system

If U is privileged, then only the maximum level of
U need dominate L(F). If F is a symbolic link,
then only the maximum level of U need dominate the
level of the link and the level of the file being
pointed to.

If U has write access to F then L(U) = L(F). If F
is a symbolic link then the level of U must also
equal the level of the file that F points to, and U
must have execute access to all directories
superior to the file being pointed to.

If U is privileged, then only the maximum level of

-10- 16 Nov 85

knowles verus

U need dominate L(F). If F is a symbolic link,
then only the maximum level of U need dominate the
level of the link and the level of the file being
pointed to.

Deletion and creation of ordinary files and links
is covered in the section on mandatory policy for
directories.

9.2.3 Discretionary Policy (Rules About Modes).

The discretionary access rules for ordinary files.and links were
described in the section on Discretionary Access Control except
that where symbolic links are concerned, access must be granted
to both the link and to the file being linked.

Privileged users are not subject to discretionary access checks.

9.3 Root-OWned Files.

To enhance the integrity of system executable files, libraries,
and other system databases, an additional mandatory policy is
enforced regarding any file whose owner id is O--the same as the
nroot n id. Namely, no user who is not privileged may write or
delete a root-owned file, whether directory, link or ordinary
file.

privileged users may write root-owned files if allowed to by the
mandatory checks previously described.

9.4 Device Special Files.

In Unix, input and output to devices is handled as reads and
writes to special files. Read and write access to special files
involving labels and file modes is the same as for non-executable
ordinary files except for a subset of nprotected" devices which
includes tape drives, and user terminals. For these device
files, there is a mandatory access control mechanism that
replaces the discretionary and mandatory controls already
described. This mechanism governs both privileged and non
privileged users.

The system maintains a table of owner ids for all protected
devices. An owner or a privileged user may have any access to
the device. A user not privileged and not the owner of a device
is denied all access to that device. This mechanism makes it
difficult for one user to interfere with another user by reading
or writing the other user's terminal. It also allows controlled
access to tape drives by trusted servers.

16 Nov 85 -11- Bl file system

•

verus knowles

10 SUGGESTIONS FOR FILE SETUP

Here are some suggested settings for levels and modes for typical
files in a Unix system.

1. Slash and other system files such as bin/, etc/ should
be owned by root with group staff. Discretionary modes
should be rwxr-xr-x. Level should be ·system-low.
These same settings are suitable for system binaries and
library files. Being owned by ·root,- these files are
safe from modification by non-privileged users. Being
classified as system-low, they can be used by everyone.

2. In general, the security level of files increases as one
goes further now in the file hierarchy.

3. Single-level directories can be used to encompass work
on a specific project where all files can be at the same
security level. Discretionary controls can keep other
users out.

4. Users in some work spaces can be further isolated from
the rest of the system by establishing a "gateway·
directory above their route directory.

For example, suppose A is a single-level directory at
level L that is to be isolated from the rest of the
system. A could be placed by a privileged user under a
directory Z which is at level nsystem-high n• Only
privileged users can operate at level, system-high.
Users upon logging in would be tagged at level Land
placed inside A. Other non-privileged users do not have
execute access to z and cannot access any files beneath
Z. The separation is not complete and is not meant to
be. Users inside Z can, for instance, access system
executable files by using full pathnames instead of
relative pathnames going through Z.

There are stronger methods for isolating a file system
if one wishes to have complete separation.

Bl file system -12- 16 Nov 85

