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AN EXPERIMENT IN COOcC-LEVEL VERIFICATION

This talk describes a reasszrch oeffort to 1avestigate thaorem
proving requirements for cocs lavel verificstion. ‘

Tha progamming language usec 18 the saguantial subsst of Terento
Concurrent Euclidy, developead at the Univarsity of Toronto,
Canadae The Verificatien Condition Generator was writtan by
Phillip Matthaus &8 a Mastsr”s Degree projict at tne University
of Toronto. The run-time-sgecific proof rulaes zre based on thosa
in a <LCoctor®s thesis by we Oavid €llioty, done alzo a3t Toronte.
The thecrm prover was written by Dan Putnam as part of Comgion®s
{now Gculd Computer Systems - Urbana) specification system,
VERUS.

The immediate gycal i3 tc chiractarize the verification conditions
that c¢in be grovan without significant interacticn betueen tha
user ange the theorem prcvare.

Two hygotheses are Deing invastigataed. Tne first is that
verificstion ccnditions stowing merely ths absencs of run-tima
srrors fall intc this cstagery. Tha ss3cond 13 that Putnam’s
prover 1is espacially gocd at shsllouw proofs of tne typd that will
be 2ncounterad.

New procf rules will b9 presanted that comdine ¢ mocified form cf
ths "forward®” proof rules of the verificaticon ccndition generater
with £lliot®s rulas for detection of run—-tima 2rrore.

The verificatior condition ¢a2narator has nct Bb2en modifiad to
work with tha new relesy so varificatiasan <conciticns ovaeing
investigated must be manually gyenerated and gyiven tc tna thaoram
proavar in tha fecrm ¢f a VERLS proof sutlina.

Zxamplae of pwprogramsy varification conditions, oprocfs, and
problame will De¢ presantad.
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/* move i up till we find a value too large .- ¥

loop
exit when A( i ) >=r

i =0 + 1

/* FORjIF AND (1 <=j;j<=i) THENA(J) <r; *

loop
exit when A( 1 ) >=r

i =i + 1



Program

/* X > X

if x = u then

Verification
- Condition

-Generator

> add x = u to
path condition

form theorem
that x is in range

Theorem
Prover

'\

IF AND

X=U

) THEN AND
(

1 <= X;
X <= 100;

);
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{ sSuspe.e exchange values ot twuc variablas }

grocedure Swap C var i ! ShortInty, v&r j ¢ ShortInt ) =
{ entry: 1 and ) are defined and refer to distinct placas in memcry
{ axits i = INITIAL (J) &nd J = INITIAL (1) }

bagin
var w ¢ ShortiInt,;
@ = i
i = 3
J i= w
srd Saap

Ors way to simulate the progyram?

Path Condition Renéeming Table
i J i
INITIALC 1 ) = £_1 1
INITIALC g ) = J_1 1
w_1 = 1_1 1
i_2 = o_1 2 v
J_2 = w_1 2

Resulting theoram for the prover:

PROVE

IF AND

{
INITIALC 1 )
INITIALC 3 )
w_1 i_
i 2
J.2

[ L]
oo
[

el

Jo
u-
}

THEN AND
{

INITIALC ¢ )3
INITIALC i

[N

i_2
J2
)3
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{ suab;e' o exchange valqcs of twec variablas )}

bproccduéa Swap ( var i : ShortInt, vér J ¢ Shortlint ) =
 entry: { and j are dafined and refer to distinct places.in memory )}
{ axits 4 = INLTIAL (3) &nd J = INITIAL (i) )

Eegin
VEr W o Shortlnf:
w <= i
i 2= 3
J = u
end Saap

A Detter way to simulate the program:

Path Condition Symbol Table Stack
(VCG tracks dafineness.) i J w
(VCG/compiler onfcrces it J_1
nc aliasing.) ) i_1

J.1
-i_1

Egsier theorem for the pravar:

PROVE AND
{

i_1
J_1

"o

i1
J.1
)
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{ fast linear search }

procedure Search ( key: ShortiInt,
var A : arr3y 1..10 of Shortlnt,
var i: ShortiInt
) =

post ( AC i1 ) = key )

Bagin
AC10) := key { don’t care about the very last place I
i=1
loop
exit whan A(i) = key

i =1 +1
end loop
and Search
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{ fast linsar seoarch )

procecure Search ( ‘key: Shortint,
var A : array l..1C of ShortiInt,
var i ShortInt '
) =
pest ( AC 1 ) = kay )
begin . :
AClG) 3= key { don“t cire #hbout the very last place )
i =1
loop
irvariant ( 1 <= 41 anc i <= 10 )
measure (M = 10 - 1)

exit whan AC(i) = kay
i =1 + 1
end loop
end Saeaarch
Show that i in range after an iteraticn:

Symbol Table

i
-::I_---
i1 + 1
PROVE
IF AND
¢ | | o
AC 10 ) = kay: $ array assignments in patn condition!
1 <= 1_13 3 old invariart : ‘
i_l <= 103
NCT A4C 4.1 ) = keys $ falss axit condition
N
THEN ANC
{
1 <=1_1+1 $ Nnew inviriart

il + 1 <= 103
¥;
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{ fast linear search )

procecures Search ( keys: Shortint,
var A ¢ array 1..10 of Shortint,
var i: ShortiInt
) =
pecst C aC i ) = key )
begin
: ACl0) 3= kay { don“t care zbout the very last place }
i =1
iocop

irvariant

(1 <=1 anc i <= 10 )
measurs ( M

=10 - 1)

exit when A(i) koy

1 3=1i +1

and loop
end Search

Show that 1 in range after an iteraticn:

Symbol Table

i
i1
i_l1 + 1
Show loop termination
PRAVE
IF AND
{
AC 10 ) = keys $ arrsy assigrments in path ccnditiond
1 <= i_13 $ old inveriant
i_1 <= 103 '
NCT aC i_1 ) = keys % falsae exit condition
1 <=1_1+1 $ new inveriart
i_l + 1 <= 10;
NET AC i_1 + 1 ) = kays $ new exit condition false
}
THEN ANC
{
1¢ - C i1 + 1 ) >= 03 $ Nnaw measure in range
16 - ¢ i_1 + 1 ) < 10 - i_13 $ new € old

}3
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FIND

P‘rodf of a Program:

C. A. R. HoARE
Queen’s U'niversity,* Belfast, Ireland

A proof is given of the correctness of the algorithm “Find.”

first, an informal description is given of the purpose of the
program and the method used. A systematic technique is de-
«ribed for constucting the program proof during the process
of coding it, in such @ way as to prevent the intrusion of
logical errors. The proof of termination is treated as a sep-
arate exercise. Finally, some conclusions relating to general
programming methodology are drawn.

KEY WORDS AND PHRASES: proofs of programs, programming method-
ology, program documentation, program correctness, theory of programming
CR CATEGORIES: 4.0, 4.22, 5.21, 5.23, 5.24

l. Introduction

Ina number of papers (1, 2, 3] the desirability of proving
the correctness of programs has been suggested and this
husbeen illustrated by proofs of simple example programs.
I this paper the construction of the proof of a useful,
fficient, and nontrivial program, using a method based on
Hvariants, is shown. It is suggested that if a proof is con-
‘tructed us part of the coding process for an algorithm, it

 hardly more laborious than the traditional practice. of
brogram testing.

% The Program “‘Find”’

‘_41(‘2‘: burpose of the program Find [4]. is to. find that
’“‘Jgnirlt of an array A{1:N] whose value is fth in order of
i o ude; ar}d to rearrange the array in such a way that
”nge“filent is pl.aced in A[f]; and furthermore, all ele-
) elé mlth Sub‘scnpts loxf'er than f have lesser values, and
e ;r}l‘ts with subscripts greater than f have greater

- 0us on completion of the program, the following
nhip will hold :

Al :
.NAMNWAU—USAWSAU+M~AAW]

‘li.\f . .
nerelatlon is abbreviated as Found.
Method of achieving the desired effect would be to

“"l'd(io

€par: .
tment of Computer Science

\.Dlu
m -
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sort the whole array. If the array is small, this would be a _

good method; but if the array is large, the time taken to
sort it will also be large. The Find program is designed to
take advantage of the weaker requirements to save much

~ of the time which would be involved in a full sort.

The usefulness of the Find program arises from its
application to the problem of finding the median or other
quantiles of a set of observations stored in a computer
array. For example, if N is odd and f is set to (N + 1)/2,
the effect of the Iind program will be to place an observa-
tion with value equal to the median in A[f]. Similarly the
first quartile mayv be found by setting f to (N + 1)/4,
and so on.

The method used is based on the principle that the

desired effect of Find is to move lower valued elements of -

the array to one end—the ‘“left-hand” end—and higher
valued elements of the array to the other end—the “right-
hand” end. (See Table I(a)). This suggests that the array
be scanned, starting at the left-hand end and moving right-
ward. Any element encountered which is small will re-
main where it is, but any element which is large should be

‘moved up to the right-hand end of the array, in exchange

for a small one. In order to find such a small element, a
separate scan is made, starting at the right-hand end and
moving leftward. In this scan, any large element encoun-
tered remains where it is; the first small element encoun-
tered is moved down to the left-hand end in exchange for
the large element already encountered in the rightward
scan. Then both scans can be resumed until the next ex-
change is necessary. The process is repeated until the
scans meet somewhere in the middle of the array. It is
then known that all elements to the-left of this meeting
point will be small, and all elements to the right will be
large. When this condition holds, we will say that the array
is split at the given point into two parts (see Table I(b)).

The reasoning of the previous paragraph assumes that
there is some means of distinguishing small elements from
large ones. Since we are interested only in their compara-
tive values, it is sufficient to select the value of some ar-
bitrary element before either of the scans starts; any ele-
ment with lower value than the selected element is counted
as small, and any element with higher value is counted as
large. The fact that the discriminating value is arbitrary
means that the place where the two scans will meet is also
arbitrary; but it does not affect the fact that the array
will be split at the meeting point, wherever that may be.

Now consider the question on which side of the split the
fth element in order of value is to be found. If the split is
to the right of A[f], then the desired element must of
necessity be to the left of the split, and all elements to the
right of the split will be greater than it. In this case, all
elements to the right of the split can be ignored in any
future processing, since thev are already in their proper
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place, namely to the right of 4 [f] (see Table I(c)). Similarly,
if the split is to the left of A[f], the element to be found
must be to the right of the split, and all elements to the
left of the split must be equal or less than it; furthermore,
these elements can be ignored in future processing.

In either case, the program proceeds by repeating the
rightward and leftward scans, but this time one of the scans
will start at the split rather than at the beginning of the
array. When the two scans meet again, it will be known
that there is a second split in the array, this time perhaps
on the other side of A[f]. Thus again, we may proceed
with the rightward and leftward scans, but we start the
rightward scan at the split on the left of A[f] and the
leftward scan at the split on the right, thus confining atten-
tion only to that part of the array that lies between the

TasLe I
(! Ny
(a) | |
move small values left
move large values right
1 N
(b)
N A )
Y Y
rightward scan has {eftward scan has
covered these elements, covered these
and they are all small elements, and they
.  are all large
Consequently , the
N i array 1s split here N,
() IDTelel7nT7 elsfizf2[17T20]30f2518 1730}
AN v —
the n smallest values of all etements here
the array are in this th are greater than
part . tncluding the f any to the left
largest valve.
g f N,
(d) | [ 1 Il
L——v— : ~ A ~ )
tett part:} middle part: right part:
all ele- {further scans are|all elements > those
ments. < |confined to this |of middle part
those of | part.
middle |5
part P —
40 Communications of the ACM
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two splits; this will be known as the middle part of the array!
(see Table I(d)). :
When the third scan is complete, the middle part of the
array will be split again into two parts. We take the nev!
middle part as that part which contains A[f] and repeat.
the double scan on this new middle part. The process is,
repeated until the middle part consists of only one ele.:
ment, namely A[f]. This element will now be equal to or’
greater than all elements to the left and equal to or less’
than all elements to the right; and thus the desired result
of Find will be accomplished
This has been an informal description of the method.
used by the program Find. Diagrams have been used to
convey an understanding of how and why the method
works, and they serve as an intuitive proof of its correct.
ness. However, the method is described only in general
terms, leaving many details undecided; and accordingly,
the intuitive proof is far from watertight. In the next sec-.
tion, the details of the method will be filled in during the
process of codingit in a formal programming language; and
simultaneously, the details of the proof will be formalized
in traditional logical notation. The end product of this’
activity will be a program suitable for computer execution.
together with a proof of its correctness. The reader who
checks the validity of the proof will thereby convince him-
self that the program requires no testing.
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3. Coding and Proof Construction

The coding and proof construction may be split inte
several stages, each stage dealing with greater detail thas
the previous one. Furthermore, each stage may be s+
tematically analyvzed as a series of steps.

3.1. Stage 1: ProsrLEM DEerINITION

The first stage in coding and proof construction is to ot
tain a rigorous formulation of what is to be accomplished
and what may be assumed to begin with. In this case w
may assume

(a) The subscript bounds of A are 1 and N.

(b)y 1<f<N.

The required result is:

Vp, ol < p <f<q<ND Al < Al < Alg)
(Fount

3.2. STaGE 2: THE GENERAL METHOD

(1) The first step in each stage is to decide what var’
ables will be required to hold intermediate results of t*
program. In the case of Find, it will be necessary to kn¢"
at all times the extent of the middle part, which is current!
being scanned. This indicates the introduction of variabl
m and n to point to the first element A[m] and the I+
element A[n] of the middle part.

(2) The second step is to attempt to describe more [

'
I

) o
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procedure Find ( f : Shortint,

be3jin
var
var
var
var
var
var

32
s e
"nou

loop

€ 2 3 G >

100

end loop

end Find

ShortiInt
Shortint
ShortInt
ShortInt
Jnsignedint
Unsignedlnt
xit when ( ™ >= n )
:= ACE)
. = m
= n
loop :
exit when (i > 3
loop
1 3=
end loop
loop
Jj o=
end loop
1f 1 <= j the
w o=
A( g
i =
and if
end loop

FIND==wITRHCOUT COMMENTS

var A:

axit when ( AC 1

axit when ( 4(C 3

if f <=  then n := jJ

elseif f >=
else ex1t
end 1f

i

then m

array 1..100 of Unsignedlnt )

i+

J =1

n

A 1)
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FIND

procedure Find ( f : ShortInt, var A:
pre ( 1 <= f and f <= 100 ) ( f, anc all elements of A are defined

begin

end Find

var
var
var
var
var
var

€ 7D 3L+

%o oe Ba 80 8o ee

1
130

m
n
loop «(

measure

Shortint
Shortint
ShortInt
ShortiInt

UnsignedInt
Unsignedint

m_n modifies:
invariant ( AND ( 1 <= m;
( Meast :=

exit when
r o= A(f)
m
n

loop
invariant

i

n-=-m)
(m>>n )

J modifies:

¢ AND ( m <=

OR ¢ AND
AND
OR ( AND
AND

)Y )

CACM Vol 14,

No 7, (Jan 1371)

array 1..100 of UnsignedInt ) =

m <= f;

i
1
f

e X aXaXal

t

(

ir jor ws A
i’ § <= ns

rr is Jjr ws Ar N m
<= n; n <=

IF i
THEN

1005

)

<= f; r <= AC £ )7 )
r <= AC 3+ 1) )5
AC £ )7 );

<= j + 1

.
’

<= j; r >=

directive ( PRCVE AND ( NEWC i ) > OLIC i )7
measure ( Measl := j -
exit when ( 1 > 3 )

end loop

loop

diractive

{ laess_r

measure ( Meas3

end loop

loop

and loop

exit when ( A(

i)

modifies: 1
invariant ( OR € AND ( i <=

AND (

( PROVE NEw(

i =i+

if i <= j then
w 3= AC i )5 AC 1)

directive ( PROVE
USING

end if

end loop

if f <= j

CizJ

then n := j

elseif f >= i then m

else exit
end if
{ m_n

{ lass_r

{ greater_r

<=

)
)

n -

T T W

>=

f;
Ci_31¢3) + 12

r

r <=

)

modifies:
invariant ¢ OR ( aND ( f <= j;
AND C Ci_Jji(i)

= m)

{ greater_r

<= CLOC § )

1

r

Al

J

i =1¢= 3 r>=ACL=1))7)):);
)/

-

7

NEWC § ) < QOL3C § )2

AC f )7 ),

<= AC Ci_jl(3y + 15 );
) >= 0LOC i ) )}

>= AC f ); )
-1 <= js

r > AC Ci_JiCi) = 1 )7 s
directive ( PROVE ( NEwW( j )
measure ( Measé
exit when ( AC j ) <= r )
=3 -1

J

AND € AC i) <=r
SWAPC A ) ) ) 1}

e

) ) 2

);

)

)

)

)

}



SWAP Lt MMA

, A PROVE diractive with USING SWAP( A ) will cause this array

§
$ lemma to be accepted as an axiom ONLY for the proof indicated.

$ The array lemma is the result of scanning the path condition
$ for modifications of A_3 ana finding

3
b

A_3Ci_31A_3¢(j_ 321

A4 =
A_S = A_4Ci_3]A_3C¢i_3)]

OWNOWVMPFLUN=200CRLNOUWMH WU

YA

Ot
o¢
OE
3y

R A_5_i : INTEGER;

CLARE A_4( INTEGER )
CLARE A_S(C INTEGER ) :

FINE A_S5_Array_Lemma :

FOR A_5_1i AND

e
"ou
(W
)
-

THEN A_SC A_5_1i )
};

INTEGER/
INTEGER,

300LEAN

e N

a_3¢

A

5.1



path execution point path condition stack
1 enter loop'm_n - (1) f_Init
top of m_n .
after iteration (2) m_n invariant
2 enter loop i_J (3) false m_n exit condition
top of i_J
after iteration (4) i_J invariant
3 enter loop less_r (5) false i_J exit condition
top of less_r
aftter iteration (58) less_r invariant
4 execute loop less_r (7) false less_r exit condition
S enter loop greater_r : elim (7), (8) 41_3 >= i_2,
: (9) less_r exit condition
top of greater_r )
after iteration (10) greater_r invariant
-] execute loop greater_r (11) false greater_r exit condition
7 execute loop 1i_j: elim (11), (12) j_3 <= j_2»
if branch (13) greater_r exit condition, (14) i_3 <= j_3
8 execute loop 1i_j: elim (14),
else branch (15) NOT i_3 <= j_2
9 execute loop m_n: elim (5), elim (15), (18) {_j exit condition,
if branch (17) £_1 <= j_2 ’
10 execute loop m_n: elim (17),
elseif branch (18) NOT f_1 <= j_2, (19) f_1 >= i_2
11 execute m_n loop:
exit branch e nothing to prove-==-+~-- *
12 exit m_n loop bbbttt nothing to prove===<<=-~< *
13 exit Find ‘ bbbttt nothing to prove=====--- *



FINDING A PATH CONDITION FOR A THEOREM

pEth exacution point path condition stack
1 anter loogr m_n ' (1) f_Init
“top of m_n
atter iteration (2) m_n invariant
2 enter loog 1i_J (3) false m_n exit condition
top of 1__
after iteration (4) i_j invariant
3 enter loor less_r v (5) false i_J exit condition

D D D W A W W D D - - - —— " - - - - — D > - . - - WD S > WS WE WD WD = W . - -

top of less_r

after iteration (6) less_r invariant
4 execute lcop less_r (7) false less_r exit condition
5 enter loog greater_r elim (7)), (8) i_3 >= i_2,

(9) less_r eoxit condition

Directions for finding the path ccndition for a theorem:

The numbers on the left (1 - 5 abcve) indicate execution points in the
progr:m where a theorem tc validate ar invariant and maasure must be
proven. There are two theorems fcr a2ich loop. For instance,

3 and 4 are for laop less_r. The first shows that the invariznt is

true upon initial ontry. the second shows that same after an srbitrary
itcraiion.

- Fer ozch number irdicating an executicn point, go to the right in

the t&ble and concatenate the conciticns in that row end 211 rows

higher up. If yoL see a statement like "elim(7)", that means that
statement 7 is NOTV to be included in the path condition. The path
structure is simple enough in FINLC thet this technique uill works

ug is not to be included.



Symbol Table Stack

path execution point m n f 4 r i J w

1 enter m_n loop 1 100 f_1 a_1

top of m_n after
an iteration m_1 n_1 a_2 r_1 i1 it w1

2 enter i_Jj loop A_22(f_1) m_1 n_1

top of i_Jj after
an iteration a_3 oi_e j_2 w_ 2

3 enter loop less_r

top of less_r
after iteration 1.3

top of greater_r
after iteration 3.3

5 execute loop greater_r i3
7 execute i_Jj loop:
if branch A_3 i 3 Ly w
L A
3653 )
J361_3) )

w o~
[T ]
B >
3. P

8 execute loop i_j:
else branch a_3 i_3 .3 w 2
9 execute loop m_n:
if branch n_1
i
10 execute loop m_n:
elseif branch m_1 n_1
i_2

- o . A . = S e W e - . e T SR E G SR R E et TS E T AR sTesASEAcLcs T A GEmAs e easaeeee -

11 execute loop m_n:
exit branch gems=======nothiny to prove==-=--- b

- - - " " - 4 T o . P - Y D > . e e e e R e e S e CS R CACC AT R T e T To o e .-

12 exit loop m_n gw=we====eenothing to prove-=====~-< hdndd 4

- -~ . e = B = P B = = = = = A = = . N R e N e R e R E NS S S AN eSS G e ac s AT e T, et T e —— -

13 exit Find #-w==-=w===pnothing to prove--=<===--< =

- . e . . o = e - - == - - . T R E RN E R R RS Ae R R RS- NSCAS c e e r e s T e r e a e nee-e -



FINOING THE CURReCT CONSTANT  SUSSTITUTI.N FOR PATH E©XPRZSSION

Symbol Table Stack

- - " - - ——— - - - - ——— " — - am - > - W D D am - — - - - —— -

peth 2xecution point m n f A r i J w

L enter mn leop 1 100 €1y TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

T e of mm atter T
an iteration m_1 r_1 A_2 r_1 i_1 J_1 w_1

: enter i_j loop TG D e e T

D S - ——— - —  — D - - — - —— - — e - ———— e —— - = — - kW wp W . U Y W W U . - -

top of 41_J after
an iteration A_3 1_2 J_2 w_2

D D D D D - — - — D WP D - D D - ———— — A > e W = - —e WD WS AR D T PR M s W e W W m - W D D > D . - — o ———

3 santer loog less_r

AR AR GRS D TLD SRR SR S0 Tm SRR e D R D SR D s AR D G5 e e T e . - —— . — — - — —— - = " T A . R - - - > WS A A A W - WD TP W A W . D W e e W - -

top of less_r

after iteration 1_2
4 execute lcop less_r i_3+1
5 enter loog greater_r 1_3

Directions for finding the correct corstant substitution for & path
expraession:

The numbers on the left (1 - 5 abcve) indicate execution polnts in the
Pprogri:m where a throorem tc validate ar invariznt snd measure sust be
proven. There are two theorems for efch loop. For instance,

3 and 4 are for lcop less_r. The first shows that the invariznt is
true upon initial entry: the zecond stous that same after an srbitrary
iteration.

Fcr eich number irdicating an executicn point, the entry in the row
under the variable column is the value of that variable at that point

in the program. For examgley after ar arbitrary iteration of the i_J
lcops the VCG will assume that the value of 1 is 1_2, a value about
which nothing is known. Previous facts concerning 1_1 are not affected.

TO FOKM A THEOREM to prove a particulsr invariant, first get the ,
péth condition frcm the pith chart, then use this chart to substitute
censtant values fcr each tubexpressior of the path condition, as well
at the conclusion of the theorem.
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3 find.e
$ PATH #7 : execute i_Jj looss if branch
$ initial assumptions ragarding ¢

VAR f : INTEGER: '
CONST f_1 : INTEGER/ $ initial value of ¢

DEFINE f_Init : BOOLEAN
3Y
AND
< .
1 <= ¢_1;
f_1 <= 1007
};

<

AXIOM f_Init/
$ initial assumptions concerning A

DECLARE A( INTEGER ) : INTEGER;
DECLARE A_1( INTEGER ) : INTEGER’ $ initial value

$ declare local variables
VAR is js ms ns rs w & INTEGERS
¢ values for variaoles mecdified in m_n loop

CONST m_1, n_ 1, r_ 1, i1, §_ 1 : INTEGER?

1, W
DECLARE A_2( INTEGER ) : INTEGER;
$ values for variables modified in i_Jj loop

CINST i_2, j_2, 4_2 : INTEGER/
DECLARE A_3C INTSGER ) : INTESERS

$ values for variables modified in less_r loop
CONST i_3 : INTZGER/
$ new values for variables madified in greater_r loop

CONST j_3 : INTEGER/

$ A PROVE diractive with USING SWAPC &) uill cause this array

$ lamma to D@ acceptec¢ as an axiom ONLY for the proof indicated.
$ The array lemma is the résult cf scanning the path condition

$ for modifications of A_3 and finding

3 A_e = A_3Ci_3{A 3¢5.3)3

$ . a_5 = A_elj 3jA I(i_31

VAR A_S5_i : INTEGER/

DECLARE A_4(C INTEGER ) : INTEGER]
DECLARE A_S5¢ INTESGER ) : INTEGER;

DEFINE A_S_Array_Lemma : 300LEAN

3y
FOR A_S_i AND
.
A_SC j_3 ) = 4_3¢C i3 s
ATSC 1.3 ) = A_3C j_3 )
IF AND
<
NIT A_S_i = j_3;
NOT A_5_i = i_3;

THEN A_SC A_S5_i ) = A_3C A_5_i )7
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prove new invariant true
IF AND '
< R
f_Init, $ initial path condition
1 <= m_1, $ m_n loop invariant
m_1 <= ¢_1;
f_1 <= n_1;
n_1 <= 1007 - _
NOT m_1 >= n_1; $ false m_n loop exit condition
ANO $ i_j loop invariant
< .
m_1 <= 1_2;
j_2 <= n_1;
IF i_2 <= j_2
THEN AND
< .
OR
<
AND
<
i_2 <=
A_2(C f_ = A_3C f_1 )
X’
AND
L8
i_2 <= ;
A_2C f_ = A_3C j_2 ¢+ 1),
};
>
OR
{
AND
<
f_1 <= :
A_2C f_ = A_3C f_1 )
};
AND
{
i2 =1 227
A_2(C f_ = A_3Ci_2 - 1)
¥;
};
¥’
b

NOT i_2 > j_2;

3

false 1_J loop exit condition
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$ less_r loop 1nvariant
AND
<
i_3 <= f_1;
A_2C f_1 ) <= A_3C f_1 )7
)
AND
<
1.3 <= j 2 % 17 $ j_2 for Ci_33C(Jd)
A_2¢C f_1 ) <= A_3C j.2 + 1) $ j_2 for Ci_Jjl(3)
)
3¢ 1.3 ) >= A_2C f_1 ), 3 less_r loop exit condition
3 >= i_2s $ NENC i ) >= 0LOC 1)
$ greater_r loop invariant
AND
<
£.1 <= j_3;
a_2¢C f_1 ) >= a_3C f_1 )7
’
AND
< _
i_2 =1 <= 3 .3/ $ i_2 for Li_Jjl(i)
A_2¢C f_1 ) >= A_3¢C 1.2 - 1); 3 i_2 for i_jici)
b
3¢ §_3) <= A_2C £.1 )9 $ greater_r loop exit condition
3 <= j_2; $ NEW( j ) <= 0LDC j )
3 <= j_3; $ if branch condition
1t of directive ( PROVE ( ..next two statements.. ) USING SWAP(C A )
5¢C i_3 ) <= A_2(C f_1 )’
SC j.3 ) >= 2( £_1 )7
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THEN AND $ new i_J loop invariant
<
m_1 <= 1.3 + 1;
i3 =1 <= n_1;
IF i_3 ¢ 1 <= j_ 3 =1
THEN AND .
<
OR
C
AND
<
: i_3 + 1 <= f_1;
A_2C £_1 ) <= A_5(C f_1 )7
)
AND
<
i3+ 1 <= (j.3=1) +1;
A_2C £_1 ) <= A_SC C .3 = 1) + 1)
b
)
0R
<
AND
<
f_1 <= j_3 = 17
A_2C f_1 ) >= A_5C f_1 )’
)
AND
{
(i 3.+ 1) =1 <= j_ 3 -1; )
A_2C £_1 ) >= A_S5C (i 3+ 1) = 1)/
};
>,
>

’

P

~—
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