
An Experiment
in

Code Verification

Frank Knowles
Gould, Inc.

Computer Systems Division - Urbana
1101 East University Avenue

Urbana, ILL 61801
U. s. A •

· -~",,-

•) GOULD Nov 15, 1985
Electronics

!

AN EXPER!ME~T I~ COOe-LEVEL VERIF!CATIQ~

This talk describ •• A reS&irch effort to ~nv9stigate treore~
provln~ requ1re •• nt5 for co~a i.vel vtriflc.tlon.

Tha ~ro~a~mlng languag9 U5ec 15 the sequent1!1 subsat of Tcronto
Concurrlnt Euclld, de~.lo~'d at the university of Toronto.
Canada. Th, V.rificaticn Condition Gen.rator ~as writttn by
Phillip Matthi~S il a Mas19r's aegret projlct at tnl Un~v,rs~ty
of Toro~to. The run-tiw.-s~.cific proof rul.s art based on those
in a (octor's thesis by ~. Oavid Elll0t, done also at Toronto.
The thtcrm proyer ~IS ~ritt.n by DIn Putnam !s part of Com~lon's
(no~ Gculd Conputer Systems Urbana) sPtcification system,
VcRUS.

Tht immediat. ~cal is tc chlractJrizt the vlrlfication conditions
th3t cln b. ~rov,n witho~t si~nif~c9nt interacticn betwe.n the
ustr ana the theor'. ~rcv.r.

T~o hy~oth.s.s are Dlin~ invastigated. Tnt first is that
v~rificit1on ccnd1tlons $rowing ~.r.ly th. absence of run-tlm3
errors fall intc this cotagcry. Th9 5fcond is that Putnam's
prOVQr is espaciali~ ~ocd at Shallow p~Qofs of 1n. tYPi that ~ll1
be ~nco~nt.r.d.

~e~ procf rul~s ~111 b,.pras!nted that coruoine a moc1fitd form ef
th. "forward" proof rules oi the v9r~flcation ecnd~tlon g.naratcr
with elliot-3 ~~lis for detfctlon of run-tlm~ ~rror!.

Tha v~r1flcat1or condition ~.nar~tor has net ~3~n mod1fi.d to
~ork ~lth thi n9* r~les, so vtrlfic~tl~n eoncltlcns baing
inveitl~at.d ~ust bt m3rually y.n.~at.d and given tc tn9 thfo~.m
provar in th9 term ef a V~~LS proof outlina.

=A3mpl~! of programs, v~riflcation c~nditlon;, procfs, ~nd
probl~ml ~ill j~ presant.d.

-1-

.
!

."

Program

Program

(Lint)
~

(verifier)

~

Compiler

r

Compiler

/* move i up till we find a value too large ... */

loop
exit when A(i) >= r

i := i + 1

/* FOR j IF AND (1 <= j; j <= i) THEN A(J) < r; */

loop
exit when A(i) >= r

i := i + 1

Program

2
/* x > x

if x = u then

•
A{ x) := 2*u

Theorem
Prover

,
:

Verification

Condition

, Generator

add x = u to
path condition

form theorem
that x is in range

IF AND
(

x=u

• •
) THEN AND

(
1 <= x;
x <= 100;

);

ate 13 02:26 1785 s~apl.f Page 1

{ S ijji p. e .~chan~. values of t~c variabl~s }

~~oe.dur. Swap (var i : Shortln1, Vi~ j : Shortlnt) :
{ en1ry: i and J are defined and ~.f.~ to distlnct plac3s in memcry }
{ ix1t: 1 = INITIAL (J) ind J : lNITIAL (1) }

Vir ijj : S"ortlnt;

ijj 0- i .-
i .- J .-
J' . - w .-

tr.d Slap

Pat" Condition

I~ITIAl(i) = 1_1
IhITIAL(J) = J_1
~_1 = 1_1
i_l = J_l
J_L = w_1

i

1

2.

Resu11ing theorem for the prover:

PROVE

{

} ;

IF ~ NO
{

INITIAL(
atTIAl(
\11_ 1 : i_1
i_l : J_1
J_ 2. : ijj 1

}

TH ef\ AND

i)

J)

1._2. = INITIAl(
J_2 = INITIAl(

= 1_1
= J_1

.) : ..
1 ;;

Ken,m1ng Table

j

1
1

2.

DIC 1~ Ol:Z7 1985 swap2.1 PI~e 1

e~change ~alu.s of twc v~~iables }

~~oc.dur. Sw.p (var i : $ho~tln~, Vir J : Sho~tlnt) =
{ entry: i and j are dafined and ~af.~ to distinct places.in memory}
{ .x1t: i = INITIAL (J> ,ndj = INITIAL (i))

t eg1r

vsr w : S~ortlnt;

III .- i .-
i .- J .-
J . - III .-

A better way to simulate the program:

Path Condition

(VCG tracks definen ••••)

(VCG/compiler enfcrce.
ne ahasing.)

Eisier theoreM for the praver:

PROVE ANO
{

1_1 = 1_1;
J_l = J_1:

};

$)mbol Table Stack

1 J

QQC 12 01:45 1~a5 fsaarch1.e P3~e 1

(fast linear search }

procedure Search (key: 5hortInt,
var A : arr3y 1 •• 10 of ShortInt,
var i: SnortInt

) =
post (A(i) = key)

1) egin

A(10) := key { don't care about the vary last place}

i: = 1

loop
exit Ulhen ACi) = key

i := i + 1
end loop

~nd Search

f

ate 13 Q2:26 1985 fse!rch2.e PaQI 1

{ fast l~n.ar search}

QfOcecure S.arch (ke): Shortlnt,
var A : array 1 •• 10 of Shortlnt,
var i: Shor tI nt

) =
pest (AC ~) :: k.y)

begin
AClO) := key (don-t elr. ,bout the very last plaet)

i : = 1

loop
1rvari!nt (1 <= i ant i (:: la J
measure (M := 10 - 1)

•• it whin A(iJ = kty

1 := 1 + 1
end loop

end St~rch

Sho. 'that i 1n range after an i.terat1cn:

PR QV E
IF ANO
(

Symbol Table

i

A(10) :: key:
1 <= i_1:

i array ~ssign~~nts in patn cond~t1onl
Sold inViriart

i._1 <= 10;
NCT .. (1_1) =

}

THE~ ANt
{

1 (= 1_1 + 1
i_l + 1 (= 10;

}.

key: S fals9 •• it conditi.on

S nllll invcr~art

ate 13 02:20 1~a5 fseare~3.e Pagt 1

{ fas1 linear $e~reh }

proc.cur~ Search (ke): Shortlnt,
var A : array 1 •• 10 of Shortlnt,
var i: Shortlnt

,) =
pest (A(i) = key,)

Iltg].n
~(10} := teey

i := 1

loop
irvariant (1 (= i anc i (= 10)
mealure (M := 10 - i)

e~it when ~(i) = key

i := 1 + 1
and loop

end Se arch

Sho~ l~op t9r~1nation

A(10) =
1 (,= i_lf
i_1 <= 10;
NCT A(i_I
1 <= 1._1 +
1._ 1 +
NCr A(

}

THEh ANC
{

1 (=
1_1

key;

) = key;
1
10;
+ 1) =

Symbol Tabl.

1

$ arr.y ass1grments in path
5 old in VI ri a" t
S tals~ ex it condition
S n8"" invlriart

ka) ; S n8"" exit condi t1 on

conditionl

false

le - (i_l + 1) >= 0;
1& - (i_1 + 1) (10 -

$ na"" measure in range
i_1; S ne"" (old

III

t'~

he
a~

lis
at

en

to
'd.
nd
P,

.'nt
hl'

ICy

to

lto
'Ill, '

red

I of
b~

ed­
rt i-,
1re­
:ed,

I ~l \\'

:llld i
ler' I

Til
lq7(l I

• I

,):1 t:1 :

.tio ll i

. 33 :

t r!lC t
,

),,·e I1 . ~

Proof of a Program: FIND

C. A. R. HOARE

Quccn's C./ni.'ersity,· Belfast, Ireland

A proof is given of the correctness of the algorithm "Find."

First, an informal description is given of the purpose of the

program and the method used. A systematic technique is de­
scribed for constucting the program proof during the process

of coding it, in such a way as to prevent the intrusion of
logical errors. The proof of termination is treated as a sep­

crote exercise. Finally, some conclusions relating to general

programming methodology are drawn.

KEY WORDS AND PHRASES: proofs of progrom., programming method­

ology, progrom documentation, program correctness, theory of programming

eR CATEGORIES: ~.O, ~.22, 5.21, 5.23, 5.2~

1. Introduction

In a number of papers [1, 2, 3] the de~irability of proving
the correctness of programs has been !"uggested and this
\,~' been illustrated by proofs of simple example program".
11. this paper the construction of the proof of a useful,
Iflieient, and nontrivial program, using a method based on
1I,\"ariant~, i~ ;;hown. It is sugge>'ted that if a proof is con­
-trurted a~ part of the coding process for an algorithm, it
I.- hardl~' more laborious than the traditional practice. of
program testing.

?
-. The Program "Find"

I The purpose of the program find [4] is to find that
'H:Oient of an array .4 [1: N] whose value is fth in order of
!11~gnlt d
t
" U e; and to rearrange the arra\' in such a wav that
;11' el ' .,

rr ement IS placed in A(fJ; and furthermore, all ele-
'f:lIts ",'th b . ;.1\ I I su scnpts lower than f have lesser values, and
\oi~e:ments with subscr.ipts greater than f have grea.ter
r':\,,!, ' T~us on completIOn of the program, the followlng

lon~hlp will hold:
,l!I] ,
1\' I .1[2], '" , A[J - 1] ~ A[J] ~ .-1[J + 1], ... , A[N]

.~~ relation is abbreviated as Found.
le method of achieving the desired effect would be to

'u ~partrn '
ent of Computer Science

\
Olllllle 14 / •

Number 1 / January. 1971

sort the whole array. If the array is small, this would be a
good method; bu.t. if the array is large, the time taken to
sort it will also be large. The Find program is designed to
take advantage of the weaker requirements to save much
of the time which would be involved in a full sort.

The usefulness of the Find program arises from its
application to the problem of finding the median or other
fIuantile~ of a "et of observations stored in a computer
array. for example, if N is odd and f is set to (N + 1)/2,
the effect of the find program will be to place an observa­
tion with value equal to the median in A[f]. Similarly the
first quartile ma~' be found by ~etting f to (N + 1)/4,
and so on.

The method used is based on the principle that the
desired effect of Find is to move lower valued elements of
the array to one end-the "left-hand" end-and higher
valued elements of the array to the other end-the "right­
hand" end. (See Table I(a)). This suggests that the array
be scanned, starting at the left-hand end and moving right­
ward. Any element encountered which is small will re­
main where it is, but any element which is large should be
moved up to the right-hand end of the array, in exchange
for a small one. In order to find such a small element, a
separate scan is made, starting at the right-hand end and
moving leftward. In this scan, any large element encoun­
tered remains where it is; the first small element encoun­
tered is moved down to the left-hand end in exchange for
the large element already encountered in the rightward
scan. Then both scans can be resumed until the next ex­
change is nece;,:~ary. The process is repeated until the
scans meet some\\'here in the middle of the array. It is
then known that all elements to the left of this meeting
point will be small, and all elements to the right will be
large. When this condition holds, we will say that the array
is split at the given point into two parts (see Table I(b)).

The reasoning of the previous paragraph assumes that
there is some means of distinguishing small elements from
large ones. Since we are interested only in their compara­
tive value", it is sufficient to select the value of some ar­
bitrar~' element before either of the scans starts; any ele­
ment with lower value than the selected element is counted
as :::mall, and an~' element with higher value is counted as
large. The fact that the discriminating value is arbitrary
mean;;: that the place where the two scans will meet is also
arbitrary; but it does not affect the fact that the array
will be ;:;plit at the meeting point, wherever that may be.

Xow con~ider the question on which side of the split the
fth element in order of value is to be found. If the split is
to the right of A[J], then the desired element must of
neces;;:it~· be to the left of the split, and all elements to the
right of the split will be greater than it. In this case, all
elements to the right of the split can be ignored in any
future processing, since they are already in their proper

Communications of the AC\I 39

I

\
I
I~

place, namely to the right of .-tU] (see Table I(c)). Similarl~',
if the split is to the left of A.[j], the element to be found
must be to the right of the split, and all elements to the
left of the split must be equal or le!"s than it; furthermore,
these elements can be ignored in future processing.

In either case, the program proceeds by repeating the
rightward and leftward scan;., hut thi,; time one of the scans
will start at the ,-plit rather than [Lt the beginning of the
array. When the two scan:' meet again, it will be known
that- there is a second split in the array, this time perhaps
on the other side of A[j]. Thus again, we may proceed
with the rightward and left,,"ard !"C[L n:" , but we start the
rightward scan at the split on the left of A[j] and the
leftward scan at the "plit on the right, thus confining atten­
tion onl!' to that part of the arrn~' that lies between the

(a)

(b)

(c)

(d)

40

TABLE I

move small values left
E

move large values right

rightward scan has
covered these elements.
and they are all small

..

leftward scan has
covered these
elements. and they
are all large

Consequently. the
array IS split here

the n smallest values 01
the array are In thiS
part. Including the I th
largest value,

11 I
I I r
c
lef t part middle par t :
all ele- ~urther scans are
ments ~ confined to thiS
those of part
middle f----
part -

all elements here
are greater than
any to the left

N I
I

right par t :
all elements ~ those
of middle part

Communications of the AC)I

two splits; this will be known a,. the middle part of the array t' mall:
(see Table I(d)} . de~cr

When the third scan is complete, the middle part of the' pre~,
arra~' will be ~plit again into two parts. We take the new: true
middle part as that part "'hich contains A(f] and repeat the'
the double scan on this new middle part. The process i" menl
repeated until the middle part consists of only one ele.! tionE

men'
ment, namely .-t[j]. This element will now be equal to or'
greater than all elements to the left and equal to or le5< at al
than all elements to the right; and thus the desired result than
of Find will be accompli~hed of tl

This has been an informal description of the method. follo
used by the program Find. Diagrams have been used to tion
convey an understanding of how and wh," the method m =:;
works, and they serve as an intuitive proof- of its correct·
ness. However, the method is described only in genera!

I · d Simi terms, eavmg many etails undecided; and accordingly,
the intuitin proof is far from watertight. In the next sec. of tf

will
tion, the details of the method ,\;11 be filled in during the
process of coding it in a formal programming language; and f =:;
simultaneou~ly, the details of the proof ,,;11 be formalized
in traditional logical notation. The end product of thi;' (~

activity will be a program suitable for computer execution.' h t e;;
together with a proof of its correctness. The reader who tenc
checks the validity of the proof will thereby convince him·'inc.
self that the program requires no testing. obvi

3. Coding and Proof Construction

The coding and proof coristruction may be split into
several stages, each stage dealing with greater detail thal:
the previous one. Furthermore, each stage may be sy:­
tematically analyzed as a series of steps.

3.1. STAGE 1: PROBLDI DEFI:O;ITIO:O;

The fir!"t stage in coding and proof construction is to 01:'
tain a rigorou;;; formulation of \\-hat is to be accomplished
and what may be assumed to begin with. In this case \\,
may assume

(a) The subscript bounds of A. are 1 and N.
(b) 1 =:; f ~ N.

The required result is:

'tip, q(l =:; P =:; f =:; q =:; N :::) A[p] ~ A.[j] =:; A.[q])
[Found

3.2. STAGE 2: THE GE:O;ERAL :\IETHOD

(1) The first step in each stage is to decide what n r
abies will be required to hold intermediate results of thi

program. In the case of Find, it will be necessary to krll'"
at all times the extent of the middle part, which is currentl:
being scanned. This indicates the introduction of variabit'
m and I! to point to the first element A.[mJ and the ill"

element .-t[n] of the middle part.
(2) The second step is to attempt to describe more itl

:

re!"p
whe

m·

(~
the
the
\'ar
:lIre

't

i \""
Volume H / ~umber 1 / January. 1'!'L

1
2
3
4
5
6
7
8
9

procedure Find (f ShortInt, var A: array 1 •• 1000t Unsi~nedInt

be ~in
'Jar i ShortZnt
'Jar j Shortrnt
var m ShortInt
var n ShortInt
var r Unsignedrnt
var iJI Unsign~d!nt

m : = 1
n : = 100

loop
exit ~han (m)= n)

.,.:= ACf)
i := m
j : = n

loop
exit :.uhen C

loop
exit
i · -· -

end loop

loop
exit
j · -· -

end loop

i > j

'.uhen
i •

Jlhen
j -

l.f l <= j then

)

(

1

(

1

IJJ := ,4(i)

A (i

4 (J

A(1.) := .l(j)
A(j) := III

) >=

) <=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
31
32
33
34
35
36
37
33
39
4G
41
42
43

i := i + 1; j := j - 1

I

~nd if
~nd loop

if f <= j than n := j
elseif f >= i then m := l

~s else ~Xlt
46. end if
47 .nd loop
43 end Find

!

r)

r)

=

1
2
3
4
S
6
7
d
9

10
11
12
13
14
1 S
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
H
37
38
39
40
41
42
43
I'
45
46
47
48
4-9
50
51
52
53
54
55
56

57
53
59
60
~1

62
63
64
65
66
67
63
69
70
71
72
n

{ C. A. R. Hoare, CACM vol 14, No 7, (Jan 1971)

procedure Find l f : Shortlnt, var A: array 1 •• 100 of Unsi~nedInt) =
pre (1 <= f and f <= 100) C f, and all elements of A are defined
begin

C

{

var i ShortInt
var j S ho,.tInt
va,. m Sho,.tInt
var n Sho,.tInt
lIa,. ,. UnsignedInt
lIa,. III Unsignedlnt

m : = 1
Cl . -.. 1 :)0

loop {m.n modifies: r, i, j, w, A, n, m
inva,.iant (A~D (1 <= m; m <= f; f <= n; n <= lOO;))
measure (Measl := n • m)

exit when (m >= n)
r := Hf)
i := m
j : = n

loop (i.j modifies:
inva,.iant (AND (m <= ii

OR (AND (

AND (

O~ (AND (

~ND (

) i)

i
1

f
i

i, j, Ill' A
j <= ni IF i <= j

TnEN AND
(

<= fi ,. <= A(f) ;
<= j + 1 ; ,. <= A(j
<= ji r >= A(f) ; . 1 <= ji r >= A(i

) ;

) i
...) ;

) i .) ;

) il i

) j) i

i

.,

}
}

}

directive (?~CV: ~ND (N:.(i
measure (Me3s2 := j • i)

exit when (i > j)

> OLJ(i); New(j) < OLO(j);)) }

loop { less.,. modifies: i
{ inV3,.iant (OR (AND (i <= fi ,. <= A(

;lND (i <= Ci.jJ(j) +
r <= A(Ci.jJ(j)

directive (PROVE NE;;(i) >= OL:! (i)

measure (Meas3 := n . i)

exit when (A C i) >= r)

i : = i + 1
end loop { less.r

loop (;,.eat&,..r modifies: j
(inva,.iant (OR (AND (f <= j; ,. >= A(

AND (Ci.jJ(i) . 1 <=
r >= A(Ci.j](i)

directive (PROVe (NEW(j) <=
measure (Meas4 j . m)

exit .,hen (A(j) <= r
j · -· - j . 1

and loop (~,.eate,..r

if i <= j than
A (i) ; A(i) ..

III · . ..
(dl.rective PROVe AND (A(i)

USING SWAP(A)))

i := i + 1; j := j - 1
~nd if

end loop < i.j
if f <= j then n := j
91seif f >= i then ~ := i
else exit
end if

end loop < m.n
end Find

OLD(j

A (j) ;

<= ri oH
}

}

f) i) ;
1 ;

... 1) ;) i) ;)

) }

}

}

t) i) i
j; . 1) i) ;) ;)

))) }

}

A(j) W

j >= ,.;)

}

}

1
2
3
4.
S
6
7
8
9
o
1
2
3
4-
S
6
7
a
9
~O
: 1
:2
!3
~4

SwAP LeMMA

~ A PROVE dir~ctive with USING S~AP(A) will cause this array
$ lemma to be acceptid as an axiom ONLY for the proof indicated.

$ The array lemma is the rlisult of scanning the' path condition
S for modifications of A_3 ana finding

i A_4 ~ A_3Ci_3IA_3(j_3)]
S A_S = A_4Cj_3IA_3(i_3)]

DECLARE A_4(INTEGER)
DECLA~E A_S(INTEGER)

DEFINE A_5_ArraY_Lemma
ay

FOR A_S_i AN;)
(

A_S(j_3
A_S(i_3
IF AND
{

) = A_3(
) = A_3(

INTEGER;
INTEGeR;

aOOLEAN

i_3) ;
j_3) ;

: 5 NO T A 5 i = j _ 3;
:6 t-40T A_S_i = i_3;
:7 }
:8 THEN A_se A_S_i) = A_3(A_S_l);
:9 };
;0

. . ,

Dath

2

3

4

5

6

7

8

9

10

11

12

13

.)(ecution Doint

.nter loop ",_n

top of "'_n
after 1 teration

tOD of i_J
aft.r It.ration

tOD of less_r
aft.r i titration

ex.cut. loop l.ss_r

enter loop ~r".ter_r

top of o,. •• ter_r
aft.r iteratlon

ex.cut. loop i_J:
if branch

••• cut. loop i_J:
.15. branch

.xecut. loop "'_n:
if branch

••• cut. loop "'_n:
.1s.if branch

ex.cut. "'_n loop:
exit branch

.xit Find

path condition stack

(2) ",_n invariant

(3) false "'_n exit condition

(5) fals. l_J "Kit condition

(7) fals. 1.s5_r ,,)(it condition

ell", (7), (S) 1_3 >= i_2,
(9) less_r .xit condition

(10) gr.ater_r inv~riant

(11) false greater_r exit condition

.11m (11), (12) J_3 <= J_2,
(13) or.ater_r .)(it condition, (14) i 3 <= J_3

elim (14),
(15) NOT i_3 <= J_~

elim
(17)

(5), elim (15),

f_1 <= L2

elilll (17),

(16)

(18) NOT f_1 <= L2, (19) f >= i 2

.-------nothing to prove-------*

-------nothino to prove-------

-------nothlno to prove-------

FINDING , P'TH CONDITION fOR A THEOREM

p~th execut 10n poin.t path conditio" stack

1 ent.,. 1001= lI_n

top of lII_n
afte,. iteretion (2) m_n invariant

-------------~---
l

3

4

5

top of i_..:
af t.r iter atio n

top of 1"5_1'
afte,. lteration

,xecute 1eop 1158_1'

(3) false ~_n exit condition

(6) 1es&_r invariant

(7) false 1ess_r exit condition

.lill (7)" (8) i_3)= i_2,
(9) less_r exit condition

Directions for findin~ th6 path cendition for a theo,..m:

T~I n~mblrs on the left (1 - 5 abeve> indicate execution points in the
prog,.Em wh.,.e a t~eorell te validate an invariant and m.asure eust b.
proven. The,.e are two ~h60r.ms fc,. a.ch loop. For instance,
3 and 4 are for loop les~_r. Th. fir.t shows that the lnvari,nt ~s
true ~pon 1nitia1 entry; the !.co~d s~o.s that same after an irbitrary
1t.ration.

Fer .,ch nUMber ird1catin~ an execution point, go to the right in
the t~bll and concatenate' the cono1t1ens in that row ,nd III rows
higher up. If yo~ s.e •• t.t6m~nt li~e "e11m(1)", th~t means that
state •• nt 7 is NOT to be included in the path condition. The path
structur. i. Simple enough in FIN[th,t this technique will _ark.
UJ: is not to be included.

Sy~bol T3bl~ Stack

path execution point m n r i j w

100 f A

--
top of m_n after
an iteration m 1 n Il Z r 1 III 1

-- ------~--- ----
2 A 2(1 1)

---.------------------

3

top of i_j after
an iteration A 3 i 2 III 2

--j-----------

4

5

7

8

9

top of less_r
after iteration

enter loop greater_r

top of greater_r
after iteration

execute loop ~reater_r

execute i_J loop:
if branch

execute loop i_j:
else branch

execute loop m_n:
if branch

A 4 = A_3(
A 5 A_It[

i 3+1

A J i_.5 L3 III 2
A:3(i_3)

i_J A_3(L3) 1
L3 .l_Hi_3) J

i_3+1
j_3-1

A 3 III 2

--
10

11

execute loop m_n:
elseif branch

execute loop m_n:
exit branch *----------nothinJ to prove------------*

--
12 exit loop m_n .----------nothin9 to prove------------*
---"-------------

exit Find *----------nothing to prove------------*
--

pith

1

l

j

5

~.ecution point

top of m_n after
an i te rati on

top of t_J after
an iteration

top of le. s_r
af ter i te,. atio n

Symbol Table St~ck

m 1'1 f A

1

Directions for fil'lding the correct cOl'Istant substitution for ~ path
'.pr.l.ton:

The n~mb.r. on the left (1 - S abeve) indicate execution points 1., the
progr,m wh.r. a t~eorem tc validate 81'1 tnvarient &nd •••• ur. nust be
prove.,. There ar. two theorems fer .,ch loop. For 1.,5tanc.,
3 and 4 are for leop less_re Th. first shows that .the invertlnt is
true ~pon 1n1tial entry; the .scond stows that same after an arbitrary
tterat10n.

Fer elch number il'ldicatin~ an executien point, the entry in the row
under the variable column is the ~alue of that variable at th.t point
in the program. for .x.m~l., after ar arbitrary iteration of the i_j
loop, the VCG will assume that the value of i is 1_2, a value about
which nothing is known. Previous facts concerning i_1 are not affected.

TD FD~M A THEOREM to prove a particullr inVariant, first get the
pith condition frc~ the ~Ith chart, then use this chart to substitute
ccnstlnt values fer •• ch tube.prelsio., of the path condition, ••• ell
al the conclusion of the theorem.

r i j

1
2
3
4
5
6
7
a
~

10
11
1Z
13
14
15
16
17
15
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
43
4~

50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
63
69
70
71
72
73
74
75

VC7 Trl:ORE~··OECLARATIONS

S PHi"! rH

S initial assumptions ~i;3~din~ f

vu t : INTEGER;
COHST f.1 : INTEGER; S initial value of f

DEFINE f.Init : 600LEAN
ay

ANO
(

1 <= f.1;
f.1 <2 100;

};

S initial assumptions conce~nin9 A

DECLARE A(INTEGER) : :NTEGER;
OECLARE A.1(INTEGER) : INTEGER;

S declare local va~iables

S initial value

S values fo~ va~iaDles modified in m.n loop

CO~ST m.1, n.1, ~.1, i.', j.1, ~.1 : INTEGER;
OECLARE A.lC INTeGER) : INTEGER;

S values fo~ va~iables mojified in i.j loop

CONST i.2, j.2, ~.2 : INTEGER;
DECLARE A.lC INT~GER) : INTEGER;

$ values fo~ variables ~odifi.d in l.is.~ loop

S n.~ valui5 fo~ va~iables m~difi.d in g~~at.~.~ loop

5 A PROVE di~active ~ith ~SING SWA~C ~) ~ill causa this a~ray
$ lemma to ~e accepted as an aKiom ONLY fo~ the p~oof ind1cated.

$ The a~~ay 1.~m3 is the result of scanning the path condition
i fo~ modifications of A.3 and findin;

S A.4 2 A.3Ci.3IA.l(j.l)J
S A.5 = A.4Cj.3IA.3(i.l)J

OECLARE A.4(INTEGER
OECLARE A.5C INTEGER

DEFINE A.5.A~~aY.Lem~a
3Y

FOR A.5.i AND
(

INTEGER;
INTEGER;

300LEAN

A.se j.3) 2 A.H i.3);
A.S< i.3) = A.H J.3);
IF ANO
(

}

NJT A.5.i = j.3i
NOT A.5.i 2 i.3;

THeN A.5C A.5.i) = A.3(A.5.l };
);

1
2 <,

"I

,3 '. PROVE
4 IF AND
5 {
6 1.Initi
7 1 <= m_1i
8 m.1 <= 1_1;
9 1_1 <= "_1;

10 n_1 <= 100;
11 NOT m_1 >= n_1;
12 AND
13 {

m_ 1 <= i.2 i
j_2 <= n_1;
IF i_2 (= j_2
THEN ANO
(

OR
(

AND
(

i.2 <= 1_1;

VC7 THEO~E~--:F PART 1

$ prove ne~ invariant true

$ initial path condition
$ m_n loop invariant

$ 1alse m_n loop exit condition
$ i_j loop invariant

1 ..
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29
30
31
32
33
34
35
36
37
3B
39
.. 0
41
42
43
44
45
46
47

A_2C 1_1) <= A.3C f.1);
};
AND
(

i.2 <= j.2 + 1;
A.2C f.1) <= A 3C j.2 + 1);

};
};
OR
(

};
};

};

ANi:)
(

f.1 <= j.2i
A.2(f.1) >= A.3(f.1);

}i

AN~
(

i.2 - 1 <= J.2i
A.2C f_1) >= A.3(i.2 - 1);

}i

NOT i.2 > j_2; i false i_j loop exit condition

1
2
3
4
5
6
7
8
9

10
11
12
13
1 it
15
16
17
13
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
33

OR
(

};

VC? THEO~EM--IF PA~T 2

$ less_r loop invariant

AND
<

i_3 <= f_1;
A_le f_1) <= A_3(f_1);

};
ANO
(

i_3 <= j_2 + 1;
A_2(f_1) <= A_3(j_2 + 1);

}j

$ j_2 for Ci_jJ(j)
$ j_2 for Ci_jJ(j)

A_3(i_3) >= A_2(f_1);
i_3 >= i 2;

S less_r loop exit condition
$ NEjoj(i) >= OLO(i)

OR
(

AND
(

$ greater_r loop invariant

f_1 <= j_3i
A_2(f_1) >= ~_3(f_1);

};
ANO

(

i_2 - 1 <= J_3; $ i_2 for Ci_jJ(i)
A_2(f_1) >= A_3(i_2 - 1); $ i_2 for Ci_j)(i)

};
};
A_3(j_3) <= A 2(f_1);
j_3 <= j_2;
4_3 <= j_3;

S greater_r loop exit condition
$ NEw(j) <= OLOe j)
$ if branch condition

$ result of directive (P~OVE (•• next two statements ••) USING SWAPe A)

A_S(i_3) <= A_2(f_1);
A_Se j_3) >= A_2(f_1);

1 .
I~)

2 ..
,,'1'.-;,

3"
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

THEN AND
{

+ 1;
".1;

VC7 THEOREM··THEN PART

$ new i.j loop in~ariant

in.1 <= i.3
j.3 • 1 <=
IF i.3 + 1
THEN AND.
(

<= j.3 • 1

}i
};

OR
(

AND
(

i.3 + 1 <=
A.2e f.1)

};
AND
{

f.1;
<= A 5 (f. 1);

1.3 + 1 <= (j.3 • 1) + 1;
A.2(f.') <= A.5((j.3 • 1) + ,);

};
};
OR
(

~ . . ,

AND
(

f.1 <= j.3
A.2(f.')

};
AN;)
{

(i.3 + 1) • 1 <= j.3 • 1;
A.2(f.') >= A se (1.3 + 1) • 1);

};

37
38 (};

References

1. James R. Cordy, Richard C. Ho1t, "Specification of Concurrent

Euclid," Technical Report CSRG-133, Computer Systems Research Group,

University of Toronto, Toronto, CANADA (Aug 1981)

2. w. David E11iott, ·On Proving the Absence of Execution Errors,·

Technical Report CSRG-141, Computer Systems Research Group,

University of Toronto, Toronto, Ontario, CANADA (Mar 1982)

3. Steven M. German, "Verifying the Absence of Common Runtime Errors

in Computer Programs,· Report No. STAN-CS-81-866, Department of

Computer Science, Stanford University, Stanford, CA 94305, USA

4. Phi1ip Arno1d Matthews, "Concurrent Euclid: Proof Rules and a VCG,"

Master of Science Thesis, Department of Computer Science, University

of Toronto, Toronto, Ontario, CANADA (Jun 1982)

5. Phi1ip A. Matthews, Richard C. Ho1t, "A Guide to the Concurrent

Euclid XVCG: An Experimental Verification Condition Generator,"

Technical Note CSRG-27, Computer Systems Research Group, University

of Toronto, Toronto, Ontario, CANADA (Jun 1982)

6. "VERUS Language Manual," Release 3.0, Gou1d Inc., Computer Systems

Division, 1101 East University, Urbana, IL, 61801 USA (Jun 1985)

7. "VERUS State Machine Specification Checker Guide,· Release 3.0,

Gou1d Inc., Computer Systems Division, 1101 East University, Urbana,

IL, 61801 USA (Jun 1985)

8. "VERUS State Machine Specification Guide," Release 3.0, Gou1d Inc.,

Computer Systems Division, 1101 East University, Urbana, IL, 61801

USA (Jun 1985)

9. "VERUS User's Guide," Release 3.0, Gou1d Inc., Computer Systems

Division, 1101 East University, Urbana, IL, 61801 USA (Jun 1985)

