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AN EXPER!ME~T I~ COOe-LEVEL VERIF!CATIQ~ 

This talk describ •• A reS&irch effort to ~nv9stigate treore~ 
provln~ requ1re •• nt5 for co~a i.vel vtriflc.tlon. 

Tha ~ro~a~mlng languag9 U5ec 15 the sequent1!1 subsat of Tcronto 
Concurrlnt Euclld, de~.lo~'d at the university of Toronto. 
Canada. Th, V.rificaticn Condition Gen.rator ~as writttn by 
Phillip Matthi~S il a Mas19r's aegret projlct at tnl Un~v,rs~ty 
of Toro~to. The run-tiw.-s~.cific proof rul.s art based on those 
in a (octor's thesis by ~. Oavid Elll0t, done also at Toronto. 
The thtcrm proyer ~IS ~ritt.n by DIn Putnam !s part of Com~lon's 
(no~ Gculd Conputer Systems Urbana) sPtcification system, 
VcRUS. 

Tht immediat. ~cal is tc chlractJrizt the vlrlfication conditions 
th3t cln b. ~rov,n witho~t si~nif~c9nt interacticn betwe.n the 
ustr ana the theor'. ~rcv.r. 

T~o hy~oth.s.s are Dlin~ invastigated. Tnt first is that 
v~rificit1on ccnd1tlons $rowing ~.r.ly th. absence of run-tlm3 
errors fall intc this cotagcry. Th9 5fcond is that Putnam's 
prOVQr is espaciali~ ~ocd at Shallow p~Qofs of 1n. tYPi that ~ll1 
be ~nco~nt.r.d. 

~e~ procf rul~s ~111 b,.pras!nted that coruoine a moc1fitd form ef 
th. "forward" proof rules oi the v9r~flcation ecnd~tlon g.naratcr 
with elliot-3 ~~lis for detfctlon of run-tlm~ ~rror!. 

Tha v~r1flcat1or condition ~.nar~tor has net ~3~n mod1fi.d to 
~ork ~lth thi n9* r~les, so vtrlfic~tl~n eoncltlcns baing 
inveitl~at.d ~ust bt m3rually y.n.~at.d and given tc tn9 thfo~.m 
provar in th9 term ef a V~~LS proof outlina. 

=A3mpl~! of programs, v~riflcation c~nditlon;, procfs, ~nd 
probl~ml ~ill j~ presant.d. 
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/* move i up till we find a value too large ... */ 

loop 
exit when A( i ) >= r 

i := i + 1 

/* FOR j IF AND ( 1 <= j; j <= i ) THEN A( J ) < r; */ 

loop 
exit when A( i ) >= r 

i := i + 1 



Program 

2 
/* x > x 

if x = u then 

• 
A{ x ) := 2*u 

Theorem 
Prover 

, 
: 

Verification 

Condition 

, Generator 

add x = u to 
path condition 

form theorem 
that x is in range 

IF AND 
( 

x=u 

• • 
) THEN AND 

( 
1 <= x; 
x <= 100; 

); 
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{ S ijji p. e .~chan~. values of t~c variabl~s } 

~~oe.dur. Swap ( var i : Shortln1, Vi~ j : Shortlnt ) : 
{ en1ry: i and J are defined and ~.f.~ to distlnct plac3s in memcry } 
{ ix1t: 1 = INITIAL (J) ind J : lNITIAL (1) } 

Vir ijj : S"ortlnt; 

ijj 0- i .-
i .- J .-
J' . - w .-

tr.d Slap 

Pat" Condition 

I~ITIAl( i ) = 1_1 
IhITIAL( J ) = J_1 
~_1 = 1_1 
i_l = J_l 
J_L = w_1 

i 

1 

2. 

Resu11ing theorem for the prover: 

PROVE 

{ 

} ; 

IF ~ NO 
{ 

INITIAL( 
atTIAl( 
\11_ 1 : i_1 
i_l : J_1 
J_ 2. : ijj 1 

} 

TH ef\ AND 

i ) 

J ) 

1._2. = INITIAl( 
J_2 = INITIAl( 

= 1_1 
= J_1 

. ) : .. 
1 ;; 

Ken,m1ng Table 

j 

1 
1 

2. 
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e~change ~alu.s of twc v~~iables } 

~~oc.dur. Sw.p ( var i : $ho~tln~, Vir J : Sho~tlnt ) = 
{ entry: i and j are dafined and ~af.~ to distinct places.in memory} 
{ .x1t: i = INITIAL (J> ,ndj = INITIAL (i) ) 

t eg1r 

vsr w : S~ortlnt; 

III .- i .-
i .- J .-
J . - III .-

A better way to simulate the program: 

Path Condition 

(VCG tracks definen •••• ) 

(VCG/compiler enfcrce. 
ne ahasing.) 

Eisier theoreM for the praver: 

PROVE ANO 
{ 

1_1 = 1_1; 
J_l = J_1: 

}; 

$)mbol Table Stack 

1 J 
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( fast linear search } 

procedure Search ( key: 5hortInt, 
var A : arr3y 1 •• 10 of ShortInt, 
var i: SnortInt 

) = 
post ( A( i ) = key) 

1) egin 

A(10) := key { don't care about the vary last place} 

i: = 1 

loop 
exit Ulhen ACi) = key 

i := i + 1 
end loop 

~nd Search 

f 
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{ fast l~n.ar search} 

QfOcecure S.arch ( ke): Shortlnt, 
var A : array 1 •• 10 of Shortlnt, 
var i: Shor tI nt 

) = 
pest ( AC ~ ) :: k.y ) 

begin 
AClO) := key ( don-t elr. ,bout the very last plaet ) 

i : = 1 

loop 
1rvari!nt ( 1 <= i ant i (:: la J 
measure ( M := 10 - 1 ) 

•• it whin A(iJ = kty 

1 := 1 + 1 
end loop 

end St~rch 

Sho. 'that i 1n range after an i.terat1cn: 

PR QV E 
IF ANO 
( 

Symbol Table 

i 

A( 10 ) :: key: 
1 <= i_1: 

i array ~ssign~~nts in patn cond~t1onl 
Sold inViriart 

i._1 <= 10; 
NCT .. ( 1_1 ) = 

} 

THE~ ANt 
{ 

1 (= 1_1 + 1 
i_l + 1 (= 10; 

}. 

key: S fals9 •• it conditi.on 

S nllll invcr~art 
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{ fas1 linear $e~reh } 

proc.cur~ Search ( ke): Shortlnt, 
var A : array 1 •• 10 of Shortlnt, 
var i: Shortlnt 

,) = 
pest ( A( i ) = key,) 

Iltg].n 
~(10} := teey 

i := 1 

loop 
irvariant ( 1 (= i anc i (= 10 ) 
mealure ( M := 10 - i ) 

e~it when ~(i) = key 

i := 1 + 1 
and loop 

end Se arch 

Sho~ l~op t9r~1nation 

A( 10 ) = 
1 (,= i_lf 
i_1 <= 10; 
NCT A( i_I 
1 <= 1._1 + 
1._ 1 + 
NCr A( 

} 

THEh ANC 
{ 

1 (= 
1_1 

key; 

) = key; 
1 
10; 
+ 1 ) = 

Symbol Tabl. 

1 

$ arr.y ass1grments in path 
5 old in VI ri a" t 
S tals~ ex it condition 
S n8"" invlriart 

ka) ; S n8"" exit condi t1 on 

conditionl 

false 

le - ( i_l + 1 ) >= 0; 
1& - ( i_1 + 1 ) ( 10 -

$ na"" measure in range 
i_1; S ne"" ( old 
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Proof of a Program: FIND 

C. A. R. HOARE 

Quccn's C./ni.'ersity,· Belfast, Ireland 

A proof is given of the correctness of the algorithm "Find." 

First, an informal description is given of the purpose of the 

program and the method used. A systematic technique is de­
scribed for constucting the program proof during the process 

of coding it, in such a way as to prevent the intrusion of 
logical errors. The proof of termination is treated as a sep­

crote exercise. Finally, some conclusions relating to general 

programming methodology are drawn. 

KEY WORDS AND PHRASES: proofs of progrom., programming method­

ology, progrom documentation, program correctness, theory of programming 

eR CATEGORIES: ~.O, ~.22, 5.21, 5.23, 5.2~ 

1. Introduction 

In a number of papers [1, 2, 3] the de~irability of proving 
the correctness of programs has been !"uggested and this 
\,~' been illustrated by proofs of simple example program". 
11. this paper the construction of the proof of a useful, 
Iflieient, and nontrivial program, using a method based on 
1I,\"ariant~, i~ ;;hown. It is sugge>'ted that if a proof is con­
-trurted a~ part of the coding process for an algorithm, it 
I.- hardl~' more laborious than the traditional practice. of 
program testing. 

? 
-. The Program "Find" 

I The purpose of the program find [4] is to find that 
'H:Oient of an array .4 [1: N] whose value is fth in order of 
!11~gnlt d 
t
" U e; and to rearrange the arra\' in such a wav that 
;11' el ' ., 

rr ement IS placed in A(fJ; and furthermore, all ele-
'f:lIts ",'th b . ;.1\ I I su scnpts lower than f have lesser values, and 
\oi~e:ments with subscr.ipts greater than f have grea.ter 
r':\,,!, ' T~us on completIOn of the program, the followlng 

lon~hlp will hold: 
,l!I] , 
1\' I .1[2], '" , A[J - 1] ~ A[J] ~ .-1[J + 1], ... , A[N] 

.~~ relation is abbreviated as Found. 
le method of achieving the desired effect would be to 

'u ~partrn ' 
ent of Computer Science 

\ 
Olllllle 14 / • 
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sort the whole array. If the array is small, this would be a 
good method; bu.t. if the array is large, the time taken to 
sort it will also be large. The Find program is designed to 
take advantage of the weaker requirements to save much 
of the time which would be involved in a full sort. 

The usefulness of the Find program arises from its 
application to the problem of finding the median or other 
fIuantile~ of a "et of observations stored in a computer 
array. for example, if N is odd and f is set to (N + 1)/2, 
the effect of the find program will be to place an observa­
tion with value equal to the median in A[f]. Similarly the 
first quartile ma~' be found by ~etting f to (N + 1)/4, 
and so on. 

The method used is based on the principle that the 
desired effect of Find is to move lower valued elements of 
the array to one end-the "left-hand" end-and higher 
valued elements of the array to the other end-the "right­
hand" end. (See Table I(a)). This suggests that the array 
be scanned, starting at the left-hand end and moving right­
ward. Any element encountered which is small will re­
main where it is, but any element which is large should be 
moved up to the right-hand end of the array, in exchange 
for a small one. In order to find such a small element, a 
separate scan is made, starting at the right-hand end and 
moving leftward. In this scan, any large element encoun­
tered remains where it is; the first small element encoun­
tered is moved down to the left-hand end in exchange for 
the large element already encountered in the rightward 
scan. Then both scans can be resumed until the next ex­
change is nece;,:~ary. The process is repeated until the 
scans meet some\\'here in the middle of the array. It is 
then known that all elements to the left of this meeting 
point will be small, and all elements to the right will be 
large. When this condition holds, we will say that the array 
is split at the given point into two parts (see Table I(b)). 

The reasoning of the previous paragraph assumes that 
there is some means of distinguishing small elements from 
large ones. Since we are interested only in their compara­
tive value", it is sufficient to select the value of some ar­
bitrar~' element before either of the scans starts; any ele­
ment with lower value than the selected element is counted 
as :::mall, and an~' element with higher value is counted as 
large. The fact that the discriminating value is arbitrary 
mean;;: that the place where the two scans will meet is also 
arbitrary; but it does not affect the fact that the array 
will be ;:;plit at the meeting point, wherever that may be. 

Xow con~ider the question on which side of the split the 
fth element in order of value is to be found. If the split is 
to the right of A[J], then the desired element must of 
neces;;:it~· be to the left of the split, and all elements to the 
right of the split will be greater than it. In this case, all 
elements to the right of the split can be ignored in any 
future processing, since they are already in their proper 
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place, namely to the right of .-tU] (see Table I(c)). Similarl~', 
if the split is to the left of A.[j], the element to be found 
must be to the right of the split, and all elements to the 
left of the split must be equal or le!"s than it; furthermore, 
these elements can be ignored in future processing. 

In either case, the program proceeds by repeating the 
rightward and leftward scan;., hut thi,; time one of the scans 
will start at the ,-plit rather than [Lt the beginning of the 
array. When the two scan:' meet again, it will be known 
that- there is a second split in the array, this time perhaps 
on the other side of A[j]. Thus again, we may proceed 
with the rightward and left,,"ard !"C[L n:" , but we start the 
rightward scan at the split on the left of A[j] and the 
leftward scan at the "plit on the right, thus confining atten­
tion onl!' to that part of the arrn~' that lies between the 

(a) 

(b) 

(c) 

(d) 

40 

TABLE I 

move small values left 
E 

move large values right 

rightward scan has 
covered these elements. 
and they are all small 

.. 

leftward scan has 
covered these 
elements. and they 
are all large 

Consequently. the 
array IS split here 

the n smallest values 01 
the array are In thiS 
part. Including the I th 
largest value, 

11 I 
I I r 
c 
lef t part middle par t : 
all ele- ~urther scans are 
ments ~ confined to thiS 
those of part 
middle f----
part -

all elements here 
are greater than 
any to the left 

N I 
I 

right par t : 
all elements ~ those 
of middle part 

Communications of the AC)I 

two splits; this will be known a,. the middle part of the array t' mall: 
(see Table I(d)} . de~cr 

When the third scan is complete, the middle part of the' pre~, 
arra~' will be ~plit again into two parts. We take the new: true 
middle part as that part "'hich contains A(f] and repeat the' 
the double scan on this new middle part. The process i" menl 
repeated until the middle part consists of only one ele.! tionE 

men' 
ment, namely .-t[j]. This element will now be equal to or' 
greater than all elements to the left and equal to or le5< at al 
than all elements to the right; and thus the desired result than 
of Find will be accompli~hed of tl 

This has been an informal description of the method. follo 
used by the program Find. Diagrams have been used to tion 
convey an understanding of how and wh," the method m =:; 
works, and they serve as an intuitive proof- of its correct· 
ness. However, the method is described only in genera! 

I · d Simi terms, eavmg many etails undecided; and accordingly, 
the intuitin proof is far from watertight. In the next sec. of tf 

will 
tion, the details of the method ,\;11 be filled in during the 
process of coding it in a formal programming language; and f =:; 
simultaneou~ly, the details of the proof ,,;11 be formalized 
in traditional logical notation. The end product of thi;' (~ 

activity will be a program suitable for computer execution.' h t e;; 
together with a proof of its correctness. The reader who tenc 
checks the validity of the proof will thereby convince him·'inc. 
self that the program requires no testing. obvi 

3. Coding and Proof Construction 

The coding and proof coristruction may be split into 
several stages, each stage dealing with greater detail thal: 
the previous one. Furthermore, each stage may be sy:­
tematically analyzed as a series of steps. 

3.1. STAGE 1: PROBLDI DEFI:O;ITIO:O; 

The fir!"t stage in coding and proof construction is to 01:' 
tain a rigorou;;; formulation of \\-hat is to be accomplished 
and what may be assumed to begin with. In this case \\, 
may assume 

(a) The subscript bounds of A. are 1 and N. 
(b) 1 =:; f ~ N. 

The required result is: 

'tip, q(l =:; P =:; f =:; q =:; N :::) A[p] ~ A.[j] =:; A.[q]) 
[Found 

3.2. STAGE 2: THE GE:O;ERAL :\IETHOD 

(1) The first step in each stage is to decide what n r 
abies will be required to hold intermediate results of thi 

program. In the case of Find, it will be necessary to krll'" 
at all times the extent of the middle part, which is currentl: 
being scanned. This indicates the introduction of variabit' 
m and I! to point to the first element A.[mJ and the ill" 

element .-t[n] of the middle part. 
(2) The second step is to attempt to describe more itl

: 

re!"p 
whe 

m· 

( ~ 
the 
the 
\'ar 
:lIre 

't 

i \"" 
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1 
2 
3 
4 
5 
6 
7 
8 
9 

procedure Find ( f ShortInt, var A: array 1 •• 1000t Unsi~nedInt 

be ~in 
'Jar i ShortZnt 
'Jar j Shortrnt 
var m ShortInt 
var n ShortInt 
var r Unsignedrnt 
var iJI Unsign~d!nt 

m : = 1 
n : = 100 

loop 
exit ~han ( m )= n ) 

.,.:= ACf) 
i := m 
j : = n 

loop 
exit :.uhen C 

loop 
exit 
i · -· -

end loop 

loop 
exit 
j · -· -

end loop 

i > j 

'.uhen 
i • 

Jlhen 
j -

l.f l <= j then 

) 

( 

1 

( 

1 

IJJ := ,4( i ) 

A ( i 

4 ( J 

A( 1. ) := .l( j ) 
A( j ) := III 

) >= 

) <= 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
23 
29 
30 
31 
32 
33 
34 
35 
36 
37 
33 
39 
4G 
41 
42 
43 

i := i + 1; j := j - 1 

I .... 

~nd if 
~nd loop 

if f <= j than n := j 
elseif f >= i then m := l 

~s else ~Xlt 
46. end if 
47 .nd loop 
43 end Find 

! 

r ) 

r ) 

= 



1 
2 
3 
4 
S 
6 
7 
d 
9 

10 
11 
12 
13 
14 
1 S 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
H 
37 
38 
39 
40 
41 
42 
43 
I' .... 
45 
46 
47 
48 
4-9 
50 
51 
52 
53 
54 
55 
56 

57 
53 
59 
60 
~1 

62 
63 
64 
65 
66 
67 
63 
69 
70 
71 
72 
n 

{ C. A. R. Hoare, CACM vol 14, No 7, (Jan 1971) 

procedure Find l f : Shortlnt, var A: array 1 •• 100 of Unsi~nedInt ) = 
pre ( 1 <= f and f <= 100 ) C f, and all elements of A are defined 
begin 

C 

{ 

var i ShortInt 
var j S ho,.tInt 
va,. m Sho,.tInt 
var n Sho,.tInt 
lIa,. ,. UnsignedInt 
lIa,. III Unsignedlnt 

m : = 1 
Cl . -.. 1 :)0 

loop {m.n modifies: r, i, j, w, A, n, m 
inva,.iant ( A~D ( 1 <= m; m <= f; f <= n; n <= lOO;) ) 
measure ( Measl := n • m ) 

exit when ( m >= n ) 
r := Hf) 
i := m 
j : = n 

loop ( i.j modifies: 
inva,.iant ( AND ( m <= ii 

OR ( AND ( 

AND ( 

O~ ( AND ( 

~ND ( 

) i ) 

i 
1 

f 
i 

i, j, Ill' A 
j <= ni IF i <= j 

TnEN AND 
( 

<= fi ,. <= A( f ) ; 
<= j + 1 ; ,. <= A( j 
<= ji r >= A( f ) ; . 1 <= ji r >= A( i 

) ; 

) i 
... ) ; 

) i . ) ; 

) il i 

) j) i 

i 

., 

} 
} 

} 

directive ( ?~CV: ~ND ( N:.( i 
measure ( Me3s2 := j • i ) 

exit when ( i > j ) 

> OLJ( i ); New( j ) < OLO( j ); ) ) } 

loop { less.,. modifies: i 
{ inV3,.iant ( OR ( AND ( i <= fi ,. <= A( 

;lND ( i <= Ci.jJ(j) + 
r <= A( Ci.jJ(j) 

directive ( PROVE NE;;( i ) >= OL:! ( i ) 

measure ( Meas3 := n . i ) 

exit when ( A C i ) >= r ) 

i : = i + 1 
end loop { less.r 

loop ( ;,.eat&,..r modifies: j 
( inva,.iant ( OR ( AND ( f <= j; ,. >= A( 

AND ( Ci.jJ(i) . 1 <= 
r >= A( Ci.j](i) 

directive ( PROVe ( NEW( j ) <= 
measure ( Meas4 .. .. j . m ) 

exit .,hen ( A( j ) <= r 
j · -· - j . 1 

and loop ( ~,.eate,..r 

if i <= j than 
A ( i ) ; A( i ) .. 

III · . .. 
( dl.rective PROVe AND ( A( i ) 

USING SWAP( A ) ) ) 

i := i + 1; j := j - 1 
~nd if 

end loop < i.j 
if f <= j then n := j 
91seif f >= i then ~ := i 
else exit 
end if 

end loop < m.n 
end Find 

OLD( j 

A ( j ) ; 

<= ri oH 
} 

} 

f ) i ) ; 
1 ; 

... 1 ) ; ) i ) ; ) 

) } 

} 

} 

t ) i ) i 
j; . 1 ) i ) ; ) ; ) 

) ) ) } 

} 

A( j ) .. .. W 

j >= ,.; ) 

} 

} 



1 
2 
3 
4. 
S 
6 
7 
8 
9 
o 
1 
2 
3 
4-
S 
6 
7 
a 
9 
~O 
: 1 
:2 
!3 
~4 

SwAP LeMMA 

~ A PROVE dir~ctive with USING S~AP( A ) will cause this array 
$ lemma to be acceptid as an axiom ONLY for the proof indicated. 

$ The array lemma is the rlisult of scanning the' path condition 
S for modifications of A_3 ana finding 

i A_4 ~ A_3Ci_3IA_3(j_3)] 
S A_S = A_4Cj_3IA_3(i_3)] 

DECLARE A_4( INTEGER ) 
DECLA~E A_S( INTEGER) 

DEFINE A_5_ArraY_Lemma 
ay 

FOR A_S_i AN;) 
( 

A_S( j_3 
A_S( i_3 
IF AND 
{ 

) = A_3( 
) = A_3( 

INTEGER; 
INTEGeR; 

aOOLEAN 

i_3 ) ; 
j_3 ) ; 

: 5 NO T A 5 i = j _ 3; 
:6 t-40T A_S_i = i_3; 
:7 } 
:8 THEN A_se A_S_i ) = A_3( A_S_l ); 
:9 }; 
;0 

. . , 
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.)(ecution Doint 

.nter loop ",_n 

top of "'_n 
after 1 teration 

tOD of i_J 
aft.r It.ration 

tOD of less_r 
aft.r i titration 

ex.cut. loop l.ss_r 

enter loop ~r".ter_r 

top of o,. •• ter_r 
aft.r iteratlon 

ex.cut. loop i_J: 
if branch 

••• cut. loop i_J: 
.15. branch 

.xecut. loop "'_n: 
if branch 

••• cut. loop "'_n: 
.1s.if branch 

ex.cut. "'_n loop: 
exit branch 

.xit Find 

path condition stack 

(2) ",_n invariant 

(3) false "'_n exit condition 

(5) fals. l_J "Kit condition 

(7) fals. 1.s5_r ,,)(it condition 

ell", (7), (S) 1_3 >= i_2, 
(9) less_r .xit condition 

(10) gr.ater_r inv~riant 

(11) false greater_r exit condition 

.11m (11), (12) J_3 <= J_2, 
(13) or.ater_r .)(it condition, (14) i 3 <= J_3 

elim (14), 
(15) NOT i_3 <= J_~ 

elim 
(17 ) 

(5), elim (15), 

f_1 <= L2 

elilll (17), 

( 16) 

(18) NOT f_1 <= L2, (19) f >= i 2 

.-------nothing to prove-------* 

*-------nothino to prove-------* 

*-------nothlno to prove-------* 



FINDING , P'TH CONDITION fOR A THEOREM 

p~th execut 10n poin.t path conditio" stack 
---------------------------------------------------------------------------------------
1 ent.,. 1001= lI_n 

top of lII_n 
afte,. iteretion (2) m_n invariant 

-------------~-------------------------------------------------------------------------
l 

3 

4 

5 

top of i_..: 
af t.r iter atio n 

top of 1"5_1' 
afte,. lteration 

,xecute 1eop 1158_1' 

(3) false ~_n exit condition 

(6) 1es&_r invariant 

(7) false 1ess_r exit condition 

.lill (7)" (8) i_3 )= i_2, 
(9) less_r exit condition 

Directions for findin~ th6 path cendition for a theo,..m: 

T~I n~mblrs on the left (1 - 5 abeve> indicate execution points in the 
prog,.Em wh.,.e a t~eorell te validate an invariant and m.asure eust b. 
proven. The,.e are two ~h60r.ms fc,. a.ch loop. For instance, 
3 and 4 are for loop les~_r. Th. fir.t shows that the lnvari,nt ~s 
true ~pon 1nitia1 entry; the !.co~d s~o.s that same after an irbitrary 
1t.ration. 

Fer .,ch nUMber ird1catin~ an execution point, go to the right in 
the t~bll and concatenate' the cono1t1ens in that row ,nd III rows 
higher up. If yo~ s.e •• t.t6m~nt li~e "e11m(1)", th~t means that 
state •• nt 7 is NOT to be included in the path condition. The path 
structur. i. Simple enough in FIN[ th,t this technique will _ark. 
UJ: is not to be included. 



Sy~bol T3bl~ Stack 

path execution point m n r i j w 

100 f A 

----------------------------------------------------------------------------------------------------------------
top of m_n after 
an iteration m 1 n Il Z r 1 III 1 

------------------------------------------------------ ------~----------------------------------------------- ----
2 A 2(1 1) 

---------------------------------------------------------------------------------------------.------------------

3 

top of i_j after 
an iteration A 3 i 2 III 2 

----------------------------------------------------------------------------------------------------j-----------

4 

5 

7 

8 

9 

top of less_r 
after iteration 

enter loop greater_r 

top of greater_r 
after iteration 

execute loop ~reater_r 

execute i_J loop: 
if branch 

execute loop i_j: 
else branch 

execute loop m_n: 
if branch 

A 4 = A_3( 
A 5 A_It[ 

i 3+1 

A J i_.5 L3 III 2 
A:3(i_3) 

i_J A_3(L3) 1 
L3 .l_Hi_3) J 

i_3+1 
j_3-1 

A 3 III 2 

----------------------------------------------------------------------------------------------------------------
10 

11 

execute loop m_n: 
elseif branch 

execute loop m_n: 
exit branch *----------nothinJ to prove------------* 

----------------------------------------------------------------------------------------------------------------
12 exit loop m_n .----------nothin9 to prove------------* 
---------------------------------------------------------------------------------------------------"-------------

exit Find *----------nothing to prove------------* 
----------------------------------------------------------------------------------------------------------------



pith 

1 

l 

j 

5 

~.ecution point 

top of m_n after 
an i te rati on 

top of t_J after 
an iteration 

top of le. s_r 
af ter i te,. atio n 

Symbol Table St~ck 

m 1'1 f A 

1 

Directions for fil'lding the correct cOl'Istant substitution for ~ path 
'.pr.l.ton: 

The n~mb.r. on the left (1 - S abeve) indicate execution points 1., the 
progr,m wh.r. a t~eorem tc validate 81'1 tnvarient &nd •••• ur. nust be 
prove.,. There ar. two theorems fer .,ch loop. For 1.,5tanc., 
3 and 4 are for leop less_re Th. first shows that .the invertlnt is 
true ~pon 1n1tial entry; the .scond stows that same after an arbitrary 
tterat10n. 

Fer elch number il'ldicatin~ an executien point, the entry in the row 
under the variable column is the ~alue of that variable at th.t point 
in the program. for .x.m~l., after ar arbitrary iteration of the i_j 
loop, the VCG will assume that the value of i is 1_2, a value about 
which nothing is known. Previous facts concerning i_1 are not affected. 

TD FD~M A THEOREM to prove a particullr inVariant, first get the 
pith condition frc~ the ~Ith chart, then use this chart to substitute 
ccnstlnt values fer •• ch tube.prelsio., of the path condition, ••• ell 
al the conclusion of the theorem. 

r i j 



1 
2 
3 
4 
5 
6 
7 
a 
~ 

10 
11 
1Z 
13 
14 
15 
16 
17 
15 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
43 
4~ 

50 
51 
52 
53 
54 
55 
56 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
63 
69 
70 
71 
72 
73 
74 
75 

VC7 Trl:ORE~··OECLARATIONS 

S PHi"! rH 

S initial assumptions ~i;3~din~ f 

vu t : INTEGER; 
COHST f.1 : INTEGER; S initial value of f 

DEFINE f.Init : 600LEAN 
ay 

ANO 
( 

1 <= f.1; 
f.1 <2 100; 

}; 

S initial assumptions conce~nin9 A 

DECLARE A( INTEGER ) : :NTEGER; 
OECLARE A.1( INTEGER) : INTEGER; 

S declare local va~iables 

S initial value 

S values fo~ va~iaDles modified in m.n loop 

CO~ST m.1, n.1, ~.1, i.', j.1, ~.1 : INTEGER; 
OECLARE A.lC INTeGER ) : INTEGER; 

S values fo~ va~iables mojified in i.j loop 

CONST i.2, j.2, ~.2 : INTEGER; 
DECLARE A.lC INT~GER ) : INTEGER; 

$ values fo~ variables ~odifi.d in l.is.~ loop 

S n.~ valui5 fo~ va~iables m~difi.d in g~~at.~.~ loop 

5 A PROVE di~active ~ith ~SING SWA~C ~ ) ~ill causa this a~ray 
$ lemma to ~e accepted as an aKiom ONLY fo~ the p~oof ind1cated. 

$ The a~~ay 1.~m3 is the result of scanning the path condition 
i fo~ modifications of A.3 and findin; 

S A.4 2 A.3Ci.3IA.l(j.l)J 
S A.5 = A.4Cj.3IA.3(i.l)J 

OECLARE A.4( INTEGER 
OECLARE A.5C INTEGER 

DEFINE A.5.A~~aY.Lem~a 
3Y 

FOR A.5.i AND 
( 

INTEGER; 
INTEGER; 

300LEAN 

A.se j.3 ) 2 A.H i.3 ); 
A.S< i.3 ) = A.H J.3 ); 
IF ANO 
( 

} 

NJT A.5.i = j.3i 
NOT A.5.i 2 i.3; 

THeN A.5C A.5.i ) = A.3( A.5.l }; 
); 



1 
2 <, 

"I 

,3 '. PROVE 
4 IF AND 
5 { 
6 1.Initi 
7 1 <= m_1i 
8 m.1 <= 1_1; 
9 1_1 <= "_1; 

10 n_1 <= 100; 
11 NOT m_1 >= n_1; 
12 AND 
13 { 

m_ 1 <= i.2 i 
j_2 <= n_1; 
IF i_2 (= j_2 
THEN ANO 
( 

OR 
( 

AND 
( 

i.2 <= 1_1; 

VC7 THEO~E~--:F PART 1 

$ prove ne~ invariant true 

$ initial path condition 
$ m_n loop invariant 

$ 1alse m_n loop exit condition 
$ i_j loop invariant 

1 .. 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
23 
29 
30 
31 
32 
33 
34 
35 
36 
37 
3B 
39 
.. 0 
41 
42 
43 
44 
45 
46 
47 

A_2C 1_1 ) <= A.3C f.1 ); 
}; 
AND 
( 

i.2 <= j.2 + 1; 
A.2C f.1 ) <= A 3C j.2 + 1 ); 

}; 
}; 
OR 
( 

}; 
}; 

}; 

ANi:) 
( 

f.1 <= j.2i 
A.2( f.1 ) >= A.3( f.1 ); 

}i 

AN~ 
( 

i.2 - 1 <= J.2i 
A.2C f_1 ) >= A.3( i.2 - 1 ); 

}i 

NOT i.2 > j_2; i false i_j loop exit condition 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
1 it 
15 
16 
17 
13 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
33 

OR 
( 

}; 

VC? THEO~EM--IF PA~T 2 

$ less_r loop invariant 

AND 
< 

i_3 <= f_1; 
A_le f_1 ) <= A_3( f_1 ); 

}; 
ANO 
( 

i_3 <= j_2 + 1; 
A_2( f_1 ) <= A_3( j_2 + 1 ); 

}j 

$ j_2 for Ci_jJ(j) 
$ j_2 for Ci_jJ(j) 

A_3( i_3 ) >= A_2( f_1 ); 
i_3 >= i 2; 

S less_r loop exit condition 
$ NEjoj( i ) >= OLO( i ) 

OR 
( 

AND 
( 

$ greater_r loop invariant 

f_1 <= j_3i 
A_2( f_1 ) >= ~_3( f_1 ); 

}; 
ANO 

( 

i_2 - 1 <= J_3; $ i_2 for Ci_jJ(i) 
A_2( f_1 ) >= A_3( i_2 - 1 ); $ i_2 for Ci_j)(i) 

}; 
}; 
A_3( j_3) <= A 2( f_1 ); 
j_3 <= j_2; 
4_3 <= j_3; 

S greater_r loop exit condition 
$ NEw( j ) <= OLOe j ) 
$ if branch condition 

$ result of directive ( P~OVE ( •• next two statements •• ) USING SWAPe A ) 

A_S( i_3 ) <= A_2( f_1 ); 
A_Se j_3 ) >= A_2( f_1 ); 



1 . 
I~) 

2 .. 
,,'1'.-;, 

3" 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

THEN AND 
{ 

+ 1; 
".1; 

VC7 THEOREM··THEN PART 

$ new i.j loop in~ariant 

in.1 <= i.3 
j.3 • 1 <= 
IF i.3 + 1 
THEN AND. 
( 

<= j.3 • 1 

}i 
}; 

OR 
( 

AND 
( 

i.3 + 1 <= 
A.2e f.1 ) 

}; 
AND 
{ 

f.1; 
<= A 5 ( f. 1 ); 

1.3 + 1 <= ( j.3 • 1 ) + 1; 
A.2( f.' ) <= A.5( ( j.3 • 1 ) + , ); 

}; 
}; 
OR 
( 

~ . . , 

AND 
( 

f.1 <= j.3 
A.2( f.' ) 

}; 
AN;) 
{ 

( i.3 + 1 ) • 1 <= j.3 • 1; 
A.2( f.' ) >= A se ( 1.3 + 1 ) • 1 ); 

}; 

37 
38 (}; 
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