PROGRAM DEVELOPMENT .
FROM

EXECUTABLE SPECIFICATIONS

Derek Coleman
Robin Gallimore

HPLabs, Hewlett Packard, Bristol

DATA TYPE SPECIFICATIONS
'

codify application domain knowledge at a
high level of abstraction

- reusable ‘knowledge’
- standard concepts and definitions

provide abstractions necessary for concise
formulation of specification

if the data type specs contain an
executable subset

- design time testing

if at appropriate level of abstraction ‘then
code blueprints for first versions

correctness transferred from spec to code



MODLEL OF FORMAL DEVELOPMENT

ADT
Spec
Language

- ~

\
exploring

design

e a V) e m———

validated
design

; * c¢xploring desigyn

: - requirements
. - high-level algorithm
- validation

produces

requirement statements
+

! . executable model

' +

standard test cases

payoffs

prog language
+

spec language

spec +

— code

progcam

- design time testing against requirements
~ management control of design process
- correct design helps establish correctness

of code

- ) -

1
validated
program

I
T

DEVELOPMENT OF PROGRAMS

* from executable specification to
dpecified program

* design decisions to be made

- representation of abstract types
eg lists by pointer structures

- modules and their interfaces
eg cons procedure, head function ...,

* these decisions
determine efficiency of code
and must be documented

— use abstraction fns + invariants
for representations

- use pre-post conditions for modules



F3)

! STRATEGY

in order for correctness of design to
carty into program

1. fix module interfaces
2. choosv simple representations

3. once functionally OK
’ measure space/time efficiency

4. improve efficiency by
changing representations
or .
redefining module interfaces

REPRESENTING ABSTRACT TYPES

* abstraction fn' mapping concrete into
abstract values

* invariant relation characterising those
concrete values which represent abstract
values

eg sequences by linear linked lists

abstract : concrete
“:-->list type list

_-_: item list-->1list

)

* abstraction function _
abs: 1listptr state --> list

where
state: listptr --> <item,listptr>
abs(nil,2) = ~
abs(1,2) = i.abs(1') if 2(1l)=<i,1'>

* invariant
the listptr must be acyclic

ptr=Trecord
val:item
link:listptr
end



DESIGNING THE BASIC TYPE PROCEDURES

list values are constructed from ~ and .

the related procedural components may be
specified by pre/post conditions

procedure empty (var l:listptr)
PRE:. true
POST: abs(1l)="

procedure cons (i:item;var l:listptr)
PRE: true
POST: abs(l)=i.abs(l°) "
. and
tail(l) aliases 1o

notice:

1. use of abstract data specification to
supply vocabulary (ie .,"~)

2. design decision to make cons append a
new node rather than copy its list
argument (alias)

3. proof obligation that invariant is
preserved

DESIGNING OTHER MODULES

example

filter out all the items from a list
< a given value

filtersitem 1list -->1list
filter(i,~)="
filter (i,j.s)=1if iej then j.filter(i,s)

' else filter(i,s)

a no~side effects strategy for modules

function FILTER (i:item;s:listptr):list ptr
PRE: true
POST: aba(FILTBR)-fllter(l,abs(s))

and

s=8

makes code-production straightforward



CODE PRODUCTION

1.

re

eliminate pattern matching
tranasform tnto programming language syntax

filter(i,~)="
filter(i,3}.s)=if i%j then j.filter (1,8)
else filter (i,s)

filter(i,s)= if s==~then~
else
if isj then head(s).filter(i,tail(s))
else fllter(i,tail(s))

function FILTER(i:item; listptr):listptr
begin

if s=empty then FILTER:=empty

else :

if i head(s) then

N FILTER:=cons(head(s),FILTER(i,tail(s)))
else

FILTER:=FILTER(i,tail(s))

end

10

MEASURE - REVIEW DESIGN
* after measurement - change inefficlent
representations

* may be necessary to refinc executable
spec to stop code-spec separation

eg: eliminate recursion
filtef(1,8)=f(ilsl~)
4;7/¢'f(1,“,res)=res
f(i,j.8,res)=1f i j then
filter (i, )=" E(l,s,res:j)

filter(i,j.s)= ... else
‘ f(i,s,ces)

note: is right append

function FILTER (i:item;s:listptr):listptr
var res:listptr
begin ]
res:=empty; -
while s<>empty do
begin
if i head(s) then res:=rap(res,head(s)) :
s:=tail(s)
end; :
FILTER:=res
end

; note: rap is right
. append



EY

11
OBSERVATIONS

* result is a specified and documented program
* two kinds of decision only

- data type representation
- module interfaces

* given these decisions code production can be
a transformation -

* changes to more efficient representation may
cause changes to data type specification

* choice of (representation .
. {module interfaces

requires programming skill

* transformations are mechanical

MACHINE SUPPORT

systematic code production is practical
even if done manually

machine support’ is required to keep
spec-code correspondence in face of
updates :

transformations; can be programmed
possibly expert systems can be used to

capture programmer skill
eg CHI from Kestrel Institute



FINAL REMARKS

* writing specifications is beneficial
* semantic processing is very desirable

* lack of mechanical theorem provers is
the real obstacle

* executability to
~ effective in practice N
- can be provided cheaply
eg UMIST 0OBJ

* systematic program production can be given
machine support

* the benefits of formal methods come from

improved quality

13



