
.1\ 
\ ' 

, I 

Day 1 

9.30 -

10.15 

10.30 

11. 45 

1. 00 

2.30 -
3.45 -
4.15 -

BCS/FACS CONFERENCE 

ALVEY SIG-FM 

of the Art Workshop 

I M PER I A L COL LEG E L 0 N DON 

16th and 17th December 1985 

Location: Lecture Theatre 201, Civil Engineering 

- Monday 

10.15 

- 10.30 

- 11. 45 

- 1. 00 

2.30 

3.45 

4.15 

5.30 

TIMETABLE 

Registration 

Day 2 ~ Tuesday 

~9.3::0- - 10.15 
15 

C 0 F F E E 

Cottam 1 10.30 - 11.45 

Coleman 1 11.45 - 1.00 

L U N C H 

Gaudel 1 2.30 - 3.45 

TEA 

Knmvles 1 4.15 - 5.30 

Cunningham 

Cottam 2 

Co1eman 2 

Gaudel 2 

Knowles 2 



! 

MIne GAUDEL 

HOW TO STRUCTURE ALGEBRAIC SPECIFICATIONS: A SPECIFICATION 
LANGUAGE AND ITS ENVIRONMENT 

A specification is supposed to describe a future or existing 
system in such a way that the properties of the system (what 
the system does) are expressed, and the implementation details 
(how it is done) are omitted. Thus a specification language 
aims at describing classes of possible implementations. In 
contrast a programming language aims at describing specific 
implementations. 

Among the current formal approaches for specifications, 
algebraic specifications are especially appropriate for this 
purpose: the presentation of an algebraic specification 
defines a class of algebras (also called models). These last 
words should not frighten the non specialists in algebra since 
they mean nothing more than some operations on various domains 
of values. An algebra is just a possible implementation of 
some operation names and some domain names. 

This lecture is an attempt to summarize some basic concepts of 
algebraic specifications in an hopefully understandable and 
intuitive way. The suppqrt of this presentation is the 
specification language PLUSS. PLUSS allows to structure large • 
algebraic specifications. Its design is based upon several 
experimentations on real large examples. It aims at improving 
the acceptability of formal specifications in industrial 
context. 

The ASSPEGIQUE specification environment supports a subset of 
the specification language PLUSS This environment is based 
upon the CIGALE incremental parser constructor. The main 
capabilities of CIGALE are: simplicity of the operators 
definition and incremental construction of grammars; efficient 
handling of modularity (it is possible to add or to remove 
(sub) languages in the current parsing environment); complete 
support of specific notions such as coercion and overloading of 
operators. 

The tools integrated in ASSPEGIQUE range from a high-level 
syntax-directed editor to a symbolic evaluator and theorem 
proving tools. Therefore ASSPEGIQUE is especially well suited 
for prototyping purposes and specification debugging. However 
some other functionnalities such as assisted program 
construction or test data generation are also available. 

-
MIne GAUDEL 

TEST SETS GENERATION FROM. ALGEBRAIC SPECIFICATIONS USING LOGIC 
PROGRAMMING 

Functional or "black-box" testing has been recognized for a 
long time as an important aspect of software validation. It is 
especially important for large-sized, long-lived systems for 
which successive versions have to be delivered. In this case, 
non-regression testing may be long, difficulty and expensive. 
It should depend only on the functional specifications of the 
system. 

However, most of the studies on test data generatio have 
focused on program dependent testing, since it was possible to 
use the properties of a formal object; the program. Of course 
such an approach is necessary but not sufficient. The 
emergence of formal specification methods makes it possible to 
found functional testing on a rigorous basis. In this lecture 
we present a method and a tool for generating test sets from 
algebraic data type specifications. We consider hierarchical, 
positive conditional specification~ with preconditions such as 
the specifications written in PLUSS. We study how to test an 
implementation of a data type against aproperty (an axiom) 
which is required by the specification. The formal 
specification is used as a guideline to produce relevant test 
data. 

The first part of this lecture is devoted to precise and formal 
definitions of several concepts; first we give the fundamental 
properties of what we call a collection of test sets; then we 
state the hypotheses which are assumed during the testing 
process and ensure the acceptability of the considered 
collections of test sets. This notion of acceptability is 
defined and discussed with respect to the classical properties 
required for test selection criteria: reliability, validity 
and lack of bias. 

In the second part, we show that using algebraic data types 
allows the introduction of further hypotheses and enables the 
test sets generation. 

The third part describes how to implement and improve this 
method using PROLOG. It turns out that PROLOG is a well suited 
tool for generating test sets in this context. In particular 
it automatically provides partitions of the domains of the 
variables. Of course, the use of PROLOG somewhat limit the 
kinds of strategies which can be used to generate test data. 
Thus two extensions of PROLOG are used: METALOG which allows 
an explicit control of the traversal of the resolution tree; 
SLOG which deals with equality and allows the pruning of 
fruitless computation branches. 

"t.. 



DR F KNOWLES 

A DISCUSSION OF FORMAL MODELS 

This talk is divided into two parts. 

(B-L) 
MITRE 

This 

The first part is an exposition of the Bell - La Padula 
model. The model referred to is that described in the 
report, "Unified Exposition and Multics Interpretation. n 

model has been translated into a VERSUS specification, 
VERSUS versions of some model constructs are presented. 

and 

The second part is a sketch of a model (not formal) for a Bl 
level UNIX. 

The B-L model is the most discussed security model for 
operating systems, so it is appropriate to start with it if one 
is interested in writing a model for a secure system. In a 
sentence, the B-L model is a state machine model for an 
operating system with four access modes (read, wri te, 
read-and-write, execute), eight generic state transformations 
(give-permission, rescind-permission, get-access, 
release-access, create-object, delete-object, 
change-current-subject-level, change-object-level) and three 
state invariants (simple-security, star-security, 
discretionary-security). 

The model is not intended to address covert channels or system 
integrity, nevertheless it is a reasonable first step in 
describing those aspects of an operating system that could 
result in the undesirable transfer of information. 

Some aspects of the model are unclear. Giving and taking of 
permissions is incompletely specified and the rules regarding 
permissions are stated differently in different parts of the 
paper. 

The rules for accessing objects in a hierarchy are 
unsatisfactory. They require a user to change security levels 
after creating an object in order to gain read-and-write access 
to it. 

The proposed model for a Bl level UNIX limits transfer of 
information between objects of different classification levels 
in the spirit of the B-L model, but equal emphasis is given to 
trusted subjects and access restrictions that guarantee system 
integrity. 

-
DR F KNOWLES 

AN-EXPERIMENT IN CODE-LEVEL VERIFICATION 

This talk describes a research effort to investigate theorem 
proving requirements for code level verification. 

The programming language used is the sequential subset of 
Toronto Concurrent Euclid, developed at the University of 
Toronto, Canada. The Verification Condition Generator was 
written by Phillip Matthews as a Master's Degree project at the 
University of Toronto. The run-time-specific proof rules are 
based on those in a Doctor's thesis by W. David Elliott, done 
also at Toronto. The theorem prover was written by Dam Putnam 
as part of· Compion' s (now Gould Computer Systems - Urbana) 
specification system, VERUS. 

The immediate goal is to characterize the verification 
condi tions that can be pr.oven without significant interaction 
between the user and the theorem prover. ., 
Two hypotheses are being investigated. The first is that 
verification conditions showing merely the absence of run-time 
errors fall into this category. The second is that Putnam' s 
prover is especially good at shallow proofs of the type that 
will be encountered. 

New proof rules will be presented that combine a modified form 
of the "forward" proof rules of the verification condition 
generator with Elliott's rules for detection of run-time 
errors. 

The verification condition generator has not been modified to 
~ork ~ith the new rules, so verification conditions being 
~nvestlgated must be manually generated and given to the 
theorem prover in the form of a VERUS proof outline. 

Examples of programs, verification conditions, proofs, and 
problems will be presented. 



to 

DR I COTTAM 

VDM AND THE MULE SYSTEM 

LECTURE 1 

This lecture will present the dialect of the Vienna development 

Method (VDM [1]) taught, and in use, at the University of 

Manchester. An experimental prototype formal methods support 

system, known as 'Mule' [2], developed at Manchester by Alan 

Wills, Tobias Nipkow, and others, will also be discussed. 

VDM is both a notation and a method. The specification 

notation is 'model-oriented'; a relational data base (say) 

might be specified by a model of the system state which uses 

mappings from relation names to sets of tuples. The operations 

of the data base system would be specified using pre-and 

post-conditions of 'before-and-after' state pairs. The method 

is a collection of proof rules for checking the correctness of 

program development steps. Development begins with an abstract 

specification from which more concrete (or design) 

specifications are produced by means of data type refinement 

a~d operation decomposition. The underlying logic of this VDM 

dl.alect has been formalised in [3] and is known as LPF - a 

Logic of Partial Functions. The preferred proof style, used in 

the tutorial book [1] and in Mule, is a form of Natural 

Deduction. 

The above topics will be presented via suitable examples. 

LECTURE 2 

In the second lecture the major meta-language of Mule - a logic 

programming language known as Graphl will be presented, 

again, mainly via examples of how such tools as proof checkers 

or t¥pe checkers are written. Further, a method of generating 

'Rapl.d Prototypes' from VDM specification will be discussed. 

This involves the translation of specifications into Prolog 

augm~nted with libraries of Prolog clauses implementing sets, 

mappl.ngs and other co~~on abstractions used in VDM model-based 

specifications. 

References 

[1 J C B Jones "Systematic Software Development using VDW' 

to be published by Prentice-Hall International in early 
1986. 

[2] I D Cottam et aI, "Project Support Environments for Formal 

Methods" in "Integrated Project Support Environments" ed. 

John McDermid, pub Peter Peregrinus for lEE, 1985. 

[3J H Barringer, J Cheng and C B Jones, "A Logic Covering 

Undefinedness in Program Proofs", Acta Informatica Vol 21 

part 3, 251-269. 

MACHINE SUPPORT ANn FUNCTIONAL SPECIFICATIONS 

From a pragmatic point of view there are several reasons for an 

interest in for~al specification. There is the need to be able to 

record the design process. Currently the only outco~e of th7 

design stage is a flat program. All the structur~l l.~format70n 

about the way the program has been ,developed, whl.~h l.S crucl.al to 

its co~prehension, 'is lost. There 1S also a pr~ssl.ng need to be 

able to investigate the design ahead of producl.ng the coqe. 

The complexity of the programmming task, which typicall¥ com

prises a huge number of small shal~ow st.eps, ~~l;.e~ mach1ne,sup

port for the design pro~ess essent1al. Forma17~y 1S es~ent1al to 

cracking this problem Slnce1n essence there 1S an equ1valence 

between what is formal and what is machine supportable. 

A formal specification of the functional behaviour of a,pro~ram 

must be built on the theories of the data types over wh1ch 1t 

computes. capturing the intended func~ionality is crucial s~nce 

it is the cornerstone of what is meant. by correctness. Functl.on

al specification languages like OBJ provide a means for ab

stractly defining data types and operations over them, they can 

describe the transformations to be effected by a program but can 

say nothing about the location of results in a program's state. 

OBJ can play a number of roles in the software design process. 

It serves as a vehicle for understanding the problem to be 

solved. Its non-executable part can be used to define require

ments against which the executable modules may be validate~. In 

this way simple machine support, in the form of type c~eckl.~g 

and execution, can be used to explore the problem doma1n qU1ckly 

and rigorously. The result of this activity is a validated and 

executable functional model of parts of the problem which are of 

interest. 

OBJ specifications also contribute to program specification 

since the values stored and manipulated in the state of a pro

gram are concrete representations of the data types introduced 

in the program's functional specificatioI}., ~hus, OBJ provides a 

vocabulary for use in pre-post order specl.fl.catl.ons of program 

components. 

Finally the executable modules of an OBJ specification stand as 

blueprints for proaram code, thus enabling initial versions of 

programs to be con~tructed systematically from specifications. 

In these lectures we explore these issues and consider the pos

sibility of other kinds of machine support for software en

gineering based on functional specification languages. 

D. Coleman 


