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A Survey of Logic 1 

- why logic? 

- rules 

- presentations 

-languages 

1 

'It is reasonable to hope that the 

relationship between computation, and 

mathematical logic will be as fruitful in the 

next century as that between analysis and 

physics in the last. The development of this 

relationship demands a concern for both 

applications and mathematical elegance.' 
, 

John McCarthy 

A concern for: 

- applications 

- mathematical elegance 

- philosophical acceptability 



Why not just classical logic? 2 

(One argument) 

We have two choices with respect to 
knowledge representation and manipulation: 

Regimentation 

1 (Quine) 

Canonical 

language + logic 

- predicate logic . 

- Prolog 

- constructive type-theory 

. Autonomy 

1 
Tailored 

language + logic 

A map 3 

classical 

empire 

modal 

federation 

constructive 

"new"-empire 

( + "third world" logics) 

modal (or intensional) realms: 

- modal (necessity, possibility) 
- tense (future, past) . 

- deontic (obligation, permission) 
- epistemic (knowledge, belief) 
- erotetic (questions, relevant reply) 

third world realms: 

- non-monotonic 

- dialogue 



Approaches 4 

There are many ways in which we can attempt 

to layout these "logics" in a common 

framework, eg : 

- proof theory 

- (abstract) model theory 

- category theory 

Proof theory is, perhaps, the most direct 

approach. It is based on the ID==uu idea of 

following a rule: 

A B r J- A rJ- B 

5 

So· what are rules? 

And what have they to do with reasoning? 

What we are after is a notion of when some 

assertion (" A" , say) follows from some, 

environment ("r", say): 

( environment) IF (assertion) 

We will use sentences to formalise assertions 

and consider one basic formalisation of the 

idea of an environment, namely a set pf 

sentences. We write ~ instead of IF 

Call such a unit, r ~ A, a sequent. 

Let's consider three pictures as to what·logic is 

about, and the form rules should take: 



Traditional picture 6 

1) delimit/define language 

2) sentences as the basic unit understood 

to carry meaning 

3) test sentences against intuitions to 

establish which are valid, and which are invalid 

4) characterise validity, "1= A " 

5) an argument is valid, if it doesn't proceed 

from valid assumptions to an invalid 

conclusion 

6) intuitions may be in terms of an 

"algebraic model" 

A semantic picture 

Traditional/contemporary picture' 7 

(essentially switch 3 and 5) 

3') test arguments: ·r 

A 

against intuitions, establish which are valid, 

which are invalid 

4') characterise validity, "r,1= A" 

5') a sentence, A, is valid when: F A 

Rules are on sentences (Prawitz) 



Contemporary picture 8 

3") test "rules" : 

rI-A 

against intuitions, establishing those that are 

"valid", those that are "invalid" 

4") characterise "validity" 

1 ,2 : as before 

6 : may be forcibly rejected 

Rules are on sequents (Gentzen) 

Note: the shift from F to 1-, the bar is what is 

''semantic'' in nature. 

The future 9 

Incorporation, into the picture, of: 

1) computational aspects 

- constructive notions 

- domain theory 

- insights from logic, functional and 

equational programming 

- real time considerations 

2) structural aspects 

- notions of types 

- specification 

3) interactive aspects 

- dialogue logic 

- adequate formal treatment of 10 

- man-machine interlace 



10 

A rule, then, is an expression of the form: 

rI-A 

The sequents above the bar are called the 

antecedents, the sequent below the bar the 

consequent (of the rule). 

A system of reasoning, a logic, is given by a 

language together with a collection of rules: 

A presentation, P, is a finite collection of' 

rules. 

The idea of a proof 11 

Note that a presentation, P, is just an 

"arbitrary" set of rules. 

A proof-schemata in P is a tree such that: 

1) every node is labelled with a sequent; 

2) the sequent attached to a node must 

follow by application of one of the rules of P 

from the sequents attached to the nodes 

immediately above it; 

(Leaves correspond to applications of rules 

without antecedents.) 



, . . . 12 

If r ~ A is the root of such a tree, we say the 

tree proves the sequent r ~ A. 

Given a presentation p. (over a language L) we 

write ~LP for the relation generated by closing 

up under the notion of schematic proof. That 

is, r ~LP A iff there is a sch~matic proof in P 

of r ~ A. 

Note, again, such a notion of proof "makes 

sense" for arbitrary collections of rules. Other 

foundational approaches to logic are not 

usually as broad. ' 

Styles 13 

There are many restrictions that we can 

impose on the form our rules may take. (Such 

restrictions or sty I e s buy us different 

advantages and disadvantages.) For example: 

- an axiomatic style, here the emphasis is 

on having axioms (rules with no antecedents) 

together with a small number Qf rules proper; 

- a natural deduction style, here the rules 

come in pairs, an introduction and elimination 

rule for each operator; 

- an all introduction rule style. 



Natural deduction style 

Notation: 

r, L\ I- A 

r, B I- A 

Example: 

for ruL\ I- A 

for ru{B} I- A 

14 

Consider the following 1\, ~ fragment: 

Structural rules: 

(Basic sequent) A I- A 

(Thinning) r I- A 

r, L\ I- A 

. . . 

Logical rules: 

(Id) rI-A L\I-B 

r, L\ I- A 1\ B 

(~I) r, A I- B 

rl-A~B 

15 

(I\E1 ) rl-AI\B 

rI-A 

(I\E2) rl-AI\B 

rl-B 

I 

(~E) rI-A L\I-A-?B 

r, L\ I- B 



Example 16 

Writing rfor {A.~ S, B ~ C} 

r, A I- S rl-s~c 

r, A I- C 

Note: 

- both top down (goal directed) and bottom 

up proof strategies "supported" 

- the rule applied is usually obvious 

Derived ru les 17 

A derived rule, R, of P is a rule s.t. that we 

have a proof schemata of the consequent of R 

from the presentation P augmented by the 

antecedents of R. 

Example: 

"1/\" is a derived rule of the above 

fragment: . i 

r, A, B I- C 

r, B I-A~C 



18 

. - Expressions (strings of symbols that have 

"meaning") are typed. 

- Formation rules (ways of putting 

expressions together to give new expressions) 

can be considered as functional typing 

, information. 

- We call the types, syntactic categories. 

- Syntactic categories may come furnished 

with both constants and (meta-)variables. 

Linguistic "preliminaries" 19 

We will assume that a language, L, is 

comprised of at least two syntactic categories: 

1) a set of sentences ,sent(L); 

2) a finite set of operators 

op(L) = {01' ... on} 

where each OJ E op(L) has: 
\ 

degree: dj 

and type: (sentence)dj -? sentence 

Example: 

The language of propositional logic has: 

1) "no" other syntactic categories; 

2) and op = {I\, V, -?, H , -, } 



,~~" 
! FACS - Christmas Workshop '86 Tutorial 1 f 

" I 

For each of the following: 

a) identify appropriate syntactic categories; 

and for each such syntactic category: 

b) suggest appropriate constants, 

c) decide whether or not one is likely to need meta-variables. 

1 - making assertions about imperative programs 

2 - making assertions in an epistemic context 

3 - making assertions in a deontic context 

4 - Prolog 
, . 

5 - making assertions about Prolog programs 
\ . 

6 - statements involving types in a functional programming language 
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A Survey of Logic 2 

- consequence relations 

- consistency 

- modal systems 

1 

Should we regard any collection of rules as 

giving us a logic? 

Question: 

What makes ~LP a logic? 

Answer: 

It has appropriate properties 

A property of ~LP is a "meta-rule", that is, a 

statement of the form: 

Of L P Il_ p.' P 
I r 0 rL ~ and ... r n ~L An then r ~L A 



Note 2 

- clearly all rules give rise to meta-rules 

- although the converse is not the case, we 

can always "safely" extend. any presentation 

by adding any properties it may have. 

Propert'ies are established, in general, by 

inductive (meta)-proofs over the rules. Such 

proofs are really proof transformations. 

rule of P ==> derived rule of P ==> property of P 

atomic 

programs 

''simple'' 

programs 

recursive 

programs 

Properties on I-

Reflexivity: A, r f- A 

Monotonicity : r f- A 

Transitivity: 

Finiteness: 

r, ~ f- A 

rf-C C, d f- A 

r, ~ f- A 

rf-A 

where r 0 is some finite subset of r 

3 

If f- satisfies the above four properties we call 

it a conseguence relation. 



A complication 4 

Strictly speaking, we should also impose a 

substitutivity property: 

r~A 

r~A* 

where *: sent(L) ~ sent(L) 

and r = {A* I A Er} 

Presentations become "first-class" nations 

when we verify that they satisfy an appropriate 

. collection of proprties, say: 

reflexivity, monotonicity, transitivity 

Example-.;. "logics of negation" 5 

( , E) r~,A r~A 

r~B 

(" E) r~ "A 

r~A 

( , I) r, A ~, A r, ,A~ A 

r~,A 'r~A 

( RAA) r, B ~, A r, B ~A 

r~,B 

"Close up" to get consequence relations then: 

classical negation = , E + , I = "E + RAA 

. intuitionistic negation = , E + RAA 



. We say that a set of sentences, r, is: 

simply consistent 

iff -, 3 A s.t. r r- A and r r- , A 

absolutely consistent 

iff 3 A s.t. r V- A 

maximally simply consistent 

ill 1) r is simply consistent. 

6 

2) if r V- A then r u {A} is not 

simply consistent 

complete 

iff \:;j A either r r- A or r r- , A 

Results 7 

Result: 

simply => absolutely 

(take any 8 then either r V- 8 or r ~ -, 8) 

Result: 

If A" A r- 8 then absolutely => simply 

(Suppose r not simply consistent, 

s03 A s.t. r r- A and r r- -, A , 

and by transitivity r r- 8 (for arbitrary 8) 

so r not absol utely consistent) 

Result: 

not absolutely consistent => complete 



Another resu It 

Jf r is maximally simply consistent 

and ~ satisfies RAA 

then r is complete 

Proof: 

8 

Suppose r is not complete (we will argue 

by contradiction), so: 

:3 A s.t. r V- A and r V- ' A 

Consider r u {A} which is not simply 

consistent, so: 

:3 B s. t. r, A J- B r, A ~ , B 

and hence by RAA r ~ , A (contradiction) ) 

So what? 9 

Exercise: Determine what principles of 

negation have been used at the meta-Ievel in 

the above proofs. 

Note: 

- the interplay between 

1) definitions of consistency 

2) properties of negation ( J- - level) 

3) properties of negation at the 

meta-Ievel 

- since RAA ==> A" A J- B we might 

expect consistency to be a well-behaved 

. notion in the presence of RAA 



Logics 10 

We can extend our definitions of consistency 

of sets of sentences to consistency of (logic) 

presentations, P. 

P is ... iff the empty set of sentences, 

{ } over I-P is 

(But note the definition for complete is 

inappropriate) 

Research strategy - consider a notion 

(consistency, say) for classical logic and 

examine a number of equivalent variants. 

Establish what property "causes" the 

equivalence. Such properties "measure" how 

far we are from classical logic. 

An example 

Hiz's presentation of "classical" logic: 

~ -, (A~B) ~A 

~A~B ~B~C 

~A~(B~C) ,~A~B 

I-A~C 

I-A 

Result: l-"usual"A <=} ~HIZA 

11 

But: If we extend by adding ~ -, A , (H 12* say), 

we cannot prove absolute inconsistency! 



So ... 12 

J- H1Z
* is not simply consistent because we 

have J- -, A and J- -, (-, A) 

hence A, -, A V- B and hence RM fails. 

Justification: (of absolute consistency) 
Consider the following matrices: 

t t f f t T 
T t t t T t 

f t t t f t 

where "true" = {t, T} 

Summary 13 

Note the following: 

. "usual" J- A 

"usual" r J- A ? r J-HIZ A 

rules"usual" rulesHIZ 

properties"usual" . propertiesHIZ 



14 

We will assume that we are dealing with a 

language, L, suitable for sentential 

(propositional) logic, together with unary 

operators '0' and '0'. 

First, we consider some properties on J- that 

determine the "overall" behaviour of o. 

Congruential : A J- B B J- A 

oAJ-oB 

Regular: 

. Normal: r J- A 

! 

·Results 15 

Result: normal ~ regular ~ congruential 

Result: 

11 . . . [Exercise: fill in the dots] 

then normal iff 

1) J- A (Necessitation) 

J-cA 

2) J- 0 (A -? 8) -? (0 A -? 0 8) 

( Distribution) 

Almost all work has been on normal systems. 



Named sentences 16 

It has become customary to give certain 

sentences names: 

T oA-7A 

4 oA-7ooA 

odefn. oAe-,o-,A 

Euclidean oA-7coA 

Brouwer A-7ooA 

McKinsey ooA-7ocA 

(Geach) ooA-7ooA 

We can use these sentences as axiom 

(schemata) to generate a range of modal 

systems. 

Normal systems 17 

K (for Kripke) = "usual" + Normal + odefn. 

(K is the smallest normal system.) 

"T" = K + T 

84 = K+ T +4 

84.3 = 84 +. 

(OAAOB) -7 (O(AAB) v O(AAOB) v O(OAAB)r 



Proof (axiomatic style) 18 

I-S4 
0 r::J oA ~ 0 A 

1) r::JoA~oA [oA for A in T] 

2) 0 r::J 0 A ~ 00 A [1 ,derived rule for T] 

3) r::J, A ~ [J r::J , A [, A for A in 4] 

4), 0 A ~, 00 A [3, defn. of 0] 

5) ooA~oA 

6) 0 r::J 0 A ~ 0 A [2,5] 

It is customary to present modal systems via 

axioms rather than rules. Natural deduction 

based approaches don't always work very 

well .. 

Properties 19 

What property then separates modal systems 

from classical logic? 

Answer: 

I- is 'smooth iff 

I-A 

then r I- A 

Examples: 

smooth: classical 

"rough": modal, intuitionistic 


