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Constructive Logic

- constructivity
- epistemic logic

- techniques
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Conslruetivity

b
a

There are many ways to understand the
difference between classmal and constructive
(mtuutlomstlc say) Iogxc We will consider two:

1) dlrect approach

2) accommodate "constructnvuty" within the
cIassncaI framework as : the furnishing of extra
information in a proof. (Nlcolas Goodman)

A ‘direct approach:

4

Intumomstlc logic "arose" as the logic of
constructions: *,j

- - analyse the idea‘of%fa construction

:_ - use it to "justify” rulés
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Heyting's interpretation 2
(of the logical constants):

We can introduce a "proof predlcate" IT:

I'l(c, A) C is a constructive proof of A

where the constructions are understood as
commg from a domain of constructlons closed

under:
a) application c¢(c'

b) pairing (and unpairing) c= (Co, C1)

Clauses ¥ 3

We can now give clauses for interpreting the
logical constants:

&

T(c, AAB) iff n(é:o, A) and TI(cy, B)

Il(c, Av B) iff H(t:o, A) or Il(c4, B)
Il(c, ~ A) iff Vd
if H(d A) then I(c(d), f)
‘where f |s some "contradiction”,
dependent on the domam eg over the natural
numbers f might be 0;51.

T, A > B) iff vd.

if H(d A) then Il(c(d), B)
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Note:
A, v are "local"

=, are "global"

If we fix our domain of quanhflcatlon say to ‘

the natural numbers, then:

I(c, Ix. A(x)) iff TI(co, A("c; for X))

vn. ,
I(c(n), A(n

M(c, Vx. A(x)) iff

Kreisel's modification: ;
- add second constructions to ——>, =, and \/

ie ¢ =
right of the 'iff' above) and ¢, proves C1 does
the job. o

" for x))

(Co, 1) where c4 replaces | ._c (on the-_
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Sundholm's analysis of %his modification is that
it guarantees the decudablhty of the I1
predlcate f‘

In'i'- this approach to*"semantics" logical
prmmples are Justlfled by appeal to
mathematlcal constructlons (in contrast to the

usual justification of mgthematlcs in terms of
logic).
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A presentation 6

An all introduction rule presehtatlon of

intuitionistic logic is given by:

(A) TFA TFB

I'FAAB

(In) T,A,BFC

IAABFC
(vl) TFA I'FB
I'FAvB I'FAvB

(Iv) T,AFC T.,BFC

IAVvBFC
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(k) T, ~AFA

(=l) TAFB

'FA—-B ,

(=) T,BFC T,A-BFA

I“,A—)BFCE:

(- T,ARf .

'kF-A

Ir~Akf
(Basic sequent) T, A FA
(Thinning) - THf

I HA



Note | 8

- the "extra" assumptions in (I-) and (1) -

-no A'sonly I's

- this presentation (call it: Int) has the

subformula property, giving us the basns fora

demsnon procedure
propositional logic).

(for

- (Int is a consequence relation)
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Swppose we consider a Ianguage without any
Gonstant and function" symbols ie any

#‘4—

en tants of syntactlc category name,

!

(

,3

% h then F Vx. A it I—Ex.ﬁA(x)

:w e

ppose we consider a Ianguage where the
y constant of syntactic ca’tegory nameis a
ry one g say, :

(O 2N ¢))
m&“‘#ﬁ

—
5

=

E vx. AX)
or FVX Alg(x))
or l- vx. A(g(g(x)))

en F3x. AKX iff
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N@te The properties of the quantlﬂers depend
clesely on the linguistic resources available.

4‘!

»r

J§

.3'

sy

% e don S A8
e L



Eplistemic logie 10
An alternative approach is to cope W|th
constructivity within a modal extensuon of

classical logic.

'Philosophy:
- Constructivity is a matter of taste, not a
matter of foundational correctness. . '
- Constructivity is a relative thing‘f;

- See intuitionistic logic as a restriction of
classical logic,

within the classical framewo;‘r;k (here:

epistemic S,).
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introducing new logical
constants to deal with constructive notions
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R Iatlonshlp of Int. to S, 11

ésu There is a mappmg (due to Godel)
frém Int to Sy Wthh is conservative in the

-sense that:

then T ™A

| Godel(I" 54 Gédel(A)

R R D t\”‘*

Tlge mapping is given by

oA

Gt_s_del(A)-/g Godel(B)
éodel(A vB) = Gédel( A) v Godel(B)

¢ Godel(A - B) = (GodeI(A) R Godel(B))
@Oder ) =f

| @odel(A AB) =

@odel(ax A(x)) = Eié_Gode:l(A(x))
Godel(Vx A(X))= o Vx. Godel(A(x))



Why modalities and not predicates? 12"

Options:

epistemic operator epistemic-predicate

KA: Ais ideally or
- potentially knowable

or the stronger A
is known

K(x): x can be
observed ‘or x can
be constructed

There is a problem with taking 'KA' as 'Ais
known':

we don't necessarily want to claim that alf
the consequences of A are kngwn if A ié’

known. (Accommodating this takes us away
from understood logical systems.)
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ratlve concepts -> 13

dal operators are, in genera| examples of
I'(

0

ratuve concepts - it is meamngful for one
erator to occur within the scope of another.

6): ﬁ*f‘:@b‘"‘"

K - K A : "it is known that A is unknown"

- Predicates are mappropnate (as far as ¢
s rface level understanding |s concerned) fo!
ratlve concepts because we are forced {c

" hlgher order.

2%
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inappropriate fo
n@n |terat|ve concepts (obhgatlon ?) because

Modalmes are

-triey allow expressions to be wel| -formed tha

have no intuitive meaning.
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Basic system 14
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"The" basic system for eplstemlc concepts can "only true statements ére knowable"

again be taken to be K”‘however an eplstemlc
version of S, is often more appropriate:

- expresses the deductwe closure o
owablllty

T
S “'gf"&” *‘E

de
£,

KE: KAFA

&esuhs (Exercises):

KI: KT FA F KA > A

K(D) F KA : F KA —5 KKA

A S R b

3

(Here presented in terms of rules rather than 2 r KKA — KA
axioms; K rather than o) ; o EA

Sentences that begin with a 'K’ ére called KA

epistemic. I
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Note

There are two aspects of rnterpretatron here, "
one in terms of our intuitions the other in terms

of formal systems we already "understand".

We can attempt to justify the results of 15
dlrectly

eg KA — KKA

"(If Ais known then itis known that A is

“known);

if Ais known then itis knowable that A rs-

known; S
S0 suppose that A is knowable, then A could

become known, so it becomes knowable thatf-'
‘A is known, hence the knowabmty of A is. @

knowable."
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Sélf reflection 17
.
‘i?»

ASrmrlar line of reasoning fanls for

A KA S KA KA

ggause even if, A is not known we may
come to know that it is not knowable (through
se}f reflection), the unknowable sentences

cannot be determined by self reflectron

own stronger than knowable

ot known weakerthan  “not knowable

*ﬁr,{f; S A
3 7\-

Sé in adOptrng the "weaker" mterpretatron for
K,twe are adopting a "stronger" interpretation -
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Disjunction 18

Notice the difference between:

K(A v B)
KA v KB

knowable

A SR

KAV - A)

A

:&_s/i';.,\‘-;

V'KAVK-aA

s

The system we are considering has the
disjunctive definabilty property:

EAS)

F KA v KB

F KA or FKB

A
)i
=
-4
5
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s
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S
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: the disjunction is knowable

:one of the disjuncts is g
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EX|§tent|aI deflnablhty

A su@ilar s_ituation arises for 3:

I{Ex A(x) :

19

. "I"

know there is something

& with} "‘?property A

$< KA(x) :
has property A

xt?

'gg-'

: there is 'something "I" know

“We have the existential def nabllly property:

T+ 3x. A(x)

(t)
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for some name t
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Technhiques | g 20 MQdallty diagrams f t 21

How do we devise systems?

‘ \fEn a system F, .
we wrlte S —8' when F sA—asA
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- appeal to intuitions

»
ﬁ,-»

] ] ' Wea usuall represent an e uuvalence class of
- comparison with known systems yrep 9

Bt
4\

| mog!almes by its "s:mplest" member
- identify C=m properties A

| Fof example in S_4 eve(y_ modality is
We will look at one technique to enhance this

qrglvalent to one of:
"methodology":

!
We can treat the named modal sentences
as rewrite-rules , or reduction laws .
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statements as to when one string of modalities
can be replaced by another. |
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thelr negations.
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A modality is a string of symbols over {g, 0, 1}
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Negation 22 oy Als

Exercise: Investigate the claim that there are
essentially only four klnds of negation:

2 A : Ais "false”

K~A :"I'know that A is "false""
~KA :Aisnotknowable %

S ool @ st

A sequent of the form F Qxj, ..
e where Qxi, ..

z XS and Ais quantifier free is called a prenex
LE normal form

T,here are mtumomstlc sentences without

K = KA :the unknowability of A xs - equalent prenex forms.

knowable -

and the relationship between them, "'by
considering the modality diagram for S. :

(Begin by replacing o by K, o
and o by ~“K-) P §

(us

P e g e
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ﬁms is due to the failure of the converses of
eaclﬁ of the following "reduction laws":

3x -:A( X) F = Vx. A(x)

Vx A(X) vB F Vx. (A(x) v B)
Eix (A—-)B( X)) F A — 3x.B(x)
3x (A( X) = B) F V¥x. A(x)—>B

'modal:ty" diagrams to see)

A(X1, .

X, is a string of quantifiers in the




idea)

IC I

(one system in detail)

Dialogue Logic'
- a logic of commitment
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Metivation N |
Some of the originators + slogans:

(Wittgenstein):
- Meaning as use
- employment of language is an activi'ty
operational rather than denotatuonal view
imperative rather than declarative wew

Hintikka: _
analysis of quantifiers of natural language

Lorenzen:
analysis of social action, ethics
foundations for intuitionistic logic
understanding the constructive notion of
existence

Glles

foundatlons of phyS!cs
experlments testing
|OQIC of commitment

Scotf

Glles system as a logic of risk
cumulatlve consequence relation

| Barth Krabbe:

& Dutch school of dialogue logic

.'4 '

ReIeVance for computing science:

"
.u}“‘

a% an analySIS of dialogue and dialogue

management

Qi
PRI

as an analysus of interaction



Logie of dialogue © 3 4

Proof theory: a logic of dialogue
"Semantics": game theoretic

EQ_S_ILOﬂ Player:  Moves available:

>

me A, B
you A B

me A(n), n a name

BRI

L
‘,?(y\m
o~
oK é Sk

:%

C=a features:
- | play against you (nature)

S aay ot e
yro ey

U

- moves are assertions of sentences you A(n), na name

‘24 R e
:

J40

(at each position of the game some w TN ” A

sentence has just been asserted)

Rales (me you) are reversed, game

B ;conhmues
atomic sentence -,,

t

- I win if | can produce a "true”

- You win if you can produce a "false’ Wntes E A just when | have a winning strate eqy.

| gstarn!ag wnth A.

atomic sentence
- | start with some sentence :
(the one | am trying to "prove")
- who makes the next move is determined
by the position

if\,-ﬁ.
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¢ “Rule$ (and evaluation functions) 6

N
By

A loglie of commitment 5

”

P
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ASseért:  Obligation / "Value"

Giles: |
'meaning of any proposition is to begivenin :

SRS

\h .

pay opponent £1
#(f) = 1

pay opponent £1
if he will assert A
#-A) = 1-#(A) .

terms of an obligation that is incurré’d by
~him who asserts it' |

~ Atomic formulas:

ve”;'w:""&ﬁﬁ’-'f"“f&‘u"

- correspond to the notion of:a trial,
experiment, or test,

- asserting an atomic formula, A, is an AY B : assert A orassert B,

obligation to pay £1 should a trial ofé:'A yield % own choice

the outcome "no". ; 7 #AVB) = inf {#A, #B}

A% B assert A g_[asseri B,
ER ‘opponents choice
;. #(A&B) = sup {#A, #B}

If the outcome of such trials is always fixed,
"what follows" reduces to classical logic
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Why not the following rule for & ?

assert (A & B) = assert A, assertB:

#(A & B) = #(A) + #(B)

Answer:

1) want: assert (A & A) =assert A

2) analogous rule for V wouldn't be viable

3) loss of limited liability

4) loss of symmetry with v

SRR R
(o]

Asdert: - Obligation / "Value"
A

D

Ix3A(x) assert A(n), for some n,
own choice of n

_féf(jx..-A(x)) = inf {#(A(n)) | n € names}

Vx. A(x) assert A(n), for some n,

3 opponents choice of n
#(YxA(x)) = sup {#(A(n)) | n e names)

3
e ’5:?%

_if:_;‘ B4

e
o

B assert B,
if opponent asserts A
5#(A—r~>B) = sup {0, #B - #A}

5“»”%’“&,55«‘5 ‘
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e
;
-



Arrow prdtocol 9 Notes | 10

The obligation associated with asserting an 1) — dueto Lorenzen (dialogue interpretation
arrow shouldn't bind one forever . of intuitionistic logic).
player 1: player 2: 2) Asserting - A incurs the same obligations

asserts A — B as assereting (A — f).

admits it

- 3) A — Bis not equivalent to “Av B, they
assertion annulled |

incur different obligations:

for A—B: you decide the outcome

asserts A—-B
a - for-~ AvB: | decide the outcome

challenges it
asserts A
 asserts B
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Simple facts 11

A,A—>BIB
- [#(A) +sup {0, #B - #A} > #(B) I
A& ((A—>B)¥B |
[take: #(A)=1/2, #(B)=1]

IA&BFC IA,BFC

ILA,BFC ILA&B,A&BFC

IA,BFC

IA&BFC isnotvalid
[#(A) =#(B) = 1/2, #(C)=3/4]

An ’a"s!icie 12

Recall the basic unit:

: {-‘
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&
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and trjll
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(envnronment) F (assertlon)

nk of generalising:
i database F+ query

‘your assertions F my assertions

That [S rather than sets what we really want
are bags on both sides of the turnstile.
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Cumulative consequence relations 13

What kind of a "consequence” relation-is I ?

Answer:
21 N %) "both risk nothing"

FFA  "bothadd A towhatwe risk’

TLAFA A

kA "you can risk more!"

IAFA

X  XZFA "cutting mutual risks “Z"
kA

I AFAA "bothdrop A from whatwe

rkA Crisk”

14
Wecan also add:
} nF Fn.A "scaling payoffs"
Result: (Scott) | |
For atomic formulas A; ... Ay, By ...Bn

A1An  B,...Bn, follows from the
aboi%/’e-.fuies_ iff
|  v# st #{A;...By >R
LAY+ #A) 2HB) .. #(Br)




Connectives - | | 15

We can also give rules for the connectives:

(Exercise?)

Note that rules with two antecedents
correspond to a choice.

Result: (an "almost" completeness result)

~ payoff from playing the game
almost(=)
payoff from #

(given #(A) for A atomic
= 1 - probability of success of trial of A

Result 15?'

Forany A, anye>0:
there is a strategy of debate s.t. from the |

starting position + A will guarantee a final

position T"F A with:
#(A) -#I) < #(A) +¢




