
TEMPORA L LOGIC AND COMPUTER S;CIENCE

By

DOv M. Gabbay

Draft May 1985

Department of Computing,

Imperial College of Science and Technology,

180 Queen's Gate,

London SW8 2SD

Telephone: 589·5111

Telex: 261503

1

Notation

(1) The classical connectives are denoted by

~,I\ • v. ~. 'It and 3.

(2) (T. < .•) denotes a model of partial order, i.e. < is a binary relation on t, usually

irreflexive and transitive. In this book (T, <, .) will be called a flow of time. t,s,x,y,

ET denote elements or moments of the flow of time and the quantifiers 'It and 3

range over them.

(3) We also have notation for subsets of T. These could be Q £ T, Tj £ T or Ta £ T,

depending on the conte·XI. Binary relations on T may also be used, e.g. R £ T2.

Formulas in the predicate logic of (T, < ••) are denoted by A. B. The symbols

appearing in B are sometimes explicitly written. Thus for example if we write B

(t.x.<,=,Qi,R) we mean that B is in the predicate language of T with quantifiers over

points of T. with exactly t. x the free variables of Band Qi ~ T and R ~ T2. are the

only non-logical symbols.

(4) Propositional temporal logics use letters p.q.r for atomic propositions and use the

-I

same logical connectives ~.I\.V,~. Other new temporal connectives are

especially introduced. Welf known among them are Fq. f,q (one place). and

~(p,q). ~(P.q) (two place), or in general #(q1' ., .• qm) for m-place connectives.

Formulas are denoted by A(q,r). B(q.r). sometimes indicating which atoms or

connectives appear in them.

The letter~a, b are used as all purpose letters for special notation of formulas

either in the language of taMe logic or In the predicate language of (T.<.-).

2-4
i' . ;

(5) We talk about (T.< .•) being a flow of time. Given a flow and a temporal language.

a temporal model (a temporal structure. or a model) is denoted ~by (T.<b) and is

obtained in conjunction with an assignment Q. An assignm~~t ~ is a function

-- ._, giving each atom a subset !!(q) So T. h can also be described as a function ~(t.q)

giving {O.l} as values. Its meaning is intended as indicating at which moments t
,0;

the atom q is true. Thus t ~(q) or ~(t.q) = 1 reads "q is true at:t". There may be

variations on the above; we may have functions ~(t.Tl.q) C/epending also on

T1 ~ T. The exact role of '! will be described in each context via agreed recursive

procedures. These procedures are characteristic to the specific logic discussed.

(6) Val(A.~.tO.tl tm) or equivalently IIAII~.tO tm. Jt:i denotes- the truth value of

the formula A under aSSignment ~. at the time to with refere"(:e to points tl tm_

" (7) The words ~ logics are used when temporal logic is appli9ct}0 The analysis of

natural language ..

5

PART 1: HOW TO PRESENT A TEMPORAL LOGIC

Chapter 1. The handling of time phenomena, IntrodUction and survey:

1. Introduction

Time is involved in every aspect of human activity. As computer science is being

applied in wider and wider areas of our lives it is essential to develop logical systems

which can describe time dependent phenomena. There are at least five main areas of

computer science where time is involved in an essential way and where temporal logic

is used. These are:

1. Databases:

Their management. updating. their use of knowledge representation involving

time and logical deduction involving time dependent da!9.

2. Program development. specification and verification for concurrent programs and

processes.

3. Hardware:

VLSI. reasoning about Circuits. object oriented processes.

4. Natural language processing.

5. Distributed systems. Protocols for sharing knowledge.

Let us describe in a bit more detail what is involved in each of these topics. Of course

we will be able to say more once we are more familiar with systems of temporal logic.

1 _ patabases

Time is involved in three ways.

(a) Temporal logic is needed to describe a theory of updating and maintaining of

databases. This requires the capability of talking about the logic of the updating and the

evolution of data bases in time. For example, we may have time dependent updating

6

rules or some global constraints involving time.

(b) Putting in the databases information which is time dependent requires a choice of a

good temporal language. How to represent time dependent knowledge, how 10 a'ccess

it and how to reason with it.

(c) The real world is a combination of the two types of dependencies above. We need

to develop a logic of actions in time. These notions are of key importance to our new

programming language.

2. Program specification and verification

We need to develop a temporal logic which can talk about properties of programs and

the way they change states with execution.

In concurrent programs, the knowledge of the input output relations of each partiCipant

does not yield the knowledge of input output rE':ation of the parallel execution. We

need a logic we can use to prove from the initial description the correct behaviour. of the

program.

3. Yl.Sl

'One needs asynchronous timing. We need a temporal logic specifying the behaviour of

pieces of hardware and possibly prove theorems on how to put systems' together. and

maintain certain properties.

4. Natyral langyage processing

Time is irnvolved in an indirect way. We need to analyze the uses of ~he ten~e and

aspect of the language in order to prepare it (interface) for the com~uter. This is

besides the theoretical value of studying logical structure of time use in language.

5. The need of temporal logic for distributed systems is a new application. One

describes the partial knowledge different agents have as dependent o.f present. and

future states of the world.

7

We shall later give more detail about these areas. Let us now turn to temporal logic.

The following are the main present day research areas of temporal logic.

1. Philosophical applications.

2.

3.

4.

Temporal logic is used in' philosophy to clarify various concepts which have been

studied since the time of Aristotle. Some examples are causality, historical

necessity, identity through time, the notions of events and actions, etc.

Temporal logic application in computer science as described above.

Natural language. LogiCal analysis of the use of tense and aspect in natural

languages. Logical time ;"odels for natural language.

Pure logical study of temporal logic within the framework of logic itself. Special

topics here include:

(a) Axiom system, theor~m proving and proof theory. Decidability. Model theory.

(b) Expressive power Of. temporal languages.

(c) Applications of temporal logic to the pure theory of other logics (e.g.

provability as a modal logic etc.)

(d) Deductive reasoning Involving time.

To computer SCience all the above four aspects of the pure logical theory are of

great importance.

Temporal logics can be presented In four different ways;

(a) Use predicate logic with a.n additional parameter for time.

(b) Use special temporal logics to express temporal phenomena.

. There are two methods of presentation here.

(b1) Semantical presentation.

(b2) Presentation using axiomatic systems for the connectives.

(cl The forth method is via .1181 .. 1 .. 8' events.

8

2. HOW TO PRESENT A TEMPORAL LOGIC, IN THE PREDICATE CALCU~US
The first method of accounting for temporal phenomena is to do it within the"framework

of the classical predicate calculus.
!

The idea is to add an extra variable for time to the language of predic~te logic,'and make

all predicates time dependent.

Thus if l (x, y) represents x loves y, we can say in predicate logic statements· like J.o.ho.

loyes all those who do not loye themselyes by:

'<Ix [- l (x, x, t) ---+ L (J, x, tll .'

The parameter t appears everywhere.

One can now quantify over t and say time dependent properties, like

'<It> now (L(m, j, t)).

Mary will always loye John.

This approach is favoured by many because of our d.i.r.e.c1 control over.time p6ints. We

can quantify over t,s, compare them, even use skolem functions involvihg therrj: Here is

another example.

John is taking a pi!! today and will take one every two days!

Take (J, pill, now) A ('<It, s > today)

S
(Take (J,p,t) A (t + 2 = f) ---+ Take (J, pill, sI.

There are some problems about identity through time etc., but the co~puter ·~cientists

leave these problems to the delights of the philosopher.

However, even for simple sentences like the above, this approach is noJ idea!.:':

(i) The first ·problem" is that the "logic" of the time is hidden. The tempor~l logic as

described above is !l.Q1 predicate logic. The parameter t range~ over:a special

flow of time e.g. t = 0, 1. 2 and this makes the logic special. for example, we

9

are committed to all the. axioms Involving the time parameter t dictated by the

properties of the flow of ·time chosen. We shall discuss this point In chapter 4,

when the formal definitions of how to present a temporal system predicate logic

'are given and discussed. mathematically.

(ii) The second problem with using predicate logic as a temporal logic, Is more

fundamental, and has to do with the representation of time dependent data.

Consider a simple example:

Since Maggie became Prime Minister the poynd has steadily been going down

and in fact it will continue to go down for as long as she remains Prime Minister.

This sentence is crystal clear to us and is understood immediately without any

mental effort. Let us write it in predicate logic with time parameters.

let PM (x, t) r~ad: x is a Prime Minister, at time t

~ (x, t) read: the value of pound at t is x

n .. now

m - maggie

The sentence becomes:

3t < n [PM (m,t) 3s < t '<Iu (s < u < t -+ - PM (m,u))

A'<IU (t < u < n -> PM (m,u)) A
! '. 1

'<Iu,v,x,y (t < u < v S n A VP (x,u) A VP (y,v).-+,..,-)) A PM (m,n) A

'<Is> n ['<Iu S s PM (m,u) -+''<Iu, v (n sus v S SA VP (x,u) A VP (y,v) -+ x < y)]

The above sentence of predicate logic is not readable.

A point always claimed in favour of predicate logic Is the existence of rich highly

developed theorem proving teChniques for it.

Take for example resolution methods; to present the above as a "ready for Resolution"

10

disjunctive clause we have to skolemise and then write it in disjunCtion forms. The

"meaning" will be lost forever.

Another awkward example is the following. To take a mortgage on a::house one needs

an insurance policy stating that if the owner dies, the mortgage will be paid. Thus the

conditions required by the bank are:
'.

x gets a loan at time t if house of x is in good value and conditi()n at time t and x

financial position is acceptable at time t and x takes an insurance. policy at timet.

How do we express the insurance policy clause in predicate logiC? bur first attempt is

to use a time parameter, after all, the insurance is a committment to :·pay in the future.

Thus we write, x takes an insurance policy (of the above kind) at time:, with company y

ift ·for all s ~ t (if x dies at s then y pays at s).

The above is not sufficient, because we can say in English:

Jo:,n took an insurance policy but when he died, the company did not pay.

To express the above property we need for each moment of time· t, to outline the

planned future and the real future separately. It becomes awkward to do so in predicate

logic.

The above objections are qualitative and stylistic but not mathematiCa!~ It is like saying

that Pascal is nicer to write in than Basic but both languages are equivalent in

mathematical power.

Can pure temporal logics such as e.g. axiomatiC systems, say things which the

predicate calculus cannot say at all?

This will be examined in later chapters.

For the time being note that the notion of expressiveness from the :'P0int of view 01

computer science is different from the logical notion. For example the finiteness of time

is 1001 a firSI order property but computationally it is very convenient. ,_We cannot give

11

more details here, we shall have to define the exact notion of "A temporal logic

presented within the framework. of classical logiC" , we shall have to wait for chapter 4.

12

3. SEMANTICAL PRESENTAnON OF TEMPORAL CONNECnVES: .

The second way of presenting a temporal logic is via connectives. We imagine a flow of

time (T. <. now) and the various predicates e.g. John loyes Mary and Maggie is P.M get

values T or F at each moment of time. So far it is equivalent to writing L (J. M. tfand PM

(m. t). except that the t is suppressed.

The difference comes when we want to talk about the distribution of truth values through

time. We allocate to the logic connectives which describe behaviour through time using

the suppressed ruLW. as a reference point. This is very similar to the way' we use

connectives in English.

Example El:

Consider the following. very basic connectives:

GA .. A will always be true

HA ., A was always be true

FA = A will sometimes be true

PA ... A was sometimes be true.

S (A. B) .. B was continuously true since A was true

U CA. B) ., B will continuously be true until A is true

Thus for example:

John will loye Mary becomes

FL (J. M)

meaning in predicate logic:

3t > now L (J. M. t).

John has loyed Maggie Since Maggie was PM is:

S (PM (m). L (J. m»

in predicate logic we have to write:

13

3t < now [PM (m. t) " 'Vs(t < S < now -+ l (J.M.s»J

Let us translate the sentence about the pound.

S (PM (m). PM (m) " Pound going down» " PM (m)

" U (- PM (m). PM (m) " Pound going down'f411

We have to translate "Pound going down"

'Vy 'Vx [VP (x) ~ S (PM (m>. VP· (y) I Y • xij- -,
If the value of the pound now is x then Since Maggle Is- PM if- the vatue.wa)i.:Y.ai1uli tIme

th~!}~' . ! I': f I

This..i$.·oot·th&- best translation; We really shoulet fotIow tlTe- way weperceMrthe'notion

"pound going down" and regard the sentence as having value at an ~.

The above translations are good no matter whether the temporal connectives are

introduced via axioms or via a sematical interpretation.

We now describe the components needed to specify a temporal logic in a semantical

way. These are:

(1 a) The flow of time of the logic.

(1 b) The units of time needed to give truth values.

(lC) Possible restrictions on the assignments to the atoms.

(2a) The temporal connectives used.

(2b) The truth conditions for the connectives.

The meaning of (1 a) is clear. The flow of time can be the integers. the real numbers.

partially ordered sets and so on.

(1 b) chooses the units 01 time in which atomic sentences get truth values. These can be

integers. intervals of integers. pairs 01 integers etc.

14

(1 C) describe possible restrictions on the truth values given to th~ atoms. ,'.A typical

example could be that each atom can be true in only a finite number. of points (units of

time).

(2) chooses the connectives and determines their meaning.

Example E2

We give five temporal logics. all based on the integer flow of time.

They differ either on (1 b). on the unit of 'time for truth values or on (1 c). the assignment to

the atoms or on (2). the choice of connectives.

The logics are called (a). (b). (c). (d) and (e).

Example E2a

(a 1) The unit of time for truth values is an integer.

(a2) The assignment to the atoms is arbitrary.

(a3) The connectives are (besides the classical -./l v. -» ~ (A. B),
and Wl1il (A. e).

(a4) The truth table for the connectives is defined as follows:

An atom gets truth value at each moment of time.

S (A. e) is true at n if for some t < n. A is true at t and for all points behveen t and n. B is

true.

U (A. B) is true at n if for some l' > n. A is true at t and for all points between n anc;1 1', B is

true.

In a diagram:

S(A,B) n U(A,B) t'

-'~~I-
A B B A

FA and PA of the previous example can be defined as U (A, A -+ A) and

15

S (A. A ~ A) respectively.

Example E2b

(bl) Time is the integers.

The unit oftime for truth values is an interval [m. n]. m oS n.

(b2) There is no restriction on the assignment to the atoms.

(b3) The connectives are Next (A) and (A + e).

(b4) An atom is true or false at an interval. Thus we can have

q true at [1. 3]

q false at [1. 2]

q true at [2. 3]

We have no persistence criteria or any principles for subintervals. The truth tables for

the connectives are:

Next A is true at [m. n]. m oS n if m+ 1 oS n and A is true at [m+ 1. nl.

(A + e) is true at [m. n] if for some k. m oS k oS n. we have; A is true at [m. k] and e is true at

[k. n].

Example E2c

(Cl) Time is the integers. The unit of time for truth values is a pair (m. n) of integers.

The connectives are F' and p •.

(c2) In this logiC an atom is given truth values at points. The pair (m. n) is considered

as an evaluation point m and a reference point n. Thus the truth value 10 an atom

cl at (m. n) depends on m only.

The truth value of an arbitrary A may depend on both (m. n). Here is the table for

FOA.

FOA is true at (m. n) iff the following cases hold:

m = n and for some k > m. A is true at (k. n)

16

m > n and A is true at (m, m)

m < n and for all k such that m < k < n, A is true at (k, k).

P" A has the symmetrical truth table.

P"A is true at (m. n) iff

m=n and for some k < n, A is true at (k, n)

m < n and A is true at (m, m)

m > n and for all k such that m > k> n, A is true at (k, k).

Example E2d:

The fourth logic, (d) is exactly like logic (a) with the added restriction o~ the assignment

to atoms that the set of points in which the atom is true is either finite o.r, its complement

is finite.

Example E2e:

The fifth logic, (e) is the logic of execution sequences of a program.

(el) let the set of units of time be all in,finitely proceeding sequences of integers, of the

form 5 • (xO, xl, x2, ...).

let 5 n • (xn, x (n+ I), ...) be the tail of 5. Atomic sentences q get a truth Value at each s.

(e2) We define the temporal connectives Oq, Oq, U (p, q) and Oq.

Oq is true at 5 ift 'Itn <t 0 (q is true at s n)'

o q is true at s iff for some n > 0, q is true at s n.

Oq is true at 5 iff q is true at 51'

. 0 corresponds to our familiar G, 0 corresponds to F and 0 corresponds to next. Note

however that the future in this system includes now as well. U (p, q) Is true at . .§) if for

some
l
n, p is true a@n and for all m S n, q is true at s m'

17

4 AXIMATlC PRESENTATION OF TEMPORAL LOGIC

The axiomatic presentation follows the tradition of defining the meaning of the

logical connectives using proof rules and deductive axioms.

Our first aim in this section Is to give some examples and try and show that axioms

on temporal connectives are very expressive. In fact, It seems that even the

simplest set of connectives, namely {F, G. H, P} which are really nothing more than

the existential "quantifierS", enable us to write axiom systems which can

distinguish between different properties of the flow of time.

The weakest possible propositlonal temporal logic is the logic Kt. Its axioms are:

1 . Axioms for classical logic (Take all tautologies as axioms).

G (A" B) H GA 1\ GB

H (A 1\ B) H HA 11 HB

GA-.GGA

HA -. HHA

.. A ~ .. GA and .. HA

A -+GPA

A -+ HFA

The last two axioms say that the present moment is always in the past of any future

moment and always in the future of any past moment.

This logic is complete for general partially ordered flow of time .

In general, there is a good correspondence between semantic conditions and

axioms' with few exceptions. Different conditions on (T, <) can validate or

invalidate wffs. Temporal logic wffs can be false in one type of flow of time and

18

hold true in others. There are wffs that are true in dense time, 'discrete time. or

even complete time. Some characterise branching and so on.

Consider Hf (where f is falsity. e.g. g 1\ - g). We have:

IIHfllh. t = 1 iff - 3s [S<1]

Thus in a flow of time satisfying Vtjs [S<1J. PH f VHf V F H f is always false. Otherwise

it is true. This shows that the truth of wffs depend on the flow of time. In fact. some

properties of the flow of time may be characterized by wffs. Take for example U (-f. f)

S (-f. f). This is true at a point t iff t is discrete. Discreteness can alsO be expressed

using p. F only.

Let us summarize the correspondence between conditions and wffs expressing these

conditions: We will try to use p. F only.

(a) The condition that the present moment is in the past of any future moment

corresponds to A -. GPA. or to A -. HFA. This condition· is incorporated

already in the notion of flow of time since when we write t<s we say t is in the

past of s and also s is in the future of t. Symbolically t<s is the same as s>t.

(b) The transitivity of < corresponds to GA -. GGA or equivalently to HA -. HHA.

(c) The existence of an endpoint above any moment corresponds to Wlf FGf.

(d) The condition that there exists one future doomsday commo"n to all futures

corresponds to
I .

FGf 1\ F [F (A 1\ Gf) 1\ G (B 1\ Gf) -. F (A 1\ B 1\ Gf)J

(e) The condition of linearity in the past corresponds to

PA 1\ PB ~ P (A 1\ B) v P (A 1\ PB) v P (PA 1\ B)

Total linearity is obtained by adding the Wff for linearity in the future.

19

(I) The condition of existence of tomorrow point corresponds to

F (GA 1\ A 1\ -B) 1\ F (GB 1\ -A) ~ F (F (GA 1\ A 1\ -B) 1\ F (GB 1\ -A).

We saw before that U (-f,f) corresponds to this condition.

However, U is not definable using F, P but F Is definable using U -

(FA - U (A, A -. A)).

(g) The condition ';Ix ';Iy (x < y -+ 3u (x < U < y) is a condition of total density. We

can take the opposite of discreteness for a point. namely ';I s>t 3u (t < u < x).

The corresponding Wff is FA -+ FFA.

(h) The condition of the well foundedness in the past corresponds to

P - A -+ P (-A 1\ HA)

(k) The condition of completeness (no gaps) corresponds to the Wff:

FGA 1\ F - A 1\ G (-A -+ F - A) -+ F (GA 1\ - PGA).

It is doubtful whether the condition can be expressed using F only. It can be

expressed using U only as

FGA 1\ F - A 1\ G (- A -+ F - A) -+ U (A 1\ GA, F - A)

Recall that FA _ U (A. $ -+ A)

and GA - -F-A.

Let us summarise this surprising correspondence between additional axioms and

properties of flows of time. Here is a table

20

Properties of time
Irreflexivity (- t < t)

Reflexity x < x

Linearity

Density of time

TABLE 1
Axiom
no axiom,Cannot be
characterized by axioms.
Only by a rule. . .

GA-+A

HA-+A

FA" FB-+

F (A " B) V F (A " FB)
V F (FA" B)
Similarly for P .. ·

FA -+ FFA
PA -+ PPA

.. _- ----........ -... -----_ ---..... -------..... _--....... _-..... -.... --... _---........ _-_ __ -_ _--_ ... : _ .. ---......... _- _- .. -.. -_ .. _-
Time is dedekind complete

(like the real numbers)
L (GA -+ PGA)J\GA

-+ HA

Where LA a A ". GA " HA
.. _--....... -..... --_ ... __ .. _-..... -_ _- -..... _-- ... -..... _--...... ------- ... ----- ... -- ... ---.. -.. -- ---------.. ~ .. -~--.. -.. ----... .;.- ... -.. -_ .. _-- ... -
Time is fil:lita

Time is infinite

Time is integers

Some second order
conditions on time

FA -+ F (A " G - A)
PA -+ P (A" H- A).

GF (truth)
HP (truth)

as shown above

some corresponding
axioms.

For example the axioms for Kt together with the axioms for linearity, density and infinity

comprise an axiom system for rational time flow.

We see that axioms can express properties of time which first order logic cannot

express. Thus the presentation of a temporal logic via axioms and rules can be

sometimes more powerful than a semantieal presentation.

On the other hand, there are semantical presentations which have n'o known

corresponding axiom systems, like some logics of Historical Necessity.

21

We .saw in the table that irreflexivity cannot be characterised by an axiom. It can be

characterised however by a rule of inference, namely:

q not in A.

A

The·rule says that if it is a theorem that whenever time Is irreflexive then A is true

(- q:'" Gq " Hq can hold at t only when - t < t) then A is true anyway (~ A), because we

can $Iways, make time irreflexive and always make - q" Gq 1\ Hq true without affecting

A, sir:'lce q is not In A.

Using the above irreflexivity rule, we can prove the following wholesale axiomatlzation

lemma.

Lemma Ll,

Assume given a set of connectives #1, ... , #m for a temporal logic over a flow of time

(T, <,~), such that these connectives have 1st order truth tables. Then more connectives

#m+ 1, ... , #m+k ean be effectiyely found and added such that the logic with entire set of

con:19ctives #1 .. , #(m+k) ean be effectively axiomatlsed.

Of course the irreflexivity rule is used In the axiomatization. The entire procedure of

findin~ the new connectives and the axioms is effective and computable.

ExamPle El:

We ean now axiomatise the logic with since and until for any flow of time.

Take the corresponding axioms for the same flow of time using p. F, G. H and the rule

,for irr~flexivity and add the axioms

Hq " - q 1\ Gq -+ [U (A, B) +-+ F (A 1\ H (B V Hq)))

. Hq 1\ - q 1\ Gq -+ [S (A. B) +-+ P (A 1\ H (B V Gq»1

22

What we are doing in these axioms is to effectively state the truth conditions fo U and S.

Example E2:

To give another example take the connective Nq reading: q is true around now,namely:

Nq is true at tiff 3x, y (x<t<y 1\ 'V z (x<z<y ~ q is true at z))

The properties of N together with F and P can be characterised, without irreflexivity, by

the following axioms. say for linear rational time.

(1) Axioms for F and P for linear rational time, (see table above).

(2) q 1\ Hq 1\ Gq -+ Nq

Nq ~ NNq

Nq ~q

N (p 1\ q) +-+ Np 1\ Nq

H - q -+ - Nq.

Using irrdflAxivity we can write the following axioms for N.

(1.) Axioms for P, F for linear rational time including the irreflexivity rule.

(2·) r 1\ H - r 1\ G - r -+

~
[Nq +-+ (q 1\ F (HPr .q) 1\ P (GFr -+ q))J

Notice that the wff involving q in (2*) uses r as a parameter name for the point t

and states the table of N. In the same manner we can axiomatise any connective.

We mentioned that sometimes we cannot axiomatise a connective directly but with

the help of other connectives, called intermediate connectives. The table of a

connective # may be so complex that some intermediate connectives #i are

23

: needed and an axiom system is written for {#, #i} together.
..

'. Using irreflexivity we can also axiomatise easily various properties of the flow of

.' time. For example let us write an axiom saying each point has an immediate

.. successor:

.> There will be more discussion, of course, in the chapters dealing with

. 8xiomatizations.

Exaq:lQle E3:
"

To g,!.ve further examples. Here Is an axiom system for the temporal logic of Manna and
;

Pnueli for program specification and verification for a shared variable concurrent

syst~. This system was represented as example E2(e) of section 3.

TimEt is the integers. We deal with future only. The connedlves are

:OA - A will always be true (beginning now)

.OA - A will sometimes ve true including now

.,OA - A is true tomorrcw

U (A, .B) - B begins now to be true until A is true.

- OA +-+ 0- A ---';I

O(A -+ B) -+ (OA ':"OB)

'DA-+ A

0- A +-+ - OA

o (A -+ B) -+ (OA-+ OB)

24

OA -+ OA

OA -+ 00 A

O(A -+ OA) 1\ A -+ OA

U (A. B) H A V (S;\OU (A. B»

U (A. B) -+ OA

The inference rules are modus ponens and A and of course all

OA
tautologies are valid rules.

To the above we add quantifier axioms. to get the predicate temporal logic. If we add to

the above system the following groups of axioms:

(1) Axioms about the program application domain.

(2) Axioms about the concurrent programming principles.

We get a logic which can be applied in t',ogram verification.

We can thus. for a given program, dpscribe what it is and state the correctness lemma

for it. We can then try and prove the correctness statement using the above axioms.

let us give another example:

Example E4

Cori1sider a propositional language with the connectives Hand P (P being ~H'\,) .

and the classical connectives 1\. V. -. -+.

The intended interpretation of H A is A has always been true and the flow of time we

have in mind is finite past linear chain

-no -3. -2. -1. 0

we define the system Y1.

25

1

(1) . The connectives are H,l\,v, -, -+ (P is defined as - H -)

(2)' The language is propositional. Thus a wff is any atom q, and if A and Bare wffs so

. are A 1\ B, A V B, A -+ B, - A and HA and PA.

(3) , A flow of time for n is any finite chain of the form

.0
-1
-2

'./
; I

-n O~O.

'.0 is the present and -1. -2 ... -n are the past points.

(4) ~ An assignment of truth values is any function h giving values T or F to any atom q

. and a point of time i.e. h (-m, q) « (T, F).

(5) . The interpretation of HA is:

;: HAtrue ", -m iff A Is true of all points -n ~ -m.

(6):A wff A is said to be valid if it gets value T In any flow of time for any h.
(7) The following is an axiom system for n.
(a) .'~A for any truth functional tautology A.

(b) . ~A ~~HA

(d) ,PA 1\ PB -+ P (A 1\ B) v P (A 1\ PB) v P (B 1\ PAl.

,(axiom for linearity).

,(e) f!A -+ P (A 1\ H - A).

(axiom for finiteness).

26

The completeness theorem for Y1:

Y1 loA iff A is valid (in every finite linear time model).

There are several methods for proving ,completeness, we mention two here.

The first method is a semantic tableaux method. We notice that axioms (e) says that if

B was true there is a first time in which B was true and axiom (d) says that all past truths

are linearly ordered. Thus given a wff A for which we want to find a model, we'look at all

subformulas Bi of A and if they were true in the past, we can order linearly the first time

they were true. This gives us the tableaux model.

The second method is via complete theories and is more general. It will be given later,

in chapter 3.

27

5. qalcull of events

Eve~ts arise mainly in connection with database updating and maintainance.

Databases are constantly changing. Information keeps coming in. The database is
", ~,~'j ~-Ud.

updated and modified. Consistency and integrity rules AWet be maintained.

ThiS" requires a special language and logic which can handle change and dependence

on ti;me.

We need to develop a temporal logic for representing time dependent data and time

dependent rules. This language and logic must have a good power of expression, must

represent adequately our intuitive perception of dependence on time and change, and

mu~ properly interact and integrate with other components of our system (i.e. what we

are discussing in other sections).

Whai are the major problems associated with our task?

A: t;l8preseotation of time dependent data

The first problem is that of choosing the correct representation language for time

dependent databases and rules, This is a serious problem. Many sY$tem rules work

directly on data representation and so we must choose correctly.

Here are three extreme options available to us, which we will illustrate via an example.

Con~der a rule A which is valid only during the period of time 1970 So t So 1980. The rule

A itself is D.Q1 time dependent. For example, A may say that a person can teach

mathematics in school if he has a degree in mathematiCS from Oxford or Cambridge. In

1970'. this rule was introduced and in 1980. it was changed. A degree in education was

, also ~equired. after 1980.

The problem is how to represent this rule. One way is to write assertion (a) below.

where x stands for persons and t for a year:

,(a) Teach math (xl if Oxbridge (x)

28

with a provision that this rule is valid during the period 1970 s. t S. 1980. This

corresponds more or less to the method of using connectives. Another way', is to put

time explicitly in predicates and write equation (b) below: (correspondin'g to using

predicate logic with variables for time):

(b) Teach math (x, t) if Oxbridge (x, t) and 1970.s land t.s 1980 ..

Expression (b) is not natural for this case, We may have an entire block of rules, all

valid in the period 1970-1980, and the natural way to represent these rules is as in the

diagram:

Restriction

(not mentioning time) use only in the period 1970-1980

This is how we visualise this block of rules. It is also easy to ask from this

representation which rules are valid in the period 1970-1980. If the rules are written in

form (b), the answer to the latter question is not immediate.

There are advantages in the representation of form (b), in the case that the dependence

on time is not by neat large blocks of rules, but through time interdependen~ rules like

the following example:

(c) Q (x, t) if R (x, t + 5) and S (x, t - 3) and (t < 1991)

An example in English of such time dependence is a rule of the form:

(d) One cannot take a holiday in Spain three years in a row.

In natural language we find both types of time representation available,. The emphasis,

however, is not to refer to time explicitly: We use words like ~, Wl1il, ~, alliU,

duIirul, which giile relative relationships between events.

For databases, we have to choose the right combination and compromise between the

two representations.

29

There is a third way of representing time dependent data in a database, using events.

We ~o not mention time points (like 1970, 1980) at all. We use the events themselves

as t~e time reference points. We thus do not talk about 1970 or 1980 but rather make

references like:

:, "When M. Thatcher was Prime Minste"
j,

" "Before the UK joined the EEC"
"~'

'~ "When one could still be a mathematics teacher without a degree in education".

The :database will contain the (probably partial) information of what events occurred

~,aU.r.iM and ilf1A[other events. This approach has its intuitive appeal. It does

indeed contain features which are present in our everyday use of language. It may not

be t,?& predominant feature, but it could be extremely useful, especially in connection
,.

with partial information.

Res~rchers in time logic as applied to the logical and grammatical analysis of natural

lang~,age, do attach great importance to theories of events.

The ~ossible difficulties of such an approach for database management may be in the

integ;.ation of the time component of the system with other components (i.e. consistency,

addit,lon, deletion, non-monotonic rules, etc). In principle, however, a compromise of all
f

three~approaches to time descriptions can be construed, because on can describe rules

valid ;only if certain events (i.e. "M. Thatcher is Prime Ministe,.) occur, rather than rules

valid at a certain time (Le. 1970-1980).

The problem of integration can be reduced to that of control, (which myst be done in

,~I.!) of the form:

,"one can use rule A only when the answer to query? E is yesl"

Where E describes a certain event.

30

The above amounts to saying something like:

"the traffic restrictions below are valid when children are out o(school·.

The events approach is at present being studied by R. A. Kowalski - M. J. Sergot and

others.

B: Reasoning with time dependent data

The following is a good example (based on Kowalski-Sergot) which we use to illustrate

the interactions possible between non monotonic reasoning and time.

Take the system of registering visitors to Britannic House. When a person visits the

building, the computer is informed of his entry. When that person leaves, the computer

is informed of his leaving. For this type of time dependence, the best representation is

, form (a). We can describe schematically the presence of Mr. Smith at Britan'"ic House

on Monday as follows:

Hour

- 17 leave

- 14 enter

- 13 leave

- 09 enter

'To answer the query:

(q) Was Mr. Smith in Britannic House at 15 hours?

We can use several possible methods of computation.

(1) We can go backwards in time until we meet~, in which case we say, 02. If we

meet ~, we say, m. If we meet neither we say,02·

(2) We can go forward in time until we meet ~ in which case we say ~ or meet

iUlW and say ll2. If we meet neither we say ll2.

(3) One can try both directions. just to play safe.

31

The, problem arises when something goes wrong, and the information in the database is

deficient. Consider the following diagram, representing the information in the database.
"

Hour

·17 leave

·13 leave

·09 enter

ROl!~ine consistency checks or integrity checks would probably detect the anomaly.

What the system will do to correct the above anomaly depends on the non monotonic

rule. for the Britannic House system. If it Is customary and routine to register leave for

eve~one at 17 hours, we may ignore the 17 hours leave for Mr. Smith and decide that

Mr. Smith left at 13 hours.

If registration is very strict and done by hand, then we may decide that an J..Dla[is

mis~ng and put in the extra missing lD1IL with a time t marked unspecified. We thus

will ti;ave the diagram below in the database.

Hour

·17 leave

• t(unspecified) enter

·13 leave

·09 enter

Let ,Us follow this latter possibility. Choosing the representation above can cause

trouble, if we do not coordinate our time language with all the other components of the

,system. Depending on the way the computer conducts the search for the answer, we

may ,~ave any of the following possible answers to our query (q).

(1) ;The answer is m, because the search finds that Smith was in the building from 9

,to 13 and from 13 to 15, except at 13 hours itself. The reason being that the

32

unspecified time t of entry is interpreted by the computer. as near to 13 as

necessary. ThiS interpretation will have the undesirable effect that Smith was out

of the building at 13 hours but immediately in the building half a second past 13

hours.

(2) The answer is LlQ, because the computer will interpret the time t of entry as near to

17 as necessary. Thus we have that Smith was not in the bui"'ding immediately

before 17 but nevertheless left it at 17.

(3) The computer may not give an answer, or saying that it cannot 'knswer, or has to

delay, until the time t is specified. This has the undesirable effeCt that when asked

about Smith's presence in the building at 1303, it will still not give ar) answer,

even though a human would concede that it is not likely that Smith would actually

~ his leaving, just to come back after three minutesl

Another variation of (3) is that the computer, using negation as fail~re, will give the

answer !lQ. to Question (Q) because t is not specified (and so it cannot succeed).

However, when asked:

(Q.) 'Was Mr. Smith at Britannic House at any time between 13 hours and 17 hours"?

The computer will say ~ (Since an unspecified t is available). We thus have the

undesirable situation that when asked about any specific time between 13 hours and 17

hours the computer will say LlQ, but nevertheless the computer says W to (q.).
,

In the t'heory of events approach, the situation may be less critical. We do not have time

pOints but events. Thus the scale will be:

33

Hour

17 - Second leave

- Second enter

13 "- First leave

09' - First enter

Theo:tact that the second enter has no time attached to it is not so important, since the

'second entry" itself is the time 'point", The hours

(09,13, 17) are just extra details,

We 'may not have here the problems outlined above, but other problems will arise.

Unfortunately, Humans make use of time in a very complex way.

(4) '~:,ThiS possibility is the worst of all. Our system may be such that, having found an

::answer to a Query, it records the fact explicitly in order to save computation time,

:and not have to re-compute again what the same Query is asked again or used in

.. the future.

. ;-Thus approaching the query twice in different environments, the computer may
::obtain and record both a xe:i and a!l.Q answer.
~ ... :

pomputer consistency maintenance rules may be activated, and a chain reaction

tay be set in motion, and all of this because of a simple oversight in registering

the coming of a Mr. Smith I
.;~

,C,: pfJ.tabase updating

So far we discussed representation of time dependent data and rules in a time

language. Time language is needed also for updating databases which describe static

situations.

Imagi~e 100 boxes and 300 coloured bricks which can be distributed among the boxes,

The d~abase describes which brick is in what box. If we start moving the bricks around,

34

we have the problem of updating the database, in the most economical way. We need

a time language to express from the outside global changes and constraints on the

database. We may find it convenient to regard the operation of updating as a transition

function from one database state to another. Although the particular updating

operations are application specific, e.g. "move bick no. x to box no. y"; the logic involved

in manipulating the updating is universal.

We also have to assure that the time language used for time dependent data interacts

conveniently with the updating language. Updating time depend~nt rules can be

viewed from inside the database and from outside the database. These views must

agree. For example we don't want tOl say from the outside "use this .rule in 1970" and

the rule to say "I am valid only in 1980". It is preferable to find a good common time

language suitable for all time dependent manipulations of the databas'e.

A time language is required to talk about the dependent databas~s and updating.

There are several extreme possibilities, none of them completely satisfactory, great care

must be taken mto interaction with reasoning because potentially ~ne can get into

trouble.

We want to build a temporal language capable of describing :adequately time

dependent rules and database updatirT!g in an integrated wayl

35

6. expressive power of temporal connectives

We ,have seen how to specify a temporal logic semantically. We need a flow of time, a

language with connectives and an evaluation function for atoms and connectives

relative to the relevant unit of time.

The,evaluation function need not be expressible In the 1st order theory of the flow of

time:, So conceivably we can have a connective saying: I am true at t if and only if the

future is a well ordered set. As is well known, being well ordered is not a first order
prop~rty.

It is I~teresting to look at temporal logics where the truth tables of the connectives are

first ~rder definable. Certainly in such cases we can hope to axlomatlze the te~poral
logic in some way and if this logic is used for specification or correctness then we can

hope~or an automatic theorem prover to do the checking for us.

We /fow proceed to define more precisely what we mean by a 1st order temporal

connectives of dimension n.

Let (T,' <, -) be a partially ord9red get, called the flow of time. Consider the monadlc first

order Jheory of this flow of time. This means that we allow, besides < and _ also unary

predicates over time like e (t), 0 (s) and quantifiers over points. Thus we can write

81 (P; O,t). 3t' < t [e (f) ... 'Vs (t' < S < t -+ 0 (s)]

This is: a formula with the free variable t involving .e. O.

Anoth~r formula could be

82 <e. 0, t) - 3t' > t [f (t') ... 'Vs (t < S < f -+ 0 (s))).

A one~imensional temporal logic with connectives #1, .. , , #m where the connective #i

has k (I) places, is defined by formulas Cl, ... , Cm of the monadic predicate logic of

time. Cl has k(i) atomic monadic predicates and one free variable t. Th s #i (1 u q , ... ,q

36

(k(i))) holds at t if Cl (01 •...• 0 (ki). t) holds. where

OJ = {s I qj true at s}.

For example, B1 above is the table for Since (p, q) and B2 is the table for Until (p, q).

The above is just a formal definition of 1 st order truth table.

A truth table for n-dimension will be a formula C (A1 •...• Ak. t1 '" tn) where At; ... Ak are

all m-place predicates and t1 ... tn are n free variables. Here we allow the use of full

predicate logic with T. <. =. and allow for A1, .. , • Ak to be m-place and not only monadic.

ThuS the table for a connective # (A 1 •... , Ak) is defined by:

(q1 •...• qk) true at pOints t1 ... tn

ift C (A1 •.. , Ak. t1 '" tn) holds where Ai - {(S1 •...• sn) I qi is true at (s1 , sn)}.

So for example. the table for .t:!itltt q is:

Cl (A.m.n)=m+1 <n/\A(m+1.n).

The table for (q1 + q2) is

C2 (A1. A2, m. n) = 3k (m s k s n A A1 (m. k) A A2 (k. n)).

Since we are using temporal logic to specify and prove properties in some application

area. it is of vital importance to L'S ~Il know the expressive power of temporal logics and

be able to axiomatise the logic. We shall deal in this section with expressive power.

We must know how to find expressive connectives and how to us.e them. We first

explain what kind of problem we face.
,C

Take the connectives ~ and 1lD1i.l. for integer time. The wff which is the table of sine

is 81. Thus 5 (A, B) is true at t means:

3s < t 'Vu [A (s) A (s < U < t -+ B (u))].

The expressions of the logic are built up form S. U by substitution. Thus we can write

U (S (5 (A. B). - 5 (B, B), U (B. A».

37

This is a complex expression. Its truth at a point t corresponds to a 1st order formula

o (A. B, t)

o is built up by the quantifiers of Sand U which come in ~ of TWO namely (3 'V).

Problem 1:

Can we get all wifs O' (A. B. t) of the predicate logic of the time by substitution S, U

within each other?

How about

Vs 31' 'Vu (t < S vs> u v A (s) v B (u) v (A (t') -+ A (u)))

Is there a C (A, B) such that C (A. B) is built up from A. B ~ and J.lD1ll and is true at t

ift the above wff holds?

We have three quantifiers here. Can we get an equivalent formula by S. U. (using

blocks. of two?)

The problem of expressive power of a temporal logic has several aspects:

(a) How expressive are (Le. how many 0'8 can one get from) the temporal

connectives of our logic.

(b) Given a limited number of connectives; which we need for our area of application,

how do we find what to add to make them more expressive?

(c) Can we find enough (but finite) number of connectives which give us the

expressive power of all (full) quantification.

(d) How does this depend on the flow of time and the unit of time for evaluation?

Clearly Tor computer science application we would like some natural nice connectives

which are useful and intuitive. very strong in expressive power and can be nicely

axiomatised. For example for integer time. ~ and lla1ll are fullV eXPC9ssive. This

means that for an.v. formula 0 of predicate logic of the flow of time there is a

38

propositional formula E with 0 as its truth table i.e. Suppose the connectives we have allow us to distinguish between the regions and the

E is true at tiff 0 (t) holds. intersection of regions of t and regions of any s -I t. (in our case we need 6 x 6

.s.i.ru<e. and !.La1il are not sufficient for rational number time. For example we cannot say
intersections) .

using ~ and llD1i1 that we have Suppose further that the following holds.

A -A Any wff of the logic can be rewritten in an equivalent way as a boolean combination of (----------,----------)
wfts dependent only on the regions (Le. pure region wff). gap now

i.e. we have a sort of (A+ -A) connective with a gap in the middle. Then we say the original set of connectives has the separation property over the flow of

time. We need more connectives tor rational time. Namely 8 until a gap with A true on the

other side and -8 true on the other side of the gap. and similarly for 'Since a gap".
The Seoaratjon Theorem

The following concepts are related to expressive completeness A set of connectives is expressively complete iff it has the Separation Property (plus

(a) Separation some minor conditions).

(b) H-djmensjoo Let uS see what this means In terms of Since and Until and Integer time.

we explain Separation first. Suppose we have a flow of time and some connectives on -------,---------
it. Suppose we can. for any t. decompose the flow of time into a finite number of

The natural regions are Past. DmY.. Future. regions. Here is an example:

Separation means that every sentence involving Since and Until .:an be rewritten as a

combination of pure past. present and pure future sentences.

Here is an example.

Consider 0 - S (a 1\ U (A. 8). q). This Is not a pure sentence. U (A. 8) Is embedded The obvious regions around tare:

inside an S. Let us draw a diagram 1. points above t

2. t itself

3. points between t and t'
----A....;.B___ A

('vI
) 4. t'itself

5. points below t' and above to the side

aA U(A, B) 6. points above t'

39 40

There are three cases depending where y is: i.e.

(1) Y <I

(2) Y =1

(3) y>t

(1) If Y < I then D = D1 = S (A 1\ q 1\ S (a, B), q)

(2) If y < I then D = D2 = S (a, B 1\ q) 1\ A

(3) If Y > t then D a D3 = S (a, B 1\ q) 1\ B 1\ U (A, B).

These are the only cases thus

D = D1 v D2 v D3.

Thus D is a boolean combination of pure sentences.

In fact if we examine all possible cases of impure nesting of U within S i.e.

S (a" U, q)

S (a" -U, q)

S (a. qv U')

S (a, q v -U')

S (a " U, q v U)

S (a 1\ -U, q V -U) (same U in both

S (a" -U, q v U) sides) here

S(a 1\ U, q V -U)

and rewrite each case as a combination of pure wffs then this together with a careful

induction argument will prove separation of S, U over the integers and show that our
I

language has the same power of expression as quantifying over the integer time itself.
41

If we have a set of connectives and we don't know whether it is expressively complete,

we can find what is needed by actually trying to separate and set how we get stuck.

Assume we have F, P, G, H and integer time. Take F (H q a)

q q q a .___-----A----_ ~ ..J....(_____ '...:.,r--- ~,_
t Hq

s

at t, q is true, Hq is true, but q is true .l.LC1i.l s1 we cannot express that and we find that we

need Until. Thus:

F (a 1\ Hq) - q 1\ Hq 1\ U (a, q).

In fact until cannot be defined using F P. H. G.

42

7. H-OIMENSION:

The property of whether or not one can find at all a 1i.ai.1.fl set of fully expressive

connectives on a flow of time turns out to be a property of the flow of time itself.

Can we characterise this property by some other means. hopefully very simple and

intuitive and then use it to show. for an application oriented flow of time. that full

expressiveness is not available? The answer is yes and the property is H-dimension.

Let us begin with writing down that these exist at least two different elements. How do

we write that? It is very simple. We write

3x Y (x .. y).

How about three different elements?

(3x Y z) (x .. Y Ay" Z 1\ X .. z).

Now try to say the same thing Wi1hm.I1 using three different variables letters. Use only

two.

IS it possible to say that there exist 3 different elements using two letters only?

The answer is. generally not. Sometimes yes. depending on the flow of time. If time is

linear. for example. we can write

3x [3y (y < x) 1\ 3y (y > x)]

We used here only x. and y was reused. We know that the second y (y>x). is different

from the first 3y (y < x).

lit we did not have a total linear order we could not guarantee the existence of 3

elements because the above formula would have said .!!l.Q.ta.

A flow of time has an H-dimension ~ m if any sentence about the flow of time involving

<. unary Predicates e (t). O(t). free variables and quantifiers. can be equivalently written

using at most m different bound variable letters.

43

Linear order can manage with 3.

H-dimension Theorem:

A flow of lime admits a fully expressive 1.i.cili set of temporal connectives if and only if

(more or less) it has a finite H-dimension.

A corollary of this theorem is that the partially ordered set which allows for arbitrary

large co-chains cannot have a finite set of fully expreSSive connectives. ego the following

tree cannot have a set of fully expressive connectives.

4 Successors

3 Successors

2 Successors

44

8. OECIOABIUTY

~ost temporal propositional systems are decidable. It is possible to cook up examples

of undecidable ones.

Predicate temporal logics tend to be more complex than 1 st order logics. For example

the predicate logic with F,P,G,H over the real numbers is not even arithmetical.

There are two main methods of proving decidability. One is to express the semantics in

a decidable theory, usually the monadic 1st order theory of W successor functions. The

other is to show that the logic has the so called finite model property, namely that if A is

not a theorem then A can be falsified in a finite mOdel. Thus an axiomatlzable logic with

f.m.p is decidable, since we are .going to have machines for generating both its

theorems and non-theorems.

45

9. SAMPLE APPLICATION TO COMPUTING.

We consider two examples here, two temporal systems which arose from application to

computing. These are the systems described in example E2 of section 3. The system

E2(e) of Manna and Pnueli, and the system E2(b). of Ben Moschowski.

Example El

The Manna Pnueli system with.u..cw., OD and O.

This temporal logic can be used to talk about the exectution of a program by formalising

the states and the transition rules of a program we can prove properties of the program.

We base our use of temporal logic on the view of programs as generators of execution

sequences. If we allow nondetermlnistlc programs that each Input to program

generates a set of possible execution sequences of the form above. By stating

properties which hold for all the execution sequences of a program, we are stating

properties of the generating program.

To illustrate this point. let a program be labelled by 10 le. 10 being the entry point and

le being the exit point.

LE', atli be a predicate true at stage n If at that stage the program Is about to execute n.
Partial correctness can thus be stated «A, a) is the input output specification) .

.tJ

atlo A Y - X 1\ A (x) -+ O(atle -+ a (x ,y)

This reads: ,*.cL
If at any time the varlable~quals input x and A (x) holds then whenever we reach

termination point le a (x, V). where y is the current values of the program variable.

Total correctness is:

atlo A Y - X 1\ A (x) -+ O(atle A a (x. V).

o says we will terminate.

46

We can classify properties according to the form of the temporal formula.

Form q -+ 0 q is used for invariance properties such as safety, partial correctness,

mutual exclusion, clear performance, deadlock freedom.

q -+ 0 q expresses eventualities, e.g. liveness total correctness, accessibility, liveiock,

freedom etc.

Here are some more examples of what this language can express,

a) Response to InSistence

The weakest form of responsiveness states that a permanent holding of a condition or a

request p will eventually force a response q.

This can be written as: Op -+ Oq, or if stated over all future behaviours

O(Op -+ Oq).

Sometimes, the response q frees the requester from being frozen at the requesting

state. In this case once q becomes true, p ceases to hold, apparently falsifying the

hypothesis Op. This difficulty is only interpretational and we can write instead the

logically equivalent condition - O(p /\ - q), namely, it is impossible for p to be frozen

indefinitely and q never to realize.

To illustrate the utilization of such a statement, consider a component of a process

which is busy waiting for a condition (say, x > 0) which presumably some other process

is expected to generate.

m : it x = 0 then go to m

We use the proposition 'atm' which is true at each time instant in which the execution of

our process is at m. namely about to execute m. Then, the only statement we can make

47

about this situation and its resolution is:

- 0 (atm x >0)

i.e. it is impossible for the process to be stuck at m while x is continuously positive. It

implies that the scheduler will eventually schedule this process which will find x positive

and proceed beyond m,

This is also the weakest definition of a semaphore's behaviour, as welf as the minimal

fairness requirement from any scheduler. It requires that any process will eventually be

scheduled for execution. Note that for semaphores this allows infinite overtaking.

b) Response to persistence

A stronger requirement and the one which most suits a semaphore's behaviour is that

the infinitely repeating occurrence of the condition p will eventually cause q. We do not

require p to hold continuously, but only to be true infinitely often. The statement of this

eventuality is:

O<>p -+ <>q

or if required continuously:

Similarly to the case above the first form is logically equivalent to - O(<>q /\-q) which

we will sometimes prefer.

Consider a semaphore Instruction:

m: p(x)

The proper statement of its behaviour is:

- O(x>O) /\ atm)

This states that no process can be waiting indefinitely at m for a semaphore entry while

the semaphore's variable turns true (positive) infinitely often. Notethat to ensure this it

48

is not sufficient to guarantee that this process will be sCheduled infinitely often.

8ecause by some highly improbable run of bad luck all of these scheduling instances

could exactly coincide with the instances in which x .. O, and the process will never

proceed. The same criterion should also apply to the fairness of conditional critical

section instructions:

m : ~ r w.tl.e.n 8 d.Q S.

Here we should also require:

- D(<>(r>O A 8) A atm)

i.e. it is impossible to remain stuck forever at m while states in which both 8 hold and the

resource (r) is free, repeat infinitely often. This can be implemented by means of

semaphores and a queue, or using an unbounded counter. It cannot be done with

semaphores alone.

A weaker interpretation of the conditional critical section is also possible:

- 0 (<> (r>O) A atm A 8)

This one guarantees admiSSion ('nly if 8 is permanently held true from a certain point

on. while r becomes free (positive) infinitely often. The implementation of this weaker

construct by semaphores is easy.

cl Response to an Impylse

The strongest type of responsiveness is the one in which a single occurance of p
"

guarantees q. This is written as: p -+ <>q (more generally D(p -+ <>q». It is a natural

and useful expression for the discussion of total correctness, 'sometimes' reasonings,

and other temporal causalities of i..Dl.eLDal events. It is too strong, on the other hand, for

the expreSSion of responses to eX1emal signals and conditions. This is so because it is

49

seldom the case that a system is so attentive that it could always detect a single

occurance of an incoming signal which does not repeat.

Having formulated the different types of responsiveness, we can augment them with

requirements for fairness. While managing quite well in cases a) - c) with just the <> ,

o operators, we must introduce now the '!.lntil' operator U,

ConSider the following situations:

d) Absence of Unsolicited Resoonses

We may wish to complement the statement that p will eventually cause q (p -+ <>q), by

saying that on the other hand, q will never happen unless preceded by a p. We may

wish to state for example that a resource allocation system will not grant a resource to

somebody whO did not request It. Ignoring boundary effects (i.e. p and q happening

simultaneously), this can be expreSSed as:

<>q -+ U(p , - q)

Le. that is if q is going to happen at all, it cannot happen until p happened first (or

concurrently).

e) Strict Fairness

Suppose there are two requests P1 and P2 and two corresponding responses q1 and

q2' We may wish to impose strong FIFO discipline on the responding agent and state

that if P1 preceded P2 then q1 will precede Q2'

For this it is conventient to express the fact that starting from the present, the first

occurance of P2 must be preceded by an occurance of P1. In fact this is exactly the

expression used in d) above and we define generally:

50

The strict responsiveness discipline (FIFa) can now be written as:

Consider for example two competing semaphore instructions:

m: P(x) n : P(x)

m': n':

A FIFa implementation of semaphores would require:

Pr (atm, atn) -+ Pr (atm', atn').

One could use this as a basic axiom for the behaviour of semaphores under a given

FIFa) implementation and then deduce from it a global FIFa behaviour of larger parts of

the program.

d) and e) are really only a first approximation to the properites we had in mind. For

example Pr(p,q) strictly ensures only that the .tm occurance of q is preceded by an

occurance of p. What exactly we would like to have is: "Every q is preceded by a p

which happened after the last q, if any". Thus we cannot be satis,fled with a single p

succeeded by many q's, even though this situation formally satisfies the requirement:

"every q is preceded by a p". The property described above Le. interleaving of at least

one p between consecutive Q's can be described as:

Pr (p,q) A 0 (q -+ Pr (p,q))

It states that picking as a reference point either the initial state, or any instant in which q

holds, ensures that the first instance of q attar the reference point is preceded by an

instance of p occuring between the reference point and the instance of q.

51

f) Mutual Exclysion

El and & are two processes wanting 10 enter a critical area. f.1 controls the variable yi

exclusively. The variable t Is shared. El makes y1 true when intere~ted in entering
t" -;. ~

critical section and makes t _ 1. El can enter if either y2 is false or t _1. It makes y 1 co

false when exiting. & performs the symmetrical actions when It wants to enter the area,

We want to prove in logic that there is no deadlock I.e.

~ f1 is waiting (i.e. y1 - t) -+ O(f1 is in critical section).

Here is the diagram of the sequence of eventsl

Slatt: y1 - false

y2 - false

t - 1

10 non critical mO

11 yl -: true m1 y2 -: true

12 t-: 1 m21 -: 2

13 if y2 is false go to 15 m3 _: If yl -: F go to mS

14 if t _: 1 go to 13 m4 if I -: 2 go to m3
~5·······;~~····-·-·-·-····-·---------=---i-.;.s o-w-;+' ~ r~vh4Y-

section .~

16 yl -: false ~~;)~
...... _ .. ------.. ------_ .. _----... _--.-.-._--------
17 go to 10

, Example E2:

Let us now consider the internal time logic (b) of Example E2 of 3 and see what we can

express using its connectives. Recall that evaluation Is at intervals [m,n). The

connectives are Nm A and (A + B).

52

(1) OA is true at [m,n) if for all m S m' S n' S n.

A is true at [m' ,n').

This can be expressed as: - CtW.a + - A + l.D.i.e.).

(2) Let .arnmx = - NW true.

Then it holds at [m.n) if m = n.

(3) Let ~ ,.. Nexl emply

II says Ihallhe interval has only one point.

_+~+~"" ntimes)

says the interval has n points.

ThUS we can say:

(4) (~+~+q)ar

q holds after two units of time.

(5) (~I\ q) - q is true at some unit subinterval.

(6) The yield operator A -+-+ B holds at [m,n) iff for any k, m S k S n. if A holds al

(m.k) then B holds at [k.n).

A -+-+ B can be defined as - (A + - B).
!

(7) (1!J.I.a -+-+ A) says A is true at some final tail subinternational.

(9) <9 q- (q--+--+true):qtrueatsomeinitialsubinteNal.

(9) Let ~ q = (.arnmx A q -+-+ t) mean q begins

Let fin q = (tLWl -+-+ ~ q). It means that q is the final state

(10) Let. <9 ~ - (true --+--+ q). This reads q is true at

some terminal subinteNal. let [I] q read:

53

At all terminal subintervals q is true.

..--' ,; The"Y'\

(11) haltq - m (q' empty).

It reads: the interval finishes only when q is true.

(12) Letkeepq- m (-~--+ q).

This reads that q is true in all non-empty terminal intervals.

This example is based on the logic of true intervals, called Tempora by B. Moschkowski.

it allows for propositional quantification, which will be discussed in detail in a later

chapter. Meanwhile, assuming we can quantify over propositions, we can define:

(13) q !.lDWP -3x [beg x A IT] (~9x --+ (p V (qA Ntxtbtg x)DJ·

x is a new propositional variable, x is initially true and Inductively remains so until q is

true.

(14) We can iterate:

2q -q +q

nq - q + (n - 1) q

00

*q _ 1 q _ q + q + q +

*q - der: 3x (IagXA IT] (~9 x--+ !IllQ..ty,v 0 (q Next halt beg X»))))

This says that the interval is of irifinite length.

(15) While p do q • def.

\ [.(~ p) 1\ q) 1\ fin (- p»

54

