v

TEMPORAL LOGIC AND COMPUTER S;CIENCE
By
DovM.GabSay

Draft May 1985

Department of Computing,
Imperial College of Science and Technology,
180 Queen's Gate,

London SW8 2SD

Telephone: 583-5111

Telex: 261503

Notation

1)

(@)

®

The classical connectives are denoted by

~ALv, =, Vand 3,
(T, <, =) denotes a mode! of partial order, i.e. < is a binary relation on T, usually

irreflexive and transitive. In this book (T, <, =) will be called a flow of time. t,s.x.y,

€T denote elements or moments of the flow of time and the quantifiers V and 3

range over them.

We also have notation for subsets of T. These could be Q ¢ T, TicTorTaeT,

depending on the context. Binary relations on T may also be used, eg. RgT2
Formulas in the predicate logic of (T, <, =) are denoted by A, B. The symbols

appearing in B are sometimes explicitly written. Thus for example if we write B

{tx,<,=,Q;,R) we mean that B is in the predicate language of T with quantifiers over

points of T, with exactly t, x the free variables of B and QcTandRg T2, are the
only non-logical symbols.

Propositional temporal logics use letters p.q.r for atomic propositions and use the

same logical connectives ~,A,v,—. Other new temporal connectives are
especially introduced. Well known among them are Fa. Bq (one place), and
U(p.a), S__(p,q) (two place); or in general #(qq, Qm) for in-place connectives.
Formulas are denoted by A(q.r), B(q.r), sometimes indicating which atoms or
connectives appear in them. |

The lettersa, b are"used as all purpose ieﬂers for special notation of formulas

either in the language of tanee logic or in the predicate language of (T,<,=).
- S 2-4
+‘ "

i i

(5) We talk about (T,<,=) being a flow of time. Given a flow and a témpora;l language,
a temporal model (a temporal structure, or a model) is denoted by (T.<=h) and is
obtained in conjunction with an assignment h. An assignme%t his é function

~----, giving each atom a subset h(q)C, T. h can also be described és a 1unctfon h(t.q)
giving {0.1} as values. Its meaning is intended as indicating af:which moments t
the atom q is true. Thus t h(q) or h(t,q) = 1 reads "q is true at:?t". There may be

variations on the above; we may have functions h{t,T1.,q) éepending also on

T1 ¢ T. The exact role of h will be described in each context via agreed récursive

procedures. These procedures are characteristic to the speciﬁc'; logic discussed.
(6) Val(A,ht0t1, ..., tm) or equivalently HIAlIh O, ..., tm, ;d'denotes_’the trut.h value of

the formula A under assignment h, at the time to with referén(:\e tofpoints t1, ... tm.
(7) The words tanse logics are used when temporal logic is appl}éq?o the gnalysis of

natural fanguage.

PART 1: HOW TO PRESENT A TEMPORAL LOGIC

Chapter 1. The handiing of time phenomena, Introduction and survey:
1. Introduction
Time is involved in every aspect of human activity. As computer science is being
applied in wider and wider areas of our lives it is essenﬁal to deveiop logical systems
which can describe time dependent phenomena. There are at least five main areas of
computer science where time is involved in an essential way and where temporal logic
is used. These are:
1. Databases:
Their management, upﬁating. their use of knowledge representation involving
time and logical deduction involving time dependent data. |
2. Program development, specification and verification for concurrent programs and
processes.
3. Hardware:
VLS, reasoning about circuits, object oriented processes. '
4. Natural language précessingﬂ A
5. Distributed systems. Protocols for sharing knowledge.
Let us describe in a bit more detail what is involved in each ot these topics. Of course
wae will be able to say more once we are more familiar with systems of temporal logic.
1. Databases
Time is involved in three ways.
(a) Temporal iogic is needed to describe a theory of updating and maintaining of
databases. This requires the capability of talking about the logic of the updatirig and the
evolution of databases in tifne. For example, we may have time dependent updating

6

rules or some global constraints involving time. : |
(b) Putting in the databases information which is time dependent requires‘:a choicée of a
good t;mporal language. Hovy to represent time dependent knowledge, how to access
it and how to reason with it. :

{c) The real world is a combination of the two types of dependancies abo;/e. We need
to develop a logic of actions in time. These notions are of key imponanc;.e to our new
programming language.

We need to develop a temporal logic which can talk about properties ot ;Srograr_hs and
the way they change states with execution. ‘

In concurrent programs, the knowledge of the input output relations of eqéh participant
does not yield the knowledge of input output relation of the parallel e-xecution. We
need a logic we can use to prove from the initial description the correct béhaviour. of the
program.

3. VLSl

One needs asynchronous timing. We need a temporal logic specifying the behaviour of
pieces of hardware and possibly prove theorems on how to put systems together and
maintain certain properties.

4. Natyral language processing

Time is involved in an indirect way. We need to analyze the uses of the tens_e and

<

aspect of the language in order to prepare it (interface) for the com?uter. This is
besides the theoretical value of studying logical structure of time use in language. '

5. The need of temporal logic for distributed systems is a new application. “One
describes the partial knowledge different agents have as dependent 9,1 present. and

future states of the world.

We shall later give more detail. about these areas. Let us now turn to temporal logic.
The following are the main present day research areas of temporal logic.
1. Philosophical applications.
Temporal logic is used in philosophy to ¢clarify various concepts which have been
studied since the time of Aristotle. Some examples are causality, historical
necessity, identity through time, the notions of events and actions, etc.
2. Temporal logic application in computer science as described above.
3. Natﬁral language. Logik:al analysis of the use of tense and aspect in natural
languages. Logical time "models for natural language.
4. Pure logical study of temporal logic within the framework of logic itself. Special
topics here include:
(a) Axiom system, theorem proving and proof theory. Decidability. Model theory.
(b) Expressive power of‘ temporal languages.
(c) Applications of tempéral logic to the pure theory of other logics (e.g.
provability as a modal logic etc.)
(d) Deductive reasoning involving time.
To computer science all the above four aspects of the pure logical theory are of
great importance.
Temporal logics can be presented in four different ways:
{a} Use predicate logic with an additional parameter for time.

(b) Use special tamporal logics to express temporal phenomena.

. There are two methods of presentation here.

(b1) Semantical presentation.
(b2) Presentation using axiomatic systems for the connectives.
(c) The forth method is via arealewiwe-0f avents.

! 8

Y

2. HOW TO PRESENT A TEMPORAL LOGIC, IN THE PREDICATE CALCULUS
The hrst method of accounting for temporal phenomena is to do it wnhln the framework
of thle classical predicate calculus.
Thekidea is 10 add an extra variable for time to the language of predicéte logic:,'and make
all predicates time dependent. : 1
Thus if L (x, y) represents x loves y, we can say in predicate logic staiements&like John
loves all those who do not love themselves by: -

Ux [~ L (x, x, 1) = L (J, x, 1) '-‘ii :
The parameter t appears everywhere. -

One can now quantify over t and say time dependent propertigs, like

Vvt > now (L{m,], 1)).
Mary will always love John.
This approach is favoured by many because of our djrect control overftime points. We
can quantify over t,s, compare them, even use skolem functions involving ther'_'i: Here is

another example.

\oh is taking & o . !

Take (J, pill, now) A (Vt, s > today)
S .

(Take (Jp) A (t+2 = §) — Take (J, pill, s).
There are some problems about identity through time etc., but the coﬁ’yputer#cienﬁsts
leave these problems to the delights of the philosopher.

However, even for simple sentences like the above, this approach is nojt_ ideal.*
(i) The first "problem” is that the "logic” of the time is hidden. The tbmpora] logic as
described above is not predicate iogic. The parameter t ranges over'ia special

flow of time .. t = 0, 1, 2 ..., and this makes the logic special. Eor exai_nple, we
9 .

are committed to all the axioms involving the time parameter t dictated by the
properties of the flow of time chosen. We shall discuss this point in chapter 4,
when the formal definitions of how to present a temporal system predicate logic
‘are given and discussed.mathematically.

() The second problem with using predicate logic as a temporal logic, is more

fundamental, and has to do with the representation of time dependent data.

Consider a simple example:

This sentence is crystal clear to us and is understood immediately without any
mental effort. Let us wn‘tel it in predicate logic with time parameters.

Let PM (x, 1) raad: x is a Prime Minister, at time t

XE (x, 1) read: the value of pound at t is x s .

n = NOW .

m = maggie

The sentence becomes:

t<n[PM(mY) 3s<t Yu(s<u<t—~PM(mu)

AVU (t<u < n->PM(m,u)) A A 1
YuvXy (t<u<vsnaVP(xu) A VP (yv)— wy)) A PM (m,n) A

Vs>n[Vugs PM(mu) VU, v(nsugvssa VP (xu) A VP (y,v) = x <y)]
The above sentence of praedicate logic is not readable.
A point always claimed in favour of predicate logic is the existence of rich highly
developed theorem proving techniques for it.

Take for example resolution methods: to present the above as a "ready for Resolution”
10

disjunctive clause we have to skolemise and then write it in disjunction forms. The
"meaning” will be lost forever. ‘
Another awkward example is the following. To take a mortgage on ahouse one needs
an insurance policy stating that if the owner dies, the mortgage will iqe paid. Thus the
conditions required by the bank are:
x gets a loan at time t if house of x is in good value and conditi;n attime t and x
financial position is acceptable at time t and x takes an insurance‘,policy at timet.
How do we express the insurance policy clause in predicate logic? d"ur first attempt is
to use a time parameter, after all, the insurance is a committment to“:‘pay in the future.
Thus we write, x takes an insurance policy (of the above kind) at time_‘fit with company y
iff for all s > t (if x dies at s then y pays at s). ‘
The above is not sufficient, because we can say in English:
Join took an insurance policy but when he died, the company dld not pay.
To express the above property we need for each moment of time t, to outline the
planned future and the real future separately. It becomes awkward to qo so in predicate
logic. *
The above objections are qualitative and stylistic but not mathematica!: It is like saying
that Pascal is nicer to write in than Basic but both languages are equivalent in
mathematical power. :
CanA pure temporal logics such as e.g. axiomatic systems, say tbings which the
predicate calculus ¢annot say at all? ’
This will be examined in later chapters.
For the time being hote that the notion of expressiveness from the ‘point of view of
computer science is different from the logical notion. For example the finiteness of time
is not a first order property but computationally it is very convenient. VWe cannot give

11

more details here, we shall have to define the exact notion of "A temporal logic

presented within the framework of classical logic”, we shall have to wait for chapter 4.

12

3. SEMANTICAL PRESENTATION OF 'TEMPORAL CONNECTIVES:

The second way of presenting a temporal logic is via connectives. We imagine a flow of
time (T, <, now) and the various predicates e.g. John lgves Mary and Magmg_]s_m get
values T or F at each moment of time. So far it is equivalent to writin§ L (J, M, t')"_and PM
(m, 1), except that the t is suppressed. ‘

The difference comes when we want to talk about the distribution of trijth values through
time. We allocate to the logic connectives which describe behaviour tlﬁfough time using
the suppressed now as a reference point. This is very similar to the way we use

2

connactives in English.
Example E1:
Consider the following, very basic connectives:
GA = A will always be true
HA = A was always be true
FA = A will sometimes be true
PA = A was sometimes be true.
S (A, B) = B was continuously true since A was true
U (A, B) = B will continuously be true until A is true
Thus for example:
John will love Mary becomes
FL (J, M)
meaning in predicate logic:
3t>nowl (J, M, 1).
John has loved Magqgie since Magagie was PM is:
S (PM(m), L (J, m))

in predicate logic we have to write:

13

St<now [PM (m, t) A Vs(t <8 < now — L J.M.s))]

—~—

Let us translate the sentance about the pound.
S (PM (m), PM (m) A Pound going down)) A PM (m)

AU (~ PM (m), PM (m) A Pound going downf#

We have to translate "Pound going down"

VY YX[VP (x) = S (PM (m), VP. ({—-yrei}- ol
If the value of the pound now is x then since Maggle is PM if the value.way.y-at. any time
then yu—se— A SR A R
This is-net-the- best translation: We really should fotiow the way we perceive the notion
"pound going down" and regard the sentence as having vatue at an [nterval.
The above translations are good no matter whether the temporal connectives are
introduced via axioms or via a sematical interpretation.
We now describe the componants needed to specify a temporal logic in a semantical
way. These are:
(1a) The flow of time of the logic.
{1b) The units of time needed to give truth values.
(1c) Possible restrictions on the assignments to the atoms.
(2a) The temporal connectives used.
(2b) The truth conditions for the connectives.
The meaning of (1a) is clear. The flow of time can be the integers, the real numbers,
partially ordered sets and so on.
(1b) chooses the units of time in which atomic sentences get truth values. These can be

integers, intervals of integers, pairs of integers etc.

14

(1c) describe possible restrictions on the truth values given to thg'_' atoms. . ‘A typical
example could be that each atom can be true in only a finite numbei‘of points‘ (units of
' time). ‘
(2) chooses the connectives and determines their meaning.
Example E2

Wae give five temporal logics, all based on the integer flow of time.
They differ either on (1 b), on the unit of time for truth values or on (1c).’ihe assignment to
the atoms or on (2), the choice of connectives. »

The logics are called (a), (b}, (c), (d) and (e).

Example E2a

(a1) The unit of time for truth values is an integer.

{a2) The assignment to the atoms is arbitrary.]

(a3) The connectives are (besides the classical ~,/\, V, ->) Singe (A, B)

and yntil (A, B). :

(ad) The truth table for the connectives is defined as follows:

An atom gets truth value at each moment of time.

S (A, B)is true at n if for some t < n, Ais true at t and for all points bet\yeen tandn,Bis
true. : A

U (A, B)istrue at nif for some t' > n, A is true at t and for all points between n and t', B is
true. -.

In a diagram:

t sAB) n UAB) t

'H__) H—/l_
A 8 8 A

FA and PA of the previous example can be defined as U (A, A — A) and'
15

S (A, ‘A — A) respectively.

Example E2b

(b1) Time is the integers.
The unit of time for truth values is an interval [m.n,mgn.

(b2) There is no restriction on the assignment to the atoms.

(b3) The connectives are Next (A) and (A + B).

(b4) An atom is true or false at an interval. Thus we can have

. qtrue at [1, 3]

qfalse at [1, 2]
qtrue at {2, 3]

We have no persistence criteria or any principles for subintervals. The truth tables for

the connectives are:

Next A is true at [m, n], m g nif m+1 g nand A is true at [m+1, n).

(A + B) is true at [m, n] if for some k, m sksgn, we have, Ais true at [m, k] and B is true at

[k, n).

Example £2¢

{c1) Time is the integérs. The unit ot timé for truth values is a pair (m; n) of integers.
The connectives are F* and P*.

(c2) In this logic an atom is given truth valﬁes at points. The pair (m, n) is considered
as an dvaluation point m and a reference point n. Thus the truth value fo an atom
q at (m, n) depends on m only.
The truth value of an arbitrary A may depend on both (m, n). Here is the table for
F*A.

F*Ais true at (m, n) iff the foliowing cases hold:

m = n and for some k > m, A is true at (k, n)
16

. 4 AXIMATIC PRESENTATION OF TEMPORAL LOGIC
m>nandAis true at (m, m) k

. The axiomatic presentation follows the tradition of defining the meaning of the
m <nand for all k such thatm <k < n, Ais true at (k, K).

. logical connectives using proof rules and deductive axioms.
P*A has the symmetrical truth table.

. . Our first aim in this section is to give some examples and try and show that axioms
P*A is true at (m, n) ift

on temporal connectives are very expressive. In fact, it seems that even the
m=n and for some k < n, A is true at (k, n)

) simplest set of connectives, namely {F, G, H, P} which are really nothing more than
m<nandAistrue at (m, m)

the existential "quantifiers”, enable us to write axiom systems which can
m>nandforallk such thatm > k> n, Ais true at (k, k).

. .v ‘ distinguish between different properties of the flow of time.
Example E£2d: _

. . . . - 5 . The weakest possible propositiona! temporal logic is the logic Kt. its axioms are: '
The fourth logic, (d) is exactly like logic {a) with the added restriction on the assignment

L) . L L 1. Axioms for classical logic (Take all tautologies as axioms).
to atoms that the set of points in which the atom is true is either finite or.its complement

form 8 = (x0, x1, x2, ...).

is finite. 4 G(AANB) > GAAGB
Example E2e: . . ; H(AAB) & HAAHB
The fifth logic, (e) is the logic of execution sequences of a program. '
GA - GGA
(e1) Let the set of units of time be all infinitely proceeding sequences of integers, of the
HA = HHA
l
!

n . . :
Let s = (xn, x (n+1), ...) be the tail of 8. Atomic sentences q get a truth value at each s. FA= F GA and F HA

(82) We define the temporal connectives Oq, ©q.U{p.q)and Oq. . A~ GPA
Oqistrue at s iff ¥n > 0 (q is true at s n)- A — HFA
O qistrue atsiff forsomen>0,qistrue ats n. ‘ : The last two axioms say that the present moment is always in the past of any future

0q is true at s iff q is true at 81- moment and always in the future of any past moment.

This logic is complete for general partially ordered flow of time.

ili rr n next. Note , -
- O corresponds to our familiar G, © corresponds to F and 0 co esponds to In general, there is a good correspondence between semantic conditions and

i i i . , Q) Is true at s} if for - "
however that the future in this system includes now as well. U (p,) S ue 'gl axioms: with few exceptions. Different conditions on (T, <) can validate or

some,n, p is true a@n andforallmgn, qistrue ats m-

v' /) ;ﬂ// invalidate wits. Temporal fogic wits can be false in one type of flow of time and
» -.‘\,9/(/ 18

17

hold true in others. There are wifs that are true in dense time, 'discrete time, or

even complete time. Some characterise branching and so on.

Consider Hf (where f is falsity, e.g. 9 A ~g). We have:

[IHflth, t = 1 iff ~ 35 [s<t)

Thus in a flow of time satisfying\V; 33 [s<t), PH{VHtVFH tis always false. Otherwise

itis true. This shows that the truth of wifs depend on the flow of tiine. In fact, some

properties of the flow of time may be characterized by wifs. Take for example U (~1, f)

S (~t,).

This is true at a point t iff t is discrets. Discreteness can also be expressed

using P, F only.

Let us summarize the correspondence between conditions and wffs expressing these

conditions: We will try to use P, F only.

(a) The condition that the present moment is in the past of any future moment

(b)
(©
(@

(e)

corresponds to A — GPA, orto A — HFA. This condition-is incorporated
already in the notion of flow of time since when we write t<s we Say tisin the

past of s and also s is in the future of t. Symbolically t<s is the same as s>t.

The transitivity of < corresponds to GA — GGA or equivalently to HA — HHA.
The existence of an endpoint above any moment corresponds to Wif FGf.
The condition that there exists one future doomsday common to all futures

corresponds to .
L

FGIAF[F(AAGHAG(BAGHF(AnBAGH

The condition of linearity in the past corresponds to

PAI\PB—)P(AAB)VP(AAPB)VP(PAAB)

Total finearity is obtained by adding the Wit for linearity in the future.

19

K

@

()

(k)

The condition of existence of tomorrow point oorrbsponds to

F(GAAAA~B)AF(GBA ~A) = F (F (GAAAA"B)AF(GBA"A».
We saw before that U (~1,f) corresponds to this condition.

However, U is not definable usingF, P but F is definable using U -
(FA=U (A, A5 A)).

The condition ¥x Vy (x <y — 3u (x < u <y) is a condition of total density. We
can take the opposite of discreteness for a point, namely Vs>t 3u(t<u< x).
The corresponding Wif is FA — FFA.

The condition of the well foundedness in the past corresponds to
P~A—P(~AAHA)

The condition of completeness (no gaps) corresponds to the Wif:
FGAAF~AAG(~A-—>F~A)-)F(GAA~’_’GA).

It is doubtful whether the condition can be expressed using F only. It can be

expressed using U only as
FGAAF"‘AAG("A—)F‘"A)—)U(AAGA,F"’A)

Recall that FA = U (A, § — A) A

and GA = ~F ~A,

Let us summarise this surprising correspondence between additional axioms and

properties of flows of time. Here is a table

20

Properties of time
Irreflexivity (~t<t)

Axiom -
no axiom,Cannot be -,
characterized by axioms.

Only by a rule. .
Reflexity x < x GA - A
HA — A
Linearity FAAFB — :
F(AAB)VF (AAFB)
VF(FAAB)
Similarly for P..
Density of time FA 5 FFA
PA — PPA
Time is dedekind complete L (GA - PGA)AGA
(like the real numbers) - HA

Where LA = A A GA A HA

Time is finite

FASF(AAG~A)
PA-P(AAH~A).

Time is infinite

GF (truth)
HP (truth)

Time is integers

as shown above

Some second order
conditions on time

some corresponding
axioms.

For example the axioms for Kt together with the axioms for linearity, density and infinity

comprise an axiom system for rational time flow.

We see that axioms can express properties of time which first order Io'gi'c cannot

express. Thus the presentation of a temporal logic via axioms and rules can be

sometimes more powerful than a semantical presentation.

On the other hand, there are semantical presentations which have no known

corresponding axiom systems, like some logics of Historical Necessity.

z\‘\

We f_saw in the table that irreflexivity cannot be characterised by an axiom. It can be
characterised however by a rule of inference, namely:

. ~qAaGqaHg—- A ; qnotin A,

; A

Therule says that if it is a theorem that whenever time is irreflexive then A is true

(~ q'}\ Gq A Hq can hold at t only when ~ t < t) then A is true anyway (F A), because we

can élways. make time irreflexive and always make ~ q A Gg A Hq true without affecting
A, since giis not in A.

Usiné the above irreflexivity rule, we can prove the following wholesale axiomatization
Iemma.

Assume given a set of connectives #1, ..., #m for a temporal logic over a flow of time
(T, <=) such that these connectives have 1st order truth tables. Then more connectives
#rn+1.‘. -, #m+k can be gffactivaly found and added such that the logic with entire set of
connéctivgs #1 ... #(m+k) can be effectively axiomatised.

Of course the irreflexivity rule is used in the axiomatization. The entire prdcedure of
ﬁndin_g the new connectives and the axioms is effective and computable.

Example E1:

We can now axiomatise the logic with since and untit for any flow of time.

Take the corresponding axioms for the same flow of time using P, F, G, H and the rule

Jfor irrgflexivity and add the axioms

HQA~QAGq->[U(A.B)HF(AAH(BVHq))]

'HQA~qAGq-’[S(A,B)(—-)P(AAH(BVGq))]

22

\;Vhat we are doing in these axioms is to effectively state the truth conditions fol UandS.

Example E2: | |

To give another example take the connective Nq reading: q is true a‘round now, namely:
Ngistrue attiff 3x, y (x<t<y AV 2z (x<z<y - qiis true at z))

.The properties of N together with F and P can be characterised, without irreflexivity, by

the following axioms, say for linear rational time. | '

(1) Axioms for F and P for linear rational time, (seq table above).
(d) qAHaAGq-Ng

Ng — NNgq

Ng - q

N(pAq) e NpaNg

G~g—-~Nq

H~q—- ~Na. -
Using irreflexivity we can write the following axioms for N.
(1°) Axioms for P, F for linear rational time including the irreflexivity m{é.

(2°) rAH~r AG~r>

—3
(Nge (QAF (HPreq) A P (GFr —)l

Notice that the wtf involving q in (2*) uses r as a parameter name for the point t
and states the table of N. In thé same manner we can axiomatise any connective._
We mentioned that sometimes we cannot axiomatise a connective directly but with
the help of other connectives, called intermediate connectives. The table of a

connective # may be so complex that some intermediate connectives #i are

23

. needed and an axiom system is written for {#, #i} together,
Using irreflexivity we can also axiomatise easily various properties of the flow of
time. For example let us write an axiom saying each point has an immaediate

successor:
qAH~qAG~q—F(HPq - falsity)

> There will be more discussion, of course, in the chapters dealing with

axiomatizations.
Exa;pnle_ﬁai
To g:i__ve further examples. Here is an axiom system for the temporal logic of Manna and
Pnu;n for program specification and verification for a shared varlable concurrent
systém. This system was represented as example E2(e) of section 3.

ﬁmq is the integers. We deal with future only. The connectives are
':;DA = A will always be true (beginning now)

QA = A will sometimes Le true including now
:0A = A is true tomorrew

8] <A-‘1B) = B begins now to be true until A is true.
Axioms
~ CA e 0O~A ——
.;D(A ~ B) - (OA »08)
':'DA = A
6 ~Ae~0A

O (A - B) - (OA— OB)
- ' 24

0OA - 0OA !
OA->00A

OA->0A)AA S DA

U(A.B)e> AV (BAOU (A, B)

U (A, B) » OA

The inference rules are modus ponensand A and of course all

OA

i

tautologies are valid rules.
To the above we add quantitier axioms, to get the predicate temporal logic. If we add to
the above system the following groups of axioms: ‘
(1) Axioms about the program application domain. . o‘&
(2) Axioms about the concurrent programming principles.
Wae get a logic which can bé applied in program verification.
We can thus, for a given program, describe what it is and state the correctneés lemma
for it. We can then try and prove the correctness statement using the above axioms.
Let us give another example: ’
Example E4
Con'sider a propositional language with the connectives H and P (P being aHA)
and the classical connectives A, V, ~, —».
The intended interpretation of H A is A has always been true and the flov& of time we
have in mind is finite past linear chain
-n, ..,-3,-2,-1,0

we define the system Y1.
25

1
(1) . The connectives are H,a,v, ~, = (P is defined as ~ H ~)
{2} The language is propositional. Thus a wf is any atom q, and if A and B are wffs so
"are AAB,AVB,A B, ~Aand HA and PA,
(3) CA flow of time for Y1 is any finite chain of the form
.0
-1
-2
|
+
-n n20.
0is the present and -1, -2 ... -n are the past points.
(4) An assignment of truth values is any function | giving values T or F to any atom q
and a point of time i.e. h (-m, q) € (T, F).
(5) - The interpretation of HA is:
HA true o -m iff A is true of all points -n < -m.
(6) ;,A wif A is said to be valid if it gets value T in any flow of time for any h.

(7) -; The following is an axiom system for Yi.
(a) I-A for any truth functional tautology A.
(b) : FA =FHA

(© H(AAB)o HAAHB

(@) ::PAAPB—»P(AAB)VP(AAPB)vP(BAPA).

(axiom for linearity).

(0) PASP(AAH~A).

iaxiom for finiteness).

26

The completeness theorem for Y1:

Y1 FAiff Ais valid (in every finite linear time model).

There are several methods for proving completeness, we mention two hers.

The first method is a semantic tableaux method. Wae notice that axioms (s8) says that if
B was true there is a first time in which B was true and axiom (d) says that all past truths
are linearly ordered. Thus given a wif A for which we want to find a moda!, wa'look at all
subformulas Bi of A and if they were true in the past, we can order linearly the first time
they were true. This gives us the tableaux model.

The second method is via complete theories and is more general. It will be given later,

in chapter 3.

5. Calcull of events
Eveéwts arise mainly in connection with database updating and maintainance.
Datébases are constantly changing. Information keeps coming in. The database is
updéted and modified. Consistency and integrity rulesw‘bg\maintained.
Thi§' requires a special language and logic which can handie change and dependence
on time.
We l‘need to develop a temporal logic for representing time dependent data and time
depgndent rules. This fanguage and logic must have a good power of expression, must
represent adequately our intuitive perception of dependence on time and change, and
mus_'t. properly interact and integrate with other components of our system (i.e. what we
are @iiscussing in other sections).
What are the major problems assoclated with our task?
A: Representation of time dependant data
The -:ﬁrst problem is that of choosing the correct representation languagp for time
dependent databases and rules. This is a serious problem. Many system rules work
directly on data representation and so we must choose correctly.
Here’~ are three extreme options available to us, which we will illustrate via an example.
Consider a rule A which is valid only during the period of time 1970 5 t < 1980. The rule
A itsélf is nQt time depehdent. For example, A may say that a person can teach
matheméties in school if he has a degree in mathematics from Oxford or Cambridge. In
1970, this rule was introduced and in 1980, it was changed. A degree in education was
. also fequired, after 1980.

The problem is how to represent this rule. One way is to write assertion (a) below,
wher‘e x stands for persons and t for a year:

‘() Teach math (x) if Oxbridge (x)

' 28

with a provision that this rule is valid during the period 1970 gts 1980. This

corresponds more or less to the method of using connectives. Another wa}; is to put

time explicitly in predicates and write equation (b) below: (correspondmg to using -

5

predlcate logic with variables for time):

(b) Teach math (x, t) if Oxbridge (x, t) and 1870 st‘an'd.t._q 1980.'
Expreésion (b) is not natural for this case. We may have an entire block of rules, all
valid in the period 1970-1980, and the natural way to represent these. rules is as in the
diagram:
Bule Restriction
(not mentioning time) use only in the period 1970-1980
This is how we visualise this block of rules. It is also easy to ask from this
representation which rules are valid in the period 1970-1980. If the ﬁ;les are written in
form (b), the answer to the latter question is not immediate.
There are advantages in the representation of form (b), in the case that the dependence
on time is not by neat large blocks of rules, but through time interdependent rules like
the following example: '

{© Q(x,)ifR(x,t+5)andS (x,t- 3) and (t < 1991)
An example in English of such time dependence is a rule of the form:

(d) One cannot take a holiday in Spain three years in a row.
In natural language we find both types of timie representation avéilable. The emphasis,
however is not to refer to time explicitly: We use words like since, umu ngmm after,
dmm_g which give relative relationships between events. ‘
For databases, we have to choose the right combination and compromise between the
two representations.

29

The%e is a third way of representing time dependent data in a database, using events.
We ;do not mention time points (like 1970, 1980) at all. We use the events themsslves
as trie time reference points. We thus do not talk about 1970 or 1980 but rather make
refeéences like:

"When M. Thatcher was Prime Minster”

f_"Before the UK joined the EEC"

"When one could still be a mathematics teacher without a degrese in education”.
The{ﬁatabase will contain the (probably partial) information of what events occurred
n_e_tgm during and after other events. This approach has its intuitive appeal. It does
indeéd contain features which are present in our everyday use of language. 1t may not
be the predominant feature, but it could be extremely useful, especlally in connection
with ;‘aamal information.

Hesearchers in time logic as applied 1o the logical and grammatical analysis‘of natural
Iang;-{age, do attach great importance to theories of events.

The ;;ossible difficulties of éuch an approach for database manégemem may be in the
integ_'ration of the time component of the system with other components (i.e. consistency,

addition, deletion, non-monotonic rules, etc). In principle, however, a compromise of ali

threef'approaches to time descriptions can be construed, because on can describe rules

valid ;_6n|y it certain events (i.e. "M. Thatcher is Prime Minister™) occur, rather than rules.

valid ata certain time (i.e. 1970-1980).

The prob!em of integration can be reduced to that of contro!, (which must be done in

J_Q,g_m!!) of the form:

| *one can use rule A only when the answer to query? E is yes!"

Wher_g E describes a certain event.

30

The above amounts to saying something like:
"the traffic restrictions below are valid when children are out of school”,
The events approach is at present being studied by R. A. Kowalski - M. J. Sergot and
others.
B: Reasoning with time dependent data
The following is a good example {based on Kowalski-Sergot) which Wa use to iflustrate
the interactions possible between non monotonic reasoning and time.
Take the system of registering visitors to Britannic House. When a person visits the
building, the computer is informed of his entry. When that person leaves, thé computer
is informed of his leaving. For this type of time dependence, the beé; representation is
.form (a). We caﬁ describe schematically the presence of Mr. Smith at Britanvhic House
on Monday as follows: ‘
Hour
- 17 leave
- 14 enter
- 13 leave
- 09 enter
‘To answer the query:
(@) Was Mr. Smith in Britannic House at 15 hours?
We can use several possible methods of computation. N
(1) Wae can go backwards in time until we meet leave, in which case we say, no. If we
meet gnter, we say, yes. If we meet neither we say, ng.
(2) Wae can go forward in time until we meet lgave in which case we say yes or meet
enter and say no. If we meet neither we say no.
{3) One can try both directions, jus_t to play safe.

31

Thej problem arises when something goes wrong, and the information in the database is
defféient. Consider thev following diagrar_n, representing the information in the database.
Hour
- 17 leave
- 13 leave

- 09 enter
Rouzme consistency checks or integrity checks would probably detect the anomaly.
What the system will do to correct the above anomaly depends on the non monotonic
rules for the Britannic House system. If it is customary and routine o register leave for
avef):/one at 17 hours, we may ignore the 17 hours leave for Mr. Smith and decide that
Mr. émith left at 13 hours.
It rg:gistration is very strict and done by hand, then we may decide that an gptar is
miss:j',ng and put in the extra missing gntar, with a time t marked unspecified. We thus
will Péave the diagram below in the database.

- Hour

- 17 leave

-t (unspecitied) enter

- 13 leave

- 09 enter
Let us follow this latter possibility. Choosing the representation above can cause

trouble it we do not coordinate our time language with all the other components of the

.system Depending on the way the computer conducts the search for the answer, we

may | have any of the follownng possible answers to our query (q).

(1) J’ he answer is yas, because the search finds that Smith was in the building from 9

1013 and from 1310 15, except at 13 hours itself. The reason being that the

32

Qnspeciﬁed time t of entry is interpreted by the computer. as nearto 13 as
necessary. This interpretation will have the undesirable effect f_ﬁat Smith was out
of the building at 13 hours but immediately in the building half a second past 13
hours.

(2) The answer is no, because the computer will interpret the time t of entry as near to
17 as necessary. Thus we have that Smith was not in the buiiding immadiately
before 17 but nevertheless left it at 17. .

(3) The computer may not give an answer, or saying that it cannot "fanswer, or has to
delay, until the time t is specified. This has the undesirable effect that when asked
about Smith's presence in the building at 1303, it wilt still not give an answaer,
even though a human would concede that it is not likely that Sm_ith would actually
register his leaving, just to come back after three minutes!

Another variation of (3) is that the computer, using negation as failﬂre, will give the

answer ng to question (q) because t is not specified (and so it cannot succeed).

However, when asked: _

{@") "Was Mr. Smith at Britannic House at any time between 13 hours and 17 hours*?

The cohputer will say yes (since an unspecified t is available). We thus have the

undesirable situation that when asked about any specitic time betweeﬁ 13 hours and 17

hours the computer will say ng, but nevertheless the computer says m.to Q).

In the t:heory of évents approach, the situation may be less critical. Wer do not have time

points but events. Thus the scale will be:

33

Hour
17 - Second léave
- Second enter
13 - First leave

: 09 First enter

The fact that the second enter has no timo attached to it is not SO important, since the

"second entry” itself is the time "point”. The hours

(09, 1 3, 17) are just extra details.

We '}nay not have here the problems outlined above, but other problams will arise.

Unfc;hunately, Humans make use of time in a very complex way.

(4) This possibility is the worst of all. Our system may be such that, having found an
~j‘:answer to a query, it records the fact explicitly in order td save computation time,
‘fand not have to re-compute again what the same query is asked again or used in
-the future.
rhus approachmg the query twice in different environments, the computer may
’obtam and record both a yes and a ng answer.

:Computer consistency maintenance rules may be activated, and a chain reaction
may be set in motion, and all of this because of a simple oversight in registering
the coming of a Mr. Smith!

[o% Qmahasundanng _

So far we discussed representation of time dependent data and rules in a time

Ianguage Time language is needed also for updating databases which descnbe static

sntuatlons

Imagine 100 boxes and 300 coloured bricks which can be distributed among the boxes.

The dé&abase describas which brick is in what box. If we start moving the bricks around,

34

1
we have the problem of updating the database, in the most economical way. Wae need

a time language to express from the outside global changes and constraints on the
database. We may find it convenient to regard the operation of upda@%ng as a transition
function from one database state to another. Although the particular updating
operations are application specific, 9.g. "mova bick no. x to box no. y"f(he logic invoived
in manipulating the updating is universal.

We also have to assure that the time language used for time depepdent data interacts
conveniantly with the updating language. Updating time dependént fules can be
.viawed from inside the database and 1fom outside the database. These views must
agree. For example we don't want to say from the outside "use this A‘rule in 1970 and
the rule to say "I am valid only in 1980". It is preferable to find a good common time
language suitable for all time dependent manipulations of the databas’é.

A time language is required to talk about the dependent databas'és and updating.

There are several extreme possibilities, none of them completely satcsfactory great care

must be taken into interaction with reasoning because potentially ane can get into

trouble.

We want to build a temporal language capable of describing -adequately time

dependent rules and database updating in an integrated way!

35

6. Expresslve power of temporal connectives

We have seen how to specify a temporal logic semantically. We need a flow of time, a
language with connectives and an evaluation function for atoms and connectives
relative to the relevant unit of time.

The. evaluatnon function need not be expressible in the 1st order theory of the flow of
ume So conceivably we can have a connective saying: | am true at t if and only if the
futurp is a well ordered set. As is well known, being well ordered is not a first order
proﬁé}ty.

Itis !nterestmg to look at temporal logics where the truth tables of the connectives are
first order definable. Certainly in such cases we can hope to axlomatlze the temporal
logic in'some way and it thig logic is used for specification or correctness then we can
hopedor an automatic theorem prover to do the checking for us.

We now proceed to define more precisely what we mean by a 1st order temporal
connectwes of dimension n.

Let (Tj,' <, =) be a partially ordared get, called the flow of time. Consider the monadic first
order theory of this flow of time. This means that we allow, besides < and = also unary

predncates over time like P (1), Q (s) and quantifiers over points. Thus we can write
B1 (P; Qt) H<tB(t)A Vs <s<t—Q(s)
This is'a formula with the free variable t involving P, Q.
Another formula could be
82(30 t)= 3t >t[P (')A Vs t<s<t' = Q(s))).
A one-dnmensuonal temporal logic with connectives #1, ..., #m where the connective #i

has k (l) places, is defined by formulas C1, ..., Cm of the monadic predicate logic of

time. Cl has k(i) atomic monadic predicates and one free variable t. Thus #i (q1, ..., q

36

.

(k(i))) holds at tif Ci (Q1, ..., Q (ki)), t) holds, where
={s|qgjtrue ats}. |

For example, B1 above is the table for Since (p, q) and B2 is the table for Until (p, q).

The above is just a formal definition of 1st order truth table.

A truth table for n-dimension will be a formula C (R1, ..., Rk, t1 ... tn) where R1. ... Rk are

- all m-place predicates and t1 ... tn are n free variables. Here we allow the use of full

predicate logic with T, <, =, and allow for R1, ... , Rk to be m-place and not only monadic.

Thus the table for a connactive # (A1, ..., Ak) is defined by:

#(q1, ..., qgk) true at points t1 ... tn
iff C (R1, ... Rk, t1 ... tn) holds where Ri = {(s1,...,sn) 1 giis true at (s1, . SN)}.
So for example, the table for Next qis:

C1(R,m.n)=m+1 <n AR (m+1, n).

The table for (1 + q2) is

C2(R1,R2,m,n)= 3k (mgk<nARI1 (m, k) A R2 (k, n)).
Since we are using temporal logic to specify and prove properties in' some application
area, it is of vital importance to us to know the expressive power of temporal logics and
be able to axiomatise the logic. We shall deal in this section with expressive power.
We must know how to find expressive connectives and how to use them. We first

explain what kind of problem we face.

:'C
Take the connectives Since and Until, for integer time. The wff which is the table of sine

is B1. Thus S (A, B) is true at t means:

Is<t VulA(S)A(s<u<t—B ().
The expressions of the logic are built up form S, U by substitution. Thus we can write

U (S (S (A B). ~S (B, B), U (B, A)).

37

This is a complex expression. Its truth at a point t corresponds to a 1st order formula

D(A. B 1Y)

D is built up by the quantifiers of S and U which come in hlocks of TWO namely (3).
Problem 1:

Can we get all wifs D' (A, B, t) of the predicate logic of the time by substitution S, v
within each other?

How about

Vs 3t' vu (t<$VS>UVA(S)VB(U)V(A(")—)A(U))]

Is there a C (A, B) such that C (A, B) is built up from A, B Since and Unti] and is true at t

iff the above wif holds?

We have three quantifiers here. Can we gei an equivalent formula by S, U, (using

blocks of two?)

The problem of expressive power of a temporal logic has several aspects:

(a) How expressive are (i.e. how many D's can one get from) the temporal
éonnectives of our logic.

(b) Given a limited number of connectives, which we need for our area of application,
how do we find what to add to make them more expressive?

{¢) Can we 1ihd enough (but finite) number of connectives which give us the
expressive power of all (full) quantiﬁcation.

(d) How does this depend on the flow of time and the unit of timé for evaluation?

Clearly Yor computer science application we would like some namral nice connectives

N

which are useful and intuitive, very strong in expressive power and can be nicely

axmmat:sed For example for integer time, Since and Until are fully exprassive. This

means that for apy formula D of predicate logic of the flow of time there is a

38

propositional formula E with D as its truth table i.e.
E is true at tiff D (1) holds.

Since and Until are not sufficient for rational number time. For example we cannot say

using Since and Untjl that we have

i.8. we have a sort of (A+ ~A) connémivé with a gap in the middle.
We need more connectives for rational time. Namely B until a gap with A true on the
other side and ~B true on the other side of the gap, and simifarly for "Since a gap”.
The following concepts are related to expressive completaness

(@) Separation

(b) H-dimension
’we explain Separation first. Suppose we have a fiow of time and some connectives on
it. Suppose we can, for any t, decompose the flow of time into a finite number of

regions. Here is an example:

The abvious regions around t are:

1. points above t

2. titself

3. points between t and t’

4. t itself

5. points below t' and above to the side

6. points above t'
39

Suppose the connectives we have allow us to distinguish between the regions and the
intersection of regions of t and regions of any s =/ t, (in our case we need 6 x 6
intersections).

Suppose further that the following holds.

Any wff of the logic can be rewritten in an equivalent way as a boolean combination of
wifs dependent only on the regions (i.e. pure region wff),

Then we say the original set of connectives has the separation property over the flow of
time.

The Separation Thegrem

A set of connectives is expressively complete iff it has the Separation Property (plus
some minor conditions).

Let us see what this means in terms of Since and Until and integer time.

t

The natural regions are Past, now, Future.
Separation means that every sentence involving Since and Until can be rewritten as a
combination of pure past, present and pure future sentences.

Here is an example.

Consider D = S (a A U (A, B), q). This is not a pure sentence. U (A. B) is embedded

inside an S. Let us draw a diagram

B8
TN
'TLV_/é

aA U(A,B)

A 4

W B imie ¢ teeme dmes tarme cw s mammrareme ot o

40

_There are three cases depending where y is: i.e.

(1
(2)
(3)

(1

(2

(3

y<t
y=t

y>t
Ify <tthen D=D1=S(AAqaS(a,B)q)
Ify<tthen D=D2=S(a,BAag)AA

Ity >t then D=DS=S(a,BAq)ABAU(A.B).

These are the only cases thus

O=D1vD2vD3.

Thus D is a boolean combination of pure sentences.

In fact it we examine all possible cases of impure nesting of U within S i.e.

S(aaU.q)

S(aa~U,q)

S{a.qvl)

S(a, qv~U)

S(aaU,qvUl)

S(aa~U,q v~U) (same U in both
S(aa~U,qvU) . sides) here

SaaU.qv-~U)

and rewrite each case as a combination of pure wffs then this together with a careful

induction argument will prove separation of S, U over the integers and show that our

f

language has the same power of expression as quantifying over the integer time itself.

41

It we have a set of connectives and we don't know whether it is expressively complete,
We can find what is needed by actually trymg to separate and set how we get stuck.

Assume we have F, P, G, H and integer time. Take F (Hq a)

q q q a

{ l !
t Hq

s

att, qis true, Hq is true, but q is true Until s1 we cannot express that and we find that we

need Until. Thus:

F(aAHq)-qAHqAU(a,q).

In fact until cannot be defined using E. P H. G.

42

7. H-DIMENSION:

" The property of whether or not one can find at all a finite set of fully expressive

connectives on a flow of time turns out to be a property of the flow of time itself.

Can we characterise this property by some other means, ﬁopefu”y very simple and
intuitive and then use it to show, for an application oriented flow of time, that full
expressiveness is not available? The answer is yes and the property is H-dimension.

Let us begin with writing down that these exist at least two different elements. How do

- we write that? It is very simple. We write

Ixy(x =y)

How about three ditferent elements?

(AXyz)(x=yAy=zAax=2z)
Now try to say the same thing without using three different variables letters. Use only
two.
Is it po_ssible to say that there exist 3 different elements using two letters only?
The answer is, generally not. Sometimes yes, depending on the flow of time. If time is

linear, for example, we can write

BXBy(y<X)A3y(y>X)1

Wae used here only x, and y was reused. We know that the second y (y>x), is different

from the first 3y (y < x).
If we did not have a total linear order we could not guaranteé the existence of 3
slements because the above formula would have said more.

A flow of time has an H-dimension g m if any sentence about the flow of time involving

<, unary Predicates P (t), Q(t), free variables and quantifiers, can be equivalently written’

using at most m different bound variable letters.
43

Linear order can manage with 3.

A flow of time admits a fully expressive finite set of temporal connectives if and only it
(more or less) it has a finite H-dimension.

A coroliary of this theorem is that the partially ordered set which allows for arbitrary

large co-chains cannot have a finite set of fully expressive connectives, eg. the following

tree cannot have a set of fully expressive connectives.

4 Successors

3 Successors

2 Successors

1 Successor

44

‘8. DECIDABILITY

Most temporal propositional systems are decidable. It is possible to cook up examples
of undecidable ones.

Predicate temporal logics tend to be more complex than 1st order logics. For example
the predicate logic with F,P,G,H over the real numbers is not even arithmetical.

There are two main methods of proving decidability. One is to express the semantics in
a decidable theory, usually the monadic 1st order theory of W successor functions. The
other is to show that the logic has the so called finite model property, namely that if A is
not a theorem then A can be falsified in a finite model. Thus an axiomatizable Ioéic with
fmp is decid_able, since we are going to have machines for generating both its

theorems and non-theorems.

45

9. SAMPLE APPLICATION TO COMPUTING
We consider two examples here, two temporal systems which arose from application to
computing. These are the systems described in example E2 of section 3. The system

E2(e) of Manna and Pnueli, and the system E2(b), of Ben Moschowski.

Example E1

The Manna Pnueli system with Until, 0,0 and ©.

This temporal logic can be used to talk about the exectution of a program by formalising
the states and the transition rules of a program we can prove properties of the program.
We base our use of temporal logic on the view of programs as generators of execution
sequences. If we allow nondeterministic programs that each input to program
generates a set of possible execution sequences of the form above. By stating
properties which hold for all the execution sequences of a program, we are stating
properties of the generating program,

To illustrate this point, Iet a program be labelled by Io ,..., le. lo being the entry point and
le being the exit point.

Let atli be a predicate true at stage n if at that stage the program is about to execute li.

Pantial_corractnass can thus be stated ((A,B) is the input output specification).
Y

atlo A y=x A (x) - Oatie — B (x YY)

This reads: /M{L

It at any time the vaﬂable@ééuals input x and A (x) holds then whenever we reach

termination point le B (x, y), where y is the current values of the program variable.

.Total correctness is:

atlo A y=X A A(x) - Oatle A B (x, y).

© says we will terminate.
46

“Wae can classify properties according to the form of the temporal formula.

Form q = © q is used for invariance properties such as safely, partial correctness,

rﬁutual exclusion, clear performance, deadlock freedom.

q — O q expresses eventualities, e.g. liveness total correctness, accessibility, livelock,
freedom etc.
" Here are some more examples of what this language can express.
a) Besponse to Insistence
The weakest form of responsiveness states that a permanent holding of a condition or a

request p will eventually force a response q.

This can be written as: Op — 0q, or if stated over all future behaviours

O(Dp — ©q).
Sometimes, the response q frees the requester from being frozen at the requesting

state. In this case once q becomes true, p ceases to hold, apparently falsifying the
hypothesis QOp. This difficulty is only interpretational and we can write instead the

logically equivalant condition ~ O(p A ~ q), namely, it is impossible for p to be frozen
indefinitely and q never to realize. ' ,

To illustrate the utilization of such a statement, consider a component of a process
which is busy waiting for a condition (say, x > O) which presumably. somevother'process
is expected to generate. »

m:ifx=0thengotom

Wae use the proposition 'atm' which is trﬁe at each time instant in which the execution of
our prbcess is at m, namely about to execute m. Then , the only statement we can make

47

about this situation and its resolution is:

~ 0O (atm x >0)
ie.itis imbossible for the process to be stuck at m while x is continuously positive. It '
implies that the scheduler will eventually schedule this process which will find x positive
and proceed beyond m.
This is also the weakest definition of é semaphore’s behaviour, as well as the minimal
fairness requirement from any scheduler. it requires that any process will eventually be
scheduled for execution. Note that for semaphores this allows infinite oventaking.
b) Basponse to Persistence
A stronger requirement and the one which most suits a semaphore's behaviour is that
the infinitely repeating occurrence of the condition p will eventually cause q. We do not
require p to hoid continuously, but only to be true infinitely often. The statement of this

eventuality is:

O0p - Oq

or if required continuously:

Similarly to the case above the first form is logically equivalent to ~ 0(oq A~q) which
we will sometimes prefer.
Consider a semaphore instruction:

m : p(x)

The proper statement of its behaviour is:

1

~ O(x>0) A atm)
This states that no process can be waitirig indefinitely at m for a semaphore entry while
the semaphore's variable turns true (positive) infinitely often. Note that to ensure this it

48

is not sufficient to guarantee that this process will be scheduled infinitely oﬂen;
Because by some highly improbable run of bad luck all of these scheduling instances
could exactly coincide with the instances in which x=0, and the process will never
proceed. The same criterion should also apply to the fairness of conditional critical
section instructions:

m : with rwhen Bdg S.

Here we should also require:

~ 0(O (>0 A B) A atm)
i.e. it is impossible to remain stuck forever at m while states in whigh both B hold and the
resource (r) is free, repeat infinitely often. This can be imple'mented by means of
semaphores and a queus, or using an unbounded counter. It cannot be done with

semaphores alone.

A weaker interpretation of the conditional critical section is also possible:

~0 (O (~0) A atm A B)
This one guarantees admissionvonly it B is permanently held true from a certain point
on, while r becomes free (positive) infinitely often. The implementation of this weaker
construct by semaphores is easy.

c) Besponse to an Impulse

The strongest type of responsiveness is the one in which a single occurance of p
y .

guarantees g. This is written as: p — Oq (more generally O(p — ©q)). Itis a natural

and useful expression for the discussion of total correctness, 'sometimes’ reasonings,

and other temporal causalities of internal events. It is too strong, on the other hand, for

the expression of responses to external signals and conditions. This is so because it is

49

seldom the case that a system is so attentive that it could always detect a single
occurance of an incoming signal which does not repeat.

Having formulated the different types of responsiveness, we can augment them with
requirements for fairness. While managing quite well in cases a) - ¢} with just the O ,

O operators, we must introduce now the ‘Until’ operator U.

Consider the following situations:
d) Absence of Unsolicited Responses

We may wish to complement the statement that p will eventually cauée q (p - ©q). by
saying that on the other hand, q will never happen unless preceded by a p. We may
wish to state for example that a resource allocation system will not grant a resource to
somebody who did not request it. Ignoring boundary effects (i.e. p and q happening

simuftaneously), this can be expressed as:

©q - Ufpp,~q)
i.e. that is it q is going to happen at all, it cannot happen until p happened first (or

concurrently).
e) Strict Fairness

Suppose there are two requests py and pp and two corresponding responses gy and
q2. We may wish to impose strong FIFO discipline on the responding agent and state
that it py preceded pa then qq will preéede qo.

\
For this it is conventient to express the fact that starting from the present, the first
occurance of py must be praceded by an occurance of P1- In fact this is exactly the

expression used in d) above and we define generally:

50

Pripy.pa)= 0 pp>U (P1. ~ p2)

The strict responsivensss discipline (FIFO) can now be written as:

Pr(py. p2) > Pr(gy, qp)

Consider for example two competing semaphore instructions:
m : P(x) n :P(x)

m'; n':

A FIFO implementation of semaphores woﬁld require:
Pr (atm, atn) — Pr (atm', atn’).

One could use this as a basic axiom for the behaviour of semaphores under a given
FIFQ) irhplementation and then deduce from it a global FIFO behaviour of larger parts of
the program.

d) and e) are really only a first approximation to the properites we had in mind. For
example Pr(p,q) strictly ensures only that the first occurance of q is preceded by an
occurance of p. What exactly we would fike to have is: "Every q is preéeded byap
which happened after the tast q. if any”™. Thus we cannot be satisfied with a single p
succeeded by many q's, even though this situation formally satisfies the requirement:

“every q is preceded by a p”. The property described above i.e. interleaving of at least

one p between consecutive Q's can be described as:

Pr(p.q) A0 (q - Pr (p.g))
It states that picking as a reference point either the initial state, or any instant in which q
holds, ensures that the first instance of q after the reference point is preceded by an

instance of p occuring between the reference point and the instance of q.

51

) Mutual Exclusion

P1 and P2 are two processes wanting to enter a critical area. B1 controls the variable yi
exclusively. The variable t is shared. P1 makes y1 true when interqsted in entering
critical section and makes t = 1. P1 can enter if either y2 is false orL; -:1" It makes y1 =
false when exiting. P2 performs the symmetrical actions when it wants 10 enter the area.

We want to prove in logic that there is no deadlock i.e.

FE1 is waiting (i.e. y1 =1) —» O(P1 is in critical section).

Here is the diagram of the sequence of events|

stag: y! = false
y2 = false
t=1
lo non critical mo
11 y1 =:true m1y2 =: true
2 t=:1 m2t=:2
13 ify2is false go to 15 m3 =:ifyl »: F goto ms
4 ift=:1gotol3 m4 iftw:2gotom3
5 eritical © L oams ovitial Sechion
section e

16 y1 = false o (y2= false)//;D
17gotol0 R M7

Example E2:

Let us now consider the internal time logic (b) of Example E2 of 3 and see what we can

express using its connectives. Recall that evaluation is at intervals [m,n). The
connectives are Nm A and (A + B).
52

(1) DOAistrueat[mn]ifforaimgm'gsn gn.
A is true at [m',n'].

This can be expressed as: ~ (layg + ~ A + true).

(2) Let empty = ~ Next true.

Then it holds at {m.n}if m = n,

(3) Let gkip = Next empty

It says that the interval has only one point.

[skip + skip + skip n times)
says the interval has n points.

Thus we can say:

(4) (skip +skip+q)=

q holds after two units of time.
(5) (skin A q) = q is true at some unit subinterval.

(6) The yield operator A 5~ B holds at [m,n] iff for any k, m gk g n, if A holds at

(m.k) then B holds at [k,n).
A,’—»—+ B can be defined as ~ (A + ~ B).

(7) (tou@ —— A) says A is true at some final tail subinternational.

(8) @ q= (q->- lrue): qlrue at some initial subinterval,

(9) Letbegq=(gmpty A g 93— t)meanq begiﬁs

Let fin q = (fau@ »— empty q). It means that q is the final state
(10) Lete @ q=(rue -»->» q). Thisreads q is rue at

some terminal subinterval. Let [I] qread:

53

At all terminal subintervals q is true.

Them
(1) narq= [t](q"empty).

It reads: the interval finishes only when q is true.

(12) Letkeepq= [t] (~empiy~ 9.

This reads that q is true in all non-empty terminal intervals.

This example is based on the logic of true intervals, called Tampora by B. Moschkowski,
it allows for propositional quantification, which will be discussed in detail in a later

chapter. Meanwhile, assuming we can quantify over propositions, we can define:

(13) qUnlp=3x[begx a [t] (egx [pv(qa Nextbeg W)
x is a ne§v propositional variable, x is initially true and inductively remains so until q is
true.
(14) We can iterate:
2q=q+q
nquq+(n-1)q

00

pX
‘q= 1 Q=qQ+q+Q+........
*q = def: 3x (egx A E] (beg x> emptyv <D (q Nexthaktbeg X))
This says that the infarval is of infinite length.

(15) While p do q = def.

* [*((beg p) A Q) ~ fin (~ p))

54

