Background

- Syntax as term algebras over a signature
- Denotational Semantics as an interpretation
 - justified by behavioural criteria
 - characterised by equations

Outline

1. Why extra structure is required
2. Brief look at modifications to the underlying theory
RESULT

\[\text{Eval}_{CIE} () < \text{Eval}_{CIE} () \implies t \in \mathcal{P} \leq \]

THE PROOF SYSTEM IS COMPLETE
with the particular interpretation \(CIE \)

MORAL: CHOOSE A SEMANTICS ISOMORPHIC
TO \(CIE \) FOR SOME \(E \).
- you will then have a "complete transformation system" for semantic equality

TO OBTAIN AN EFFECTIVE SYSTEM REPLACE
\(\omega \)-Induction with

RECUSION INDUCTION:

\[
\frac{t [u/x] \leq u}{\text{rec}_x.t \leq u}
\]
Example 1: Structure Induced by Behavioural Criteria

\[P \leq_{\text{tot}} Q \]

For every test \(e \), if \(P \) must satisfy \(e \) implies \(Q \) must satisfy \(e \), then \(Q \) is at least as deterministic as \(P \).

- To reflect, we need interpretation, where the carrier sets come equipped with a \(\leq \).
- Hoped for:

\[\text{eval}_I (P) \leq \text{eval}_I (Q) \quad \text{if} \quad P \leq_{\text{tot}} Q \]
\[\Sigma - \text{a signature} \]

A \[\Sigma \text{- po interpretation consists of} \]
- carrier set \(\Delta \)
- partial-order \(\leq_C \) on \(\Delta \)

\[t \leq t \]
\[t \leq u, u \leq r \implies t \leq r \]
\[t \leq u, u \leq s \implies t \leq s \]

- a function \(b_a \) for each symbol \(a \) in \(\Sigma \) which is \text{monotonic}

\[a \leq a b \implies b(a) \leq b(b) \]

Example

\[\Sigma \text{ is } 0 \text{ Succ} \]
- carrier set \(N \) - natural numbers
- partial order \(\leq_N \) - numerically less than or equal to
- functions - the usual

\[0 \text{ } N \text{ number } 0 \]
\[\text{Succ}_N (n) = n + 1 \]
EXAMPLE \[\Sigma \text{ is } \text{NIL, } \alpha, + \]
- carry out PS - non-empty prefix-closed subsets of \(\text{Act} \)
- partial order \(\leq_{ps} : S \leq_{ps} T \) if \(S \subseteq T \)
- functions NIL\(_{ps} \), \(\alpha_{ps} \), \(+_{ps} \) as before

\[\Sigma \text{- po homomorphisms} \]

if \(\text{A}, \text{B} \) are \(\Sigma \text{- po algebras}, h : \text{A} \rightarrow \text{B} \)
is a \(\Sigma \text{- po homomorphism} \) if:

i) \(h \) is a \(\Sigma \text{- homomorphism} \)
 - preserves the \(\Sigma \text{- structure} \)

ii) \(h \) is monotone:
 a \(\leq_{A} a' \) implies \(h(a) \leq_{B} h(a') \)
 - preserves the partial-order structure.
INITIALITY

If I is an interpretation of Σ, it is also a Σ-po-interpretation:

we only need a partial-order on the carrier

$a \leq I b$ if $a = b$

RESULT: THE WORD ALGEBRA T_Σ is a

po-interpretation

If I is a Σ-po interpretation, it is also an interpretation for Σ

RESULT: Eavl$_I : T_\Sigma \rightarrow I$ is a Σ-po homomorphism

T_Σ is the initial Σ-po interpretation

RESULT: USE T_Σ AS SYNTAX

- USE Σ-po interpretations as denotation semantics

- Every program will have a unique
 behaviorally-induced semantics
INEQUATIONAL THEORIES

INEQUATIONS:

N satisfies \(0 \leq x \)

\(\mathbb{P} \mathbb{S} \) satisfies \(x \leq x + y \)

RESULT: For any set of inequations \(E \)

There is a "least" \(\Sigma \mathbb{P} \mathbb{O} \) interpretation which satisfies \(E \), \(\Sigma_{/E} \)

- there is a unique \(\Sigma \mathbb{P} \mathbb{O} \) homomorphism \(\text{eval}_{I} : \Sigma_{/E} \rightarrow I \) for every \(I \) which satisfies \(E \).

- \(\Sigma_{/E} \) is determined by the proof system:

\[
\begin{align*}
t < t & \quad t < u, u < r \quad \Rightarrow \quad t < r \\
t < u & \quad t < u \quad \Rightarrow \quad \mathbb{P}(t) < \mathbb{P}(u) \\
\mathbb{P}p < \mathbb{P}u & \quad \text{for every } t < u \text{ in } E
\end{align*}
\]
EXAMPLE PS is determined by:

\[x + x = x \quad x + x \leq x \]
\[x + y = y + x \quad x + y \leq y + x \]
\[x + (y + z) = (x + y) + z \quad x + \text{NIL} \leq x \]
\[a(x + y) = ax + ay \quad a(x+y) \leq ax + ay \]
\[x \leq x+y \]

RESULT: WE CAN CHOOSE PARTICULAR DENOTATIONAL SEMANTICS WHICH IS CHARACTERISED BY A SET OF INEQUALATIONS AND THEREBY GET A COMPLETE PROOF SYSTEM FOR SEMANTIC EQUALITY.

RESULT: THERE IS NO CHANGE TO THE ORIGINAL APPROACH BASED ON SIMPLE INTERPRETATIONS.
EXAMPLE TWO OF EXTRA STRUCTURE

Interpreting recursive or infinite terms

Example

\[x \equiv a(b\text{null} + cdx) \]

Example

\[x \equiv (abx)\parallel cx \]

Problem 1: It is difficult to consider the syntax as a word algebra

\[\text{recx. } a(b\text{null} + cdx) \]
\[\text{recx. } (abx)\parallel cx \]
NEW SYNTAX: RECURSIVE TERMS
- add variables + constructor recx.
- terms in REC2 - recursive terms
\[t ::= \text{nil} \mid \text{at} \mid t + u \mid x \mid \text{recx}.t \]

PROBLEM 2

HOW DO WE INTERPRET
\[\text{recx}. a \cdot x + b \]?

intuition: interpret as solution to
\[x = a_I(x) + b_I \]

BUT: MAYBE NO SOLUTION

e.g. in PS

MAYBE MANY SOLUTIONS

e.g. \[x = a_I + x \]

has solutions
\[\{e, a\}, \{e, a, b\}, \{e, a, b, c\}, \ldots \]

in PS

- ADD STRUCTURE TO INTERPRETATIONS TO
ENSURE EVERY EQUATION HAS A "LEAST" SOLUTION
RE-EXAMINE SYNTAX

Recall, $ax + b \text{nil}$ is a finite representation of an infinite word.

This infinite word can be approximated by an infinite sequence of finite words.

First approx.

Second approx.

Third approx.
\(\Sigma \)-complete partial order interpretation

Intuition: to ensure the interpretation of the sequence of limits approximations to the term \(\pi \) has a limit.

Definition:

- \(\text{cpo} \) is a set \(\Pi \) equipped with a partial order \(\leq \) which satisfies:
 - there is a least element \(\bot \) under \(\leq \) to interpret?
- every chain \(C : c_0 \leq c_1 \leq \ldots \) has a least upper bound \(\sup C \)

Definition

\(\Sigma \)-cpo interpretation is an interpretation \(I \) for \(\Sigma \) where the carrier is a \(\text{cpo} \) and the functions are continuous:

\[I(\sup C) = \bigvee \{ I(c) \mid c \in C \} \]
- If we choose a Σ-crp as an interpretation then every term in REC_Σ has a meaning.

RESULT

$$\text{eval}_I : \text{REC}_\Sigma \to I \quad \exists$$

It is the unique Σ-homomorphism which satisfies

$$\text{eval}_I(p) = \bigvee \{ \text{eval}_I(d) \mid d \in \text{App}(p) \}$$

- The meaning of a program is structurally induced.

- The meaning of an infinite term is determined by the meaning of its finite approximations.

- The meaning of exact is the least solution in I of the equation

$$x = t$$
- must be a Σ-cpo
- must be fully-abstract w.r.t. \leq_{st}
- determined by a set of (in)equations

RESULT: FOR ANY SET OF EQUATIONS E THERE A "LEAST" Σ-cpo WHICH SATISFIES THEM

CIE - initial Σ-cpo in the class which satisfies the equations E

CIE constructed by factoring the infinite Σ-words with the equations E

Given a Σ-cpo I which satisfies the equations E, there is a unique Σ-cpo homomorphism

$$\text{eval}_I^E : CIE \rightarrow I$$
EQUATIONALLY CHARACTERISED
DENOTATIONAL SEMANTICS

\[\text{if } t \leq u \text{ and } u \leq t \text{ then } t = u \]

\[\text{if } t \leq u \text{ and } p(t) \leq p(u) \text{ then } tp \leq up \]

\[t \leq u \text{ for every } t, u \text{ in } E \]

\[\text{if } d \leq u \text{ for every } d \in \text{App}(t) \text{ then } t \leq u \]

W-INDUCTION

\[\text{if } E \vdash t \leq u \text{ then } t \leq u \text{ can be derived using these rules} \]

RESULT:

IF \(I \) is a \(\Sigma \)-corp which satisfies \(E \) then \(E \vdash t \leq u \) implies \(\text{eval}_I(t) \leq \text{eval}(u) \)

SOUNDNESS OF THE PROOF SYSTEM with any interpretation which satisfies the inequalities.
RESULT

\[\text{eval}^{CIE} (x) \leq \text{eval}^{CIE} (y) \text{ implies } \exists p \leq y \]

THE PROOF SYSTEM IS COMPLETE WITH THIS PARTICULAR INTERPRETATION \(CIE \)

MORAL: CHOOSE A SEMANTICS ISOMORPHIC TO \(CIE \) FOR SOME \(E \).

you will then have a "complete transformation system" for semantic equality

TO OBTAIN AN EFFECTIVE SYSTEM REPLACE

\(\text{\textsc{w}} \)-INDUCTION WITH

(recursion induction)

\[
\frac{t[x/u] \leq u}{\text{rec} \alpha.t \leq u}
\]
EXAMPLE APPLICATION - theoretical CSP

SYNTAX: recursive terms over a signature Σ^2

$t ::= a | t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 x | \text{rec} . t$

SEMANTICS: Σ^2-cpo

- e.g. Acceptance Trees
- Bounded Refusal Sets

Result: every CSP term has a unique meaning as an Acceptance Tree

BEHAVIOURAL CHARACTERISATION:

Acceptance Trees are fully-abstract wrt \leq_{st}

$\text{eval}_{\text{AT}}(P) \leq \text{eval}_{\text{AT}}(Q)$ if and only if $P \leq_{\text{st}} Q$

COMPLETE TRANSFORMATION SYSTEM

$\text{WIE}(\mathcal{A}, \mathcal{R})$ is sound + complete wrt Acceptance Trees

\uparrow

$\text{W-Induction + Equational Reasoning}$
BCS FACS CHRISTMAS WORKSHOP 1987
ATTENDANCE LIST

J Bicarregui
David Blyth
David Bosomworth
R Bruynooghe
Martin Bush
R Carsley
J H Cheng
Derek Coleman
Stephen Colwill
John Cooke
Jim Cunningham
John Dawes
Tim Denver
Jeremy Dick
David Ellis
Paul Farrow
C George
Abida Ghoni
Asis Goswami
W T Harwood
Fiona Hayes
Christopher Holt
H P Houghton
S Hughes
Mike Johnson
J Kalmus
Neil Lancaster
Ming Lee
Sheelagh Lloyd
Noel Lobo
Matthew Love
Robert Low
Catherine Lowe
J Lynch
Ursula Martin
S R Matthews
Richard Mitchell
Margaret Myers
Gordon Nichols
C O'Halloran
J Peacham
Simon Peyton Jones
M Priestley
Paul Roe
Roger Shaw
Ms V Sivess
David Smith
G Smith
Victoria Stavridou
Roger Stone
N Walton
W S West
M J Wray
RAL
Incord
Racal
South Bank Poly
PCL
IST
Praxis
LUT
IC
ICL
Praxis
Praxis
Program Validation Ltd
STL
PRG Oxford
Warwick Univ
IST
HP
Newcastle Univ
Wolverhampton Poly
STL
RAL
Praxis
TSL Communications
Racal
Racal
Sheffield Poly
Coventry Poly
Racal Research
BT
RH & BNC
Hatfield Poly
South Bank Poly
Hatfield Poly
RSRE
NE London Poly
UCL
PCL
UCL
IST
Hatfield Poly
Hatfield Poly
Logica
Manchester Univ
LUT
IST

Imperial College staff

Peter Harrison
Rachel Harrison
Sebastian Hunt
Jeremy Pitt
Mark Ryan
David Sands
Bent Thomsen
Steve Vickers