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Preface 

The following notes describe the main fonnal results of theory of parallel systems based on generalised 
automata. The ultimate aim of the theory is to provide non-interleaving operations semantics in a uni­
form manner to existing and not-yet existing models of parallel systems. 

Part 1 describes the basic behavioural model. Systems are conceived of as generating behaviour: a 
behaviour is essentially a pre-order- whose elements represent occurrences of events and are labelled by 
the names of the events of which they are occurrences. A collection of such sets is called a behavioural 
presentation. Behavioural presentations are capable of exhibiting the full range of parallel behaviour; 
sequentiality, non-detenninism, concurrency and simultaneity. 

The link between behavioural presentations and automata is provided by the trace languages of 
Mazurkiewicz. A trace, an element of a semi-commutative monoid, is capable of representing a certain 
kind of asynchronous behaviour. In part 2, we develop the basic order theoretic properties of trace 
languages and show how they determine behavioural presentations belonging to a certain class - the so­
called linguistic behavioural presentations. We also present some results about languages of finite and 
infinite traces. 

Conventional automata accept string languages. By extending the structure, they may be made to 
accept trace languages and hence linguistic behavioural presentations. By extending the automata 
further, they become powerful eneough to accept so-called discrete behavioural presentations. 

The notes are not heavily mathematical - or at least, not as heavily mathematical as I could make 
them. The reader is expected to know set theory and a little bit about partial orders and semi groups, but 
not much. 

Mike Shields 
Electronic Engineering Laboratories 

The UNiversity of Kent at Canterbury 
. December 1988 



1. Behavioural Presentations 

1.1. Basic Definitions 

We begin by considering the formal description of behaviour in a system. The following model is an 
adaption of that of event structures [1]. 

DEFINITION 1.1.1. (Behavioural Presentations [2]) A behavioural presentation is a quadruple 
B = (0, P, E, A) where 

(1) 0 is a set of occurrences; 

(2) P ~ 20 is a non-empty set of points satisfying U P = 0; 
peP 

(3) E is a set of events; 

(4) A: 0 --+ E is a function. 

Intuitively, B describes the entire repertoire of activity of some system. Things happen when a 
system executes; 0 is the set of all such things. A happening is the occurrence of some events. 
A(o) = e is to be read '0 is an occurrence of the event e '. Finally, there are certain JX>ints in the 
notional space-time of the system at which assertions may be made as to what has occurred. PEP is 
the point at which it may be asserted that precisely those occurrences which are elements of P have 
occurred. 

EXAMPLE 1.1.2. (Waveforms) Behavioural presentations may be used to describe continuous or analo­
gue systems. Consider an electronic black box with two output lines. The function of the box is to gen­
erate a signal / at one of its output lines and a signal g at its other output line. We consider the 
behaviour of the system between times tl and t2' We shall let the occurrences of this system be the 
attaining of a given voltage at a given time by a given signal, so that 0 = [t 10 t V x {f, g ). 

Points correspond to instants in the time interval, so that P = (P, I t E [t It t 21). 
and the set of all things that have happened prior to a JX>int t is therefore P, = [t 10 t) x {f, g ). 

Finally, A(t,/) = / (t) and A(t, g) = g(t). 

EXAMPLE 1.1.3. (Special Relativity) This example is based on the famous thought-experiment of Ein­
stein in [3] Two trains are travelling at a constant speed in opposite directions along a pair of straight 
parallel tracks. Observers 0 1 and O2 are sitting at the middle of the two trains. At a given instant, the 
two observers are on a line at right angles to the side of the train with a third observer, 0 3, sitting on 
the embankment, and at that instant two forks of lightning strike the ends of the first train in such a 
way that 0 3 sees them strike simultaneously. Observer 0,-, travelling towards the light coming from the 
first strike, sees that before he sees the light coming from the second. Observer 0 1 travelling towards 
the light coming from the second strike, sees that before he sees the light coming from the first. 

Let 0 1 denote the occurrence of the first bolt of lightning striking and let 02 denote the 
occurrence of the second bolt of lightning striking, so that 0 = (o It 02). 

Now, from the JX>int of view of observer 0 3, there are two distinct time JX>ints; Po = (2) when 
nothing has happened yet and Pbollt = (Oh 02). when both have. 0 3 never sees one without the other; 
0 3 sees the lightning bolts strike simultaneously. O2 sees the first bolt strike before the second, so that 
from his JX>int of view, there are three JX>ints; Po and Pbollt and a third JX>int p/inI = {od, when 01 has 
occurred but not 02. Likewise, 0 1 has three JX>ints; Po, Pbollt and PI.tolld = {02}. 

Thus,P = (PO,Pbollt,P/irll,Pucolld)' We may take A = (flash) and A(OI)=A(OV =/lash. 

EXAMPLE 1.1.4. (Coin Tossing) The preceding examples have all been of determinate systems; there 
has been no element of choice or indeterminacy in them. The next example is a description of a system 
consisting of a coin being tossed and coming down either head or tail Let A = (H, T). 

If X is a set, then X· denotes the set of all finite sequences (or words or strings) of elements of 
X. Let n denote the null or empty string. Let X+ = X· - {n}. If x, Y E X·, then we write x.y for the 
string concatenation of x and y and we define x :!O y (:::::) 3 u E X·: x.u = y. 
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We suppose that two occurrences of the same action are the same ~ they have been preceded 
by the same sequences of events. The third 'tail· in the sequence IITHIm is not the same occurrence 
as the third 'tail· in the sequence HIITHIm; they take place in different 'possible worlds'. An event 
may be specified by giving the sequence of which it is the last occurrence. Thus. 0 = (0" I x E A +) 
and P = {p" I x E AII<}. with p" = (0, I y ~ x ). If x = u.a. with a EA. then set A,(o,,) = a. 

Now. let us return to the general case. So far we have not considered relationships between 
occurrences. We introduce two fundamental relations. 

DEFINITION 1.1.5. Let B be a behavioural presentation and suppose Oh Oz EO. We define. 

(1) 01 # Oz ~ '" pEP: Oz E P ~ 014 p: 

(2) 01~OZ~"'PEP :OZEP~OIEp. 

These two definitions introduce concepts of mutual exclusion and time ordering. If 01 # oz. then 
an occurrence Oz excludes the future occurrence 01 - and vice versa. It is this relation that allows us to 
introduce notions of non-determinism into the theory. If 01 -+ oz. on the other hand. then if Oz has 
occurred. then so must 01. We may read 01 -+ Oz as meaning. 'occurrence 01 either preceded or was at 
the same time as occurrence oz'. 

The following remark gives the basic properties of these two relations. Frrst of all. recall that a 
pre-order is a reflexive. transitive relation. An independence relation is an irreflexive.1 symmetric rela­
tion. 

REMARK 1.1.6. Let B be a behavioural presentation. 

(1) # is an independence relation on 0 satisfying the following property 
01 # 0 z & 01 -+ 0' 1 & 0 z -+ 0' Z ~ 0' 1 # 0' z; 

(2) -+ is a pre-order on O. 

Other temporal relationships may be constructed from # and -+. 

DEFINITION 1.1.7. Let B be a behavioural presentation and suppose Oh Oz EO. 

(1) 01 strictly preceeds Oz iff 01 < Oz. where 01 < Oz ~ (01 ~ Ou & ....., (oz -+ 01) 

(2) 01 and Oz are simultaneous iff 01 ::; oz. where 01::; Oz ~ 01 -+ Oz & Oz -+ 01 

o 

(3) 0 1 and 0 z are conqurent if oleo 0 z. where 
01 co Oz ~....., (01 # Ou cl ....., (01 -+ ou & ....., (oz -+ 01). 

PROPOSmON 1.1.8. Let B be a behavioural presentation. then 

(1) < is a strict pre-order. that is a transitive relation which is irreflexive and asymmetric2 relation. 

(2) ::; is an equivalence relation which is a congruence with respect to the pre-order -+ and the 
mutual exclusion relation #.3 

(3) co is an independence relation. 

PROPOSmON 1.1.9. Let B be a behavioural presentation and let Oh Oz EO. then precisely one of 
the following is true: 01 < Oz. Oz < 01> 01::; Oz. 01 CO Oz or 01 # oz. 

o 
Behavioural presentations may be classified according to the nature of their co • ::; and # relations. 

First, if X is a set, then let Idx denote its identity relation. 

DEFINmON 1.1.10. (Types of Behavioural Presentation) Let B be a behavioural presentation. then 

1 V 0 eO:.., 0 < o. 
2 V 0.0' eO: 0 < o· ~ .., o· < o. 
3 If we denote the = class of 0 by [0 ):. and the set of all = classes of 0 by 01=. then (a) the relation .... : given by 

(0)= .... : [0'): ~ 0 .... 0' is well defined and a partial order on 01= and (b) the relatiOll #: defined by 
(0): #: [0')= ~ 0 # o· is well defined and is an independence relation OIl 01= satisfying (1) of 1.1.6. 
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(1) B is sequential <=> co = 0 and = = ido. 
(2) B is (non-sequentially) synchronous <=> co = 0 and = '" ido . 

(3) B is (non-sequentially) asynchronous <=> co '" 0 and = = ido. 
(4) B is (non-sequentially) hybrid <=> co '" 0 and = '" ido• 

3 

By synchronous (respectively asynchronous, hybrid), we usually mean non~sequentially synchro­
nous or sequential (respectively non-sequentially asynchronous or sequential, non-sequentially hybrid or 
sequential). 

DEFINITION 1.1.11. Let B be a behavioural presentation, then 

(1) B is determinale <=> # = 0. 

(2) B is non-determinate <=> # '" 0. 

REMARK 1.1.12. (Classification of Behavioural Presentations) Let B be a behavioural presentation, 
then precisely one of the following holds. 

(1) B is sequential and determinate. 

(2) B is sequential and non-determinate. 

(3) B is non-sequentially synchronous and determinate. 

(4) B is non-sequentially synchronous and non-determinate. 

(5) B is non-sequentially asynchronous and determinate. 

(6) B is non-sequentially asynchronous and non-determinate. 

(7) B is non-sequentially hybrid and determinate. 

(8) B is non-sequentially hybrid and non-determinate. 

o 
EXERCISE Determine # and -+ for examples l.l.2, l.1.3 and 1.1.4. Hence, classify them according to 
the taxonomy of remark 1.1.12. 

1.2. Discrete Behavioural Presentations 

We begin this section with an examination of two of Zeno's paradoxes. 

In his arrow paradox, he argues that an arrow can never reach its target, since before it can get 
there it must first travel half the distance, but before that it must travel the first quarter and before that 
it must travel the first eighth and so on. 

First of all, notice that we are given a set of points - points at which assertions are made about 
the current state of affairs - for example, that the arrow has travelled one-eighth of the distance towards 
the target We thus have a set of events, Earruw = (e" I n E N), where ell is shorthand for 'The arrow 
travels reaches 2-" of the distance' (so that eo represents the arrow arriving at the target). We define a 
set of occurrences OQTTtIW = {Oft I n EN} and define Aanow(O,,) = ell' Finally. let 
Pi = (Oft E 0 I n ~ i) and let P arrow = (p" E 0 I n EN). 

If we now examine Barrow, it does indeed seem that nothing can happen. How does the system 
start? Each point is preceded by (is a superset of) another one and there is no initial point (which would 
have to be 0) at which nothing yet has happened yet. Even if we add 0 into P , nothing can happen 
from it, for, no occurrence 0" is prior to all the others; we may easily check that 
•• , ~ 0,,+1 -+ 0" -+ ... -+ 02 -+ ° l' 

A similar paradox concerns Achilles and a tortoise. The two agree to have a race and in ack­
nowledgement of Achilles' greater speed, the tortoise is given a head start The argument goes that 
Achilles will never overtake the tortoise, for by the time that he reaches a place where the tortoise was 
at some previous time, the latter will have moved on. In this paradox. Zeno constructs a series of points 
extending into the future towards, but never attaining. a hypothetical point at which Achilles and the 
tortoise are dead level. 
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In this case also. we may exhibit a behavioural presentation B dCltiUu with occurrences 
o acltillu = 0 arrow. where ° 1 denotes the occurrence of Achilles reaching the starting position of the tor­
toise and 0,. represent him reaching the position that the tortoise had reached at occurrence 0,.-1' The 
points are p,. = {o; I i ~ n} together with a futuremost point, which we shall call p .... which we can 
think of as the p:>int when Achilles catches up with the tortoise. so that p_ = O. It is easy to see that 
° 1 ~ 02 ~ ... ~ 0,. ~ 0,.+1 ~.... This system can get started. but the futuremost p:>int is never 
reached. 

Zeno's argument may be applied to any system which can be described by a piecewise continu­
ous function of time. It may be used. for example. to 'prove' that a logic inverter never works (think of 
the 'arrow' of time crossing the interval of its propagation delay).4 However. we know that logic invert­
ers do work (or so. at least. my colleagues assure me). that arrows do reach their targets - or at least 
reach something - and that unless he is hit by a stray arrow. Achilles will catch up with and pass the 
tortoise. If we look at Zeno's argument, we see that it has the form 

If time is discrete then motion is impossible 

and since we know motion to be all-too p:>ssible. it follows that time is not discrete. 

Computer Science is largely concerned with discrete systems. systems which proceed (or are con­
sidered to proceed. whether they do or not) in isolated hiccups. We would like to use our model to 
describe such systems and so would like to discover a subclass of behavioural presentations that we 
may deem to represent discrete behaviour. Our discussion leads us to exclude infinite. strictly ascending 
and descending chains of points. 

DEFINITION 1.2.1. (Chain Conditions) Let B be a behavioural presentation. 

(1) B will be said to satisfy the descending chain condition (DCC) (::::) 

"IP.PhP2 .... EP :Pl::2P2::2 ... ::2p=>3N:n?N=>p,.=PN 

(2) B will be said to satisfy the ascending chain condition (ACC) <==> 

"I P • Ph P2 • ... E P: PI r:. P2 r:. ... r:. P => 3 N: n ? N => p,. = PN 

However. behavioural presentations. even without such infinite chains. still lack an essential ele­
ment of discrete behaviour. We illustrate with an example. 

Consider a behavioural presentation with 0 = {c. h. t}. P = {PO.PhP2} and Po= 0. 
PI = {c. h} and P2 = {c. I} (ignore A. and E). We can think of it as representing a simple non­
deterministic system is which a coin is tossed (occurrence c) and then either lands with its head upper­
most (occurrence h) or its tail uppermost (occurrence I). We may check that c < h. c < I and h # I. 

However. there is something missing. The coin has been tossed; it glitters as it spins through the 
air and for a heartbeat or two the two opponents wait apprehensively for the outcome - who will be 
forced to give the FOR1RAN for Social Scientists course? This is certainly a point in the space-time of 
the system. which would be represented by a set (c) - but this point is not present in P • 

As well as the chain conditions. we shall insist that a discrete presentation contains enough time 
points to separate events which are strictly ordered or non-simultaneous. This is the repletion property. 
defined below. 

DEFINITION 1.2.2. (Repletion) Let B be a behavioural presentation. then B is replete <==> 

"IP1.P2 E P:Pl c;;;,P2"10 h 0 2 E P2-Pl: 
..., 02 -+ 01 => 3 P3 E P: PI r;;;. P3 r;;;. P2 & 01 E P3 02 4 P3 [1] 

[1] is a bit of a mouthful. so let us go explain it in words. Given p:>ints PI and P2 such that PI is 
before P2. and given that 01 and 02 occurred between PI and P2. then if 02 did not occur before or at 
the same time as Oh then there is a point in time. P3. after PI and before P2. at which it is legitimate to 
assert that 01 has happened but that 02 hasn'L 

4 Rumour has it that F. X. Reid's latest programming language, UM, opellltes according to some such principle •. 
All uno programs are partially correct as a consequence. 
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For example. e. h E PI - Po and -, (h -+ c). In order for the behavioural presentation to be 
replete, we would need a point P3 such that Po t: P3 t: PI such that e E P3 and h 4 P3. It follc;>ws that 
P3 = {e} which. as we have observed, does not belong to P. Hence the example is not replete. 

We have not quite dealt with the problem with which the introduction of the notion of repletion 
was intended to deal. Consider the example of the tossed coin again. but with the 'initial state'. Po. 
removed. < and # are unaffected by this modification. but something is again missing. Not only do we 
not have a point at which the coin has not yet been tossed, but in this new behavioural presentation. the 
repletion property is invoked in vain; there are no points p. pi such that P c pi. One further condition 
v.<ill do the trick. 

DEFINITION 1.2.3. (Bottom Element) Let B be a behavioural presentation. then B has a bottom ele­
ment ~ 0 E P. 

We choose the properties described in definitions 1.2.1 to 1.2.3 as characterising the behaviours of 
discrete systems. 

DEFINITION 1.2.4. (Discreteness) Let B be a behavioural presentation. then B will be said to be 
discrete ~ B satisfies the DCC and the ACC. is replete and has a bottom element. 

The rest of this section is devoted to elucidating the properties of discrete behavioural presenta-
tions. We are chiefly concerned with three aspects. , 

Firstly. we must reassure ourselves that discrete systems do proceed in an orderly way in discrete 
steps without giving rise to embarrassing anomalies. In doing this. we need to explain what a step actu­
ally is in tenns of our model. This will be of great importance later when we come to examine the rela­
tionships between behavioural presentations and automata-like objects (see chapter 3). 

Secondly. we shall give an alternative characterisation of the discreteness property; This will be in 
te:m1S of a certain finiteness condition (to cope with the chain conditions) and a closure property. This 
closure property is related to an ordering on subsets of 0 . 

Finally. if we are to use discrete behavioural presentations to descnbe and reason about the 
behaviour of systems. then the more we know about their properties the better. It turns out that what is 
significant is the closure property. Behavioural presentations with this property have a characteristic 
order structure. . 

So. let us look at steps. 

DEFINITION 1.2.5. (Steps or Derivations) Let B be a behavioural presentation. A derivation or step in 
B is a triple (P. X. pi) where p • pi E P and X E 01= such that p r;;;. pi and pi - P = X. 

We shall write p ~ pi to mdicate that (P. X. pi) is a step and we shall refer to it as a step from 
pto p' via (the occurrences in) X. If X = (o). for 0 EO. then we write p ~o pi. 

Looking back at the Zeno examples. we see that in Barrow. p" ~O._l P._I for each n, but that 
o r O p for no p or 0 - there is no first step. In the athletics example. 0 ~Ol PI r 01 pz r .... but for 
no p or 0 do we have p rO Po. - there is no final step. However: 

LEMMA 1.2.6. (Existence of Steps) Let B be a replete behavioural presentation satisfying the DCC, 
then 

V p • pi E P: p c pi ~ 3 p" E P 3 X E 01=: p ~ p" C. pi 

o 
LEMMA 1.2.7. (Fmiteness of Chains) Let B be a replete behavioural presentation satisfying the DCC 
and the ACe. then 

Vp,p' E P:p Cp' ~ 3PI'PZ, ...• f."-I E P 3X!.Xz •...• X" E 01=: 
p rX1 PI ~Xl pzr ... P,,_I r · pi 

o 
DEFINITION 1.2.8. (:::.Finitary Property) For a behavioural presentation B and PEP. define 
p 1= = (X E 01= I X c: P ). A behavioural presentation will be said to be =-/ initary ~ " 
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peP: Ipl=1 <00. 
COROLLARY 1.2.9. Let B be a discrete behavioural presentation, then B is =-finitary. 

o 
LEMMA 1.2.10. Let B be a =-finitary behavioural presentation, then B satisfies the DCC and the ACC. 

o 
The =-finitary property corresponds to the chain conditions. It is not unreasonable to wonder 

whether there is anything corresponding to repletion. 

DEFINITION 1.1.11. (Left-Closure Relation) Let X, Y c: 0, then X is left closed in Y and we write 
X ~ Y <=> X ~ Y and 

¥ 01 e X ¥ 02 e Y: 02 -+ 01 ~ 02 eX. 

For instance, in the coin-tossing example, {c} ~ {c, h} and {c} S {c, t}. 

It is easy to verify that ~ is a partial order on 20 and that for p 1> P 2 e P , PI r;;;. P 2 <=> PIS P 2. 

DEFINITION 1.2.12. (Left-Closed Behavioural Presentations) A behavioural presentation will be said to 
be left closed <=> 

¥peP¥XcO:XSp~XeP 

The following related notions will be useful later. 

DEFINITION 1.2.13. (Left-Closure Operator) Let X c: 0, we define its left-closure, written J.. X to be 
the set {o e 0 I 0 -+ 0' some 0' eX}. 

If X = {o}, 0 eO, then we write J, 0 for J.. X. 

If U r;;;. 2° , then we define J, V = {J.. X I X e V}. 

REMARK 1.2.14. (Properties of J,) Let X, Y cO, V c 20 and peP, then 

(1) X !.:;J,X; 

(2) X c Y ~ J.. X S J, Y and in particular, J.. X SO; 

(3) J, U X = U J, X; . 
XeU XeU 

(4) J, (") X = (") J, X; 
XeU XeU 

(5) p = J, p. 

o 
THEOREM 1.2.15. (Characterisation of Discrete Behavioural' Presentations) Let B be a behavioural 
presentation, then B is a =-finitary and left-closed behavioural presentation <=> B is discrete. 

o 
This result is useful, not only because it gives a more tractable characterisation of discreteness 

than that given in definition 1.2.4, but also because it emphasises the importance of the left-closure pro­
perty. The principal order-theoretic properties of discrete behavioural presentations that we shall now 
establish depend almost without exception on left-closure. The two characteristic properties of left­
closed behavioural presentations are the properties of being consistently complete and prime algebraic. 
We shall deal with them in that order. 

DEFINITION 1.2.16. (Consistent Completeness) Let (X, S) be a partial order, then (X, S) is con­
sistently complete <=> 

¥ Ye X: Y * 0 ~ glb(Y) exists. 

Here gib (Y) denotes the greatest lower bound of the set Y. 

DEFINITION 1.2.17. (Primes and Prime Algebraic Posets) Let (D, S) be a poseL An element x e D is 
a complete prime of D <=> 
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"IX {;D:x ~lub(X)~3y E X:x ~y. [2] 

.x is a prime if [2] is guaranteed to hold for finite X. Since we shall not be needing to talk about 
primes, as opposed to complete primes, we shall drop the adjective 'complete' from now on. 

(D • ~ is prime algebraic ~ 

V.x E D: lub({y E Pr(D) Iy ~ x}) exists and equals x. 

THEOREM 1.2.18. Suppose B is a left closed behavioural presentation, then (P, g is prime algebraic 
and consistently complete. The complete primes of (P, {;) are the elements J. 0, 0 EO. Furthermore if 
U"* 0, then 

(1) glb(U)= (') p; 
peU 

(2) lub (U) = UP, if the former exists. 
peU 

o 
We have a converse. It relies on noticing that there is a 1-1 correspondance between elements of 

01= and primes. If we take any prime algebraic, consistently complete partial order D, then let 0 be 
the set of primes of D, P = (Pr(d) 1 d E D I, where Pr (d) is the set of primes below D, and E and 
A. anything reasonable (say E = 0 and A = [do). This actually gives a behavioural presentation. The 
construction is one that we shall meet again several times. 

THEOREM 1.2.19. Suppose (D, ~ is prime algebraic and consistently complete, then there exists a 
left-closed behavioural presentation BD such that (PD , Q is isomorphic to (D, ~. 

o 

1.3. Event Structures and Domains 

An alternative approach to modelling concurrent behaviour is taken by the authors of [4]. The objects 
in question are known as event structures. In this section, we describe the connection between them and 
behavioural presentations. Our reasons twofold. Firstly, event structures are an important model in their 
own right and constituted an important source of inspiration for the work repotted here. SecOndly, the 
relationship between the two involves a form of closure - analogous to the closure of a string language. 

We shall not be concerned with E or A in the first part of this section; our results concern only 
the order structure of P. Let us therefore define an unlabelled behavioural presentation to be a pair 
B = (0, P) where 0 is a set of occurrences and P ~ 'P satisfies U p = O. All results obtained 

peP 
heretofore apply to unlabelled behavioural presentations. 

We present a slightly extended notion of event structure. In [4] the ordering relation is a partial 
order rather than a pre-order. 

DEFINITION 1.3.1. (Event Structures) A (hybrid) event structure is a triple S = (0, ---+, #), where 

(1) 0 is a set of occurrences; 

(2) ---+ is a preorder on 0; 

(3) # is an irreflexive, symmetric relation on 0 satisfying: 

V 0 It 02, 0' 1> 0'2 EO: 01 -+ 0' 1 & 02 -+ 0'2 & 01 # 02 ~ 0' 1 # 0'2 

By remark 1.1.6, if B is a behavioural presentation, then (0. ---+, #) is an event structure. Define 
r.(B) = (0, -+, H). 

Conversely, given an event structure, and hence relations ---+ and #, we may construct a set of points, as 
we now define. 

DEFINITION 1.3.2. (Processes of Event Structures) Let S = (0, -+, #)be an event structure then 
X !:: 0 is said to be conftictfree ~ 

"101,02 EX:..., 01 # 02' 
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x ~ 0 is said to be a process of S <=> X is conflict-free and X ~ O. We denote the set of all 
processes of S by P (S). 

As in the case of behavioural presentations, we define 

J.. X = (0 e 0 I 3 0' eX: 0 ~ 0'), 

for all non-empty sets X t: O. It is easy enough to show that if 0 eO, then J.. 0 e P (S). This entails 
that 0 ~ UP, from which it follows that (0, P (S» is an unlabelled behavioural presentation. 

p e peS) 

Define A(S) = (0 , P (S ». Summing up the foregoing discussion, we have. 

REMARK 1.3.3. If B is a behavioural presentation, then l:(B) is an event structure. If S is an event 
structure then A(S) is an unlabelled behavioural presentation. 

o 
1: and A establish a relationship between the objects in the two models, unlabelled behavioural 

presentations and hybrid event structures. Let us now look at this relationship in more detail. First we 
need a definition. 

DEFINITION 1.3.4. Let B1> B2 be unlabelled behavioural presentations. Define B1 t; B2 <=> 0 1 t; O2 
& P 1 ~ P 2· Of course, t; is reflexive, asymmetrical and transitive. 

REMARK 1.3.5 

(1) Let B be an unlabelled behavioural presentation, then B ~ A(rJ...B »; 
(2) Let S be an event structure then S = l:(A(S ». 

o 
Let ES denote the class of all event structures. Let BP denote the class of all unlabelled 

behavioural presentations and let CBP denote the class of all unlabelled behavioural presentations of 
the fonn A(S) for SeES. We may first observe that A is a bijection between ES and CBP. For, it is 
certainly onto, by definition, while if A(S 1) = A(S ~ then by 1.3.5 (2), 

S 1 = l:(A(S 1» = l:(A(S~) = S 2 

Furthennore, 1: restricted to CBP is the inverse to A. That S = l:(A(S» is given in 1.3.5 (2). If 
B e CBP, then B = A(S), some SeES, and so 

A(l:(B» = A(l:(A(S») = A(S) = B 

Therefore, hybrid event structures correspond precisely to behavioural presentations belonging to the 
class CBP. Standard event structures (in which the ~ relation is a partial order) correspond precisely to 
the asynchronous behavioural presentations belonging to the class CBP. 

There still remain a number of questions, notably, what are the elements of CBP like and how 
are they related to those of BP? We note that A 01: determines a map from BP to CBP; what is the 
relationship between B e BP and A(rJ..B »7 Let us first introduce some notation. 

DEFINITION 1.3.6. Suppose B e BP. Define B = A(rJ..B ». 
REMARK 1.3.7. 

(1) B e CBP <=> B = B; 
(2) VB e CBP: B = B. 

DEFINITION 1.3.8. (Coherent Posets) Let (D , ~ be a poseL 

x, y e D are compatible <==> the set (x, y) possesses a least upper bound 

X t: D is pairwise compatible <=> every x, y e X are compatible. 

(D , ~ is coherent <=> every pairwise compatible subset of D has a least upper bound. 

o 

THEOREM 1.3.9. [4] Suppose S is an event structure, then (P (S), G is prime algebraic and coherent, 
with as primes the elements J.. 0, each 0 eO. 
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o 
It follows that the elements of CBP are prime algebraic and coherenL This property turns out to 

characterise them. 

PROPOSITION 1.3.10. Let B = (0, P) be an unlabelled behavioural presentation, then B e CBP ~ 
(P • ~) is left closed and coherenL 

o 
We have now identified event structures as corresponding precisely to those behavioural presenta­

tions which are left-closed and coherent. We end this section by describing the relationship between 
behavioural presentations B and ii. 
PROPOSITION 1.3.11. Suppose B is a behavioural presentation, then ii is the smallest left-closed. 
coherent behavioural presentation containing B. That is, if B' is left closed and coherent. then 
B C B' ~ ii s;;; B'. We shall call if the closure of B . If B = if (equivalently, by 1.3.7 (I), B e CBP), 
then we shall say that B is closed. 

o 
We now turn to a second version of the idea of event structure. This is taken from [1]. in which 

Winskel is concerned with providing behavioural semantics for algebraic languages such as CCS. First, 
we need to following notion. 

Let E be a set and let F ~ ~. Suppose X ~ F, then X is compatIble in F - and we write X tF -
~ 3 y e F 'r/ x eX: x s;;; y. If x. y e F, then we write x tF y for (x. y) tF. 
DEFINITION 1.3.12. An event structure in the sense of [1] (hereafter just 'event structure' providing 
there is no possibility of confusion) is a pair S = (E, F) where E is a set of events and F !;;; 2£ is a set 
of configurations, satisfying. 

(1) F is coherent: if X ~ F is pairwise compatible, then U x !:: F; 
JCeX 

(2) F is stable: 'r/ X ~ F: X ~ 0 & X tF ~ (') X ~ F; 
JCeX 

(3) F is coincidence free: 
'r/ x e F'r/ e,' ex: e ~ e' => 3y !:: x: (e e y & e' 4 y) or (e' e y & e 4 y); 

(4) F isfinitary: 'r/ x e F 'r/ e e x 3 y !:: x: e e y & Iy 1 < 00. 

Furthennore, if E = UF, then S isfu/I. 

Thus, an event structure is rather like an unlabelled behavioural presentation. Indeed, full event 
structures are unlabelled behavioural presentations (though not all unlabelled behavioural presentations 
satisfy all the conditions of definition 1.3.12). However, there is a great deal of difference between the 
ways in which behavioural presentations and event structures are to be understood in defining system 
behaviour. 

Technically, this difference manifests itself in the way time-ordering of events is defined. 

DEFINITION 1.3.13. Let S = (E, F) be an event structure and let x e F. Define e ~JC e' c::::> 'r/ 
y E F: y ~ x & e' e y =>'e e y. 

~JC is clearly reflexive and transitive, while condition 1.3.12 (3) ensures that it is asymmetrical. 
Thus (x, ~JC) is a partial order for each x e F. 

~JC is defined locally on the configurations of S. as opposed to our relation ~ which is defined 
globally for a behavioural presentation. It is possible that el ~JC e2 for some x e F,while .., el S, e2 
for some y e F. 

Let us illustrate this with an example taken from [1]. Let S = (E, F), where 

E = (0, 1.2) 
F = (0, (I). (2), {I, O}, (2,0)} 

S is an unlabelled behavioural presentation in which 1 co 0, 2 co 0 and 1 # 2. 



10 1. Behavioural PresenJations 

Regarded as an event structure, however, we have 1 ~(I. 0) 0 and 2 ~(2. 0) O. Furthennore, 1 and 2 
are in conflict - they never appear in the same configuration. So the event structure descn1>es a system 
in which either 1 or 2 occur, after which an 0 occurs. However, the two Os are distinct In fact, in the 
terminology of chapter 2, the elements of E stand revealed as events rather than occurrences. 

S considered as a behavioural presentation does not represent the same system as S regarded as 
an event structure. It is relatively easy to see how we could represent S by a behavioural presentation. 
Set 

o = {Oo. 0' 0. 01' 02}, 
P = {0, {od, {02}, {Oh 0o}, {oz, 0' o}}, 
E = {O, I, 2} and 
A(OI) = I, A(Oz) = 2, A(oO> = A(o' 0) = o. 
As we shall see, any event structure may be represented by a behavioural presentation, in the sense of 
the following definition. 

DEFINITION 1.3.17. Suppose S = (E, F) is an event structure and B' is a behavioural presentation, 
then B' will be said to represent S ~ there exists a bijection n: F ~ P' such that: 

(1) "x, Y E F: x c; Y ~ n(x) !:; n(y); 

(2) E' = E; 

(3) For each x E F, A(1t(x» = x and the restriction of A to n(x) is a bijection satisfying 

"01. Oz E 1t(x): 01 ~ 02 ~ A(OI) ~z A(oz). 

Thus, B' represents S providing there is a correspondence between the points of B' and the 
configurations of S such that corresponding points and configurations describe the same partial orders. 

We would like to know whether any event structure may be represented by a behavioural presen­
tation - that is, whether the class of behavioural presentations contains that of event structures in any 
sense. To show that this is indeed the case, we shall give a construction that turns event structures into 
behavioural presentations. 

The discussion leading to the· statement of theorem 3.23 suggests that if S is prime algebraic, then 
we may construct the points of a behavioural presentation from the complete primes of S. S is indeed 
prime algebraic, as the next result shows. 

THEOREM 1.3.15. [1] Suppose S = (E, F) is an event structure, then (F, Q is prime algebraic and 
coherent The complete primes of S are the elements J.z e, where 

J.z e = {e' E x I e' ~z e} 

Write Pr(S) = {J.z e I x E F& e EX}. 

o 
Since coherence entails consistent completeness - any set which is bounded above is easily seen 

to be pairwise consistent - we may use theorem 1.3.15 and theorem 1.2.19 to construct a behavioural 
presentation from S. Recall that in the construction of theorem 1.2.19, occurre!1ces are constructed from 
the primes and points are the primes below given members of - in this case F. 

DEFINITION 1.3.16. Let S = (E, F) be an event structure. Define Bs = (Os. Ps, Es, As), where 

(1) Os = Pr (S); 

(2) Ps = {pz I x E F}, wherepz = {J.z e lee x}; 

(3) Es = E 

(4) As: Os ~ Es is defined A(J.z e) = e. 

PROPOSITION 1.3.17. Suppose S = (E, F) is an event structure, then Bs is a behavioural presentation 
and B s represents S via the map 1ts defined by 1ts (x) = pz . 

o 
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Not all behavioural presentations represent event structures. Let us suppose that B represents 
S = (E, F) via a function n. What can we conclude about B 7 

Firstly, n establishes a poset isomorphism between (P. c) and (F, Q. Hence, by theorem 1.3.18, 
(P , ~) is prime algebraic and coherent It follows, by theorem 1.3.10 that 

• B is closed. 

Secondly. we note that (3) of 1.3.15 entails that S contains no non-trivial simultaneity. This is true of B 
also. 

• B is asynchronous. 

Next, we note that according to the finitary condition, 1.3.15 (4), each event of S belongs to a finite set 
Let us say that B is prime-finitary ~ '" 0 EO: I J, 0 I < 00. 

• B is prime-finitary. 

The final peculiarity of behavioural presentations which represent event structures is to do with 
labelling. We note that n is a bijection and that A.(n(x» = x, so that it follows that the sets 'A.(p) be all 
distinct. We also note that 'A. must be injective on each p. There is one final property, which is not as 
easily motivated, that is, that 

v p ,p' E P '" X ~ p: I..(X) = 'A.(p') ::) X = p' [3] 

A labelling function 'A. having these three properties - namely that the sets A(p) are all distinct, that 'A. is 
injective on each p and that [3] holds - will be called W-Iabelled. 

• B is W -labelled. 

We shall say that B is Winskellian ~ B is closed, B is asynchronous, B is prime-finitary and B 
is W-labeUed .. 

THEOREM 1.3.18 B is Winskellian C=::) there exists an event structure S such that B represents S. 
Furthermore, S is full ~ 'A. is surjective. 

o 
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2. Trace and Vector Languages 

2.1. Basic Definitions and Properties 

Trace languages were introduced by A. Mazurkiewicz in [5] to give a firing-sequence-type semantics to 
Petri Nets. in which concurrency could be represented. Technically, a trace language is a subset of a 
semi-commutative monoid, that is to say, a monoid generated by some set A subject to relations of the 
form a.b = b.a. for certain pairs a, b EA. (Of course, if this holds for all pairs, then the monoid will 
be commutative). The idea is that if a.b = b.a. then the trace a.b represents a behaviour in which a 
and b have happened, but not in that order - or in any order. Their occurrences are concurrent 

Trace languages thus generalise string languages - which provide one means for describing 
sequential behaviour (although an imperfect one) - by providing a language theoretic means for 
representing concurrent behaviour (though not all concurrent behaviour - we shall see how expressive 
they are later). 

They also provide the vital like between automata and behavioural presentations. Automata 
accept languages - and we can generalise them to accept trace languages - and trace languages describe 
behaviour - so we should be able to map an appropriate type of trace language to an appropriate type of 
behavioural presentation. 

DEFINITION 2.1.1. (Traces and Trace Languages) [5]) Let A be a set and let l be an independence 
relation on A. We define a relation ~(1) on A * by: . . 

x == \(1) Y ~ 3 u, V E A· 3 a. b E A: x = u.a.b.v & y = u.b.a.v & a l b 

Let ~ be the reflexive, transitive closure of ~(I). By definition. ~ is an equivalence relation on A·. We 
denote the equivalence class of x E A by <x>\. 

Let A\· = (<x>\ I x E A· J. A\· is the set of traces of A with independence relation l. Any subset L 
of A\· is called a trace language. 

PROPOSITION 2.1.2. Suppose l is an independence relation on a set S ,then 

(1) A\· is a monoid with respect to a composition defined by <X>\.<y>\ = <x.y>\. The identity of 
the monoid is <0:>\. 

(2) A\* is a partial order with bottom <.0>\ with respect to the relation ~ defined by 

<x>\ ~ <y>\ ~ 3 Z E A*: <X.Z>\ = <y>\ 

o 
We shall now describe a representation of trace languages using vectors of strings. These were 

first appeared in [6] as an asynchronous semantics for path expressions. The intuition behind them is 
that there is a collection of sets of events. a(i), i E I such that any two elements a, b E A = U a(i) 

i E I 
may never occur concurrently. Thus, any behaviour of the system determines a set of sequences 
Xi E a(i)* describing the order in which occurrences of elements from a(i) have taken place during 
that behaviour. The behaviour may be described by the vector of strings whose i corrdinate is Xi. Let us 
set up the machinery. 

DEFINITION 2.1.3. (Indexed Covers) An indexed cover for a set A, is a map a: I ~ e (A) such that 
U a(i) =A 
i E I 

LEMMA 2.1.4. ([7]). Every indexed cover a determines an independence relation \u by 

a \u b ~ ViE I:...., {a, b} ~ a(i) 

Conversely. if l is an independence relation, then there exists a indexed cover a such that \u = l. 
o 

From lemma 2.1.4, we see that an indexed cover a of A determines a trace monoid Alu•• a also 
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determines a set of string-vectors and we have noted that these may be concatenated together. It tran­
spires that vectors form a monoid, which we shall call Aa·, under this concatenation. Theorem 2.1.14 
explains the connection between the two. First, we need some definitions. 

DEFINITION 2.1.5. (a-Vectors) An a-vector is a mapping x: 1 -+ A· such that 

Vie I: x{;) E a(;). 

!la is defined to be the vector v satisfying V; El: v(;) = Q. 

If I = (I, .... n ), then we shall shall sometimes write a-vectors x in the form (x 10 .... XII)' where for 
each i, x{;) = Xi. 

We shall denote the set of all a-vectors by Ma. We may define a componentwise concatenation 
and ordering on Ma as follows. 

DEFINITION 2.1.6. (Concatenation and Ordering of a-vectors) Let x, y E Ma, then: 

(I) x.y is defined to be the a-vector z such that Vie I: z(i) = x{i).y{i); 

(2) x <5: y ~ Vie I: x(i) <5: y{i). 

REMARK 2.1.7. Suppose that a is an indexed cover, then: 

(1) Ma is a monoid with identity !la; 

(2) Ma is a poset w.r.L <5:, with bottom Oa. 

A particular submonoid of Ma is of interest to us, namely that generated by the vectors 
corresponding to individual actions. 

DEFINITION 2.1.8. Let a EA, then Ba is the a-vector such that 

{
a if a E a(i) 

aa{i) = Q otherwise 

Define A a = (Ba r a EA) and let Aa· denote the submonoid of Ma generated by Aa. 

The most important elementary fact about Aa· is that it has the same commutativity as A\·, 
where 1 = la. 

LEMMA 2.1.9. Suppose a, b EA, then aa.ba = ba.Ba ~ a la b or a = b. 

o 
It will follow from lemma 2.1.9 that A \. is isomorphic to A a·. This is the main point of introducing 
the vectors, after all; they are 'concrete' representations of traces. 

We shall need to argue by induction on the size of a vector. Intuitively, each vector has a 
'length', namely the number of elements of Aa that go to make it up. Let us make this precise. First, if 
a E A and X E A·, then define #a{x) to be the number of a's occurring in x. Formally, #a(Q) = 0 
and 

#a{X) = {~a<y) + 1 ~; : ~y 
#a<Y) if X = b.y & a * b . 

If a EA, X E Aa·, then Vi, j E I: a E a{i) n a(j) ~ #a{x(i» = #a{x(j», so we may define #a{x) 
to be #a{x(i», for any i E 1 such that a E a(i), and to be 0 if no such i exists. Finally, define 
Inth (x) = L #a (x). The following are easy consequences of the definition. 

aEA 

REMARK 2.1.9. (Properties of Inth) Suppose a EA, x, y E Aa·, then 

(I) Inth(x) = 0 ~ x = Oa; 
(2) Inth {aa> = 1; 

(3) Inth (x.y) = Inth (x) + lnth (y). 

o 
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We shall find it convenient to extend the notion of independence from individual actions to vec­
tors. 

DEFINITION 2.1.11. (Independence of Vectors) Let x. y E Aa"', then x and y are independent, and we 
write x inda y ~ 

V; El: x(;) > n ~ y(;) = n 

The following are easy consequences of the definition. 

REMARK 2.1.12. (Properties of indJ Suppose a, b EA, x. ye Aa"'. then 

(1) x inda y ~ y inda X; 

(2) aa inda ba ~ a 1.a b; 

(3) x inda y ~ x.y = y:x.. 

(4) x.y inda Z ~ x inda Z & y inda z. 

Fmally. we introduce a 'left-cancellation' operator. 

o 

PROPOSITION 2.1.13. (Left-cancellation) If x, y E Aa'" with X S y, then there exists a unique 
Z E Aa'" such that X.Z = y. We denote this vector by y/x. Furthennore: 

V; El: (y/x)(i) = y(i )lx(i) 

where fo~ x • YEA with x S y , Y Ix is defined to lx: the unique z such that X.z = Y • 

o 
THEOREM 2.1.14. (Vector Representation of Traces) Suppose 1.a = t, then the mapping cIIa: A\ --+ Aa 
defined by cIIa(<a>J = 8a extends to a unique mapping 'a'" :A\'" --+ Aa'" which is both a poset and 
monoid isomorphism. 

o 
Let us now turn to order theoretic properties of Aa"'. We begin by considering greatest lower 

upper bounds. First, if X ~ Aa'" is non empty, define 

x:S;X ~VYE X:xSyandX SX~VYE X:ySx 

and if x :s; X define X Ix = (y/x lye X). 

It is possible to show that if alo ... , all E Aa'" such that al S X and 8;+1 S X/(al ... a;) and 
lub(X/(al ... all) = n, then lub(X) = 81 ... all' The proof involves an induction on 
lnlh (X) = min «(lnth (x) I x E X n. The induction step is not quite as striaghtforward as it looks at first 
and uses the following lemma. which we include for completeness. 

LEMMA 2.1.15. Suppose y, Z E Aa~ and a E A such that 8 S z, then 

(1) y :s; Z ~ (a $ y ~ a ind y); 

(2) a ind y ~ (y S Z ~ Y S z/a). 

o 
Hence: 

PROPOSITION 2.1.16. (Existence of gibs) Let X t: Aa"', then if X :F- 0, then gib (X) exists. 

o 
COROLLARY 2.1.17. Aa'" is consistently complete. 

o 
By a standard result in the theory of partial orders, if x:s; y for some y, then 

lub(X) = glb«( Y E Aa'" I X S yn. Thus. we assured in certain circumstances of the existence of least 
upper bounds. Let us, now look at ways to compute them. First, some notation. We shall write x u y 
for lub«(x, y}) and x n y for gib «(x, yn. 
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PROPOsmON 2.1.18. (Existence of lubs) Let x, y e Aa·, then x u y exists <=> x'ind y', where 
x' = x/(x (') y) and y' = y/(x (') y). Furthermore, 

x u y = (x (') y).x'.y' = x.y' = y.x' [4] 

o 
The proof of proposition 2.1.18 depends on the facts that xlz (') y/z = (x (') y)/z, X/Z u y/z = (x u y)/z, 
and on the following lemma. 

LEMMA 2.1.19. Suppose x, y, z e Aa· with x, y ~ z, then x ind y <=> x n y = n. 
o 

It follows from equation [4] that if x u y is defined, then for each i, (x u y)(i) = xCi) u y(i). 
This turns out to hold generally, as we see in the next lemma, and shows one advantage of vectors over 
traces: lubs may be calculated in a straightforward manner. 

LEMMA 2.1.20. Let X t:; Aa· , then lub (X) exists and equals x <=> 

Vi e I: x(i) = lub({y(i)ly eX» 

o 
Note that the analogous statement for greatest lower bounds is not true in general. For example, 

the coordinatewise gib of (a.b, b.d) and (a.b, c.b.d) is (a.b, 0), but 
(a.b, b.d) (') (a.b, c.h.d) = (a, Q). 

Before we enter the next stage, the examination of prime aIgebraicity, we present the following 
useful result 

LEMMA 2.1.21. (Factorisation Lemma) Suppose that x, y, z e Aa·, then 

x S y.z ~ 3 u, V e Aa·: U.V = x & U ~ Y & V ~ z & v ind y/u. 

Consequently, y.z = x.(y/u).(z/v). 

o 
We now wish to show that left-closed vector languages are prime algebraic and consistently com­

plete. Obviously, it would be a great help if we could say what the complete primes were. We can get a 
clue about this by considering what the complete primes of behavioural presentations and string 
languages are. The former, you will remember, are points J, 0, where 0 eO, that is, points which are 
preceded by a unique final simultaneity set [0 ]=. Now, we don't have any simultaneity in vector or 
bace languages, so that it is a question of behaviours with a unique final action. This prompts the fol­
lowing definition. A prime in a vector with a unique last action. 

DEFINITION 2.1.22. (Primes) We define the set of primes of Aa· , written Pr (A a·) as the set of all 
vectors x such that 

Vy'.y"e Aa* "la', a" e A:y'.a'=x=y".a"~y'=y"& a'=a' -; 
If xeA a• then define Pr(x)={yePr(Aa·)ly~x). If Lt:;A a·, then define 
Pr(L) = Pr(Aa·) n L. 

Before we explain why the elements of Pr(A a·) are the complete primes of Aa·, we give a use­
ful construction, which, among other things, allows the elements of Pr (x) to be computed. 

LEMMA 2.1.23. Suppose x e Aa· and a eA, then there exists a unique u ~ x such that a ind xlu 
and u.a e Pr (A a·). Define pr (x, a) = u.a. 

Consequently, Pr (x) = (pr(v, a) I v.a ~ x}. 

o 
Essentially, the proof that the elements of Pr (A a·) are prime is by induction. If lub (X) exists, then X 
must be finite, by 2.1.17, and we prove u ~ lub(X) ~ u ~ x, some x e X by induction on IX I using 
the following lemma. 
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LEMMA 2.1.24. Suppose U E Pr(A a·) and Zh Z2 E Aa· then U S ZI U Z2 ~ uS ZI or uS Z2' 

o 
COROLLARY 2.1.25. Each element of Pr(Aa·) is prime in (Aa·, S). 

o 
We next wish 10 show that the elements of Pr(A a·) are the only complete primes of Aa·. The 

key to this is 

'V x E Aa·: X = lub (Pr (x» [5] 

for we may then argue that if x is prime, then from x S lub (Pr (x» we may infer that x S u for some 
U E Pr(x). But uS x, by definition, and so x = u. Thus, x E Pr(A a·). [5] now allows us to conclude 
that (Aa·' S) is prime algebraic. We accordingly state: 

THEOREM 2.1.26. (Aa·, S) is prime algebraic and consistently complete, with Pr(Aa·) as its com­
plete primes. 

o 
Of course, we shall generally be concerned with subsets of Aa· rather than the whole monoid. 

We need the following notions. 

THEOREM 2.1.27. If L is left-closed in Aa· with respect 10 S, then (L, S) is prime algebraic and 
consistently complete. The primes of L are the elements of Pr (L) = Pr (A a·) f"'I L. 

o 

2.2. Linguistic Behavioural Presentations 

Theorem 2.1.27 gives us the authority 10 construct behavioural presentations from left-closed trace 
languages. We have indeed seen (in theorem 1.2.19) that any prime algebraic and consistently complete 
poset is isomorphic to some behavioural presentation, where the events of the presentation are in bijec­
tion with the complete primes of the poset. Furthermore, since each prime in 8 left closed trace 
language has 8 unique last element, we have a means of associating each prime with an event of the 
language. It is therefore fairly natural 10 make the following construction, which, as we shall see 
shortly, gives rise to an asynchronous discrete behavoural presentation. For the rest of this section, L 
denotes a left-closed subset of Aa· . 

DEFINITION 2.2.1. Define BL = (OL, PL , EL, At.) where: 

(1) OL = Pr(L); 

(2) PL = (Pr(x) I x EL}; 

(3) EL =A; 

(4) AL (x) = a, where a E A is unique with respect 10 x = Y.8, some y. 

If u E OL, then u E Pr(u). It follows that OL ~ U Pr (x) and so BL is a behavioural presenta­
SE L 

tion. Indeed 

PROPOSmON 2.2.2. BL is a discrete, asynchronous behavioural presentation. 

o 
Of course, we would like to know what sort of discrete, asynchronous behavioural presentations 

BL is. Is every discrete asynchronous behavioural presentation isomorphic 10 BL, some L? Unfor­
tunately, life isn't as simple as that; the independence relation la has some part in the construction of 
B L, and one would expect that this would manefest itself in the structure. In particular, one would ima­
gine that la determines which occurrences may be concurrent This is in fact the case. 

LEMMA 2.2.3. 'V Uh U2 E 0L: UI COL U2 ~ At.(UI) la At.(u~. 

o 
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So. la does have some relationship to the structure of BL ; two occurrences may be concurrent 
only if their labels are independent Is the converse true? Not necessarily. It is possible. for example. 
that AL (U1) la At. (u0. but that some third party gets in the way in the sense that 3 
u' E OL: (U1 < u' < U2 or U2 < u' < U1)' Let us pause to name such situations. in which tiresome 

creatures like u' are not present 

DEFINITION 2.2.4. Let B be a behavioural presentation and let 01.02 EO. We shall say that they 
are unseparated. and write 01 unsep 02. if 

-,01 # 02 & -,30" EO: (0< 0" < 0' OR 0' < 0" < 0) 

LEMMA 2.2.5. V Uh U2 E OL: U1 unsep U2 ~ AL (U1) la AL (u0 ~ Ul COL U2' 

o 
Lemmas 2.2.3 and 2.2.5 characterise behavioural presentations which derive from trace or vector 
languages as far as constraints on labellings are concerned. There is one further characteristic property 
we need to consider. 
DEFINITION 2.2.6. Let B be a behavioural presentation and suppose Ph P2 E p. then Pt and P2 are 
isomorphic. and we write PI == P2. if there exists a bijection ~: Pt ~ P2 such that 

(1) "101. 02 E PI: 01 ~ 02 <=> ~(01) ~ ~00 

(2) Vo EP1:A(O)=A(~0» 

B will be said to be A-reduced <=> V Ph P2 E P: PI ;: P2 ~ PI = P2' 

LEMMA 2.2.7. BL is A-reduced. 

This prompts the following definition 
o 

DEFINITION 2.2.8. (t-linguistic Behavioural Presentations) Let B be a behavioural presentation and t 
an independence relation on E. then B will be said to be t-linguistic <=> 

(1) B is discrete and asynchronous; 

(2) IfV<Jlt 02 E 0: 01 CO 02 ~ A(Ot) l A(oi); 

(3) VOlt 02 E 0: 01 unsep 02 ~ (l..(Ot) t A(00 ~ 01 CO 00; 

(4) B is A reduced. 

We thus have the following characterisation of behavioural presentations which derive from left­
closed trace languages. 

THEOREM 2.2.9. Suppose L is left-closed in Aa·. then BL is an t-linguistic behavioural presentation. 

Proo/By proposition 2.2.2 and lemmas 2.2.3. 2.2.5 and 2.2.7. 

o 
To complete the section. we explain how left-closed trace or vector languages are images of l­

linguistic behavioural presentations. 

Suppose B is discrete and asynchronous. and let pEP. Let p(P) be defined to be the set of 
strings of E* as follows. x E p(P) <=> there exist Oh .. , , Oil E 0 such that 

(I) x = A(OI) ... A(Oll); 

(2) P={0lt ... ,o,,}; 

(1) Vi. j: OJ < Oj ~ i < j. 
Thus. p(P) is the set of all sequential interleavings of p. 

PROPOSITION 2.2.10. If B is l-linguistic. then P{P) ~ E\* and L = p(P) isa left closed trace 
language. Furthermore, considered as a map p: P ~ L. P is a poset isomorphism. 

o 
Thus. one may move in both directions between models. Up to isomorphism. all information is 
preserved. 
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PROPOSITION 2.2.11. 

(1) Suppose B is an l-linguistic behavioural presentation, then B == B p(P). 

(2) Suppose L is left closed in A\*, then V x E L: p(Pr(x» = x. Consequently, p(PL> = L. 

o 
We have finally accummulaled all the material we need for the last main result of this chapter, 

which sums up the relationships that we have ascertained between trace/vector languages and 
behavioural presentations. First, let us say that B is linguistic (::::) B is l linguistic for some indepen­
dence relation l. A linguistic behavioural presentation could be l linguistic for several l. However, we 
note that p(P) does not, in fact, depend on the l in question, since p(P) = A(p(P» and both functions 
are defined independently from l. . 

TIIEOREM 2.2.12. (Representation Theorem) Let mp denote the class whose elements are all the == 
equivalence classes of inguistic behavioural presentations. Write UB D for the == class of B • 

Let LCTL denote the class of all left-closed trace languages. 

Then there exists a bijection p: IBP -+ LCTL such that p( UB D) = L <=> p(P) = L. 

o 

2.3. Infinite Trace and Vector Lanaguges 

In . section 1.3 we examined the relationships between behavioural presentations and events structures 
and discovered that event structures of the kind described in [4] and [1] correspond to behavioural 
presentations which are closed. In this chapter we extend the connection between discrete behavioural 
presentations and vector languages to deal with closures of discrete behavioural presentations. 

Such infinite traces or vectors are useful for the treaunent of liveness properties of systems [8]. 

Concepts of liveness and safety find their most elegant treaunent in temporal logic and some tem­
poral logics use models involving infinite sequences. The phrase 'eventually property P will hold', 
which is typical of liveness properties, may be formally interpreted as saying that in all maximal (and 
in some cases therefore infinite) behaviours, the property P holds at some poinL 

First, we shall examine the business of completing trace and vector languages. This is largely 
analogous to the case of string languages (see, for example [9]). In completing a string language, one 
adjoins to it its adherence, the set of limits of monotonics ascending chains. We shall do much the 
same with our asynchronous languages, except thaf we also need to add in lubs of finite sets of ele­
ments. (This is not necessary with string languages; if X ~ A* is a finite set and lub(X) exists, then 
lub(X) EX). 

We shall find it convenient to use vectors rather than traces because we shall be very much con­
cerned with order-theoretic properties and operations, which for the most part work coordinate-wise for 
vectors. This is simpler than using equivalence classes of infinite strings, where things can be messy. 

Let us set out the basic terminology for infinite string languages. 

DEFINITION 2.3.1. (Infinite Strings) Let A be a set. The set of infinite strings over A, denoted A 01 is 
the set of all functions x: fV+ -+ A, where fV+ denotes the set of all non-zero natural numbers. If 
x E A 0), define Inth(x) = 00, where 00 has its usual meaning. We define A 00 = A* u A 01. If x E A 01 

and i E ~, then we write Xi for x(i) and use the notation XIX2 ••• to represent x. 

We now extend the order relation on finite strings to elements of A-. 

DEFINITION 2.3.2. (Ordering A j Let x, YEA -, then we define 

x S Y <=> Inth(x) S Inth(y) & ViS lnth(x): Xi = Yi 

S is obviously a partial order on A -. If x, YEA * , then S has its usual meaning. The following 
theorem shows that (A -, S) belongs to a class of partial orders with which we are familiar. 
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THEOREM 2.3.3. (A -, ~ is prime algebraic and coherent poset.The complete primes of A- are the 
elements of A* --' {a}. 

o 
We shall now construct the vector equivalent of A -. To do this, we define mappings 

1t;: A * ~ a(i)* and a mapping 1ta: A * ~ Ma * such that for a eA, x, YEA * and i El, 

{
a if a e a(i) 

Xi(a) = a otherwise 1ti(X·Y) = 1ti(X).1ti(Y) 1ta(x)(i) = 1ti(x) 

It is possible to show that ~l(X) E A\*, for each x E Aa*. (This is at the heart of the proof of 
theorem 2.1.14). We shall construct infinite vectors by extending 1ta to a mapping~: A- ~ x 0.(0-. 

iel 

First we note that the functions 1ti: A* ~ a(i)* are all monotonic. Secondly, observe that if 
X ~ A* is pairwise compatible in A*, then 1ti(X) is pairwise compatible in a(i)*. We can use these 
two facts to define functions 1tt: A .. ~ 0.(0". Let x E A 00. By 2.3.3, 
Pr (x) = {u e A* - (a) I u Sx}. Pr(x) is a total order and is thus clearly pairwise compatible. 
Hence, Xi (Pr (x» is pairwise compatible. Since a(i r is coherent by theorem 2.3.3, it follows that 
lub(1ti(Pr(x») exists. Define . 

1t;-(x) = lub(1ti(Pr(x))). [6] 

Note that this definition entails that 1tt coincides with 1ti on A * . Another useful property of xt is the 
following. 

LEMMA 2.3.4. (Continuity of 1t;j 1tt is continuous, that is 

'" X ~ A 00: lub (X) E A- ~ 1tt(lub(X» = lub(1tt"{X» 

o 
We are now in a position to define infinite vectors. The ones that extend our vector monoids Aa*' 

will be defined to be the vector of 1tt projections of infinite strings. 

DEFINITION 2.3.5. (Infinite Vectors) Define M; to be the set of all functions x: 1 ~ U a(i)oo such 
i e I 

that for all i el, x(i) E a(i r. Define ~: A - ~ Mc;' by ~(x )(i) = xt(x). Finally, define 
A; = x.;'(A 00). 

Note that Aa* ~ A;. 

A; is the set of vectors that we shall use. Let us now investigate its order theoretic properties. 
FIrst, we define the order relation. 

DEFINITION 2.3.6. (Ordering A.;') Suppose x, YEA;. Define x S Y ~ Vie I: x(i) S y(O. 

Note that S on A; agrees with Son Aa*. 

For instance, a.boo S (a.b)OO in the example above. Since a.boo i' (a.b)OO, we have a.boo < (a.b)oo. 
This shows that in contrast with strings, 'infinite' behaviours need not be maximal. It also shows that in 
moving from non-interleaving to interleaving representations of behaviour, we lose information as to 
which infinite behaviours are maximal and which are not. 

As usual, we are interested in the existence of least upper bounds. Our first result shows that 
these always exist for sets which constitute monotonic increasing chains of vectors of finite length. 

LEMMA 2.3.7. Suppose (XII)" e Ji+ is a monotonic increasing chain in Aa*, then x = lub(x")1I e Ji+ 

exists in A; and Vie I: x(i) = lub(xll (i»1I e N'"' 

o 
Let us now elucidate the order structure of A;. We begin by showing that if 1 is countable, then 

A; is a complete partial order (cpo). For those few readers who have managed to escape exposure to 
denotational semantics, here are the pertinent definitions. 

DEFINITION 2.3.8. (Complete Partial Orders) Suppose (D, ~ is a poset and X ~ D, then D is 
directed ~ X i' 0 and V x, Y E X 3 EX: x S & Y S z. 
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(D , ~ is a complete partial order (cpo) <:::=> D has a bottom element and every directed X cD has a 
lub. 

Since directed sets are pairwise compatible, every coherent poset is a cpo. 

PROPOSITION 2.3.9. If I is countable, then A'; is a' cpo. 

o 
Obse~e that the hypothesis that I is countable cannot be dispensed with in general. However, if 

I is countable, A'; is not only a cpo; we shall show that it is coherent The key to the proof is the 
observation that if we take a pairwise compatible set and adjoin all least upper bounds of its finite sub­
sets, then the resulting set is directed and has the same lub. We call this construction 'finite lub clo­
sure'. 

DEFINITION 2.3.10. (Finite lub Closure) Suppose X E A';. Its finite lub closure, denoted ficl(X) is 
defined 

ficl(X) = {XE A'; 13Y eX: IYI <00& IUb(Xr=xr-- ------

It is clear that lub(X) exists <:::=> lub(ficl (X» exists and that in either case the two are equal. 

As promised, we have the following lemma, which will allow us to use proposition 2.3.9 to show 
that (A'; , ~ is coherent 

LEMMA 2.3.11. Suppose X c A'; is nonempty, then X is pairwise compatible ~ ficl (X) is directed. 

o 
It follows that if X c Aa. is pairwise Compatible, then ficl (X) is directed and therefore possesses a 

lub. by proposition 2.3.9. But lub(ficl(X» = /ub(X). Thus pairwise compauble sets have lubs, that is: 

COROLLARY 2.3.12. 

If I is countable, then A'; is coherent 

o 
By this time, the reader should be used to meeting coherence or consistent completeness in the 

company of another property. Sure enough, we have:-

PROPOSITION 2.3.13. Suppose I is countable, then A'; is prime algebraic. The complete primes are 
the elements of Pr(Aa*). 

o 
To sum up, from corollary 2.3.12 and proposition 2.3.13, we conclude that our vectors have the 

characteristic properties of closed behavioural presentations. Accordingly, we have the following gen­
eralisation of theorem 2.3.3. 

THEOREM 2.3.14. (Order Theoretic Properties of A';) 

Suppose I is countable, then A'; is prime algebraic and coherent The complete primes are the ele­
ments of Pr (A a * ). 

o 
We now have the environment for closures of vector languages. 

DEFINITION 2.3.15. (moncl(L) and Oosure of Vector Languages) Suppose I is countable. Let .. 
L ~ A'; . Define moncl (L) to be the set of all U X,., where x,. ~ L is a monotonic ascending chain. 

,.=1 
(These lubs exist, since A'; is coherent and {X,. I n = I, ...• oo} is pairwise compauble). 

Let L ~ A.;'. Define the closure of L, L, to be the set moncl(ficl(L». 

The language L !;;: A a is closed <:::=> L = L. 
The closure of a language ought to be closed itself. 

PROPOSITION 2.3.16. Suppose I is countable and let LeA.;', then L = L. 
o 



Infinite Trace and Vector Lanaguges 21 

By definition, a closed language is the closure of some language. Actually, we can show that 
every closed language is the closure of a finite language. 

PROPOSmON 2.3.17. Suppose I is countable and let L be left closed in A;, then L is closed ~ 
L = Llu. , where Llu. = L '"' Aa •. 

o 
The next proposition shows that a left-closed and closed language has the characteristic property 

of an event structure or closed behavioural presentation. 

PROPOSmON 2.3.18. Suppose I is countable and let L be left closed in Aa·, then L is prime alge­
braic and coherent The complete primes are the elements of Pr{L) = Pr {Aa .) r. L. 

o 
Given that a closed, left-closed L is prime algebraic and coherent (and hence consistently com­

plete), it ought, by now, 10 be almost a reflex action 10 construct a behavioural presentation from iL The 
construction is quite straightforward. Suppose I is countable and let L be left closed in A;. We define 
BL = (OL, PL , EL, At,), where, as usual, 

OL = Pr{L),PL = (Pr{x) I XE L},EL =A andAt,{x.a)=a. 

Since U E Pr{u) for U E Pr{Aa·), we may conclude that BL satisfies condition (2) of definition 
1.1.1 and is hence a behavioural presentation. What else can we find out about it? 

One observation we may make about BL is that it has a discrete sub behavioural presentation. 
Indeed. let Llu. = L '"' Aa *. Llu. is easily seen 10 be left closed (since L is) and thus determines an 
la-linguistic behavioural presentation Bd.. Checking through the definitions, it may be seen that 

Built ~ BL • We can say more than this, however. Define L to befinite lub closed ~ L = ficl(L). 

PROPOSITION 2.3.19. Suppose I is countable and let L be left closed and finite lub closed in Aa·, 

then BL = BE' Consequently, if L' is closed and left closed in A; , then BL"iIt = BL,. 

o 
One question that naturally arises is whether we can generalise the Representation Theorem 

(2.2.17) to the infinite case. In view of proposition 2.3.19, we need behavioural presentations B such 
that the 'finite' part of B is l-linguistic - so that we have our mapping p - and so that B is the closure 
of its finite part - so that each element of B will be the lub of finite primes. We also need the 
hypothesis of I countable, so that the results we already have may be applied. Let us collect the 
definitions tOgether. 

DEFINITION 2.3.20. (COl-Linguistic Behavioural Presentations) Suppose B is a behavioural presenta­
tion. We define Blu. = (01;11, pIU., EIU., ")./u.), where 

pIU. = (p E P I Ip I < oo), Olu. = U p and Elu. = E and")./U. = ).,1°1• 

pE pI. 

Let l be an independence relation on E. We will say that l has countable dimension ~ l = la for some 
a: I ~ 2E such that II1 is countable. 

Let B be a behavioural presentation, then B will be said to be COl-linguistic ~ B = BIt.. and BtU. is 
an l-linguistic behavioural presentation B' such that l has countable dimension. From proposition 
3.2.19, we obtain: 

COROLLARY 2.3.21. Suppose 1 is countable and let L be closed and left closed in A;, then BL is 
rota- linguistic. 

o 
The easiest way 10 extend p from pIU. to P is to define p""(P) = lub (p{Pr (P))). Fortunately, the 

right lubs exist 

LEMMA 2.3.22. Let B be an la-linguistic behavioural presentation and suppose pe· P, then p(Pr (p » 
is pairwise compatible in E; . 
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o 
Lemma 2.3.22 and corollary 3.2.12 allow us 10 define p" as we wished and guarantee that it is a 

map p-: P -+ E;. 

We may now state a generalisation of proposition 22.10. 

PROPOSITION 2.3.23. Let B be an la-linguistic behavioural presentation with a having countable 
dimension, then the poset isomorphism p: P -+ L = p(P) ~ Ea· extends to a unique poset isomor­
phism pDO: P -+ L ~ E; . 

o 
We also have the following generalisation of proposition 2.2.11. 

PROPOSITION 2.3.24. Suppose I is countable and let L be closed and left closed in A;, then BL is 
rot- linguistic and pDO(PL ) = L. 

o 
Let us now tackle closures of trace languages. We shall approach the definition of ~ for infinite strings 
via a preordering relation. First. if x ,Y EA·, then we define x ~ Y ~ <x >\ ~ <y >\. 

We note that ~ is a preorder on A· which determines =,. in the sense that x =,. Y ~ x ~ Y and 
y ~ x. We shall extend ~ to A 00. It determines an equivalence relation, which extends =,., which we 
shall take as our infinite trace congruence. To reassure us that this decision is a reasonable one, we 
shall see that the representation of traces by vectors (theorem 2.1.14) generalises 10 the infinite case. Let 
us define the pre-order. 

DEFINITION 2.3.25. (~ on A j S~ppose x, YEA". Define x ~oo Y ~ 

'r/ U E A·: U ~ x=>3 \I E A·: \I ~ Y & u ~ \I 

We note that if x, YEA·, then x ~- Y ~ x ~ Y (take \I = u). From now on, we shall abbreviate 
~- to~. 

LEMMA 2.3.26. ~ is a preorder on A - and determines an equivalence relation =,. on A -. Let <x>\ 
denote the =,. class of x E A- and let At = {<x>\ I x E AOO}. We have A\· ~ A;. The elements of 
At will be called infinite traces. 

Also, =,. is a congruence for ~, that is, there is a partial order on At, which we shall also call ~, such 
that 'r/ x, YEA -: <x >\ ~ <y >\ ~ x ~ Y and this order agrees with that on A \ •. 

o 
The reader has probably guessed what Idnd of partial order ~ is - prime algebraic and coherent, 

like all the others in this chapter. The simplest way 10 prove this is establish a vector representation 
theorem like theorem 2.1.14. Then we can simply appeal 10 the order theoretic properties of A; that 
we know about already. 

Given <X>\ E At, we would like to be able 10 associate it with an element of A;. Which one? 
If x were a finite string, then we know the answer from theorem 2.1.14, it would be c!>a(<x>J = 1ta(x). 
Now, we just happen 10 have an extension of 1ra hanging around, namely X; (equation [6]). Accord­
ingly, we would like 10 define c!>;(<.x>J = X;(x). Of course, we need 10 show that c!>;(<x>J doesn't 
depend on the choice of x in <x>\. This will follow from lemma 2.3.27. 

LEMMA 2.3.27. Suppose a is a countable cover of A, then 

'r/ x, Y E ADO: x ~Y ~ X;(x) ~ X;(y) 

o 
Thus, x =,. Y ~ x ~ Y & Y ~ x ~ X;(x) ~X;(y) & X;(y) ~ X;(x) ~ X;(x) = X;(y). 

u u u 

Hence, our tentative definition of an embedding function does work. Not only that. but lemma 2.3.27 
shows that the function in question is a poset isomorphism. 

THEOREM 2.3.28. (Representation of Infinite Traces by Vectors) Suppose t = la, where a has count­
able dimension, then the map X;: A - -+ A; determines a bijective mapping c!>;: At -+ A; by 
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4>;(<x>J = n;(x). 4>; is a poset isomorphism which agrees with 4>a on Al·. 

o 
COROLLARY 2.3.29. Suppose l has countable dimension, then (At, ~ is prime algebraic and 
coherent The complete primes are the elements of Pr (A l·). 

o 
One advantage of traces over vectors is that there will be only one trace language corresponding 

to each == class of behavioural presentations. There are a plethora of vector languages for the same 
behavioural presentation - one for each appropriate (X. 

Suppose B is rol linguistic and let (X be countable, with l = la. We may construct a trace 
language (4);r1{pOO(p)). The mapping (4);r1 cp" thus maps behavioural presentations to trace 
languages. 

Of course, this particular mapping seems to depend on the choice of a. If (x' is another cover, 
then we can also construct a mapping of P into El'" (4);)-1 CPa.oo. There would be little point in this 
discussion, however, if the two mappings were different 

LEMMA 2.3.30. Suppose a. (x' are covers of countable dimension such that la = la, then 
($~Tlcp" = (4);r1cp;'. 

o 
Define Ploo = (4).;)-1 cp;, where (X is a cover of countable dimension such that l = la. By lemma 

2.3.30, Pt' is well defined. We may now state a generalisation of theorem 2.2.17. 

THEOREM 2.3.31. (Representation of ro Linguistic Behavioural Presentations by Traces) Let roLBP 
denote the class whose elements are all == equivalence classes of behavioural presentations which are 
lID-linguistic for some l. Write f[B D for the == class of B • 

Let roLCTL denote the class of all left-closed and closed trace languages with finite dimensional 
independence relations. 

Then there exists a bijection P-: roLBP ~ roLCTL such that p-(f[B D) = L (:::::> PlOO(P) = L. 

o 
We have concentrated on order theoretic properties of A; , mainly because they seem topredom­

inate over the monoid aspects when we go to the limit The coordinatewise definition would not work 
in general, so concatenation is a partial operation. We shall get at its definition via an extension of the 
left cancellation operator. 

DEFINITION 2.3.32. (Left Cancellation in A;) Suppose x, YEA" with x S y. If x = y, then we 
define y Ix = O. Otherwise x < y and so x is finite, say Inth (x) = n. Define (y Ix )(m) = y (m + n). 

If x, YEA; with x S y, then define y/x by 

\I i El: (y/x)(i) = y(i }/x(i) 

We observe, as a consequence of proposition 2.1.13, that the definition of I on A; agrees with 
the definition of I on A a·. 
THEOREM 2.3.40. Suppose I is countable, then 

\lx,y E A;:xSy~y/xE A;. 
o 

We may now treat concatentation. 

DEFINITION 2.3.41. (Concatenation in A;) Suppose x, YEA;, then x.y is defined and equal to z ~ 
Z E A; and x S z and y = zlx. 

By a coordinate wise argument, it may be shown that if x S y and y = ZI/X and y = z'JIx then 
Zl = Z2. Thus the operation is well-defined. We also note that this definition agrees with the definition 
of concatenation on Aa· . 
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We conclude this section remarking that concatenation is associative where defined. 

PROPOSITION 2.3.43. Suppose x, y,z E A;, then if either of x.(y.z), (x.y).z is defined, then so is the 
other, and they are equal. 

o 
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3. Generalised Automata 

3.1. Sequential Behavioural Presentations and Transition Systems 

In this chapter we examine three classes of automata, transition systems, asynchronous transition sys­
tems and hybrid transition systems. Each of these classes corresponds to a class of behavioural presenta­
tions, in the sense that to each automaton of a given class, there exists a behavioural presentation of the 
corresponding class which describes the 'behaviour' of the automaton from a given initial state. We 
begin with sequential systems. 

DEFINITION 3.1.1. (Transition Systems [10)) A transition system is a triple T = (Q, A, ~), where Q 
is a set of (global) states, A is a set of actions and ~ is a relation ~ ~ Q x A x Q called the transi­
tion relation. Write ql -+,. q2 for (qlo a, q~ E -+. 

A transition system describes, in a very low-level way, the actions that some system may perform 
and how the performance of these actions transforms the system's (global) internal state~ Formally, we 
have the notion of a set of execution sequences of the transition system from some initial state. 

DEFINITION 3.1.2. (Execution Sequences) Let T be a transition system and let q E Q. The set of exe­
cution sequences of T from q, denoted L (T, q), is defined to be 

L(I, q)= {x E A* I 3q' E Q: q -+lI: q'} 

where if a E A and x E A * , and q, q' E Q, then 

(1) q ~o. q 

(2) q ~%.a q' ~ 3 q" E Q: q -+% q" & q" -+,. q'. 

Define the set of states reachable from q E Q, denoted R (T, q), by 

R (I, q) = {q' E Q I 3 x E L (T, q): q -+lI: q'} 

Any behavioural presentation determines a transition system - the states of the system are the ele­
ments of P and transitions are steps, as given in definition 1.2.5. Formally, we have the following con­
struction. 

DEFINITION 3.1.3. (Transition Systems from Behavioural Presentations) Let B be any asynchronous 
behavioural presentation. Define TB = (QB , AB' ~B)' where QB = P, AB = E and 

PI ~B6 p2~3o E O:pd-o P2& A.(o)=e.S 

Of course, TB is a transition system. 

A given behavioural presentation may not have any steps at all. For example, the analogue system 
descnDed in example 1.1.3 is of this nature. However, this problem does not arise with discrete 
behavioural presentations. Indeed, from lemma 1.2.6 we may infer that any replete behavioural presen­
tation satisfying the DCC possesses steps. 

As we have observed, for a discrete, sequential behavioural presentation B, TB has its own 
behavioural semantics; from a given initial state, p, we may construct the language of execution 
sequences L (TB, p). B itself has an obvious 'initial state', namely 0, and B describes the behaviours 
possible to some system from that initial state. What, then, is the relationship between B and 
L(IB,0)1 

In one direction, it is relatively straightforward. Let p E B , then since B is discrete and sequen­
tial, p will be finite and totally ordered by <, so that p = {o 10 ... , o,,} for some n, with 01 < ... < 0". 
The sequence of events performed before this time point may be represented by· the string 
p(P) = ).,(01) ... A.(01l)' (If p = 0, then p(P) = n, the null string). 

5 Since B is asynchronous, if PI t-% P20 then X = {o J, some 0 eO. 
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PROPOSITION 3.1.4. Suppose B is a discrete sequential behavioural presentation then 

'rip e P: 0 -+B" P ~ X = p(P) 

and hence L(TB' 0) = pep). 

We shall find it useful 10 cite some additional properties of p. 

LEMMA 3.1.5. 

(1) 'rI PI' pz e P: PI S;;; pz ~ P(PI) ~ p(Pz}; 

(2) If, in addition p is injective then 'rI P .. pz e P: PI ~ pz <==> P(PI) ~ p(pz}. 

o 

o 
This establishes a relationship between B and L (TB, 0), but what kind of relationship is it? We 

may obtain the latter from the former, but not the former from the latter. In fact, behavioural presenta­
tions may not be distinguished simply by the languages associated with them. The problem is that the 
mapping p need not be injective because the transition system may possess a property akin to ambiguity 
in phrase structure grammars. 

This marks a limitation of formal languages as representatives of sequential behaviour. 

Initially, we shall consider the class of behavioural presentations for which such problems do not 
arise. This is precisely the class of behavioural presentations/systems for which a representation of 
behaviour by a string language is adequate. 

DEFINITION 3.1.7. (Unambiguity) A transition system T is unambiguous ~ 

'rIq,q .. q2 e Q \;la e A:q -+4 ql& q -+4 qz~ql=qz 

If B is any behavioural presentation, then B is unambiguous <==> 

'rI p, Ph pz e Q \;I 0 .. Oz eO: P rOt PI & P rOz 
pz & ).,(01) = )"(OZ) ~ PI = pz 

Clearly, if B is a discrete, sequential behavioural presentation, then B is unambiguous ~ TB is unam­
biguous. 

We also note (by a simple induction argument) that if T is an unambiguous transition system and 
qeQ,then 

'rI q, q .. qz eQ \;Ix e L(T, q): q -+" ql & q -+" qz ~ ql =q2 

so that each execution sequence x from q determines a unique final state. In particular, if B is unambi­
guous, then each x e L (TB, 0) determines a unique peP such that 0 -+" p. Since p(P) = x (by 
proposition 3.1.4), it follows that p is injective. We may thus appeal to lemma 3.1.5 to conclude that: 

PROPOSITION 3.1.8. Suppose that B is unambiguous, then the map p is an isomorphism of the posets 
(P , s;;;) and (P(P), ~ = (L (TB' 0), ~. 

o 
From this we may argue that an unambiguous behavioural presentation is determined up to iso­

morphism by an appropriate string language. (We still have to say what we mean by 'isomorphism', of 
course), and hence that if a transition system determines an unambiguous behavioural presentation, then 
that behavioural presentation is unique up to isomorphism. 

DEFINITION 3.1.9. (Isomorphisms) Let B .. B z be any behavioural presentations, then they are label 
iso11Wrphic, and we write B 1 er. B 2 if there exists bijective mappings 00: 0 1 -+ O2, 1t: PI -+ P z and 
e: El -+ E2 such that 

(1) 'rI 0 e PI: eo.l(o» = ~(ro(o »; 
(2) 'rip e PI: 1t(p)= {oo(o).1 0 e pl. 

If e is the identity function, then we shall just call Bland B z isomorphic and write B 1 = B z. Note, 
however, that this property includes the requirement that El = E z. 
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Two behavioural presentations are label isomorphic if they are identical except for the names of 
occurrences and their events. Two behavioural presentations are isomorphic if they are identical except 
for the names of occurrences. If n(PI) = P2, then PI and P2 describe exactly the same orderings of 
event occurrences. 

It is also clear that 

BI == B 2 :::) Vo l, 02 e PI: 01 -+1°2 (::::) ro{OI) -+2 ro(o~ 

BI == B2 :::) VOlt 02 e PI: 01 #102 (::::) ro(OI) #2 (i)(o~ 

From this, we may easily deduce that B I '" B 2 :::) pep I) = p(P~. In fact 

PROPOSITION 3.1.10. Suppose B I and B 2 are unambiguous discrete sequential behavioural presenta­
tions then pep I) = pep ~ (::::) B I '" B 2. 

o 
Proposition 3.1.10 tells us that if B is an unambiguous discrete sequential behavioural presenta­

tion and L (T, q) = L (TB' 0), then B is unique - up to isomorphism - among unambiguous discrete 
sequential behavioural presentations. For, if L (T, q) = L (TB" 0) for a second unambiguous discrete 
sequential behavioural presentation B', then by proposition 3.1.4, 
p(P) = L (TB, 0) = L (TB' , 0) = p{P') and so B == B' , by proposition 3.1.10. 

The question remain whether, given a transition system T and q E Q there actually exists a 
behavioural presentation B such that L (T, q) = L (TB, 0). Since the latter equals p(P), by 3.1.4, it all 
boils down to finding, for a given language L, a behavioural presentation B such that p(P) = L. Note 
that if L = L (T, q) then L must be left-closed in E* in the sense that 

V x E L Vy E E*: y ~x :::) y e L 

The following remark gives us the clue we need. 

REMARK 3.1.11. 

Suppose L is left-closed in E* , then (L, ~ is prime algebraic and consistently complete. The complete 
primes are the elements of L - {Cl}. 

o 
Referring back to section 1.2, we see that L determines an unlabelled behavioural presentation, 

with its primes as occurrences and sets Pr (x), x eL, as points. The labelling function is constructed to 
reflect the idea that primes have unique last elements. These label the occurrence corresponding to the 
prime. 

DEFINITION 3.1.12. Suppose L ~ E* is left closed in E*. Define BL by 

(1) PL = {Px I x EL}, wherepx = {u I a < u ~x}; 

(2) OL =L - {a}; 

(3) EL =E; 

(4) Letu e L - (a),thenu = u'.e, somee e E.DefineAt,(u)=e. 

Since x E Px for all x E O~, it follows that OL!: U Px and hence that BL is a behavioural 
PIt E PL 

presentation. The reader might care to refer back to 1.1.4 to see that the example given there is 
B (H. T) •• 

BL is the behavioural presentation we are loking for. 

PROPOsmON 3.1.13. Suppose L !: E* is left closed in E*, then BL is a discrete, unambiguous, 
sequential behavioural presentation and p(Pd = L. 

o 
There remains the question: what is the relationship between transition systems plus initial states 

that 'accept' the same behavioural presentations? The answer is that they are bisimilar. 
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DEFINITION 3.1.14. (Bisimulation) Suppose TI and T2 are transition systems and that ql E QI and 
q'}. E Q '}.. A strong bisimulation between (T It q I) and (T '}.. q i) is a relation R t: Q I X Q'}. such that 
qlR q'}.and 

'V (q'1t q'i) E R \:I q" I E Q I \:I e EEl: q'l -+- q" 1 ~ 3 q" '}. E Q '}.: q' '}. -+- q" '}. & q" IRq" 2 

'V (q'1t q'i) E R \:I q" 2 E Q2 \:I e E E 2: q' '}. -+- q" 2 ~ 3 q" I E Q I: q'l -+- q" I & q" 1 R q" '}. 

We shall say that (TI• ql) and (T'}.. qi) are strongly congruent and write (Th qt) - (T'}.. qi) ~ 
there exists a strong bisimulation R between (Tit q I) and (T 2t qi). 

Clearly, - is reflexive, symmetric and transitive. 

LEMMA 3.1.15 Suppose that TI and T'}. are transition systems and that ql E QI and q'}. E Q'}., then 

(I) (Tit ql)- (T2. qi) ~ L(T1t ql) = L(T'}., qi) 

(2) L (T It ql) = L (T 2. qi) ~ (Tit q I) - (T '}.. qi) if T I and T 2 are unambiguous. 

We may sum up our findings about unambiguous sequential systems as follows: 

o 

THEOREM 3.1.16 Let USB denote the class whose elements are all the == equivalence classes of unam­
biguous. sequential. discrete behavioural presentations. Write IlBB for the == class of B . 

Let UTS denote the class whose elements are all the - equivalence classes of unambiguous transition 
systems with initial states. Write Il(T, q)B for the - class of (T, q). 

Then there is a bijective mapping 

Beh u: UTS -+ USB 

such that BehuUI(T, q)D) = IlBB ~ p{P) = L(T, q). 

Furthermore. Behu(ff(T, q)D) = IlBB ~ (TB. 0) E Il(T, q)J ~ B == BLrr.q)' 

o 
Let us now turn to the general case. We have seen, in definition 3.1.3, that behavioural presenta­

tions determine transition systems. However, to obtain an isomorphic copy of the behavioural presenta­
tion back from the transition system via its language of execution sequences is not possible in general. 
The problem is that there may be an execution sequence which corresponds to more than one route 
through the transition system. 

This ambiguity is removed, however, if we include information about states. By attaching the 
name of the state to the name of the event, we remove the ambiguity. We therefore make the following 
construction. 

DEFINITION 3.1.17. Let T = (Q, A, -+) be a transition system. Define TOto be the transition system 
(Q 0, A 0, -+~, where 

(1) QO=Q; 

(2) A 0= {aq' I 3q E Q: q -+'" q'}; 

(3) -+0= {(q, aq', q') I q -+'" q'}. 

It is immediate that TO is unambiguous and that 

alql ... a"q" E L(To, q) ~ q -+"lql ... q,,_1 -+'".q,. in T 

Thus, L (T 0, q) contains the additional information about the route through the transition system taken 
by art execution sequence. This allows us to generalise our earlier construction. 

DEFINITION 3.1.18. Let T = (Q, A, -+) be a transition system and let q E Q. We define 
Bcr.q) = (Ocr.q), P rr. q). E rr. q), ~.q», where 

(1) Ocr. q) = L(T°, q) - {n}; 

(2) P cr. q) = (pz I x E L(To, q)}, where for all x E L(To, q), pz = (u E Ocr. q) I u ::s; x}; 



31. SequenJial Behavioural PresenlaJions and Transition Systems 29 

(3) E(T.q)=A; 

(4) Ao-. q)(u) = a if u = u'.a.q' for some q' E Q. 

LEMMA 3.1.19. B (T. q) is a discrete, sequential behavioural presentation. 

o 
If T happens to be unambiguous, then it may be shown that B rr. q) == Bur. q)' Thus, out new con­

struction coincides - up to isomorphism - with our construction in the unambiguous case, as it certainly 
should. 

DEFINITION 3.1.20. Let T be a transition system and let q E Q. Let B be a discrete, sequential 
behavioural presentation, then (T, q) will be said to accept B <:=) B == B rr. q)' 

We should expect that any sequential behavioural presentation should be accepted by at least one 
pair (T, q), namely the pair (TB, 0). 
PROPOSITION 3.1.21. Let B be a discrete, sequential behavioural presentation, then (TB, 0) accepts 
B. 

o 
To establish the generalisation of theorem 3.1.16, we need to know the circumstances under 

which two transition systems with initial state accept the same behavioural presentations. Alas, it turns 
out that strong congruence is not strong enough to distinguish between non-isomorphic behavioural 
presentations in some cases. 

At this point, it seems that there is a choice of positions. 

• Since the definition of isomorphism is clearly the 'natural' one, the notion of bisimulation is too 
weak to capture structural identity of system behaviour and we therefore need an alternative and 
stronger version. 

• The notion of isomorphism may be 'natural' from a purely formal point of view, but it is too 
strong. For example, it would distinguish between the behavioural presentations corresponding to 
the transition systems Tt and T 2 below. 

a .-+. a a 

whereas both of them represent a system which may only perform one action, a. 

We feel reluctant to arbitrate between these two positions and will therefore present the theory 
relating to both of them. The reader may then use whichever of the two he/she prefers. 

Let us deal with a relation between transition systems corresponding to strong congruence 
between behavioural presentations. 

DEFINITION 3.1.22. (Bisimulation of Behavioural Presentations) Suppose B I and B 2 are sequential 
behavioural presentations. A strong bisimulation between B t and B 2 is a relation R c; Pt X P 2 such 
that 0 R 0 and 

V(PhP~ ER Vp't E PtVe E Et:pt-+- p't ~3P'2E P2:P2-+- P'2& p't R P'2 

V(PhP~ ER Vp'2 E P2Ve E E2:P2-+- p'2~3p't E Pt:Pt-+- p't & p'IR P'2 

We shall say that B t and B 2 are strongly congruent and write B t - B 2 (::::::> there exists a strong 
bisimulation R between B t and B 2. 

Clearly, - is reflexive, symmetric and transitive. As expected: 

LEMMA 3.1.23. Suppose B, B' are discrete sequential behavioural presentations then 
(TB, 0) - (TB', 0) <:=) B - B' . 

o 
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THEOREM 3.1.24 

Let SB_ denote the class whose elements are all the - equivalence classes of sequential. discrete 
behavioural presentations. Write UB D- for the - class of B. 

Let TS_ denote the class whose elements are all the - equivalence classes of transition systems with 
initial states. Write U(T. q)D _ for the - class of (T. q). 

Then there is a bijective mapping BehT : TS_ ~ SB_ such that BehT(U(T. q)D-) = UB D-~ (T. q) 
accepts B. 

o 
Now let us turn to the matter of a relation between transition systems corresponding to isomor­

phism between behavioural presentations. 

First. for q E Q. define [q> = {aq' E A.Q I q ~a q'}. 

DEFINITION 3.1.25. Let Tlo T2 be transition systems and let ql E Ql and q2 E Q2. A strict 
equivalence on (Tit ql) and (T2• qz) is a relation R t: Ql X Q2 such that 

(1) ql R q2; 

(2) IT q'l R q' 2. then there exists a bijection f (1: [q' 1> ~ [q' 2> such that 

f q' 1 (aq" 1) = bq' 2 ::) a = b & q" IRq" 2 

We will say that (Tit ql) and (T2• qz) are strictly equivalent ~ there is a strict equivalence on 
(T 10 q I) and (T 2, q z). Write (T 10 q 1) == (T 20 q iJ. It is elementary that == is an equivalence relation on 
the class of all transition systems with initial state. 

Also observe that if T I• T2 are unambiguous. then (T1o ql) == (T 2. qz) ~ (TI• ql) - (T 2. qz). 

LEMMA 3.1.26. Suppose B. B' are discrete sequential behavioural presentations then 
(TB. 0) == (TB" 0) (:::) B == B' . 

o 
Finally. we have a result analogous to theorem 3.1.24 for strong equivalence. 

THEOREM 3.1.27 Let SB denote the class whose elements are all the == equivalence classes of sequen­
tial. discrete behavioural presentations. Write UB D for the == class of B . 

Let TS denote the class whose elements are all the E equivalence classes of transition systems with ini­
tial states. Write U(T. q)D for the == class of (T. q). 

Then there is a bijective mapping BehT: TS -+ SB such that Behy{U(T. q)D) = UBD ~ (T. q) accepts 
B. 

3.2. Asynchronous Transition Systems 

We would like to extend the material of section 3.1 to deal with non-sequential behavioural presenta­
tions. There are basically two additional phenomena to account for. namely concurrency and simul­
taneity. We shall tackle the former in this section and the entire6 class of discrete behavioural presenta­
tions in section 3.3. In fact. we shall only consider linguistic behavioural presentations in this section. 

Suppose B is t-linguistic. Definition 3.l.3 allows us to construct a transition system from it. TB. 
but all that transition systems accept are sequential behavioural presentations. What extra structure do 
we need? Obviously t has to come into it somewhere. Where precisely it comes in is shown by the 
next lemma. 

6 For technical reasons, we restrict ourselves 10 behavioural presentatioos which are not only = finite but in which all 
points are finite. 
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LEMMA 3.2.1. Suppose B is a discrete asynchronous behavioural presentation, then 

(1) TB is unambiguous; 

(2) If Pt, P2, P3 E P and eh e2 E E such that Pt -/1 P2 -+~'J. P3 and et t e2, then there exists 
P' 2 E P such that Pt -+~'J. P' 2 -+~1 P3' 

o 
This prompts the following definition. 

DEFINITION 3.2.2. (t Asynchronous Transition Systems) An t asynchronous transition system is qua­
druple C = (Q, A, -+, t) where 

(1) T(C) = (Q, A, -+) is an unambiguous transition system; 

(2) t is an independence relation; 

(3) For all q, qlt q2 E Q and a, b E A, if a tb, q-+G qt and qt -+b Q2, then there exists 
q't E Q such that q -+b q't and q't -+4 q2. 

From lemma 3.2.1, we deduce 

PROPOSmON 3.2.3. Let B be t linguistic and define CB = (Q, A , -+, t), where 
T(CB) = (Q, A, -+) = TB. Then CB is an t-asynchronous transition system. 

o 
The main thing about asynchronous transition systems is that they accept trace languages. This is 

the point of the 'lozenge rule'. ' 

LEMMA 3.2.4. Suppose C is t-asynchronous and let x, YEA· such that x ~ Y, then for all 
q. q' E Q, Q -+% q' ~ q -¥ q', (where we are considering execution sequences in T(C». 

o 
Thus, we may unambiguously define q -+ <J:>, q' ~ q -+% q' and obtain a trace language for C from 
each of its states. 

L(C, q) = (<x>, E A,. I 3 q' E Q: q -+ <:'>, q') 

REMARK. 3.2.5. L(C, q) is a left-closed trace language. 

o 
Since L (C , q) is left closed, we may construct a behavioural presentation B (C. 9) from it, following the 
recipe of definition 2.2.1. Now, the obvious question is, if C = CB, what is the relationship between B 
and B (C. 9)? 

LEMMA 3.2.6. Let B be an unlabelled, discrete, asynchronous behavioural presentation and let 
PEP, then x E pep) ~ 0 -+% P in the transition system T(C(HB ». 

o 
It follows from lemma 3.2.4 and lemma 3.2.6 that p(P) = L(CB , 0). But now we may appeal to 

proposition 2.2.11 10 deduce that: 

PROPOSITION 3.2.7. Suppose B is an t linguistic behavioural presentation then B == BL(C
B

• 0)' 

o 
DEFINITION 3.2.8. Let C be an t-asynchronous transition system and q E Q, then C accepts the 
behavioural presentation B ~ B == BL(c. q)' 

Proposition 3.2.7 assures us that (CB' 0) accepts B - so every t-linguistic behavioural presenta­
tion is accepted by some asynchronous transition system. Conversely, B (C. q) wiill be t-linguistic. Thus 
we have a relation between the two classes of ObjecL 

As in section 3.1, we would like to know the relationship between asynchronous transition sys­
tems which accept the same isomorphism class of behavioural presentations. Since the underlying tran­
sition systems don't suffer from ambiguity, we don't need two notions of equivalence. First, define 
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a llq b (::::) a l b & 3q'. q" E R(T(C). q): q' -+/1 q" -+b 

DEFINITION 3.2.9. Let Cl = (Q I' El. -+1' ll) and C 2 = (Q 2. E 2. -+2. l~ be asynchronous transition 
systems and suppose that ql E QI and q2 E Q2' A strict equivalence on (Ch ql) and (C2• q~ is a rela­
tion R ~ QI X Q2 such that 

(1) R is a strict equivalence between (T(C I). ql) and (T(C~. q~; 

(2) ll/q 1 = l'Jiq2; 
Write (C lt ql) == (C2• q~ to indicate that there exists a strict equivalence on (C lt ql) and (C2• q~. 

It is clear that == is an equivalence relation on the class of all asynchronous transition systems 
with initial state. 

The next lemma shows that our equivalence has the right consequences. 

LEMMA 3.2.10. Let Cl = (Q1o Elt -+10 ll) and C2 = (Q2. E 2• -+2. l~ be asynchronous transition sys­
tems and suppose that q I E Q I and q 2 E Q 2. then the following are equivalent. 

(1) (C 1o ql)==(C2.qi); 

(2) L(Chql)=L(C2.q~; 

(3) B(C 1.fl) = B(C".f')· 

.0 

We may now state the asynchronous analogue of theorems 3.1.16 and 3.1.24. 

THEOREM 3.2.11. LetLBP denote the class whose elements are all the == equivalence classes of l­
linguistic, discrete behavioural presentations. Write lIB 1 for the == class of B. 

Let ATS denote the class whose elements are all the == equivalence classes of l-asynchronous transition 
systems with initial states. Write II(C, q)1 for the == class of (C. q). 

Then there is a bijective mapping 

BehA: ATS -+ LBP 

such that Beh A(Jf(C. q )1) = lIB D ~ (C, q) accepts B . 

o 

3.3. Hybrid Transition Systems 

Finally, let us consider discrete behavioural presentations in general. How may we associate these with 
automata? We certainly have a transition structure. by lemma 1.2.6, but steps are generally of the form 
p r-x p', where X is a seL 

If X is finite. then we may generalise the construction of definition 3.1.3 by defining p -+6 p', 
where s is something that represents the events of which X is the set of occurrences together with their 
multiplicities. Following [11]. we take s to be a particular member of the free commutative semigroup 
on Et which we shall denote by S (E). 

For our purposes it is convenient to regard S(E) as the set of all functions s: E -+ N (the natural 
numbers)7 such that 

I {e EEl s (e) > O} I < 00 

with composition defined by 

(SI • s~(e) = sl(e) + s2(e) 

The elements of S(E) may be written as expressions of the form et"l ... et,."- which represents the 
function which sends ei to ni. i = 1 •...• m t and everything else to O. 

7 S(E) may also be regarded as the set of finite multisets (bags) over E. 
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The set X c;; 0 may now be mapped to ~(X), defined by 

J1{X)(e) = I{o EX I A(o)=e)1 

which counts the number of occurrences of each event associated with X. 
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Thus, if B is synchronous and discrete, and each of its = class is finite - which is the same thing 
as saying that all its points are finite - then we may associate it with a transition system (P , S (E), ~), 
where ~ is defined by: 

p ~s p' ~ 3 X l: 0: p r.x p' & ~(X) = s 

It may be shown that this class of automata do accept precisely the discrete synchronous 
behavioural presentations with finite points. We are interested in general discrete behavioural presenta­
tions, however. 

Since there will be simultaneity in the most general type of discrete behavioural presentation, we 
shall need something like the ~ function to record the events associated with a step. lbis means, unfor­
tunately, that we shall have to constrain ourselves to behavioural presentations with finite points. 

From now on, by discrete we mean a left closed behavioural presentation such that Ip I < 00 for 
eachp E P. 

But how do we introduce concurrency? It holds between occurrences rather than events, so we 
should be looking at them. Recall from proposition 1.1.8 that = is a congruence relation with respect to 
~ and # • From this, it is easy to show that if X , Y E Q 1=, then 

G 0 E X 3 0' E Y: 0 co 0') ~ (:</0 EX'" 0' E Y: 0 co 0') 

This means that we may unambiguously define an independence relation on 01=, which we shall call 
CO. by 

X co Y ~ 3 0 E X 30' E Y: 0 co 0' 

We now have all our ingredients. Define HB = (P, 01=, h co, E, ~). HB is an example of an hybrid 
transition system, as we now define. 

DEFINITION 3.3.1. (Hybrid Transition Systems) An hybrid transition system is sextuple 
H = (Q. A,~, l, E.~) where 

(1) C (H) = (Q, A. ~. l) is an l asynchronous transition system; 

(2) ~: A ~ S(E). 

PROPOSITION 3.3.2. Let B be a discrete behavioural presentation, then HB is an hybrid transition 
system. 

o 
How do hybrid transition systems accept behavioural· presentations? Given H and q E Q, how 

can we construct a behavioural presentation representing the behaviour of H from q? 

First, note that H determines an asynchronous transition system,· namely C (H) = (Q , A , ~, l) 
and so we may construct a behavioural presentation B (C(ll). q). Now B (C(ll). q) will be of the form 
(0. P, A, A). But each a E A is a transition in H and detemines an element of S (E), namely ~(a). 
Thus an occurrence 0 E 0 determines an element of SCE), namely ~(A.(o». Now, recall that S(E) was 
hauled in to represent = classes. We may obtain a behavioural presentation with a simultaneity class, 
appropriately labelled, for each 0 E 0 (C(H). q)' by replacing each 0 with a set £(0) such that 
Jl{£(o» = ~(A.(o». We have the following construction. 

DEFINITION 3.3.3. (£ Operator) 

Let B be a behavioural presentation of the form (0, P, S (E), ~). For 0 E 0 and X cO. we define 

(1) £(0)= ((o,e,i) 11 Si Sexp.~(o»); 

(2).2 £(X) = U £(0); 
DeX 
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and we define E(B) to be the quadruple (0, P, E ,1..), where 6 = E(O), P = (E(P) I pEP), E = E 
and ~(o, e, i) = e. 

PROPOSITION 3.3.4. Suppose H is an hybrid transition system and q E Q, then B W. 'I)' defined 
B W. 'I) = E(B (C(H). 'I» is a discrete behavioural presentation. 

o 
DEFINITION 3.3.5. We shall say that (H, q) accepts B <==> B == B W. 'I)' 

Now, if any initialised hybrid transition system accepts B, then (HB' 0) ought to (otherwise, we 
have been rather misleading with our notation). 

LEMMA 3.3.6. Suppose B is discrete, then HB is hybrid and (HB' 0) accepts B. 

o 
Thus, every initialised hybrid transition system accepts some discrete behavioural presentation and 
every discrete behavioural presentation is accepted by some initialised hybrid transition system. As in 
sections 3.1 and 3.2, we would like to discover the relationship between initialised hybrid transition sys­
tems which accept the same::: class of discrete behavioural presentation. 

DEFINITION 3.3.7. Let Hh H2 be hybrid transition systems and let ql E Ql and q2 E Q2. A strict 
equivalence on (H 10 q 1) and (H 2, q ~ is a relation R ~ Q 1 X Q 2 such that 

(1) ql R q2; 

(2) If q'l R q' 2, then there exists a bijection 1 (I: [q'l> -+ [q' 2> such that 

(2a) 1 ( 1 (aq" 1) = bq" 2 => J.11 (a) = J.12(b) & q" 1 R q" 2 

(2b) 1 ( 1 (aq" 1) = bq" 2 & 1 q" 1 (a' q'" 1) = b' qlll 2 => (a tl a' <==> b t2 b'). 

We will say that (H 10 q 1) and (H 2, q ~ are strictly equivalent <==> there is a strict equiValence on 
(Hh ql) and (H2' q~. Write (H h ql) == (H2' q~. 

It is clear that == is an equivalence relation on the class of all hybrid transition systems with initial 
state. The next result shows that we are on the right track. 

LEMMA 3.3.8. (Hh ql) == (H2, q~ ~ B(HI' '11) == B (fi2'fV' 

o 
From this, we may deduce the last of our classification results. 

THEOREM 3.3.9. Let DBP denote the class whose elements are all the == equivalence classes of 
discrete behavioural presentations. Write UB 0 for the == class of B . 

Let HTS denote the class whose elements are all the == equivalence classes of hybrid transition systems 
with initial states. Write II(C, q)O for the == class of (C, q). 

Then there is a bijective mapping 

Beh 11: HTS -+ DBP 

such that Beh 8(8(H, q )0) = lIB 0 <==> (H, q) accepts B. 

o 
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