
Part 1.

Part 2.

Part 3

Introduction to machines

1.1 Finite state machines
1.2 Recognizers
1.3 Machines with stacks
1.4 X-machines

1.5 E:·:amp les

3.5

Some applications

2.1 Hardwar'e description languages and
models
2.1.1 A 3-bit shift register
2.1.2 A general purpose language

2.2 A lexical analyzer
2.3 A communications protocol
2.4 A user interface

Some structure theorY

3.1 Machine models of parallelism
neural processing
3.1.1. Cellular automata
3.1. 2. Bus automata

3.2 Applications of bus automata
vision etc.

3.3 Minimization of machines
3.4 Decomposition of machines

A methodology for system design

and

to

Part 1 Introduction to machines

1.1. Finite state machines

This is the simplest model of a dynamic, discrete system. The use
of the 'Black-box' conc~pt with an input-output mechanism dependent on
the inter'nal state behaviour is a powerful mode 11 ing tool.

Let Q
1:
H

and let

be a finite set of internal states
be a finite set of input symbols
be a·finite set of output symbols

F : Q x 1: --) Q
and G: Q x 1: --) H

be two partial functions, respectively the next-state and output
functions.

_f}~;_H_-tr,-__ ..:.q._€_Q_:_(~_o-_~!

The interpretation is this:-

given a system in state qEQ, with an incoming inp~t vet then, at the
next time instant, the state changes to

F(q,cr)EQ
and an output

S(q,v)Ea is generated.

For notational convenience we replace F by a set
Fer: Q --) Q (crEZ)

of next-state functions and B by a set
Br: Q --) H (vEZ)

of individual output functions by the definition

qFr = P(9,0") }
! tt qEQ, vEl:

9B ... = B{9,er) }

This convention also treats the function notation as a postfix
operation.

A simple e:<ample

a
0 b

F
1 -

0 x
B

1 -

b
c c

b a
z

v

c

z

x

Q = {a,b,c}
l: = {O,1}
H = {x,y,z}

....... ,} .' .. :: '"

1/

.' "

The theot·v and application of machines insvstems eh9ineering

Let t* be the set of all finite strings of t,
- the empty string, and t+ = t- \ {-}.

We can define a sequential partial function for each qEQ as follows,

fq : t* --) H* by

fq (x) = the output produced when input string

xEl:* is app lied to the mach i ne in starting s ta teq. (If at some
stage there is no intermediate function defined the machine halts with a
partially read input.)

Formally we define: - fqC-) = - ,
fq(O') = qGO' h.Et+,O'Et
fqCxO')= fq(x)fqFM(O'))

where FM: Q --) Q is defined by extension of Fw under
composi tion.
Further details in [13J.

1.2 Recognizers

In some situations we are interested less in the transformation of
input strings into output strings than in the answering of a simple yes
no decision problem about the categorization of the set of strings into
two disjoint sets. Thus we may present strings to a machine in a
specified initial start state and consider only the final state of the
computation. Thus the previous e~ample could give rise to the
following recognizer;-

b Here a is a starting
state and c is a
terminal state
(indicated by
unadorned arrows).

This machine will recognize strings like 010, 01100, 01101010
etc., but not strings like 101, 011, 01101 etc.

The set of strings recognized by a machine is called its behaviour or
the language recognized by it.

Such machines are clearly useful in, for example, syntax checkers
but they are limi ted because they possess no explid t memory capab i 1i .ty.
We now consider this problem.

The theorv and application of machines in svstems engineering

1.3 Machines with stacks

Suppose that we add a storage device that can store strings of
symbols from some alphabet r , in such a way that at each state change,
depending on-the state, the input symbol and the contents of the store
either a new string of symbols can be placed on 'top' of the stack store
or some of the stack store contents can be removed. This device then
allows us to process more complex languages - the conte:<t-free
languages for example, and can deal with the problem of remembering, say
the number of left or right brackets that have featured in a string
being analyzed by a syntax checker.

e"H G" if !.
,

~

~cQ

I'
,..." -- "' -

x.e r I- ,,- l-

,~

(. The theorv and application of machines in systems engineering

1.4 X-machines

We start with the definition of the X-machine and show how this
definition relates to other concepts such as Tut'ing Machines and finite
state machines. Then we examine some elementary aspects of the theory
of X-machines. It should be remarked that although these machines were
introduced in 1974 ([4]) they have not received much attention.

let X be any non-empty set, henceforth referred to as the fundamental
data tvpe, and 2 a finite set of relations defined on X. Thus 2
consists of relations of the form 0: X -) X. If one prefers we
can regard each 0 as a function, which is possibly incompletely
specified, from the set X into the set P (X), the set of all subsets
of X, (also known as the power set of X).

Intuitively X represents the set of data to be processed and 0 are
the functions or relations that carry out the processing. In some cases
the data type X can represent internal archi te,ctural detai Is, such as
contents of registers etc. and it is in this way that the model can
assume its full generality.

Clearly we need to specify some relationship between the input and
output information of the overall system and the data type X, especially
when X contains information that is not directly involved with the
system input and output. This is done by specifying two sets, Y and Z,
to represent the input and output information respectively. In many
cases, as in much processing, these sets are free semi groups or subsets
of free semigroups (ie languages over some finite alphabet).

and

Two coding relations:
cc : Y -) X

a : X -) Z
describe how the input is coded up prior to processing by the machine,
and how the subsequently pt'ocessed data is then prepat'ed (or decoded)
into a suitable output format. Some examples will demonstrate how this
works in a few basic cases.

Finally we need to describe some suitable control structure that
will actually determine how the pt'ocessing is perfot'med. This structure
is very similar to the state transition graph of a finite state machine
and will appear familiar. However, this appearance masks a model of
considerable computational power since much of the similarity with
finite state machines is concerned with the control of the processing
and not with the ~ of processing that the machine performs.
Nevertheless, the similarities with finite state machines are extremely

useful since they allow us, at times, to apply techni9ues for the
analysis of machines that have proved to be tremendously successful.

The final ingredient is the state space of the machine, which
consists of a finite set, Q, of states and a function

F: Q x 2 -) P(Q)

called the state transition function.
For many purposes this state space can be described using

the elements of Q at the nodes (vertices) and for each
there is a labelled arc

which has
Q, 0 E 2

o
q ---) q.z

precisely if q.z E F(q, 0).

a gt'aph
q, q.z E

It is also necessary to identify a subset 1 £ Q of initial states
and a subset T £ Q of terminal states. An initial state will be
indicated in the state space by being the target of an unlabelled and
sOut'celess arrow, eg

whereas a
unlabelled

An example

final state
--) q ,
will be

and targetless arrow,
q --)

described by
thus

of a state space is now given.

The state space of an X-machine .

being the source of an

,~,

i

In the diagram states qz and q2 are initial states and states q4, q5 and

q6 are terminal states. This example is of a GQU-deterministic machine,

witness the two arrows leaving qz labelled with ~z. It is also

incomplete in the sense that no arrow labelled with ~z leaves state q2.

The formal definition of an X-machine is presented in the following

definition.

Definition. An X-machine is a 10-tuple :-

where
H = (X, 2, Q, F, Y, Z, a, a, I, T) ;

X, Y, Z are non-empty sets;
2 is a set of relations on X;
Q is a finite non-empty set;
F: Q x 2 -) P{Q) is a, possibly partial,

function;
a: Y -> X and a: X -) Z are relations;

I £ Q and T ~ Q are subsets.

Remark. The relations appearing. in the definition are often

functions or partial functions in many examples. The definition is

presented here for the record in its most general setting. The set peG)

denotes the power set (or set of subsets) of Q.

We call Y the input ~ and a the input relation. The set Z

is the output ~ and a is the output relation.

The process of computation that this machine performs can be

described by choosing an element y E Y from the input type and studying

how this element is processed.
First the input relation is applied to the element y to produce an

element or set of elements a(y) of X.
Next a path in the state space of the machine is selected that

starts from a state in I and ends in a state from T. There may, in a

non-deterministic or incomplete machine, be many or none. If a path is

selected it will determine a se9uence from 2- using the labels of the

arcs of the path in order. If the labels of the arcs are

~z, ~2' ,~"
then the word

~Zo~2o •••• o~n

defines a composite relation (or function) on the set (or type) X. (In

this notation we apply the relation ~z then ~2 and so on which is a

common practice in algebra but may seem unusual elsewhere!)

When this composite relation is appli~d to a(y) we obtain an element

or subset of X and this yields an element or subset of the output type Z

on applying a.
The result of the computation is thus

a((~zo •••• o~n)(a(y»).

If at any stage we find that the result of a partial computation

(~to ••• o~k)(a(y»

is the empty set for some kin then we will regard that computation as

halting and the output, if any, is obtained by applying a as before.

Input dala type maCIMe data ty~

Input
encoding

An X-machine computation

---, ... , ,
I \
I oC(y) t
\ I

... I
..... _-'"

x

... ... ,
\

I \

: 81" •• -nCcl'(y» 1
\ I
\ I
\ I

... " ... , .. ,
.... ---"

x

output~ln9

., ~ .••• " is the label of a successful path

./: X-X are relations
qo - start state q, - final state

1.5 Some examples of X-machines.
The most general model of computation so far investigated in any

detail is the Turing machine model and its equivalent theot'ies. There
is, however, a newcomer to the scene that is claimed to be mOt'e general,
namely the Quantum computer of Deutsch, We do not intend to enter
the controversy surrounding this new model and its relevance to computer
science at this stage, merely note its e:dstence. We will, howevet',
demonstt'ate that the Turing machine is just a special case of the X
machine defined above.

Before we examine the connections between X-machines and other
machines we need to introduce some terminology.

Let ~ be any non-empty set. Some relations will now be defined on the
set ~- of all finite sequences or words in ~.

For any ~ E ~ we define some fundamental relations :
L... : ~- --) ~ ..

(V x E ~*) xL... = ~x
-1

Lv . ~ .. --) ~ .. .
-1

(V x E ~ ..) xL ... = { Y E ~ .. vy = x }
R ~ .. --) ~-.

(V x E ~ ..) xR ... = XfT

-1

R" . ~ .. --) ~ .. .
-1

(V x E ~ ..) xR" = { Y E ~.. I yfT = X }

left . ~ ... x ~ .. -) 1:- x ~
(a~bJ1eft=

(reverse(tail(reverse(a))),head(reverse(a))*bJ
(The purpose of the last string processing function will'become

clearer when we consider a later example,essentially it transfers the
last symbol of the first word to the front of the second word. The

,~

standard functions reverse, head and tail are assumed to be defined
already as is concatenation, *.)

The Turing machine model. The essential features of a Turing'machine
consist of an alphabet t, a finite set of states Q and a finite set of
n-tuples (n=4 or 5) which describe the behaviour of the machine under
various circumstances. The set of 5-tuples that we will use here will be
elements of the form

(q, q~f e, a~, d)
where q, q~E Q ; a, el EtU fA} where A denotes a blank; and either' d
= L or d = R.
The interpretation of such a tuple is that if the machine is in state q
and the current symbol being scanned is a then the next state is ql, the
symbol e~ is printed on the tape instead of a and the read-write
head is moved 'left' if d = L and 'right' if d = R. Further details and
examples of Turing machines will be found in manyte:<ts on the theory of
computer science •

Added to this is a start state qo and a set T £ Q of terminal states.
The initial tape contains a string of characters from the set t* which
is input to the machine in the state qo. Processing consists of applying

9

10

a se9uence of appropriate tuples so that if at any stage the machine is
in state q and is reading the tape symbol 9 then any tuple of the form

(q, q',e, e', d) where q' e Q, e' et U {A},
d e {L, R} can be applied to yield the next state q', the symbol 9
replaced by the symbol 9' and the tape head moved either left or right.

If the tape head moves left then the processing takes a tape of the
form

[V1V2 •••• Vk'Vk~1 •••• Vn 1
with the head reading the symbol Vk and either produces a resultant
tape of the form

[~1~2 •••• Vk-1'~k'~k~1 •••• Vn 1
where Vk' is the new symbol printed on the tape after applying the tuple
or

or

For a right move the resultant tape is of the form
[V1V2 •••• Vk'~k~1'~k~2 •••• Vn 1
[V1V2 •••• Vk~1'Vk~2~ ••• Vn 1.

In some cases the tuple may involve the replacing of a symbol on the
tape by a blank.

In the context of an X-machine we first define the set X as
X = t- x t*

The set of states is Q and the initial and terminal states as in the
Turing machine case. For each tuple of the form

(q, v, q', v', L)
we insert an arrow from q to q' labelled by the relation

-1

Rr x Lr '

on X. For each tuple of the form
(q, v, q', v', R)

we insert an arrow from q to q' labelled by the relation.
-1 -1

o = (R r x 1)O(R r ' x 1)Oleft
etc. The definition of the input and output relations for the X-
machine are given next.

a , a : t* -) t* x t
(a)a = (A , a J

(a , b Ja = a
This interpretation is of a Turing machine that behaves as a function

on t-. If the machine halts during a computation this means that there
is no arrow leaving the current state which has, as a label, an
applicable relation. The result is then obtained by use of the decoding
relation. •
Finite state machines. The classical model of a finite state machine

can be represented as an X-machine in the following way.
Let Q be a finite state set, t a finite input set and Q a finite

output set then a finite state machine is a 9uintuple
A = (Q, t, 0, F, G)

where
F : Q x t -+-) Q

and
G : Q x t -+-) 0

are partial functions defining the next state and output functions.
The X-machine is defined as follows, The set X = 0* x t*, the set of

states is Q and the sets of final and initial states are also e9ual to

11

Q. The set of relations 2 are defined as follows. If q,q' E Q, fTE1:, e
E Q are such that F(q,fT) = q' and G(q,fT) = e then we insert an arrow
from state q to state q' labelled by the relation

-1

" = Re X L ...
The input and output codes are given by

« : 1:* --) X where «(a) = (A,a), A being the empty string;
and a : X --> Q* where a(a,b) = a.

If it is necessary to only carry out computations starting from a
given initial state we will define I to be the singleton set containing
this state.

The X-machine computes exactly the same sequential function as does
the original finite state machine.

In the previous section we gave the general definition of an X
machine and illustrated this with some examples to show that the concept
is fully general. In this section we will briefly review some of the
theory of X-machines, although at this time this theory is not as well
developed as it might be.

The definition of the behaviour of an X-machine can be made in terms
of the function or relation that it computes or in terms of the language
it recognizes.

Let H = (X, 2, Q, F, Y, 2, «, S, I, T) be any X-machine. If
01 "2

C : qo ---) q1 -...,)
represents a sucessful path
qn E T, then the relation

0 ..
q:z ----> ... --)qn
in the state space of H, so that qo El and

Icl = "1 ° "2 O"n : X ----) X
will be cailed the relation defined by that labelled path.

The behaviour of H is then
IHI = u Icl : X ----) X

where the union is taken over all the successful paths in the state
space.

The

For
and the

of Y.

relation computed by the machine is then defined 'as
fH:'= « ° IHI ° a : Y ---) Z

therecognltlon of languages we define the output
output function a : X ----) Z yields a subset

-1
A= A fH

set to be lA}

The article [1] discusses some of the applications of this material.
We can develop a methodology for the description of systems by a
combination of the data type methods of the first sections with the
machine based methods of the latter -ones. In situations when
architectural features of the system are important, these can be
incorporated into the X-machine by defining the set X suitably, perhaps
including models of registers etc •

.. : .•.....

Part 2 Modelling systems with machines

2.1 Hardware description models

2.1.1. 3-bit shift register

Inputs:~ Control signals { SR = shift right)
SL = shift left '\

Data inputs
1 \

States Q = {000,010, ••• ,111}

Table State

000 001 010 011 100 10J 110 III
SLO 000 010 100 110 000 010 100 110
SLl. 001 011 101 111 001 011 101 111
SRO~ 000 000 001 001 010 010 011 011
SRI 100 100 101 101 110 110 111 111

2.1.2 CIRCAL - Phase detector

two input ports, one output
port.

bl

ao bo al
111 > 011 '> 001-) 101

bozo t t aozl t blzo

100 . < 110 (010 000
bo al

.-.:. :

alzl

The states are {000,001,011, ••• ,111}. The inputs are {ao,bo,al,bl}.

These model the values at the input ports, and the outputs are 20 and
zl.

The state diasram describes the state changes and outputs in an obvious
way.

CIRCAL is a lansuage that allows the diagt'am to be represented
symbolically, eg.

PO(111) <- bozo PO(lOO) + ao PO(011)

Where PO is the name of the component (Phase detector) and the line
means:-

"from state 111 either an input 60 causes a change to 100 and an output
to or an input ao causes a change to 011."

When several components are interconnected this can be represented
as a diagram where ports with identical labels are joined together:-

and these diagrams can be represented symbolically using the language.

This language can be used both as a behavioural model and a design
language at various levels thus enabling the design process ft'om
functional specification to fabrication layout design to proceed in a
unified and systematic way.

See [5].

2.2 Lexical analyzer

This modelling of a lexical analyser is useful for a variety of
software development reasons. It illustrates a particularly simple way
of design refinement.

Consider some programming language for which certain lexical
categories are defined. Suppose that we wish to identify strings of
input characters in terms of this categorization and pass them on with
identification labels to further (semantic analysis).

To start the design process off we will consider some specific
lexical categories and design a.machine that will process them.

Let L = the set of letters
D = the set of digits
E = the set of punctuation, operator etc.

symbols.

Special characters . $ for end of file etc. .

Lexeme definitions

Cl)
CN)
CR)

Identifiers = L. CL U D)*
Numbers
Reals

Rules for identifying lexemes :

Ci) Lexemes are separated by blanks (which have no other significance).
Cii) Ends of lines behave like blanks.
Ciii) The next lexeme is the longest legal possibility.
Civ) These are all the lexemes.

A BNF definition would be more usual·for the syntax of the language.

A finite state machine could not store the contents of a string until
the lexeme types had been identified. We need to complement the machine
with a simple buffer that is then .used to store symbols as they are read
and then flushed at the end. To this end we assume the existence of a
buffer which can contain strings of symbols. There are several actions
that the machine will need to carry out on this buffer during
processing.

Buffer actions

Ci)
Cii)
Ciii)
Civ)

A - append the current input symbol to the buffer.
S - scan the next symbol in the input string.
F - fail, the most recent string of symbols is illegal.
o C*) - output string ~ith label * , where

* is identifier (I)
or number (N)
or real (R)
etc.

We build up the machine incrementally with a common start state called
ne~.

Submachine for identifiers :

I,AS . I,AS

-~ ()
neN identifier

~O
other, DC!) d,AS

(any symbol other than a digit or a letter in state identifier will
cause the buffer to flush the identifier string together with an
identifier label and reset the machine to neN, AS means append the
current symbol and then scan the next one.)

; ~. '

Submachine for numbers and reals

other,O(N)

"UOd,AS t .,~
real8d,AS

)
d,AS

dot

other,O(P)

(Here P means punctuation)

Continuing in this way we can build up a complete machine to deal with
the analysis of the lexemes defined for the language. Part of this
machine is shown below.

: ,AS

identifier quit

dot

~real 1
// -,AS '--' d,AS

number

:Js
This example is based on Wulf, Shaw, Hilfinger & Flon [6] who go on to
consider the implementation and verification of such a system.

2.3 A communications protocol - CCITT X "1 .r...L •

The X 21 interface protocol for digital telecommunications systems is
defined in a complex document which includes the 'dynamic' specification
of the interaction between two important components as a finite state
machine.

The two systems are called : a data ter.inal.equip.ent (DTE)
and a data circuit ter.ination equipment

mCE) •

The state diagram describes the logical relationships between events at
the interface between the two systems. Each state is identified by four
parameters, two for each system and the overall system is described in
terms of these states. In the diagram the ellipses describe the states
with the 4 parameters together with identification names and numbers.
The rectangles denote se9uences of states that for these purposes can be
identified with one another. This demonstrates the facility that state
machines have for information hiding ,and hierarchical design practices.
The at'tide [7J by West & Zafiropulo gives more details.

17

I

.....

-&9 "'.

'''"""",,.Mlett

,,. , .. •
L. __ ,:=:::;;~

,
I

. "

'~

,';

~': -(... '"

"

2.4 Specifying user interfaces

One fundamental problem in software engineering is the design of user
interfaces. It seems that formal methods enthusiasts are interested in
all aspects of system design except the part that probably matters most!
There are a few groups working on this problem and it seems to be
something of a neglected 'branch line'. Pet'haps the real problem is that
it brings us face to face with psychology and somehow this is alien to
our formaliSing instincts.

We will examine some simple ideas for the formal specification and
analYSis of human-computer interfaces. Examples will be taken from a
variety of systems e:<amined by some of my students.

Interfaces today are often 'modal' in that they are designed around a
hierarchical set of menus. Whether the menu choices are made by hitting
a key or by positioning and clicking a mouse is not too important; that
is more to do with ergonomics. The Xerox-Macintosh style window
management systems are widely regarded as the ultimate style of
interface but this is a trivialisation of the subject. Users of window
systems can still get lost if the underlying structure of the interface
is unsupportive or obstructive. The problem behind al~ this is of course
the meaning of the term 'usability'. People are all very different and
this is the trouble when looking for general design principles and
methodologies.

Our first example is of a hypothetical information system which store
record in a file structure and allows the user to enter new recot'ds,
delete existing records, list related records and ShON a specific
record. Each one of these functions will re9uire a specific function
space which is designed to prevent improper activity which may cause
problems and to allow a simple conceptual model of the system to be
aC9uired by the user.

The design process again consists of a series of more and more detailed
state diagrams that are arranged in a hiet'archical manner.

First we have to define the data types associated with the functions;
the functions must also be formally specified and we use Z for this
purpose here.

The file will be reharded as a partial function from a set of keys to a
set of records which are products of the field data types. In this case
the keys will be author name, year, (number of wOt'k in that year) and
this is described in the Z schemas below.

The functions enter etc are also specified.

The first diagram is the top level machine which allows for the choice
of the desired function. The boxes contain the appropriate screen
displays.

19

•

"

",

'.' -
'c"' ,,' ,".

......

\

"

...... ~ ..
. 'I. '.:'

~- .•. : .. : ..

"

, '0. ~

The basic state diagram "

: -/."
... l' ••

~ ';'.

.10

e. d. I and 5 denote enter. delete. ~ and display commands,
respectively

. I.

·h

I
I

• • ,
I

~
~

,i ... '

The rirll machine modcl for enter ,'-

enl.,
display
(d.,ails of kty
d.tinilion)

,.cord
.lror

I
I
I
I
I
I

rreord ok,
confirm
Compl.I.
tnlry

)'"

try again?

21

\
'.

\
\.

At the next level we introduce the details of the enter function space
using the symbol k for an arbitrary key element and r for a record
element.
Note that the diagram is still hiding information since we have not used
the specific syntactic nature of k or r yet. This is done at the next
stage where the design is extended to the level of key-stroke detail. At
each state, as we are analysing the design and preparing for the next,
more detailed stage, we consider the needs of the user and support in
the form of error trapping, screen displays and other measures.
Different types of errors, both syntactic and semantic can be dealt with
here.

The use of a combination of formal specifications in Z of the data types
and the use of state machine diagrams for the dynamic aspects of the
interface design has proved a very usable way of specifying interfaces.
Several students have successfully specified a variety of systems for
example the top level of MS-DOS, Unix, and a popular word processor
package. These studies demonstrate that the 'average' designer can deal
with the methodology. This is not always the case with formal methods.

We conclude this section with an example taken from another of my
postgraduate students, Martin Combs, who has speoified and analysed in
some detail some (appalling) speech processing packages used by the
linguist fraternity. ([8J)

Some of these packages are driven by a window system and some are
traditional menu-based systems that rely on function key selection.

The two diagrams are taken from his dissertation. He later went on to
design a much more friendly system using our techniques. The third
diagram illustrates a small part of this.

21

Audlab

~\
Unix O/S)

.i

"" . (l.r)

~fBMeu .. ~-__ "I Window

Manager
(titte bar)

Wav~orm .

Window\

~/

(display) \~

(

WUldow 1----1

Options

Process window: message .. .

Prompt window: message .. .

TlUe bar (waveform): message .. .

Display (waveform): message .. .

Audlab M~nu System: level 1: Start State

23

.•.
':~ <,

ILS

,. Other valid p'IW keys ./-...... ,

~ 1/ Data"'~u

(

Signal ptl jnputJou~ut I t...:..:.:J
Processing I--------------~ I
in Menu

d " /1
MD • \ ,_"

/~""
\'-_____ P_t_2 ______ ~{ :;~: ...)_Eru

\ .
"' ' ~

Non Yalid keys: tC':\fErU
Message:

No menu ...

•

pf3 \ Nur~l-=n," '--__________ ~:. Lnbng ot
Data I

~/

pIS

pf6

pf7

~
(

Numeric

Analysis

~~
FreQuen~\ ~~
Analysis ~

I
/

Signal Processin~ Menu State

24

Designing a User Interface

~

enu J 6-\
1 Edit \

"" ~ '\
Edit

~
I \ B\ Anai>sI.12 \

•

Return

to Menu

(I)

(rn)

" "

~/H'I. \
I/O: Message_ 1)
File: Message ...

Analysis" 1: Message ...
Ana.JysisIl2: Message ...

Edit: Meuage ...

Previous: Message ...

Exit: Message ...

, I
\. , '- . -----../

. Speech Processing Screen State

25

You may notice that the diagrams we are now dealing with are no longer
straight finite state machines. The arrows are often labelled by
functions that are defined for various data types. These are X-machines
and they can easily be formally defined in a complete way incorporating
the data type specifications.

The use of X-machines for the specification of user interfaces also
allows us to try and define some very important and difficult matters.
One thing that is fundamental to good interface design is the
identification of a user's processing goals. These can often be defined
in terms of a set of functions from the users conceived input data type
to the perceived output type.
The design problem for interfaces is then the construction of an X
machine that will reproduce these functions. To do this the designer
will generally try to decompose the goals into a sequence of simpler
tasks which will form the basis of a detailed design. The information
given to the user is then carefully planned out to reinforce the user's
conceptual model of the system and to try and make it match well with
the designers. This relationship between the system and the user's model
of the system must be the basis for ,designing expert interfaces which
can learn about the user on the basis of the user's history of
behaviour.
More in [2J,[3J.

26

,- . \ .' ... ' :.:. ~~ ... : "". -.....

2.5 Automata theoretic testing

Since some software systems can be modelled as finite state
machines, or generalisations of them it is possible to use these models
as a basis f9r system testing. We describe very briefly the work of
Chow [9].

Essentially machines will describe the control structure of the
system that describes how the system operations are seguenced as a
response to environmental stimuli. The usual method is to assume that
the machine model is complete, reachable and minimal.

The testing set is defined from the model and is based on ideas of
automata eguivalence, i.e. the automaton 'implied' by the implementation
is tested against the automaton of the design to see if they are
equivalent as machines.

Chow's method consist of

Ci) estimating the size of the implied
implementation machine,

(ii> constructing a suitable s,et of test
sequences,

(iii) examining the responses when test
sequences are applied.

To construct the test sequences he first constructs a test tree from the
machine diagram, this describes how each state can be reached from the
initial state.

The set P of input sequences is defined to be the
..

minimal set of sequences such that if qi --) 9j then pEP
r-"

such that pxEP and qo --) qi.

The next step is the construction of a 'characterization' set, this is
a, W, set of input sequences that can distinguish between the behaviour
of every pair of states in a minimal automaton. Then by forming

Z = W u t.W u ••••• utm-n.w
where m is the estimated number of states in the implementation and n

is the size of the design machine we have a method for generating test
sequences.

Chow proves the theorem that two automata are equivalent if f they
at'e P.Z-eguivalent. <Thus we can test equivalence of two machines by
applying this small test set to the machines started in their initial
states and checking the corresponding outputs.)

This type of
command languages,
switching system.

testing has been successfully applied to graphics
a t'eal-time process control system and a telephone
For these applications several subtle errors ·wet'e

found in the systems with fairly small numbers of test sequences (i.e. a
few hundred>.

28

Part 3 Some structure theorv

3.1. Machine models of parallelism and neural p~ocessin9

3.1.1. Cellular automata

This, one of the classical models of parallel systems, has been
extensively studied.

Consider a set of identical finite state machines A = (Q,t,F)
(with no output). These are distributed in a regular fashion across a
2 or 3 dimensional grid:-

A11 A12 A13 A14 ---

!21 !22 !23
I
A24 ---

t1 !32
I
A::S3

I
A34

I I I

Each machine Aij is in some state and receives as input the states
of its immediate neighbours, thu$

The complete network is synchronized and at the next 'clock tick' the
state of A23 changes in accordance with the values of its neighbour
states.

Thus the next state function is of the form

F: Q x (Q4) --) Q

for this 2-dimensional example.

There are various modifications of this model which include, for
example, cellular output functions and intracellular communication
alphabets (so that we can get away from using the states of neighbouring
cells as inputs) etc. Some useful results have emerged from these
concepts and they have led to applications in'the modelling of biology,
in computer graphics and in simple analysis of parallel systems and the
complexity of parallel algorithms.

There are several disadvantages, however, in using cellular
automata as a vehicle for reasoning about neural networks. The physical
arrangements in neural networks in animals is rather different and some
of the tasks that animals can perform seem to beyond the capabilities of
cellular automata.

Some useful papers are to be found in (14] & (15l.

3.1.2. Bus automata

29

These were introduced by Rothstein [**J and have been shown to be very powerful models.

To define a bus automaton we first introduce the concept of a conduction function (or C-function).

Consider a directed bipartite graph with k input and k output nodes ego

Edges with orIgIn 1
also have target 1

This can be represented by a kxk Boolean matrix.

(0001)
(1 0 0 0)

6 = (0 1 1 0) which describes the connections
(0 1 G 0) (·1 for yes, 0 for no) between nodes

Then (1 (1)
6. (0 = (1)

(0 (0)

(1 (0)

Now let Bk be the set of kxl binary column vectors and define functions of the form

where M~ are k x k Boolean matrices. These are called C-functions of dimension n.

Let Cn be the set of all C-functions of dimension n.

Now for the definition of a bus automaton.

We choose a standard cellular automaton constructed from standat'd individual automata, with state sets Q. Let a = 3d -l where d is the spatial dimension of the system.

Define g:Q --) Bk to be the local output function of the cell.

For each qEQ, define a conduction function

and finally consider an output function

30

Such that

The vector x-represents output of neighbours to a particular cell, 9(9)
represents signals originating at the cell and Sq is the transformation
applied to all of these signals to produce the total cell output. Thus
Sq will define conduction channels between cells dependent on the states
of the surrounding cells.

Essentially if the array of input cells receives inputs while each
are in specific states, the conduction function and the next state
functions determine the resultant next state and the channels through
which the state information can be sent. Thus bus automata are
essentially cellular automata with the extra dimension of the ability to
use communication channels to directly communicate with distant cells
controlled by a local switching network. It is possible for cells to be
sources, sinks or links for communications purposes as well as
information processors.

The recognition power of such systems is quite impressive, here we
have an initial state ~pecified at one boundary of the system which
receives inputs and consider a computation to have resulted in the
recognition of the input string if a given cell or cells enters certain
prescribed final states.

Immediate languages are languages L such that a fixed constant K
exists which acts as an upper bound for the number of steps required to
recognize any member of L.

Some results of Rothstein and workers.

3.1.2 (i) Regular languages are immediate with
respect to one-dimensional bus automata.

3.1.2 (ii) Parikh languages (e.g. L = {ap :p is
prime}) are immediate bus automata
languages.

3.1.2 (iii) Recursive languages exist which are not
immediate with respect to polynomial
propagation time.

See [10]

3.2 Applications to vision

The origins of bus automata are to be found in questions concerned
with the recognition of geometric objects and patterns by cellular
arrays of machines, these machines correspond to the neural-retinal
system in animals. The 'outer layer' of cells will r~ceive 'on-off'

31

input symbols when we consider light rays from a 2-dimensional
monochrome collection of stt"aight lines Ot" other simp le geometric
objects. The effect of these inputs on the whale cellular array must be
to generate various state changes and communications that essentially
involve the 'recognition' of these patterns in a machine theoretic way.

Consider the problem of recognizing straight lines through some
central axial point.

33

Divide the plane into 8 octants and superimpose a 2-dimensional grid of
cells upon the diagram. A line through the origin in an octant can be
coded up into a binary string according to the rule:-

if the line crosses opposite sides of a cell we write a 0
if the line crosses adjacent sides of a cell we write a 1.

The line indicated encodes to 0011 •••
Thus the recognition of lines can be encoded into problems of
recognizing and generating binary strings. To do this effectively, the
idea of a bus automaton has been developed.
Other types of geometric objects can be quickly recognized by bus
automata. e.g. parabolas etc. See [lll.

3.3 Minimization of machines

One basic process that can make the analysis or implementation of
a machine easier is the reduction of the state set of a machine by
removing any redundant states. We cannot do this simply by deletion
without disturbing the behaviour.

Consider an X-machine
H = (X, 2, Q, F, Y, Z, ~, B, I, T)

and let
a = (Q, 2, F)

We call a a general machine and we will now indicate how it can be
minimized. Thses general machines contain all of the essential
information required for the reduction of the state space of the
machine.

Let a, b be states of Q we define;

Ua, b) to be the set of all path labels in a from a to b,
L-(a) the set of all path labels into a

and
L"'(a) the set of all path labels leaving a.

A relation = is defined on Q as follows :-

for a,b E Q, a = b iff (i) L(a,b) = L(b,aj
and (ii) either L-Ca) = L-(b);

or L"'(a) = L+(b);
or L-Ca) ~ L-(~) &

L"'(a) ~ L"'(b);

or L-(a) ~ L-(b) &
L+(a) ~ L"'(b).

The transitive closure, =, of this relation is then the basis for the
minimization process. We factor _ out with respect to = and continue
this process-until we find the situation stabilizes. The stable general
machine is then minimal with respect to the behaviour of the original
machine. That is the functionality of the minimal machine and of the
original machine are the same. See (12]

3.4 Decomposition Theories

Most decomposition theories invoIce the replacement of a machine by
another machine with the same (or greater) processing functionality but
which is constructed from 'simpler' machines connected together in
standard ways.

3.4.1 We can ignore outputs using some results from automata theory.

Let us consider-the finite state machine case. If U=(Q,t,H,F,G)
and U1=(Q1,~1,H1,F1,G1) are state machines then we define the concept of
U covering U1 as follows:-

Let a:~-)~1, b:H-)H1 be functions and suppose that
~:Q_>Q1 exists such that

whenever xEr· and qEQ with x applicable to state q (i.e. the
machine can completely process x) and a(x) is applicable to state 0(~)
then the outputs from the two machines do not differ when specified.

It is possible to show that if U is any machine and we consider
the undedying automation without outputs, u, then if uiu' for some
other output free automation then we can define outputs on u' to produce
a machine U' such that U· covers U.

Thus we need only consider the decomposition of output-free
automata.

Two of these are related under the relation i mentioned above if a
function a:~-)~" exists together with a negative partial function b:Q"
)Q such that

We can now replace each output.,..free machine (Q,~,F) by a transformation
semigroup (Q,S) -
where 5 is the semigt'oup generated by the next-state functions in r*.
Then we can use the Holonomy decomposition theorem
(Eilenberg, improved by Holcombe) to obtain:-

where each A1 are products of holonomy transformation semi groups
generated by a height function defined by (Q,S).
Each A1 is of a particularly simple form and can be generated by finite
simple groups and aperiodic semigt'oups.

, ,

"

The product 0 of two transformation semigroups is defined in a
standat'd algebraic way,

where SQl is the set of all mappings from Ql to S, the action of SQ1 XS 1

on QxQlis defined canonically that is

('1,'1')(f,s') = (qf(c(),'1's')
where

qEQ, q'EQ', fESQ',s'ES'.

Thus we can infer that for finite state machines, each can be generated
from simple machines connected together using parallel and sequential
connections. See [13] with more on products in [14].

3.5 A design methodology based on X-machines.

The initial model or specification can be developed in terms of a
specification of a basic data type and functions in Z together with a
machine descdption of pt'ocessing and contt'ol states which allow us to
define a simple X-machine model of the simplified system. This model can
then be extended and refined to provide a series of more detailed and
powerful designs again described in terkms of X-machines. These models
are successively verified and tested at each stage. Eventually we obtain
a series of validated designs culminating in the ultimate detailed
desisn which can then be implemented directly accord ins to the
circumstances.

Such methods have been discussed in a variety of places for example
Milne [5]

The types of development steps that are appropriate for an X-machine
development method include the following.

Extension : The state set Q of the X-machine is enlarged and extra
labelled arrows inserted in the state space. The next state function is
extended in this process.

Refinement: The state set remains unchanged but more labelled arrows
at'e inserted in the state space.

Generalization: Here the data type X is changed into a semantically
related data type X' which is then the basis for an X'-machine which is
generated from the original X-machine. The input and output relations a
and B will usually have to be adjusted.

Enlargement: This involves keeping both X and Q the same but incr'easing
the number of labelled arrows in the state space. This will also
increase the behaviour of the machine since more paths ~ill be available
for processins.

Other controlled developments of X-machines can be considered including,
of course, combinations of the above. Some of the examples considered
eadier demonstrate these pt·ocesses, eg the lexical analyzet· example and
the user interface example.

The use of generalizations of the verification and testing methods
developed for state machines will, hopefully, extend to X-machines as
the minimization procedure did. The decomposition of X-machines into
products of simpler machines is more problematical, however, although
there may be a prospect of some useful approaches to modelling
parallelism using products of machines.

References.
[1] M.Holcombe, "X-machines as a basis for dynamic system.

specification." Software Engineering Journal
March 1988 69-76.

[2] "

[3] "

"Formal methods in the specification of the
human-machine interface." Int. CIS Journal.
1 (1) .1987.24-34.
"Goal-directed task analysis and formal
interface specifications." Int. CIS Journal.
1(4).1987.14-22.

[4] S.Eilenberg. "Auto.ata, languages and machines".
Academic Press, 1974.

[5] G.l'lilne. "Towards veri fiably cort'ect VLSI design." in
Formal aspects of VLSI design. North-Holland
1986.

[6] W.A.Wulf, I'I.Shaw, P.N.Hilfinger & L.Flon~ "Fundamental
structures of computer Science. u Addison
Wesley. 1981.

[7] C.H.West-& P.Zafiropulo. "Automated validation of a
communications protocol.. " IBM Jour.Res.&
Dev. 22, 1978, 60-71.

[8] M.R.Combs. "An analysis of the menu-driven human
computer interfaces of two digital speech
processing packages." M.Sc. dissertation.
University of Sheffield. 1988.

[9lT.S. Chow. "Testing software design modeled by fini te
state machines." IEEE Trans. Soft. Eng. SE-4
1978, 178-187.

[10] J.M.Moshell & J.Rothstein. "Bus automata and immediate
languages." Inf. & Contt'ol. 40.1979,88-121.

[11] J.Rothstein & A.Davis. "Parallel recogni tion of
parabolic and conic patterns by bus
automata." Proc.lnt. Conf. Parallel
Processing 1979 (IEEE 79CH1433-2C) 288-
297.

[12] M.Holcombe & M.Stannett. "General machines." Dept.
Repot't CS-87-2 University of Sheffield.

[13] M.Holcombe."Algebraic automata theory." CUP. 1982.
[14] F.;Gecseg. "Products od automata." EATCS Mono. 7,1986.
[15] C.Choffrut(ed~) "Autollata netNorks." LNCS 316. 1988.
[16] T.Legendi(ed.) "Parallel processing by cellular

autoaata and arrays." North~Holland 1987.

