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Part 1 Introduction to machines 

1.1. Finite state machines 

This is the simplest model of a dynamic, discrete system. The use 
of the 'Black-box' conc~pt with an input-output mechanism dependent on 
the inter'nal state behaviour is a powerful mode 11 ing tool. 

Let Q 
1: 
H 

and let 

be a finite set of internal states 
be a finite set of input symbols 
be a·finite set of output symbols 

F : Q x 1: --) Q 
and G: Q x 1: --) H 



be two partial functions, respectively the next-state and output
functions. 

_f}~;_H_-tr,-__ ..:.q._€_Q_:_(~_o-_~! 

The interpretation is this:-

given a system in state qEQ, with an incoming inp~t vet then, at the 
next time instant, the state changes to 

F(q,cr)EQ 
and an output 

S(q,v)Ea is generated. 

For notational convenience we replace F by a set 
Fer: Q --) Q (crEZ) 

of next-state functions and B by a set 
Br: Q --) H (vEZ) 

of individual output functions by the definition 

qFr = P(9,0") } 
! tt qEQ, vEl: 

9B ... = B{9,er) } 

This convention also treats the function notation as a postfix 
operation. 

A simple e:<ample 
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Q = {a,b,c} 
l: = {O,1} 
H = {x,y,z} 
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The theot·v and application of machines insvstems eh9ineering 

Let t* be the set of all finite strings of t, 
- the empty string, and t+ = t- \ {-}. 

We can define a sequential partial function for each qEQ as follows, 

fq : t* --) H* by 

fq (x) = the output produced when input string 

xEl:* is app lied to the mach i ne in starting s ta teq. (If at some 
stage there is no intermediate function defined the machine halts with a 
partially read input.) 

Formally we define: - fqC-) = - , 
fq(O') = qGO' h.Et+,O'Et 
fqCxO')= fq(x)fqFM(O') ) 

where FM: Q --) Q is defined by extension of Fw under 
composi tion. 
Further details in [13J. 

1.2 Recognizers 

In some situations we are interested less in the transformation of 
input strings into output strings than in the answering of a simple yes
no decision problem about the categorization of the set of strings into 
two disjoint sets. Thus we may present strings to a machine in a 
specified initial start state and consider only the final state of the 
computation. Thus the previous e~ample could give rise to the 
following recognizer;-

b Here a is a starting 
state and c is a 
terminal state 
(indicated by 
unadorned arrows). 

This machine will recognize strings like 010, 01100, 01101010 
etc., but not strings like 101, 011, 01101 etc. 

The set of strings recognized by a machine is called its behaviour or 
the language recognized by it. 

Such machines are clearly useful in, for example, syntax checkers 
but they are limi ted because they possess no explid t memory capab i 1i .ty. 
We now consider this problem. 



The theorv and application of machines in svstems engineering 

1.3 Machines with stacks 

Suppose that we add a storage device that can store strings of 
symbols from some alphabet r , in such a way that at each state change, 
depending on-the state, the input symbol and the contents of the store 
either a new string of symbols can be placed on 'top' of the stack store 
or some of the stack store contents can be removed. This device then 
allows us to process more complex languages - the conte:<t-free 
languages for example, and can deal with the problem of remembering, say 
the number of left or right brackets that have featured in a string 
being analyzed by a syntax checker. 
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(. The theorv and application of machines in systems engineering 

1.4 X-machines 

We start with the definition of the X-machine and show how this 
definition relates to other concepts such as Tut'ing Machines and finite 
state machines. Then we examine some elementary aspects of the theory 
of X-machines. It should be remarked that although these machines were 
introduced in 1974 ([4]) they have not received much attention. 

let X be any non-empty set, henceforth referred to as the fundamental 
data tvpe, and 2 a finite set of relations defined on X. Thus 2 
consists of relations of the form 0: X -) X. If one prefers we 
can regard each 0 as a function, which is possibly incompletely 
specified, from the set X into the set P (X), the set of all subsets 
of X, (also known as the power set of X). 

Intuitively X represents the set of data to be processed and 0 are 
the functions or relations that carry out the processing. In some cases 
the data type X can represent internal archi te,ctural detai Is, such as 
contents of registers etc. and it is in this way that the model can 
assume its full generality. 

Clearly we need to specify some relationship between the input and 
output information of the overall system and the data type X, especially 
when X contains information that is not directly involved with the 
system input and output. This is done by specifying two sets, Y and Z, 
to represent the input and output information respectively. In many 
cases, as in much processing, these sets are free semi groups or subsets 
of free semigroups (ie languages over some finite alphabet). 

and 

Two coding relations: 
cc : Y -) X 

a : X -) Z 
describe how the input is coded up prior to processing by the machine, 
and how the subsequently pt'ocessed data is then prepat'ed (or decoded) 
into a suitable output format. Some examples will demonstrate how this 
works in a few basic cases. 

Finally we need to describe some suitable control structure that 
will actually determine how the pt'ocessing is perfot'med. This structure 
is very similar to the state transition graph of a finite state machine 
and will appear familiar. However, this appearance masks a model of 
considerable computational power since much of the similarity with 
finite state machines is concerned with the control of the processing 
and not with the ~ of processing that the machine performs. 
Nevertheless, the similarities with finite state machines are extremely 



useful since they allow us, at times, to apply techni9ues for the 
analysis of machines that have proved to be tremendously successful. 

The final ingredient is the state space of the machine, which 
consists of a finite set, Q, of states and a function 

F: Q x 2 -) P(Q) 

called the state transition function. 
For many purposes this state space can be described using 

the elements of Q at the nodes (vertices) and for each 
there is a labelled arc 

which has 
Q, 0 E 2 

o 
q ---) q.z 

precisely if q.z E F( q, 0 ). 

a gt'aph 
q, q.z E 

It is also necessary to identify a subset 1 £ Q of initial states 
and a subset T £ Q of terminal states. An initial state will be 
indicated in the state space by being the target of an unlabelled and 
sOut'celess arrow, eg 

whereas a 
unlabelled 

An example 

final state 
--) q , 
will be 

and targetless arrow, 
q --) 

described by 
thus 

of a state space is now given. 

The state space of an X-machine . 

being the source of an 

,~, 
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In the diagram states qz and q2 are initial states and states q4, q5 and 

q6 are terminal states. This example is of a GQU-deterministic machine, 

witness the two arrows leaving qz labelled with ~z. It is also 

incomplete in the sense that no arrow labelled with ~z leaves state q2. 

The formal definition of an X-machine is presented in the following 

definition. 

Definition. An X-machine is a 10-tuple :-

where 
H = ( X, 2, Q, F, Y, Z, a, a, I, T ) ; 

X, Y, Z are non-empty sets; 
2 is a set of relations on X; 
Q is a finite non-empty set; 
F: Q x 2 -) P{Q) is a, possibly partial, 

function; 
a: Y -> X and a: X -) Z are relations; 

I £ Q and T ~ Q are subsets. 

Remark. The relations appearing. in the definition are often 

functions or partial functions in many examples. The definition is 

presented here for the record in its most general setting. The set peG) 

denotes the power set (or set of subsets) of Q. 

We call Y the input ~ and a the input relation. The set Z 

is the output ~ and a is the output relation. 

The process of computation that this machine performs can be 

described by choosing an element y E Y from the input type and studying 

how this element is processed. 
First the input relation is applied to the element y to produce an 

element or set of elements a(y) of X. 
Next a path in the state space of the machine is selected that 

starts from a state in I and ends in a state from T. There may, in a 

non-deterministic or incomplete machine, be many or none. If a path is 

selected it will determine a se9uence from 2- using the labels of the 

arcs of the path in order. If the labels of the arcs are 

~z, ~2' .... ,~" 
then the word 

~Zo~2o •••• o~n 

defines a composite relation (or function) on the set (or type) X. (In 

this notation we apply the relation ~z then ~2 and so on which is a 

common practice in algebra but may seem unusual elsewhere!) 

When this composite relation is appli~d to a(y) we obtain an element 

or subset of X and this yields an element or subset of the output type Z 

on applying a. 
The result of the computation is thus 

a((~zo •••• o~n)(a(y»). 

If at any stage we find that the result of a partial computation 

(~to ••• o~k)(a(y» 

is the empty set for some kin then we will regard that computation as 

halting and the output, if any, is obtained by applying a as before. 
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., ~ .••• " is the label of a successful path 

./: X-X are relations 
qo - start state q, - final state 

1.5 Some examples of X-machines. 
The most general model of computation so far investigated in any 

detail is the Turing machine model and its equivalent theot'ies. There 
is, however, a newcomer to the scene that is claimed to be mOt'e general, 
namely the Quantum computer of Deutsch, We do not intend to enter 
the controversy surrounding this new model and its relevance to computer 
science at this stage, merely note its e:dstence. We will, howevet', 
demonstt'ate that the Turing machine is just a special case of the X
machine defined above. 

Before we examine the connections between X-machines and other 
machines we need to introduce some terminology. 

Let ~ be any non-empty set. Some relations will now be defined on the 
set ~- of all finite sequences or words in ~. 

For any ~ E ~ we define some fundamental relations : 
L... : ~- --) ~ .. 

( V x E ~* ) xL... = ~x 
-1 

Lv . ~ .. --) ~ .. . 
-1 

( V x E ~ .. ) xL ... = { Y E ~ .. vy = x } 
R ... . ~ .. --) ~-. 

( V x E ~ .. ) xR ... = XfT 

-1 

R" . ~ .. --) ~ .. . 
-1 

( V x E ~ .. ) xR" = { Y E ~.. I yfT = X } 

left . ~ ... x ~ .. -) 1:- x ~ ... . 
(a~bJ1eft= 

(reverse(tail(reverse(a))),head(reverse(a))*bJ 
(The purpose of the last string processing function will'become 

clearer when we consider a later example,essentially it transfers the 
last symbol of the first word to the front of the second word. The 
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standard functions reverse, head and tail are assumed to be defined 
already as is concatenation, *.) 

The Turing machine model. The essential features of a Turing'machine 
consist of an alphabet t, a finite set of states Q and a finite set of 
n-tuples (n=4 or 5) which describe the behaviour of the machine under 
various circumstances. The set of 5-tuples that we will use here will be 
elements of the form 

( q, q~f e, a~, d ) 
where q, q~E Q ; a, el EtU fA} where A denotes a blank; and either' d 
= L or d = R. 
The interpretation of such a tuple is that if the machine is in state q 
and the current symbol being scanned is a then the next state is ql, the 
symbol e~ is printed on the tape instead of a and the read-write 
head is moved 'left' if d = L and 'right' if d = R. Further details and 
examples of Turing machines will be found in manyte:<ts on the theory of 
computer science • 

Added to this is a start state qo and a set T £ Q of terminal states. 
The initial tape contains a string of characters from the set t* which 
is input to the machine in the state qo. Processing consists of applying 

9 
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a se9uence of appropriate tuples so that if at any stage the machine is 
in state q and is reading the tape symbol 9 then any tuple of the form 

( q, q',e, e', d ) where q' e Q, e' et U {A}, 
d e {L, R} can be applied to yield the next state q', the symbol 9 
replaced by the symbol 9' and the tape head moved either left or right. 

If the tape head moves left then the processing takes a tape of the 
form 

[ V1V2 •••• Vk'Vk~1 •••• Vn 1 
with the head reading the symbol Vk and either produces a resultant 
tape of the form 

[ ~1~2 •••• Vk-1'~k'~k~1 •••• Vn 1 
where Vk' is the new symbol printed on the tape after applying the tuple 
or 

or 

For a right move the resultant tape is of the form 
[ V1V2 •••• Vk'~k~1'~k~2 •••• Vn 1 
[ V1V2 •••• Vk~1'Vk~2~ ••• Vn 1. 

In some cases the tuple may involve the replacing of a symbol on the 
tape by a blank. 

In the context of an X-machine we first define the set X as 
X = t- x t* 

The set of states is Q and the initial and terminal states as in the 
Turing machine case. For each tuple of the form 

( q, v, q', v', L ) 
we insert an arrow from q to q' labelled by the relation 

-1 

Rr x Lr ' 

on X. For each tuple of the form 
( q, v, q', v', R ) 

we insert an arrow from q to q' labelled by the relation. 
-1 -1 

o = (R r x 1 )O(R r ' x 1 )Oleft 
etc. The definition of the input and output relations for the X-
machine are given next. 

a , a : t* -) t* x t
( a )a = ( A , a J 

( a , b Ja = a 
This interpretation is of a Turing machine that behaves as a function 

on t-. If the machine halts during a computation this means that there 
is no arrow leaving the current state which has, as a label, an 
applicable relation. The result is then obtained by use of the decoding 
relation. • 
Finite state machines. The classical model of a finite state machine 

can be represented as an X-machine in the following way. 
Let Q be a finite state set, t a finite input set and Q a finite 

output set then a finite state machine is a 9uintuple 
A = ( Q, t, 0, F, G ) 

where 
F : Q x t -+-) Q 

and 
G : Q x t -+-) 0 

are partial functions defining the next state and output functions. 
The X-machine is defined as follows, The set X = 0* x t*, the set of 

states is Q and the sets of final and initial states are also e9ual to 
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Q. The set of relations 2 are defined as follows. If q,q' E Q, fTE1:, e 
E Q are such that F( q,fT ) = q' and G( q,fT ) = e then we insert an arrow 
from state q to state q' labelled by the relation 

-1 

" = Re X L ... 
The input and output codes are given by 

« : 1:* --) X where «(a) = (A,a), A being the empty string; 
and a : X --> Q* where a(a,b) = a. 

If it is necessary to only carry out computations starting from a 
given initial state we will define I to be the singleton set containing 
this state. 

The X-machine computes exactly the same sequential function as does 
the original finite state machine. 

In the previous section we gave the general definition of an X
machine and illustrated this with some examples to show that the concept 
is fully general. In this section we will briefly review some of the 
theory of X-machines, although at this time this theory is not as well 
developed as it might be. 

The definition of the behaviour of an X-machine can be made in terms 
of the function or relation that it computes or in terms of the language 
it recognizes. 

Let H = ( X, 2, Q, F, Y, 2, «, S, I, T ) be any X-machine. If 
01 "2 

C : qo ---) q1 -...,) 
represents a sucessful path 
qn E T, then the relation 

0 .. 
q:z ----> ... --)qn 
in the state space of H, so that qo El and 

Icl = "1 ° "2 ..... O"n : X ----) X 
will be cailed the relation defined by that labelled path. 

The behaviour of H is then 
IHI = u Icl : X ----) X 

where the union is taken over all the successful paths in the state 
space. 

The 

For 
and the 

of Y. 

relation computed by the machine is then defined 'as 
fH:'= « ° IHI ° a : Y ---) Z 

therecognltlon of languages we define the output 
output function a : X ----) Z yields a subset 

-1 
A= A fH 

set to be lA} 

The article [1] discusses some of the applications of this material. 
We can develop a methodology for the description of systems by a 
combination of the data type methods of the first sections with the 
machine based methods of the latter -ones. In situations when 
architectural features of the system are important, these can be 
incorporated into the X-machine by defining the set X suitably, perhaps 
including models of registers etc • 

.. : .•..... 



Part 2 Modelling systems with machines 

2.1 Hardware description models 

2.1.1. 3-bit shift register 

Inputs:~ Control signals { SR = shift right) 
SL = shift left '\ 

Data inputs 
1 \ 

States Q = {000,010, ••• ,111} 

Table State 

000 001 010 011 100 10J 110 III 
SLO 000 010 100 110 000 010 100 110 
SLl. 001 011 101 111 001 011 101 111 
SRO~ 000 000 001 001 010 010 011 011 
SRI 100 100 101 101 110 110 111 111 

2.1.2 CIRCAL - Phase detector 

two input ports, one output 
port. 

bl 

ao bo al 
111 > 011 '> 001- ) 101 

bozo t t aozl t blzo 

100 . < 110 ( 010 000 
bo al 

.-.:. : ....... 

alzl 



The states are {000,001,011, ••• ,111}. The inputs are {ao,bo,al,bl}. 

These model the values at the input ports, and the outputs are 20 and 
zl. 

The state diasram describes the state changes and outputs in an obvious 
way. 

CIRCAL is a lansuage that allows the diagt'am to be represented 
symbolically, eg. 

PO(111) <- bozo PO(lOO) + ao PO(011) 

Where PO is the name of the component (Phase detector) and the line 
means:-

"from state 111 either an input 60 causes a change to 100 and an output 
to or an input ao causes a change to 011." 

When several components are interconnected this can be represented 
as a diagram where ports with identical labels are joined together:-

and these diagrams can be represented symbolically using the language. 

This language can be used both as a behavioural model and a design 
language at various levels thus enabling the design process ft'om 
functional specification to fabrication layout design to proceed in a 
unified and systematic way. 

See [5]. 

2.2 Lexical analyzer 

This modelling of a lexical analyser is useful for a variety of 
software development reasons. It illustrates a particularly simple way 
of design refinement. 

Consider some programming language for which certain lexical 
categories are defined. Suppose that we wish to identify strings of 
input characters in terms of this categorization and pass them on with 
identification labels to further (semantic analysis). 



To start the design process off we will consider some specific 
lexical categories and design a.machine that will process them. 

Let L = the set of letters 
D = the set of digits 
E = the set of punctuation, operator etc. 

symbols. 

Special characters . $ for end of file etc. . 

Lexeme definitions 

Cl) 
CN) 
CR) 

Identifiers = L. CL U D)* 
Numbers 
Reals 

Rules for identifying lexemes : 

Ci) Lexemes are separated by blanks (which have no other significance). 
Cii) Ends of lines behave like blanks. 
Ciii) The next lexeme is the longest legal possibility. 
Civ) These are all the lexemes. 

A BNF definition would be more usual·for the syntax of the language. 

A finite state machine could not store the contents of a string until 
the lexeme types had been identified. We need to complement the machine 
with a simple buffer that is then .used to store symbols as they are read 
and then flushed at the end. To this end we assume the existence of a 
buffer which can contain strings of symbols. There are several actions 
that the machine will need to carry out on this buffer during 
processing. 

Buffer actions 

Ci) 
Cii) 
Ciii) 
Civ) 

A - append the current input symbol to the buffer. 
S - scan the next symbol in the input string. 
F - fail, the most recent string of symbols is illegal. 
o C*) - output string ~ith label * , where 

* is identifier (I) 
or number (N) 
or real (R) 
etc. 

We build up the machine incrementally with a common start state called 
ne~. 



Submachine for identifiers : 

I,AS . I,AS 

-~ () 
neN identifier 

~O 
other, DC!) d,AS 

(any symbol other than a digit or a letter in state identifier will 
cause the buffer to flush the identifier string together with an 
identifier label and reset the machine to neN, AS means append the 
current symbol and then scan the next one.) 

; ~. ' 



Submachine for numbers and reals 

other,O(N) 

"UOd,AS t .,~ 
real8d,AS 

) 
d,AS 

dot 

other,O(P) 

(Here P means punctuation) 



Continuing in this way we can build up a complete machine to deal with 
the analysis of the lexemes defined for the language. Part of this 
machine is shown below. 

: ,AS 

identifier quit 

dot 

~real 1 
// -,AS '--' d,AS 

number 

:Js 
This example is based on Wulf, Shaw, Hilfinger & Flon [6] who go on to 
consider the implementation and verification of such a system. 

2.3 A communications protocol - CCITT X "1 .r...L • 

The X 21 interface protocol for digital telecommunications systems is 
defined in a complex document which includes the 'dynamic' specification 
of the interaction between two important components as a finite state 
machine. 

The two systems are called : a data ter.inal.equip.ent (DTE) 
and a data circuit ter.ination equipment 

mCE) • 

The state diagram describes the logical relationships between events at 
the interface between the two systems. Each state is identified by four 
parameters, two for each system and the overall system is described in 
terms of these states. In the diagram the ellipses describe the states 
with the 4 parameters together with identification names and numbers. 
The rectangles denote se9uences of states that for these purposes can be 
identified with one another. This demonstrates the facility that state 
machines have for information hiding ,and hierarchical design practices. 
The at'tide [7J by West & Zafiropulo gives more details. 

17 
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2.4 Specifying user interfaces 

One fundamental problem in software engineering is the design of user 
interfaces. It seems that formal methods enthusiasts are interested in 
all aspects of system design except the part that probably matters most! 
There are a few groups working on this problem and it seems to be 
something of a neglected 'branch line'. Pet'haps the real problem is that 
it brings us face to face with psychology and somehow this is alien to 
our formaliSing instincts. 

We will examine some simple ideas for the formal specification and 
analYSis of human-computer interfaces. Examples will be taken from a 
variety of systems e:<amined by some of my students. 

Interfaces today are often 'modal' in that they are designed around a 
hierarchical set of menus. Whether the menu choices are made by hitting 
a key or by positioning and clicking a mouse is not too important; that 
is more to do with ergonomics. The Xerox-Macintosh style window 
management systems are widely regarded as the ultimate style of 
interface but this is a trivialisation of the subject. Users of window 
systems can still get lost if the underlying structure of the interface 
is unsupportive or obstructive. The problem behind al~ this is of course 
the meaning of the term 'usability'. People are all very different and 
this is the trouble when looking for general design principles and 
methodologies. 

Our first example is of a hypothetical information system which store 
record in a file structure and allows the user to enter new recot'ds, 
delete existing records, list related records and ShON a specific 
record. Each one of these functions will re9uire a specific function 
space which is designed to prevent improper activity which may cause 
problems and to allow a simple conceptual model of the system to be 
aC9uired by the user. 

The design process again consists of a series of more and more detailed 
state diagrams that are arranged in a hiet'archical manner. 

First we have to define the data types associated with the functions; 
the functions must also be formally specified and we use Z for this 
purpose here. 

The file will be reharded as a partial function from a set of keys to a 
set of records which are products of the field data types. In this case 
the keys will be author name, year, (number of wOt'k in that year) and 
this is described in the Z schemas below. 

The functions enter etc are also specified. 

The first diagram is the top level machine which allows for the choice 
of the desired function. The boxes contain the appropriate screen 
displays. 

19 
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enl., 
display 
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rreord ok, 
confirm 
Compl.I. 
tnlry 

)'" 

try again? 
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At the next level we introduce the details of the enter function space 
using the symbol k for an arbitrary key element and r for a record 
element. 
Note that the diagram is still hiding information since we have not used 
the specific syntactic nature of k or r yet. This is done at the next 
stage where the design is extended to the level of key-stroke detail. At 
each state, as we are analysing the design and preparing for the next, 
more detailed stage, we consider the needs of the user and support in 
the form of error trapping, screen displays and other measures. 
Different types of errors, both syntactic and semantic can be dealt with 
here. 

The use of a combination of formal specifications in Z of the data types 
and the use of state machine diagrams for the dynamic aspects of the 
interface design has proved a very usable way of specifying interfaces. 
Several students have successfully specified a variety of systems for 
example the top level of MS-DOS, Unix, and a popular word processor 
package. These studies demonstrate that the 'average' designer can deal 
with the methodology. This is not always the case with formal methods. 

We conclude this section with an example taken from another of my 
postgraduate students, Martin Combs, who has speoified and analysed in 
some detail some (appalling) speech processing packages used by the 
linguist fraternity. ([8J) 

Some of these packages are driven by a window system and some are 
traditional menu-based systems that rely on function key selection. 

The two diagrams are taken from his dissertation. He later went on to 
design a much more friendly system using our techniques. The third 
diagram illustrates a small part of this. 
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You may notice that the diagrams we are now dealing with are no longer 
straight finite state machines. The arrows are often labelled by 
functions that are defined for various data types. These are X-machines 
and they can easily be formally defined in a complete way incorporating 
the data type specifications. 

The use of X-machines for the specification of user interfaces also 
allows us to try and define some very important and difficult matters. 
One thing that is fundamental to good interface design is the 
identification of a user's processing goals. These can often be defined 
in terms of a set of functions from the users conceived input data type 
to the perceived output type. 
The design problem for interfaces is then the construction of an X
machine that will reproduce these functions. To do this the designer 
will generally try to decompose the goals into a sequence of simpler 
tasks which will form the basis of a detailed design. The information 
given to the user is then carefully planned out to reinforce the user's 
conceptual model of the system and to try and make it match well with 
the designers. This relationship between the system and the user's model 
of the system must be the basis for ,designing expert interfaces which 
can learn about the user on the basis of the user's history of 
behaviour. 
More in [2J,[3J. 
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2.5 Automata theoretic testing 

Since some software systems can be modelled as finite state 
machines, or generalisations of them it is possible to use these models 
as a basis f9r system testing. We describe very briefly the work of 
Chow [9]. 

Essentially machines will describe the control structure of the 
system that describes how the system operations are seguenced as a 
response to environmental stimuli. The usual method is to assume that 
the machine model is complete, reachable and minimal. 

The testing set is defined from the model and is based on ideas of 
automata eguivalence, i.e. the automaton 'implied' by the implementation 
is tested against the automaton of the design to see if they are 
equivalent as machines. 

Chow's method consist of 

Ci) estimating the size of the implied 
implementation machine, 

(ii> constructing a suitable s,et of test 
sequences, 

(iii) examining the responses when test 
sequences are applied. 

To construct the test sequences he first constructs a test tree from the 
machine diagram, this describes how each state can be reached from the 
initial state. 

The set P of input sequences is defined to be the 
.. 

minimal set of sequences such that if qi --) 9j then pEP 
r-" 

such that pxEP and qo --) qi. 

The next step is the construction of a 'characterization' set, this is 
a, W, set of input sequences that can distinguish between the behaviour 
of every pair of states in a minimal automaton. Then by forming 

Z = W u t.W u ••••• utm-n.w 
where m is the estimated number of states in the implementation and n 

is the size of the design machine we have a method for generating test 
sequences. 

Chow proves the theorem that two automata are equivalent if f they 
at'e P.Z-eguivalent. <Thus we can test equivalence of two machines by 
applying this small test set to the machines started in their initial 
states and checking the corresponding outputs.) 

This type of 
command languages, 
switching system. 

testing has been successfully applied to graphics 
a t'eal-time process control system and a telephone 
For these applications several subtle errors ·wet'e 



found in the systems with fairly small numbers of test sequences (i.e. a 
few hundred>. 
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Part 3 Some structure theorv 

3.1. Machine models of parallelism and neural p~ocessin9 

3.1.1. Cellular automata 

This, one of the classical models of parallel systems, has been 
extensively studied. 

Consider a set of identical finite state machines A = (Q,t,F) 
(with no output). These are distributed in a regular fashion across a 
2 or 3 dimensional grid:-

A11 A12 A13 A14 ---

!21 !22 !23 
I 
A24 ---

t1 !32 
I 
A::S3 

I 
A34 

I I I 

Each machine Aij is in some state and receives as input the states 
of its immediate neighbours, thu$ 

The complete network is synchronized and at the next 'clock tick' the 
state of A23 changes in accordance with the values of its neighbour 
states. 

Thus the next state function is of the form 

F: Q x (Q4) --) Q 

for this 2-dimensional example. 

There are various modifications of this model which include, for 
example, cellular output functions and intracellular communication 
alphabets (so that we can get away from using the states of neighbouring 
cells as inputs) etc. Some useful results have emerged from these 
concepts and they have led to applications in'the modelling of biology, 
in computer graphics and in simple analysis of parallel systems and the 
complexity of parallel algorithms. 

There are several disadvantages, however, in using cellular 
automata as a vehicle for reasoning about neural networks. The physical 
arrangements in neural networks in animals is rather different and some 
of the tasks that animals can perform seem to beyond the capabilities of 
cellular automata. 

Some useful papers are to be found in (14] & (15l. 

3.1.2. Bus automata 
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These were introduced by Rothstein [**J and have been shown to be very powerful models. 

To define a bus automaton we first introduce the concept of a conduction function (or C-function). 

Consider a directed bipartite graph with k input and k output nodes ego 

Edges with orIgIn 1 
also have target 1 

This can be represented by a kxk Boolean matrix. 

(0001) 
(1 0 0 0) 

6 = (0 1 1 0) which describes the connections 
(0 1 G 0) (·1 for yes, 0 for no) between nodes 

Then ( 1 ( 1 ) 
6. ( 0 = ( 1 ) 

( 0 ( 0 ) 

( 1 ( 0 ) 

Now let Bk be the set of kxl binary column vectors and define functions of the form 

where M~ are k x k Boolean matrices. These are called C-functions of dimension n. 

Let Cn be the set of all C-functions of dimension n. 

Now for the definition of a bus automaton. 

We choose a standard cellular automaton constructed from standat'd individual automata, with state sets Q. Let a = 3d -l where d is the spatial dimension of the system. 

Define g:Q --) Bk to be the local output function of the cell. 

For each qEQ, define a conduction function 

and finally consider an output function 
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Such that 

The vector x-represents output of neighbours to a particular cell, 9(9) 
represents signals originating at the cell and Sq is the transformation 
applied to all of these signals to produce the total cell output. Thus 
Sq will define conduction channels between cells dependent on the states 
of the surrounding cells. 

Essentially if the array of input cells receives inputs while each 
are in specific states, the conduction function and the next state 
functions determine the resultant next state and the channels through 
which the state information can be sent. Thus bus automata are 
essentially cellular automata with the extra dimension of the ability to 
use communication channels to directly communicate with distant cells 
controlled by a local switching network. It is possible for cells to be 
sources, sinks or links for communications purposes as well as 
information processors. 

The recognition power of such systems is quite impressive, here we 
have an initial state ~pecified at one boundary of the system which 
receives inputs and consider a computation to have resulted in the 
recognition of the input string if a given cell or cells enters certain 
prescribed final states. 

Immediate languages are languages L such that a fixed constant K 
exists which acts as an upper bound for the number of steps required to 
recognize any member of L. 

Some results of Rothstein and workers. 

3.1.2 (i) Regular languages are immediate with 
respect to one-dimensional bus automata. 

3.1.2 (ii) Parikh languages (e.g. L = {ap :p is 
prime}) are immediate bus automata 
languages. 

3.1.2 (iii) Recursive languages exist which are not 
immediate with respect to polynomial 
propagation time. 

See [10] 

3.2 Applications to vision 

The origins of bus automata are to be found in questions concerned 
with the recognition of geometric objects and patterns by cellular 
arrays of machines, these machines correspond to the neural-retinal 
system in animals. The 'outer layer' of cells will r~ceive 'on-off' 

31 



input symbols when we consider light rays from a 2-dimensional 
monochrome collection of stt"aight lines Ot" other simp le geometric 
objects. The effect of these inputs on the whale cellular array must be 
to generate various state changes and communications that essentially 
involve the 'recognition' of these patterns in a machine theoretic way. 

Consider the problem of recognizing straight lines through some 
central axial point. 
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Divide the plane into 8 octants and superimpose a 2-dimensional grid of 
cells upon the diagram. A line through the origin in an octant can be 
coded up into a binary string according to the rule:-

if the line crosses opposite sides of a cell we write a 0 
if the line crosses adjacent sides of a cell we write a 1. 

The line indicated encodes to 0011 ••• 
Thus the recognition of lines can be encoded into problems of 
recognizing and generating binary strings. To do this effectively, the 
idea of a bus automaton has been developed. 
Other types of geometric objects can be quickly recognized by bus 
automata. e.g. parabolas etc. See [lll. 

3.3 Minimization of machines 

One basic process that can make the analysis or implementation of 
a machine easier is the reduction of the state set of a machine by 
removing any redundant states. We cannot do this simply by deletion 
without disturbing the behaviour. 

Consider an X-machine 
H = ( X, 2, Q, F, Y, Z, ~, B, I, T ) 

and let 
a = ( Q, 2, F ) 

We call a a general machine and we will now indicate how it can be 
minimized. Thses general machines contain all of the essential 
information required for the reduction of the state space of the 
machine. 

Let a, b be states of Q we define; 

Ua, b) to be the set of all path labels in a from a to b, 
L-(a) the set of all path labels into a 

and 
L"'(a) the set of all path labels leaving a. 

A relation = is defined on Q as follows :-

for a,b E Q, a = b iff (i) L(a,b) = L(b,aj 
and (ii) either L-Ca) = L-(b); 

or L"'(a) = L+(b); 
or L-Ca) ~ L-(~) & 

L"'(a) ~ L"'(b); 



or L-(a) ~ L-(b) & 
L+(a) ~ L"'(b). 

The transitive closure, =, of this relation is then the basis for the 
minimization process. We factor _ out with respect to = and continue 
this process-until we find the situation stabilizes. The stable general 
machine is then minimal with respect to the behaviour of the original 
machine. That is the functionality of the minimal machine and of the 
original machine are the same. See (12] 

3.4 Decomposition Theories 

Most decomposition theories invoIce the replacement of a machine by 
another machine with the same ( or greater) processing functionality but 
which is constructed from 'simpler' machines connected together in 
standard ways. 

3.4.1 We can ignore outputs using some results from automata theory. 

Let us consider-the finite state machine case. If U=(Q,t,H,F,G) 
and U1=(Q1,~1,H1,F1,G1) are state machines then we define the concept of 
U covering U1 as follows:-

Let a:~-)~1, b:H-)H1 be functions and suppose that 
~:Q_>Q1 exists such that 

whenever xEr· and qEQ with x applicable to state q (i.e. the 
machine can completely process x) and a(x) is applicable to state 0(~) 
then the outputs from the two machines do not differ when specified. 

It is possible to show that if U is any machine and we consider 
the undedying automation without outputs, u, then if uiu' for some 
other output free automation then we can define outputs on u' to produce 
a machine U' such that U· covers U. 

Thus we need only consider the decomposition of output-free 
automata. 

Two of these are related under the relation i mentioned above if a 
function a:~-)~" exists together with a negative partial function b:Q"
)Q such that 

We can now replace each output.,..free machine (Q,~,F) by a transformation 
semigroup (Q,S) -
where 5 is the semigt'oup generated by the next-state functions in r*. 
Then we can use the Holonomy decomposition theorem 
(Eilenberg, improved by Holcombe) to obtain:-

where each A1 are products of holonomy transformation semi groups 
generated by a height function defined by (Q,S). 
Each A1 is of a particularly simple form and can be generated by finite 
simple groups and aperiodic semigt'oups. 
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The product 0 of two transformation semigroups is defined in a 
standat'd algebraic way, 

where SQl is the set of all mappings from Ql to S, the action of SQ1 XS 1 

on QxQlis defined canonically that is 

('1,'1')(f,s') = (qf(c(),'1's') 
where 

qEQ, q'EQ', fESQ',s'ES'. 

Thus we can infer that for finite state machines, each can be generated 
from simple machines connected together using parallel and sequential 
connections. See [13] with more on products in [14]. 

3.5 A design methodology based on X-machines. 

The initial model or specification can be developed in terms of a 
specification of a basic data type and functions in Z together with a 
machine descdption of pt'ocessing and contt'ol states which allow us to 
define a simple X-machine model of the simplified system. This model can 
then be extended and refined to provide a series of more detailed and 
powerful designs again described in terkms of X-machines. These models 
are successively verified and tested at each stage. Eventually we obtain 
a series of validated designs culminating in the ultimate detailed 
desisn which can then be implemented directly accord ins to the 
circumstances. 

Such methods have been discussed in a variety of places for example 
Milne [5] 

The types of development steps that are appropriate for an X-machine 
development method include the following. 

Extension : The state set Q of the X-machine is enlarged and extra 
labelled arrows inserted in the state space. The next state function is 
extended in this process. 

Refinement: The state set remains unchanged but more labelled arrows 
at'e inserted in the state space. 

Generalization: Here the data type X is changed into a semantically 
related data type X' which is then the basis for an X'-machine which is 
generated from the original X-machine. The input and output relations a 
and B will usually have to be adjusted. 

Enlargement: This involves keeping both X and Q the same but incr'easing 
the number of labelled arrows in the state space. This will also 
increase the behaviour of the machine since more paths ~ill be available 
for processins. 



Other controlled developments of X-machines can be considered including, 
of course, combinations of the above. Some of the examples considered 
eadier demonstrate these pt·ocesses, eg the lexical analyzet· example and 
the user interface example. 

The use of generalizations of the verification and testing methods 
developed for state machines will, hopefully, extend to X-machines as 
the minimization procedure did. The decomposition of X-machines into 
products of simpler machines is more problematical, however, although 
there may be a prospect of some useful approaches to modelling 
parallelism using products of machines. 
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