
The Boyer-Moore Majority-Vote Algorithm. 
The problem we use to illustrate algorithm development in Martin-Lof's theory of types is 
called the majority-vote problem. It may briefly be described as determining whether or not 
one of the candidates in a ballot has received a majority of the votes. The solution on which 
our development is based is described in [MG] and is attributed by them to R. Boyer and 
J.S. Moore. 

Let us suppose that the number of votes cast in a ballot is n and that the votes are 
recorded in an array a of length n. To be completely formal we further suppose that the 
candidates are drawn from the (non-empty) type A. Equality on A is necessarily decidable. 
Thus from now on we work within the following context. 
I[ A E U1 

I> 

.eq. E V(A, a, b.(a = b) V -,(a = b)) % We write a.eq.b 
nEN 
a E Set(N, i.i < n) --+ A 
x E A 

In most ballots there are few candidates and many voters. Thus an obvious solution is 
to create a pigeon hole for each candidate and to put votes one-by-one into the pigeon holes. 
When all votes have been counted the number of votes of the candidate receiving most votes 
can be compared with n div 2. This means, however, that we must either assume known the 
number of candidates, allow for n candidates, or perform a preliminary' analysis to determine .. 
the exact number of candidates. We obtain a much more elegant solution by doing none of 
these and abandoning the pigeon-hole solution altogether. 

The specification in type theory of the program we require is the following theorem. 

(0) Set (A, x.majority(x)) V -,Set(A, x.majority(x)) 

where 
majority(x) = N(i : 0 ~ i < n : ai = x) > n div 2. 

Note that (0) is trivially true in classical mathematics; in constructive mathematics it is 
only true if one can provide a proof of either the proposition Set(A, x.majority(x)) - i.e. ex
hibit a candidate receiving a majority of votes - or the proposition -,Set(A, x.majority(x )). 
Note also that an object in the right summand of (0) carries no computational content. What 
is significant is that the specification is deterministic: any two objects that achieve the spec
ification must be equal. 

In searching problems such as this a common strategy is to replace a proposition that 
mayor may not be satisfiable by one that is always satisfiable but in such a way that a simple 
test on a satisfying instance determines whether the original proposition is satisfiable. This, 
for example, is the strategy adopted when a sentinel is added to the end of an array during 
a linear search for an element x. In this case we recognise that an easily solved problem is 
that of determining whether or not a given candidate x occurs a majority of times in a. This 
problem has specification: 

(1) V(A, x.majority(x) V -'majority(x).) 
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We leave it as an exercise for the reader to construct an object of (1). 
Our solution to the majority-vote problem is based on combining a solution to (1) with 

a solution to the following: 

(2) Set(A, x.pm(n, x)), 

where the predicate pm has yet to be defined. (The parameter n occurs in pm in anticipation 
of later developments.) 

Comparing (2) with (0) immediately suggests a definition of pm. 

(3) pm(n, x) = majority(x) V -.Set(A, x.majority(x)). 

Of course a pair of objects of types (1) and (2) is not the same as an object of (0). 
However such an object can be easily recovered. Specifically, the function 

).q.split(q, (j,p).when(jp, a.inl p, b.inr ().x.x)) 

is of type (1) 1\ (2) =? (0). This can be seen by the following derivation (which the reader 
may choose to skip). 

0.0 
0.1 

0.2 
0.3.0 
0.3.1 

0.3.2 
0.3.3.0 

0.3.3.1 

0.3.4.0 

0.3.4.1 

0.3.4.2 

0.3.5 

0.4 

% The abbreviation S is used throughout for % 
Set(A, x.majority(x)) V -,Set(A, x.majority(x)) 

I[ f E V(A, x.majority(x) V -,majority(x)) 

11 

pE Set(A, x.pm(n, x)) 
% pm(n, x) => (-,majority(x) => -,Set(A, x.majority(x)) ,exercise 1.13 (b) % 

pE Set(A, x.-,majority(x) => -,Set(A, x.majority(x))) 

I[ x EA 
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9 E -,majority(x) => -,Set(A, x.majority(x)) 
% 0.0,0.3.0, V-elim % 

Ix E majority(x) V -,majority(x) 
I[ a E majority(x) 
t> % 0.3.0, 0.3.3.0, Subtype-intro, inl-intro % 

inl x E S 
]I 
I[ bE -,majority(x) 
t> % 0.3.1,0.3.4.0, =>-elim % 

]I 

gb E -,Set(A, x.majority(x)) 
% 0.3.4.1, example 2.1, inr-intro % 

inr(.h.x) E S 

% 0.3.2,0.3.3,0.3.4, V-elim % 
when(fx, a.inl x, b.inr(Ax.x)) E S 

% 0.2,0.3, Subtype-elim % 
when(fp, a.inl p, b.inr(Ax.x)) E S 

The identifier "pm" has been chosen as an abbreviation for "possible-majority candi
date". From (3) we observe that an object x E Set(A,x.pm(n, x)) satisfies the property 

(4) -.majority(x):=} -.Set(A,x.majority(x)) 
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(since the right side of (3) formally implies (4)) Because a candidate obtaining a majority 
of votes is always unique, if one exists, (4) may be read as the statement that x excludes all 
other candidates from being in the majority. 

We choose to prove (2) by elimination on n (i.e. by induction over the natural numbers). 
The basis is trivial since no candidate can occur a majority of times among 0 votes: thus we 
can straightforwardly exhibit an object of the right summand of (3) and any object will do 
as our possible-majority candidate. Problems occur when we try to perform the induction 
step. Suppose that x E set(A, x.pm(k, x)) for some k E IN. How does one construct an 
object y E Set (A, x.pm(k + 1, x))? It is clear that more information is needed about the 
object x - we must strengthen our induction hypothesis. 

In programming terms our aim is simply to construct a loop of the form for i := 1 to n do 
that exhibits a possible-majority candidate at each iteration. The notion of inductive hy
pothesis corresponds directly to the notion of invariant property. Strengthening the inductive 
hypothesis corresponds to introducing additional auxilliary variables into the computation. 

Too strong a hypothesis would be the cOlljunction of (0) and 

V(A, x.majority(x) V V(x, ...,majority(x)) ~ pm(n, x)) 

since it defeats the purpose of introducing the predicate pm. (Such a hypothesis states that 
x is a possible-majority candidate if either it is a majority candidate or no value is a majority 
candidate. It is a hypothesis likely to be proposed by a mathematician with no regard for 
the computational efficiency of the proof.) Instead we wish to strengthen the induction 
hypothesis as little as possible. 

Another hypothesis we might consider is that along with the possible majority candidate 
is known its number of occurrences in the array segment. This is both too strong and too 
weak. It is too weak to stand alone as an inductive hypothesis. It is too strong because if we 
do try to prove it inductively we are obliged to consider a hypothesis in which the number of 
occurrences of every candidate is known, i.e. we have to revert to the pigeon-hole method. 

The hypothesis we actually make is that not only is there a possible-majority candidate 
x but there is also an "estimate" of its number of occurrences in the array segment. 

The information that the estimate must convey is when to discard one value and replace 
it by another. Suppose x is a possible-majority candidate for the first k votes. Then it is 
necessary to discard x as a possible-majority value for the first (k + 1) votes if the number 
of occurrences of x among these votes does not guarantee that no other value is a possible
majority value. This will be so when the number of occurrences of x is at most (k + 1) div 2. 
This suggests that the estimate we maintain is an upper bound on the number of occurrences 
of x. Denoting the estimate by e we require: 

(5.1 ) no-of-occurrences(k,x) < e 

(where no-of-occurrences(k,x) = N(i: 0 ~ i < k: ai = x)). 
But this property alone is insufficient. We need to know that e is not a gross overestimate 

of the number of occurrences of x (the value e = k satisfies (5.1)). The value e must also 
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represent some limit on the number of occurrences of other candidates which precludes their -" 
being majority values. We propose therefore that e should also have the property: 

(5.2) V(A, y.(y = x) V no-of-occurrences(k, y) :::; k - e). 

The property (5.2) will imply the property pm(k, x) if we also add the requirement: 

(5.3) k :::; 2 * e. 

In summary, the property we require to prove is 

(6) Set(A x N, (x, e).ind-hypo(n, x, e)) 

where ind-hypo(k, x, e) is the conjunction of properties (5.1), (5.2) and (5.3). 
We now have two tasks. The first is to prove (6) by induction. An object of (6) will 

therefore take the form IN' elim(n, basis, (m, h)induction-step). The second task is to verify 
that the conjunction of properties (5) is indeed a stronger property than pm(k,x). This is 
needed in order to show that the function fst maps an object of type (6) into the required 
object of type (2). 

The second task is a problem of integer arithmetic and is one that we do not tackle here. 
We assume therefore that (the reader will verify for himself that) 

fst E V((6), (x, e).pm(n, x)). 

Let us now turn to the inductive proof of (6). The basis is a trivial problem of integer 
arithmetic since we can exhibit an arbitrary candidate, x say, as possible-majority candidate 
and 0 as the estimate of its number of occurrences. 

For the induction step we assume that x and e satisfy properties (5) and show how to 
construct new values x' and et satisfying (5)[ k := k + 1]. (To be completely formal we should 
assume that z, say, is an object of (6) and then split z in:to its components x and e.) Consider 
now the effect of the inclusion of the kth vote, ak, in the votes cast. 

If ak = x the estimate e of its occurrences increases by one and x is retained as a 
possible-majority value. That is (x, e + 1) E (6)[k := k + 1]. 

If, however, ak :j:. x the estimate e of x's occurrences remains constant and the situation 
is more complicated. One possibility is that k = 2 * e and hence k + 1 > 2 * e. This clearly 
indicates that x is not a possible-majority value and there is the possiblility that some other 
value occurs a majority of times. The only value this could be is ak since by the induction 
hypothesis no value y different from x is a majority value in the first k votes and ak is the 
only value whose number of occurrences has increased in the process of extending the array 
segment. An upper bound on the number of occurences of ak is k - e + 1 since it occurs, by 
(5.2), at most k - e times among the first k votes and, trivially, once more among the first 
(k + 1) votes. Thus if ak :j:. x and k = 2 * e the new possible majority value is x' = ak and 
the new estimate is e' = k - e + 1 (which we observe equals e + 1). 

The final possiblility is that although ak :j:. x the bound k + 1 :::; 2 * e remains true. In 
this case k + 1 - e is exactly one more than than k - e and the number of occurrences of 
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each element y in the first (k + 1) votes is at most one more than its number of occurrences 
is the first k votes. Thus (5)[k := k + 1] is true of Xl = x and el = e. 

Summarising the inductive step takes the form: 
if ak = x ----+ (x, e + 1) 
[] (ak#x)/\(2*e=k)-+(ak,e+l) 
[] (ak#x)/\(2*e>k)-+(x,e) 
fi 

and the complete (including a solution to (1)) takes the form: 

]1 

split( 
IN elim(n 

,< xQ,O > 
, (k,p).split(p 

,(x, e). 
().x.when( 

x 

,(x,e).if ak=x-+<x,e+1> 
[] (ak#x)/\(2.*e=k)-+<ak,e+l> 
[] (ak # x) /\ (2 * e > k) -+< x, e > 
fi 

IN elim(n, 0, (k, c)if ak = x ----+ c + 1 0 ak # x ----+ C fi) 
.gt.n div 2 

,a.inlx 
,b.inr b 
) 
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