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The purpose of this note is to record discussions held at Edinburgh University and at 
the Rijksuniversiteit Groningen about the introduction of new type constructors in Martin­
Lof's theory of types when equalities occur within either the premises or the conclusions 
of the introduction rules. The work extends the work in [lJ where it was claimed that the 
elimination rule and the computation rules for a given type constructor 0 can always be 
inferred from the formation rule and introduction rules for 0, but where a justification for 
the claim was given only for extremal type constructors. The effect of adding equalities to 
the introduction rules is equivalent to defining a congruence relation on the objects of the 
extremal type. 

The method of inferring the elimination rule from the introduction rules is described by 
way of examples rather than formally, although a formal method does indeed underlie our 
descriptions and should be evident. We also omit the derivation of the computation rules; 
this should be obvious to readers familiar with [lJ. 

The examples given here are of finite sets and binary numerals. Finite sets are discussed 
in more detail in [3J; here they are introduced via lists, the latter also being used to briefly 
review the techniques discussed in [1 J. 
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1. Lists 
The list type constructor is familiar [2]. The formation rule and two introduction rules are 
as follows. 

A type 

List(A) type 

A type 

[ ] E List(A) 

A type 
a E A 
I E List(A) 

a: I E List(A) 

List formation 

[ ]-introduction 

:-introduction 

It is normal to omit the premises of the formation rule from the premises of the in­
troduction rules. Thus the premise "A type" would normally be omitted from the [ ]- and 
:-introduction rules above. We shall follow the same practice in the remainder of this I!ote. 

The (single) elimination rule for a given type constructor performs two functions: it says 
how to reason about objects of the type and it says how to define functions over objects of the 
type. (Because proofs are interpreted constructively these amount to the same thing.) The 
first premise (excluding the premises of the formation rule) of the elimination rule for type 
constructor 0 is therefore the statement that C, say, is a family of types indexed by objects 
of 0. In other words C is postulated to be a property of objects of type 0. The introduction 
rules represent the only way that canonical objects of the type may be constructed; so, in 
order to show that property C holds of an arbitrary object of type 0, it suffices to show that 
it holds of each of the different sorts of canonical objects. There is thus one premise in the 
elimination rule for each of the introduction rules. Moreover the premises of an introduction 
rule become assumptions in the corresponding premise of the elimination rule. 

In the case of lists there are just two sorts of canonical element, the empty list and 
composite lists consisting of a head element and a tail list. In order to prove that a property 
C is true of an arbitrary list we thus have to show that it is true of the empty list and of 
composite lists. Equally, to define a function over lists it suffices to define its value on the 
empty list and its value when applied to a composite list. The elimination rule is therefore 
as follows. 
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I[ w E List(A) 
I> C(w) type 

11 
x E List(A) 
y E C([ ]) 
I[ a E A; I E List(A); h E C(l) 
I> z(a,l,h) E C(a: I) 
II 

List-elim(x, y, z) E C(x) 
List-elimination 

In this rule the third premise is the one corresponding to [ ]-introduction; it is not 
hypothetical since apart from the premises of List formation there are no premises in the 
[ ]-introduction rule. The fourth premise corresponds to the :-introduction rule; it is hypo­
thetical since the :-introduction rule has two premises in addition to the premises of List 
formation. To emphasise the way in which the premises of the introduction rule become 
assumptions of the corresponding premise in the elimination rule we have used the same 
symbols, a and I in the :-introduction rule and in the elimination rule. 

Note that there is an additional assumption ("h E C(l)") in the elimination rule :arising' 
from the fact that 1 is a recursive introduction variable. 
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2. Finite Sets 
Suppose we wish to define a type constructor ~ such that ~(A) is the type of finite subsets 
of A. Any such subset can be constructed by listing its elements. Conversely any list of 
elements of A may be regarded as a finite subset of A provided that we disregard the order 
of the elements and repeated occurrences of the same element. ~(A) is thus the quotient of 
List(A) with respect to the equivalence relation that defines two lists as equal if they have 
the same elements independent of order and number of repeated occurrences. 

We define the type constructor ~ by adding to the introduction rules for List two addi­
tional rules defining the above equivalence. In full the rules are as follows. 

A type 
~-formation 

~(A) type 

</>-introduction 
</> E ~(A) 

aEA 
s E ~(A) 

i-introduction 
a; s E ~(A) 

a E A 
S E ~(A) 

repetition 
a; a; s = a; s E ~(A) 

aEA 
bE A 
s E ~(A) 

order 
a·b·s = b'a's E ~(A) 

" " 

How should we construct the elimination rule for ~ ? The best way to begin is to view 
the rule as a method of defining a function over objects of the type. If a function is to be truly 
a function then it must give equal values when applied to equal objects. Looking at it from 
the point of view of proofs, a proof that an object has some property must be independent 
of the way the object was constructed. Thus the ~-elimination rule is constructed like the 
List-elimination rule but with two additional premises, one corresponding to the repetition 
rule and the other corresponding to the order rule. 
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I[ w E 8'(A) 
~ C(w) type 

11 
x E 8'(A) 
yEC(</J) 
I[ a E A;s E 8'(A);h E C(s) 
~ z(a,s,h) E C(a;s) 
11 
I[ a ~ A; s E 8'(A); hE C(s) 
~ z(a, a; s, z(a, s, h)) = z(a, s, h) E C(a; s) 

11 
I[ a E A; b E A; s E 8'(A); h E C(s) 
~ z(a, b;s, z(b,s,h)) = z(b, a;s, z(a,s,h)) E C(a;b;s) 
] I 

8'-elim(x, y,z) E C(x) 

The premise corresponding to the repetition rule 

I[ a E A;s E 8'(A);h E C(s) 
~ z(a, a;s, z(a,s,h)) = z(a,s,h) E C(a;s) 
]1 

8'-elimination 

is constructed as follows. The assumptions are derived from the premises of the repetition 
rule as in our discussion of lists. The judgement asserts that the proof object of C(a; s) is 
the same whether we choose to evaluate it from a; s or a; a; s. In the former case we evaluate 
z(a, s, h) and in the latter case we evaluate z(a, a; s, z(a, s, h)). 

The premise corresponding to the order rule 

I[ a, b E A;s E 8'(A); hE C(s) 
~ z(a, b;s, z(b,s,h)) = z(b, a;s, z(a,s,h)) E C(a;b;s) 
]1 

is constructed similarly. 
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An example-the size of a set 
The size of a set, s, is computed as follows. If s is <p then its size is O. If it is aj t and a is 
not an element of t then it is one more than the size of tj otherwise it is the size of t. Thus 
the object defining the size of s is 

(1) '2s-elim(s, 0, (a, t, l)if mem(a, t) then 1 else 1 + 1 fi) 

where mem(a, t) is an object of Bool = {T, F} and expresses membership of a in t. It is 
also computed using 8'-elim. Assuming that .eq. is a Boolean function expressing equality 
on the base type of the set s, the value of mem( a, s) equals the value of 

(2) <;S-elim(s, F, (b, t, m)if a.eq.b then T else m fi). 

To verify that (1) is indeed a natural number we have to show that it respects the 
repetition and order rules of <;S-introducti"on. That is, we have to establish the 5th and 6th 
premises of the <;S-elimination rule. Of course, this also involves showing that (2) is an object 
of B 001 and to do so we have to show that it respects the repetition and order rules of 
<;S-introduction. Specifically, therefore, we have to demonstrate four properties which are 
formally written as follows: 

I[ aE A 
[> I[ bE Aj t E <;S(A)j m E Bool 

[> if a.eq.b then T else if a.eq.b then T else m fi fi 

if a.eq.b then T else m fi E Bool 
11 

11 
(mem-repeti tion rule) 

I[ a EA 
[> I[ b,c E Ajt E 8'(A)jm E Bool 

[> if a.eq.b then T else if a.eq.c then T else m fi fi 

if a.eq.c then T else if a.eq.b then T else m fi fi E Bool 
11 

11 

I[ a E Aj t E <;S(A); l E IN 
[> if mem( a, a; t) 

11 

then if mem( a, t) then I else 1 + 1 fi 
else if mem(a, t) then l else l + 1 fi + 1 
fi 

if mem(a, t) then l else 1 + 1 fi E IN 
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and 

I[ a,b E A;t E 8'(A);1 E IN 
I> ifmem(a,b;t) 

11 

then if mem( b, t) then I else I + 1 fi 
else if mem(b, t) then I else 1+1 fi + 1 
fi 

if mem(b, a; t) 
then if mem( a, t) then I else 1+1 fi 
else if mem( a, t) then I else 1+1 fi + 1 
fi 
ElN 
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3. Polynomials over {a, I} 

Consider now the representation of numbers in binary form. A binary'numeral is a list of 1 's 
and a's in which leading O's are insignificant. Thus 11 = 011 = 0011 etc. A binary numeral. 
is, however, one particular interpretation of such a list. More generally we may regard such 
a list as denoting a polynomial; thus, 11 denotes 1 x x + 1. Using A to denote the empty list 
we can define a type, called P say, of lists of a's and 1 's in which leading a's are insignificant 
as follows. 

A-introduction 
AEP 

pEP 
a-introduction 

pO E P 

pEP 
I-introduction 

pI E P 

leading zeroes 
AO = A E P 

Given these four introduction rules the elimination rule for P has four premises. The 
four premises state that to define a function over P it is necessary to consider three cases -
the case where the argument is A, the case where it is of the form pO and the case where it is 
of the form pI - and furthermore it is necessary to show that the insignificance of leading 
zeroes is respected. Specifically, we have the following rule. 

I[ wE P 
t> C(w) type 

II 
xEP 
Yl E C(A) 
1 [ pEP; h E C (p ) 
t> Y2(p, h) E C(pO) 

II 
1 [ pEP; h E C (p ) 
t> Y3(p, h) E C(pI) 

II 
Y2(A, yI) = Yl E C(A) 

P-elim(x, Yl, Y2, Y3) E C(x) 
P -elimination 
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3.1 Remainder Computation in Integer Arithmetic 
The type P can be used to model some of the tasks that a hardware designer faces. 

Suppose that we regard objects of P as binary representations of natural numbers; the 
task is to construct functions that represent the common arithmetic operations, addition, 
subtraction and so on. All the functions must be implemented within the type; we cannot 
assume, for instance, that an inequality test on natural numbers is available to us. Thus the 
addition function we require has type P x P --+ P. Here we shall describe a package of 
operations on P leading up to the construction of a remainder function. 

To verify that the constructed operations on objects of P do indeed represent operations 
on numbers it is necessary to relate the two. Thus we shall define an operation denoted by 
a postfixed I that maps an object p of P to an object pi of IN. We also define an operation 
addl E P --+ P and prove that addl(p)' = SUCC(pl). Similar commutativity properties are 
discussed for addition and remainder computation. 

To begin with let us consider the function of type P --+ IN that, given pEP, determines 
the number represented by p. This is abs(p) where abs(p) = P-elim(p, 0, (y, n)2 x n, (y, n)2 x 
n + I). Note that to verify the well-definedness of abs we have to verify the following. 

(a) ° E IN 
(b) I [ y E P; n E IN 

I> 2xnElN 

11 
(c) I[ yEP;nElN 

I> 2xn+IElN 

II 
(d) O=2xOElN 

Clause (d) is of course the appropriate instance of the leading coefficient rule. For brevity 
we denote abs(p) by pi. 

Consider now the function addl E P --+ P which represents the operation of adding 
one to a number. This is defined as 

addl(p) == P-eiim(p,AI,(q,h)ql,(q,h)hO) 

Essentially this states that adding I to pi is represented by Al if p is A (i.e. pi is zero), 
by ql if p takes the form qO, and by hO if p takes the form ql and the result of adding 1 to 
q is h. 

Formally we can verify addl by establishing the judgement 

I[ pEP 
t> addl(p) E {q E PI ql = SUCC(pl) } 

II 
This is done as follows. 
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0.0 I[ pEP 
t> % The family of types C in the P-elim rule is taken to be (w) {h 'E P I hi = succ( w' ) } 

% The four premises of the P-elim. rule are verified in turn. 
% 
% 1st premise 
% 
{A-intro,l-intro} 

0.1 A1 E P 
0.2 succ(A') 

=N { P-comp, subst. } 
succ(o) 

=N { P-comp, IN-comp } 
(A1)' 

% 0.1,0.2, subtype-intro % 
0.3 A1 E {h E PI hi = succ(A/)} 

% 
% 2nd premise 
% 

0.4.0 I [ q E P; hE {h E PI hi = succ(q')} 
t> % 1-intro % 

0.4.1 q1 E P 
0.4.1 succ( (qO)') 

=N { P-comp,subst } 
succ(2 x q') 

=N { P-comp, IN-comp } 
(q1)' 

% 4.1, 4.2, subtype intro. % 
0.4.1 q1 E {h E PI hi = succ«qO)')} 

II 
% 
% 3rd premise 
% 

0.4.0 I[ q E P; hE {h E PI hi = SUCC(ql)} 
t> % O-intro % 

0.4.1 hO E P 
0.4.2 succ( (q 1)') 

=N { P-comp, subst. } 
succ(2 x q' + 1) 

=N { IN-comp } 
2 x SUCC(q') 

=N { 0.5.0, subst } 
2 x hi 

=N { P-comp } 
(ha)' 

% 0.5.1,0.5.2, subtype-intro % 
0.4.3 ha E {h E PI hi = succ«q1)')} 

II 
% 
% 4th premise 
% 

0.4 Al 
=p { refL } 

A1 
II 
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Although apparently long-winded the above argument does indeed reflect the steps taken 
to construct the function addl. In later examples we supply the function and possibly some 
of the steps in its construction and leave the reader to verify it against its specification. 

Given the function add! we can define a representation function that computes a binary 
numeral from a given natural number n. 

rep(n) = IN-elim(n, A, (m, x)add!(x)) 

It is easy to see that rep and abs are inverses of each other, i.e. 

and 

abs(rep(n)) =IN n 

rep(abs(p)) =p p. 

Complementary to add! is the function sub! that. subtracts ! from a binary numeral p. 

sub! E (Vp E {p E PI p =1= A}) {q E PI add!(q) = p} 

sub!(p) == P-elim(p, z, (q, r)r1, (q, r)qO) 

It is interesting to note that sub! does not always compute the shortest representation 
of a number. For example, 

sub!(A!) 
{ P-comp } 

AO. 

The addition function is harder to develop. The argument we use is that the result 
of adding A to any binary numeral is always that numeral; otherwise we consider the four 
different combinations of the forms rO, r1 fot p and to and t! for q. Adding rO to to is 
calculated by appending 0 to the result 'of adding r to t. Adding rO to t! is calculated by 
appending! to the result of adding r to t. Similarly for adding r1 to to. Adding r! to t! is 
calculated by appending 0 to the result of adding one (using add! ) to the result of adding r 
and t. The realization of this argument using P-elimination is the difficult part. For binary 
numeral p we take as inductive hypothesis 

C(p) == (Vq E P) {s E PI Si = pi + ql } 

An object of C(p) is thus a function which when applied to an object q of P yields add(p, q). 
Specifically, add(p, q) == g(q) where 

9 == P-elim(p 
)q.q 
, {p = rO; f E (Vq E P) {s E PI Si = rl + ql }} 
(r, f).q.P-elim(q 

, rO 
,{q = to} 
(t,s)(ft)O 
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,{q=tl} 
(t, s )(ft)l 

) 
,{p = rlj f E (Vq E P) {s E PI s' = r' + q'}} 
(r, J) .. q.P-elim(q 

) 
) 

, rl 

,{q = to} 
(t,s)(ft)l 
,{q=il} 
( t, s) ( addl (f t ) ) 0 

We supply below some of the details of verifying the third and fourth premises of the 
P-elimination rule. 
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0.0 I[ pE P 
I> % Use P-elim with C(p) == ("Iq E P) {s E PI Si = pi + q/} 

% 

% Case p = rl 
0.1.0 I[ rEP; f E ("Iq E P) {s E PI Si = r' + q/} 

I> % Preparatory to using V-intro. % 
0.1.1.0 I [ q E P 

I> % Use P-elim on q with C(q) == {s E PI Si = (rl)' + q/} % 
0.1.1.1 rl E {s E PI Si = (rl)' +A/} 
0.1.1.2.0 I[ t E P; s E {s E P I Si = (r 1)' + t' } 

t> % 0.1.0,0.1.1.2.0, V-elim % 
0.1.1.2.1 ft E {s E PI Si = r' + t' } 

% 0.1.1.2.1, P-comp., IN-comp. % 
0.1.1.2.2 (ft)1 E {s E PI Si = (rl)' + (to)'} 

]I 
0.1.1.2.0 I[ t E P; s E {s E P I Si = (r 1)' + t' } 

t> % 0.1.0, 0.1.1.3.0, V-elim % 
0.1.1.2.1- ftE {sEPlsl=rl+t'} 

% 0.1.1.3.1, P-comp., IN-comp. % 
0.1.1.2.2 (addl(ft))O E {s E PI Si = (rl)' + (tlY} 

II 
% We now have to show that rl = (fA)1 
% in order to verify the final premise of P-elim 

{ property of +} 
0.1.1.2 fA E {s E P I Si = r' + A' } == fA E {s E P I Si = r' } 

% 0.1.1.4, monotonicity % 
0.1.1.3 (fA)l=rIEP 

% 0.1.1.1, 0.1.1.2, 0.1.1.3, 0.1.1.4, P-elim. % 
0.1.1.4 P-elim(q, rI, (t, s)(ft)l, (t, s)(addl(ft))O) E {s E PI Si ,,;, (rl)' + q/} 

11 
% V-intro % 

0.1.1 >.q.P-elim(q, rI, (t, s)(ft)l, (t, s)(add"l(f-t))O) E ("Iq E P) {s E PI Si = (r1)' + q/} 
% 
% To verify the final premise of the P-elimination rule we have to show that 
%)..q.q = >.q.P-elim(q, AO, (t, s)«>.q.q)t)O, (t, s)«>.q.q)t)l) 
{ leading zeroes} 

0.1.2 AO = A E P 
0.1.3.0 I[ t E P 
0.1.3.1 t> (>.q.q)t = t E P 

]I 
% 0.1.3,0.1.4, monotonicity % 

0.1.3.0 I[ q E P 
0.1.3.1 t> P-elim(q, AO, (t, s)«>.q.q)t)O, (t, s)«>.q.q)t)l) = P-elim(q, 1\, (t, s)to, (t, s)tl) E P 

]I 
% 1.5, closure properties of P, extensionality % 

0.1.3 >.q.P-elim(q, AO, (t, s)«>.q.q)t)O, (t, s)«>.q.q)t)l) = >.q.q E ("Iq E P) {s E PI Si = A' + q/} 
% Finally, P-elim may be used % 

0.1.4 

11 
11 
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The same idea that was used to construct the addition function can be used to compare 
binary numerals p and q. Let us denote by p. <=> .q the type 

{z E PI (z =1= A) 1\ add(p, z) = q} V (p = q) V {z E PI (z =1= A) 1\ add(q, z) = p}. 

We also use constants I,m and r to denote respectively the injection of a value into the left, 
middle or right component of this disjunction, and WImr(X, s, t, u) to denote the corresponding 
elimination construct. To construct an object of p. <=> .q.we prove by induction on p that 
the type 

C(p) == (Vq E P)(p. <=> .q) 

is non-empty. The case p = A is not as straightforward as might be expected since we have 
to take account of leading zeroes. Using induction on q, if q = A then p and q are equal, 
if q = t1 for some t then p is certainly less than q, if q = to for some t then p is less than 
q if p is less than t and by the amount to, but if p = t then t = to = A. Thus the object 
constructed in the base case of C (p) is 

)..q.P-elim( q 
,{q = A}m(e) 
,{q = tOjS E A. <=> .t} 
(t, S )WImr( s, (d)l(tO), (d)m( e), z) 

,{q = t1j sEA. <=> .t}(t, s)l(t1) 
) 

The case p = rO is handled like addition. We use induction on q. The complication just 
considered reoccurs in the case that q is A. When q is to then rand t are compared. The 
sign (1, m or r) of rO. <=> .to is the same as the sign of r. <=> .t and, in the case that r 
and t are different, 0 is appended to the difference of r and t. Finally, when q is t1 we use 
the fact that 2 x t' + 1 - 2 x r' = 2 X (t' - r') + 1 = -(2 X (t' - r') - 1). Thus, if the sign 
of r. <=> .t is I or m (r' < t') then p' is less than q by the amount (sI)' where s is the 
difference between rand t. Otherwise p' is greater than q' by the amount subl( s )0' where, 
again, s is the (positive) difference between rand t. Summarising, the object constructed in 
the case that p = rO takes the following form. 

(r, !){p = rOj! E (Vq E P)(r. <=> .q)} 
)..q.P-elim( q 

,{q = A}Wlmr(jA,z, (d)m(e), (d)r(rO)) 
,( t, s){ q = tOj s is insignificant} 
WImr(jt, (d)l(dO), (d)m(e), (d)r(dO)) 
,(t,s){q = tl;s is insignificant} 
WImr(jt, (d)l(dl), (d)I(A1), (d)r(subl(d)l)) 
) 

A similar argument leads to the following object for the case that p = rl. 

(r, !){p = rl; ! E (Vq E P)(r. <=> .q)} 
)..q.P-elim( q 

,{q = A}r(d) 
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,(t,s){q = to;s is insignificant} 
WJ.mr(ft, (d)1(sub1(dO)), (d)r(A1), (d)r(d1)) 
, (t, s){ q = t1; s is insignificant} 
WJ.mr(ft, (d)l(dO), (d)m(e), (d)r(dO)) 
) 

The last step before we can exhibit the algorithm for remainder computation is to present 
a function red that evaluates the expression "if p > q then p - q else p fi." This is easy to 
compute using. <=> . and takes the following form 

red(p, q) == Wlmr(P' <=> .q 
,{p < q}(d)p 
,{p = q}(d)A 
,{p> q}(d)d 
) 

E {s E P I s' = if p' ~ q' then p' - q' else p' } 

We now have all the ingredients for remainder computation. The value of rem(p, q), the 
remainder after dividing p by q, is calculated by P-elimination on p. If p is A then rem(p, q) 
is also A. Otherwise we use the fact that 

(2 x k + b) mod m = (2 x (k mod m) + b) mod m 

where k, b and m are natural numbers. Moreover, when 0 :::; b:::; 1, we have 

2 x (k mod m) + b:::; 2 x (m - 1) + 1 = 2 x m - 1. 

Finally, for a number n ~ 2 x q - 1 

n mod m = if n > m then n - m else n fi. 

Translating the above argument into binary numerals we obtain the following code. 

rem(p, q)== P-elim(p 
,{p = A}A 
,{p = rO;s = rem(r,q)}(r,s)red(sO,q) 
,{p = r1;s = rem(r,q)}(r,s)red(sl,q) 
) 

E {s E PI (3d E IN)(p' = d X q' + s') /\ 0 ~ s' < q/} 

Exercise. iF 
I Construct the function nosigbits E ('ip E P) {s E PI s~s the smallest number such that 

28 > p'} . (In other words nosigbits(p) is the (binary representation of) the number of 
significant bits in p.) 

Exercise. 
Construct the function .eq. : P X P ~ P such that p.eq.q E (p = q) V .(p = q). 
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