
, '\ '

'.

On the Meaning and Construction of the Rules in Martin-Lof's Theory of Types

Roland Backhouse
Department of Mathematics and Computing Science

University of Groningen
PO Box 800

9700 AV GRONINGEN
The Netherlands

Abstract We describe a method to construct the elimination and computation rules
from the formation and introduction rules for a type in Martin-Lof's theory of types. The
construction is based on an understanding of the inference rules in the theory as judgements
in a pre-theory. The motivation for the construction is to permit disciplined extensions to
the theory as well as to have a deeper understanding of its structure.

1

o Introduction
Martin-Lof's theory of types [MLO] has attracted considerable attention from both lo

gicians and computing scientists, and for a variety of reasons. First, it has considerably
enhanced our understanding of constructive proof and the relationship between such proofs
and programs. Second, it anticipated the notion of dependent type introduced for example
in the language Pebble [BL]. Third, as a formal system it has an elegant structure that is
worthy of study in its own right. This paper is largely concerned with the latter aspect, the
motivation being that by gaining a deeper understanding of its structure we will be better
equipped to adapt the theory to individual needs

The present work grew out of a feeling of discontent with the theory. On first en
counter the universal reaction among computing scientists appears to be that the theory is
formidable. Indeed, several have specifically referred to the overwhelming number of rules
in the theory. On closer examination, however, the theory betrays a rich structure - a
structure that is much deeper than the superficial observation that types are defined by in
troduction, elimination and computation rules. Once recognised this structure considerably
reduces the burden of understanding. And yet, to my knowledge, the structure of the theory
has not been properly discussed or documented; Martin-Lof, himself, alludes to the fact that
there is a "pattern ... in the type forming operations" in the preface to the notes prepared
by Giovanni Sambin [ML1], but he does not give a detailed account of the pattern.

So much for the ideological motivations for this paper. At a more practical level it has
become increasingly clear to us that there is a need to freely permit disciplined extensions to
the theory. That the theory is open to extension is a fact that was clearly intended by Martin
La£. Indeed, it is a fact that has been exploited by several individuals; Nordstrom, Petersson
and Smith [NPS] have extended the theory to include lists, they and Constable et al [Co]
have added subset types and Constable et al have introduced quotient types, Nordstrom has
introduced multi-level functions [No], Chisholm has introduced a very special-purpose type
of tree structure [Ch] and Dyckhoff [Dy] has defined the type of categories.

Initially we were against such extensions on the grounds that it is often possible to define
them in terms of the W-type (for examples see [Kh]), because they add to the complexity of
the theory and because they might undermine the quality of the theory even to the extent of
introducing inconsistencies. The experiences and arguments of others have now convinced us
that this view is wrong. The view that we now hold is that implementations of type theory
(proof checkers, proof editors etc. like Nuprl and the Gothenburg Type Theory System)
should permit user-defined extensions to the theory but in a disciplined way. This paper is
therefore a first attempt at formulating such a discipline.

The main contribution that we make here is to describe a scheme for computing the
elimination rule and computation rules for a newly introduced type. In other words, we
show that it suffices to provide the type formation rule and the introduction rules for a new
type; together these provide sufficient information from which the remaining details can be
deduced. (At this stage in our work we cannot provide such a scheme to cover all type
constructors; the limitations of our work are discussed in the conclusion.) The significance
of this result is that it has the twin benefits of reducing the burden of understanding and

2

the burden of definition. It reduces the burden of understanding since we now need to
understand only the formation and introduction rules and the general scheme for inferring
the remaining rules. Conversely, the burden of definition is reduced since it suffices to state
the formation and introduction rules, the others being inferred automatically.

A necessary preliminary was to give an explanation of the meaning of the formal rules in
the theory. Such an explanation is notably absent from the seminal account of Martin-Lof's
theory [MLO]; although the paper gives a very careful account of the meaning of the various
judgement forms, nowhere is it stated how to interpret the rules. Yet, it is fundamental that
a type be defined by its rules and that the rules be meaningful in some precise sense. We
therefore begin this paper by providing an account, in section 2, of the rules in type theory
as judgements in a "pre-theory", that is, a theory that precedes the theory of types itself.
Also in section 2 we introduce the notion of internal consistency of a rule. The pre-theory is
taken from [NPS], with which we assume some familiarity, and is summarised in section l.

The main body of the paper. is contaiIfed in section 3. Here we detail the scheme for
computing elimination and computation rules. Several examples of the scheme are also
included in this section.

There are many shortcomings in this stage of our work. Some of those of which I am
aware are discussed in the conclusions. Needless to say I would be grateful for further
cri ticism and comments.

3

1 The Pre-Theory
The pre-theory that we need involves an understanding of the theory of expressions and

the notion of a category as discussed by Nordstrom, Peters son and Smith [NPS], and to
which we refer the reader for complete details. .

The theory of expressions defines the arity of expressions and definitional equality of
expressions. For understanding the rules that follow it is necessary to know that different
occurences of the same variable in a rule denote definitionally equal expressions. Identical
expressions are, of course, definitionally equal but also ((x)P)(x) is definitionally equal to
P for any expression P and variable x, and ((x)c)(y) is definitionally equal to c for any
constant c and variables x and y. In particular ((x) Type)(y) is definitionally equal to Type,
since Type is a constant.

The rules of the pre-theory (and of the theory) prescribe the formation of derivations
and from derivations one may abstract judgements. The syntactic form of derivations and
judgements is described in essence by the ,following BNF syntax

(derivation) ::= (statement)*

(statement) ::= (primitive statement) I (context)

(context) ::= "1[" (assumption) " [> " (derivation) "11"
(assumption) ::= (statement)

(judgement) ::= (primitive statement) I "1[" (assumption)" [> " (judgement) "11"

A derivation is thus a sequence of statements each of which is either a primitive statement
or a context. Contexts are delimited by the scope brackets "1[" and "11" and consist of an
assumption followed by a (sub-) derivation. A judgement is formed from a derivation by
the simple process of eliding all but the last statement in the derivation and in all its sub
derivations. For example consider a derivation of the form

Po
I[ao
[> PI

11

I [al

[> P2

11

where PO,PI and P2 are primitive statements and aO,al are assumptions. Then the judgement
obtained by eliding all but the last statement in each derivation is the following.

I[ao
[> I[al

[> P2

11
11

4

which may be read as "assuming ao and assuming al then P2".
We say that a statement p precedes a statement q within a derivation if p is the ith

statement of the derivation, for some i, and either (a) q is the jth statement of the derivation
for some j > i or (b) the jth statement, for some j > i, is a context that includes the
statement q. The statement p also precedes the statement q in a derivation if p precedes
q in a sub derivation of the derivation. Thus in the example above statement po precedes
statements aO,pl,al and P2. Also PI precedes I[al [> P2 II and P2, and so on.

Each rule in the pre-theory (and in the theory) consists of a set of premises and a
conclusion, in the usual way. The application of a rule permits a derivation to be extended
by adding a statement to the end of the derivation or to the end of a sub derivation provided
that the extended derivation includes statements preceding the added statement that match
the premises in the same way that the added statement matches the conclusion. An axiom is
a rule that has no premises; thus application of an axiom permits a derivation to be extended
at an arbitrary point.

Note that there is considerable freedom in the order of construction of statements in a
derivation. The form in which derivations are presented on the printed page will suggest one
particular order but it should not be supposed that this is the only order.

Just those rules that we explicitly employ are given below. For these rules we explain
their meaning in an ad hoc way. We do not, however, attempt to give any meaning to
the word category: the reader must accept that certain expressions denote "categories",
which -expressions being determined by application of the rules. Thus the first rule must be
accepted as an axiom - "Type" denotes a category.

Type Formation
Type cat

"Type cat" is a primitive statement and therefore a derivation and a judgement.

Contexts may be introduced into a derivation via the assumption rule.

C cat
Assumption

I[x: C
[>

II
If in a derivation we have a primitive statement of the form C cat then it is possible to extend
the derivation by adding an assumption of the form x: C where x is a variable. Note that
the assumption is a particular sort of primitive statement. For clarity it is separated from
following statements by the symbol "[>".

For each type A the elements of A form a category. Thus we have the rule of element
formation.

A: Type
Element formation

EI(A) cat

5

The rule permits a derivation that includes a statement of the form A : Type to be extended
by adding the statement El(A) cat to the derivation. In so doing the context of both
statements must be identical.

Function categories are obtained by discharging assumptions.

A cat
I[x: A
t> B(x) cat

11
Function formation

F(A, B) cat

F(A, B) is the category offunctions that map an object x ofthe category A into an object of
the category B (x). Note that B (x) does not denote an expression containing free occurrences
of x, as it would in conventional mathematics, but an expression that is definitionally equal
to the application of some expression Bof arity 0 ~ 0 to some variable x. For instance
Type takes the form B(x) siIice it is defini tionally equal to ((y) Type) (x).

The final rule we need in the pre-theory is the rule of function elimination.

a: A
c: F(A,B)

Function Elimination
c(a): B(a)

An example of a derivation using these rules is as follows. Note that the line numbers
and material within percent signs are not part of the derivation but are only included as aids
to the reader. Also, the symbol "::" has been used to denote definitional equality.

% Type formation %
o Type cat

% 0, assumption %
1.0 I[X: Type

t> % 1.0, El-formation %
1.1 EI(X) cat

% 1.1, assumption %
1.2.0 I[x: EI(X)

t> % Type formation %
1.2.1 Type cat

II

1.3
% 1.1, 1.2, ((x)Type)(x) == Type, fun-formation %

F(EI(X), (x)Type) cat
% 1.1, assumption %

1.4.0 I[y: EI(X)
t> % 1.3, assumption %

1.4.1.0 I[Y: F(EI(X), (x)Type)
t> % 1.4.0, 1.4.1.0, ((X)Type)(y) == Type, fun-elim %

1.4.1.1 Y(y) : Type

11
II

]I

6

The judgement obtained from this derivation by eliding all but the last statement in every
sub derivation is the following.

I[X: Type
t> I[y: El(X)

11

t> I[Y: F(EI(X), (x)Type)
t> Y(y): Type

11
11

In words, assuming X is a type, y is an element of X and Y is a function mapping elements
of X into the category of types, then Y applied to y is a type.

7

2. The Rules of Type Theory
Now that we have discussed the pre-theory we may proceed to explicate the meaning

of the rules in type theory itself. We do this by interpreting each rule of type theory as a
judgement in the pre-theory. The premises of the rule become assumptions of the pre-theory
judgement.

This rather simple idea has far-reaching consequences. It means that we can decide
whether the premises of a type-theory rule make sense by constructing a derivation in the
pre-theory. We can also check that the conclusion of the rule obeys a certain consistency
requirement (called internal consistency in the sequel).

Some preliminary examples may help to convey the idea. Let us consider the formation,
introduction and elimination rules for the disjoint-sum type.

Below we show the formation rule and the corresponding pre-theory judgement. Here
the correspondence is immediate: premises become assumptions and P type is replaced by
P: Type.

A type
B type

A V B type

type-theory rule

V-formation

I[A: Type
C> I[B: Type

c> A vB: Type

11
11

pre-theory judgement

Next consider one of the introduction rules for the disjoint-sum type. Again we exhibit
the type-theory rule and the corresponding pre-theory judgement.

A type

B type

xEA

i(X)EAVB

type-theory rule

V -introduction

I[A: Type
c> I[B: Type

c> I[x: El(A)
c> i(x): El(A V B)

11
11

11

pre-theory judgement

This example is more illuminating because we can use it to give a preliminary account
of what it means for an introduction rule to be internally consistent. Specifically, given an
introduction rule with conclusion e E E we convert the rule into a judgement EI(E) cat
under assumptions derived from (in a manner yet to be described) the premises of the rule.
The rule is then said to be internally consistent if the judgement can be verified using the

8

rules of the pre-theory and the formation rules of the type. Thus for our example we verify
internal consistency by establishing the judgement

I[A: Type
C> I[B: Type

C> I[x: EI(A)
I> EI(A V B) cat

11
11

11

This judgement has the following derivation.

% Type formation %

°
1.0

1.1.0

1.1.1

1.1.1.0

1.1.1.1

1.1.1.1

Type cat
% O,assumption %

![A: Type
c> % 0, assumption %

11

I[B: Type
c> % 1.0, element formation %

]I

EI(A) cat
% 1.1.1,assumption %

I[x : EI(A)
c> % 1.0,1.1.0,V-formation %

11

A vB: Type

% 1.1.2.1,element formation %
EI(A V B) cat

Note that the penultimate step makes use of the V-formation rule.
Finally consider the elimination rule for disjoint sum. The type-theory rule and corre

sponding judgement are shown below.

9

A type
E type
I[x E A v E
C> C(x) type

II
I[yEA
c> d(y) E C(i(y))

11
I[yE B
c> e(y) E C(j(y))
]1
lEAvE

w(j, d, e) E C(j)

type-theory rule

v -elimination

I[A: Type
c> I[B: Type

II

c> I[C: F(El(A V B), (x)Type)

]1

C> I[d: F(El(A),(y)El(C(i(y))))

II

c> I[e: F(El(B), (y)El(C(j(y))))
c> I[I: EI(A V B)

c> w(j, d, e) : El(C(j))

11
II

] 1

pre-theory judgement

The additional complexity of this example arises from the hypothetical premises (that is,
premises involving assumptions). The specific translation process used converts a premise of
the form 1 [x E A c> J II as follows. First convert the judgement J to, say, b(x): B(x). Then'
construct the judgement b : F(El(A), B). Thus the premise I[x E Av E Co C(x) type]1

is converted by first converting C(x) type to C(x): Type, which is definitionally equal to
C(x) : ((x)Type)(x). Then the judgement C : F(El(A V B), (x)Type) is constructed.

As an exercise the reader may wish to verify the internal consistency of the rule by
constructing a derivation of the following judgement.

I[A: Type
Co I[B: Type

II

Co I[C: F(El(A V B), (x)Type)

]1

Co I[d: F(El(A), (y)El(C(i(y))))

]1

c> I[e: F(El(B), (y)El(C(j(y))))
c> I[I: El(A V B)

c> El(C(j)) cat

]1
II

]1

10

2.1 Formalising the Conversion
Converting from type theory rules to pre-theory judgements is a purely syntactic process

which we now summarise.
Each type theory rule consists of an ordered sequence of premises and a single inference.

The pre-theory judgement consists of an ordered sequence of assumptions (each correspond
ing to a premise) and a single conclusion. Individual statements (premise or inference) of
the rule are converted according to the following algorithm.

(a) "E type" is converted to "E: Type"
(b) "e E E" is converted to "e : EI(E)"
(c) given a hypothetical premise of the form 1 [H [> S II first convert H to the form "x : E"

and S to the form "d(x) : D". Then the premise is converted to "d: F(E, (x)D)". Note
that definitional equality may be required to complete the conversion of Hand/or S to
the required form. Note also that the construction permits the hypothesis H to be itself
hypothetical.

Consider now the presentation of a new type in the theory. The order of presentation of
the rules is (1) formation rules (2) introduction rules (3) elimination rule (4) computation
rules. (We do not consider equality rules in this paper although they do not pose additional
difficulties.) Suppose the inference of one of these rules is converted to a statement of the form
"e : E" and the premises are converted to statements of the form "al : AI" , ... ,"an: An".
Then we say that the rule is internally consistent if and only if there isa derivation of the
judgement

in a system consisting of the pre-theory and those rules governing the type that precede the
given rule in the above order.

3 Introducing New Types into the Theory
The mechanism for introducing a new type into the theory has three stages. First the

formation rule for the type is prescribed followed by the introduction rules. Finally the
elimination rules and computation rule are automatically inferred from the formation rule
and the introduction rules (provided, of course, that the latter are internally consistent).
This is the subject of the next three sections.

11

3.1 Formation Rules
Each formation rule introduces some new type constructor, e say.!,The premises of such

a rule all take the form "A type", for some expression A and within some context. The
corresponding pre- theory judgement therefore has the form

I[AI: TI

C> I[A2: T2

c> I [
c> I[An: Tn

c> e(AI, ... , An) : Type

11
11

11
11

\.J

where the expressions T1 , ..• ,Tn are all elements of a class of expressions TYPE where TYPE
has the following syntax

TY PE ::= "Type" I "F(" expression ", " TYPE ")"

For future reference we refer to AI, . .. ,An as the formation variables.

12

3.2 Introduction Rules
A type 8 may have several introduction rules, each one of which introduces a new

canonical-object constructor. Consider one such constructor, f) say. Then the premises of
the f)-introduction rule are in two parts. First there are the premises of the 8-formation
rule. (These are rarely stated explicitly.) Second there is a number, m say, of premises
each of the form "b E B" for some expressions band B and within some context. Thus the
corresponding pre-theory judgement takes the form

I [Al : Tl; ... ; An : Tn
[> I[Xl : SI; ... ; Xm : Sm

]1

[> f)(Xl,"" Xm) : El(8(Al"'" An))
] 1

The first set of premises cor:responds to the premises of the 8-formation rule. The
expressions SI, ... ,Sm in the second set of premises all belong to the syntactic category
ELEMENT defined as follows:

ELEM ENT ::= "El(" expression ")"
1 "F(El(" expression ")," abstract EL EM ENT ")"

Again for future reference we call the variables Xl, .•. ,Xm the f)-introduction variables.

The f)-introduction rule may be recursive: that is, one or more of the premIses of the
rule may take the form that, in a certain context, b E 8(1) for some expression b and some
list of expressions t. (For such a premise to make sense the inference rule must be internally
consistent as defined earlier.) If the ith premise is indeed recursive we refer to Xi as a
recursive f)-introduction variable.

13

3.3 Elimination Rules
For each type constructor e there is exactly one elimination rule. Let us suppose the

elimination rule introduces the non-canonical constant eree, and that there are k introduc
tion rules defining canonical constants 01, ... ,Ok. Then the elimination rule is formed as
follows.

o (premises of e-formation)
1 a E e(A1, ... ,An)

2 I [wEe (AI, ... , An)
[> C(w) type

II
3 I[(context computed from 01-introduction rule)

[> zl(ll,Sl) E C(Ol(ll))
II

2 + k I[(context computed from Ok-introduction rule)
[> Zk(lk, Sk) E C(Ok(lk))
II

erec(a, ZI, ... , Zk) E C(a)
e-elimination

The premises are divided into four parts. In the firsf part the premises of 9-formation
are repeated once again (and also once again rarely explicitly). The second part postulates
the existence of an object "a" of type e (where "a" is a new identifier). The third part
postulates that C (where "C" is a new identifier) is a family of types indexed by objects of
type e. Finally the fourth part consists of a premise for each canonical-object constructor O.
(In the above schema Zl, ... ,Zk are new variables and SI, ... ,Sk,II,'" ,lk are lists of variables
constructed from the introduction rules in in a manner to be described shortly.) A summary
of the B-elimination rule woul-d. he that the proof of a property C(-a) given oh ject ·a of type B
proceeds by structural induction, i.e. by case analysis on the possible form of the canonical
value of a.

The premise (referred to later as po) corresponding to the O-introduction rule takes the
form:

I [(context computed from O-introduction rule)
[> z(l,s) E C(O(I))

II
where I is simply the list of B-introduction variables but where the construction of the context
and the list of B-elimination variables, s, depends on whether the introduction rule is or is
not recursive. The details of their construction are as follows.

Suppose that the O-introduction rule has the following form.

14

(premises of 6-formation)
I[(context 1)
t> b1 E B1

II

I[(context m)
t> bm E Bm
JI

a(l) E 6(t)

where b1,.'" bm, B1 , ... , Bm are expressions, I is the list of a-introduction variables and t is
the list of 6-formation variables. Then the premise, Pe, to be included in the 6-elimination
rule has the form

I[(assumption(s) 1)

(assumption(s) m)
I> z(I,S)EC(8(1))
II

Here "(assumption(s) k)" refers to either one or two assumptions depending on whether
Xk is or is not a recursive 8-introduction variable. In the case that Xk is not recursive then
"(assumption(s) k)" is simply a repetition of the corresponding premise in the 8-introduction
rule. That is "(assumption(s) k)" is

I[(context k)
t> bk E Bk

II
On the other hand if Xk is a recursive 8-introduction variable then, by definition, the corre
sponding premise of the 8-introduction rule takes the form

I[(context k)
t> Xk(Uk) E 6(l)
II

for some list of variables Uk. In this case (assumption(s) k) consists of

(a) a repetition of the premise as in the case of a non-recursive a-introduction variable,
and

(b) the assumption

I[(context k)
t> Yk(Uk) E C(Xk(Uk))

II
where Yk is a new variable.

The list, s, of 8-elimination variables is then just the list of variables, Yb that are
introduced by the recursive 8-introduction variables.

15

3.4 Computation Rules
The computation rules for type 0 are in (1-1) correspondence with the introduction rules

for 0. Thus for each canonical-object-constructor, a say, there is exactly one computation
rule which prescribes how to apply 0rec to a a-object. Again the method of constructing
the rule is complicated by the presence of recursive introduction variables.

For the purpose of this discussion let us identify f) with its index in the list of canonical
object constructors for the type 0. Also let us denote by 19 the list of a-introduction variables.

In general the computation rule for f)-objects is a combination of the f)-introduction rule
and the 0-elimination rule. A schema for its construction is as follows.

o (premises of 0-formation)
1 (premises of a-introduction (excluding 0-formation premises))
2 ... 2+k (premises 2 ... 2+ k of 0-elimination)

a-computation
0rec(f)(l9),Zl, ... ,Zk) = Z9(l9,V) E C(f)(l9))

Apart from the construction of the list of expressions v (which we have yet to describe)
the construction of the a-computation rule is thus very straightforward.

There is an expression in the list v for each recursive a-introduction variable. Suppose
xi(1 ~ i < m9) is such a variable and the corresponding premise of the f)-introduction rule
IS

I[(context i)
t> Xi(Ui) E 0(t)

II
Then the entry in the list v takes the form

16

3.5 Examples
We present several examples of the construction of the elimination and computation

rules. First consider the disjoint sum type. This has the formation rule:

Al type

A2 type

and two introduction rules:

Al type

A2 type

x E Al

Al type

A2 type

Xl E A2

V-formation

i -introd uction

j-introduction

The list of V-formation variables is thus (AI, A2), the list of i-introd uction variables is
(x) and the list of J-introduction variables is also (x).

Referring back to section 3.3 we construct the following elimination rule.

a Al type

A2 type

1 a E Al V A2
2 I[wEAl V A2

c> C(w) type

II
3 I[x E Al

C> zI (x) E C (i (x))
II

4 I[x E A2
C> Z2 (x) E C U (x))
II

V-elim(a, Zl, Z2) E C(a)
V -elimination

Also, referring to section 3.4 we construct the following computation rules

17

o Al type

A2 type

1 x E Al
2 ... 4 (as in V-elimination)

v-elim(i(x),ZI,Z2) = ZI(X) E C(i(x))

o Al type

A2 type

1 x E A2
2 ... 4 (as in V-elimination)

v-elim(j(x)'ZI,Z2) = Z2(X) E C(i(x))

i-computation

j-computation

Our second example is concocted to illustrate the problems of recursive introduction
variables. The formation rule is as follows.

A type

H(A) type

The type has one introduction rule

A type

I[v E A
C> x(v) E H(A)

11

h(x) E H(A)

H-formation

h-introduction

Note that the h-introduction variable x is recursive by virtue of the premise "x(v) E
H(A)".

From these two rules we compute the H-elimination rule according to the schema de
scribed in section 3.3

18

a A type
1 a E H(A)
2 J[wE H(A)

t> C(w) type

JI
3 I[J[v E A

t> x(v) E H(A)

JI
I[v E A
t> y(v) E C(x(v))

JI
t> z(x,y) E C(h(x))

II

H-rec(a,z) E C(a)

Finally the computation rule takes the following form.

a A type
1 I[v E A

t> x(v)EH(A)

II
2 ... 3 (as in H-elimination)

H-rec(h(x), z) = z(x, (v)H-rec(x(v), z)) E C(h(x))

We conclude our list of examples with the definition of the W-type.

H -elimination

h-computation

The W-type stands out in Martin-Lof's presentation of his theory [MLaJ because it is
the only one that appears to require an understanding of other types in the theory. In
particular the rules given there appeal to an understanding of the IT-type and of "-+", a
symbol that is not defined (although Martin -Lof does make its meaning clear elsewhere
[MLl]). One important aspect of the rationalisation of the theory, mentioned by Martin-Lof
in the Padova Notes [MLIJ, detailed by Nordstrom, Peterson and Smith [NPS] and exploited
by us in this paper, is that this lacuna has been overcome. The W-type is also the one
that is considered to be the hardest to understand. Our contribution is thus to show that it
may be understood solely by understanding its introduction rule and the general scheme for
inferring elimination and computation rules.

The W-formation rule is as follows.

Al type
I[x E Al
t> A2(X) type

II
W -formation

19

The W-type also has just one (recursive) introduction rule:

(premises of W-formation)
Xl E Al
I[v E A2(XI)
t> X2(v) E W(A I , A2)

11
sup-introduction

According to the schema for its construction the W-elimination rule therefore takes the
following form.

a (premises of W-formation)
1 a E W(Al, A2)
2 I[w E W(AI, A2)

t> C(w)type

11
3 I[Xl E Al

I[v E A2(XI)
t> X2(V) E W(Al, A2)

11
I[v E A2(XI)
t> y(v) E C(X2(V))

11
t> Z(XI,X2,y) E C(SUp(Xl,X2))

11

W-rec(a,z) E C(a)

Finally the single computation rule takes the following form.

a (premises of W-formation)
1 Xl E Al

I[v E A2(XI)
t> X2(v) E W(Al, Az)

11
2 .. 3 (as in W-elimination)

20

W -elimination

sup-computation

Conclusions
Martin-Lof's theory of types has a rich structure which we hope this paper has helped to
expose. Our account must, however, be recognised as very preliminary. This section is
therefore devoted to a description of the work that we plan to do in the near future.

To begin with there are certain flaws in the above account . .In particular, it has been
pointed out to us that additional constraints apply to the use of recursive introduction
variables. Thus in the first draft of this paper our example of h-introduction (see section
3.5) had the premise

I[v E H(A)
I> x(v)EH(A)
]1

which should be prohibited on account of the fact that there is a negative occurrence of a
recursive introduction variable leading to nonterminating programs. (I am grateful to Per
Martin-Lof for pointing this out.) This highlights a lack of a semantic justification of the
scheme we have described, but which we intend to remedy.

Secondly we intend to describe schemes for the construction of derivations of closure
properties and uniqueness properties of a type. Closure properties are properties like "every
element of a disjoint sum is either of the form i(a) or j(b) for elements a and b of the
appropriate type" and uniqueness properties express the fact that objects introduced by
distinct introduction rules are always distinct. Thus the two sets of properties reflect the
fact that types introduced into the theory are extremal, and, of course, they are fundmental
to our understanding. For particular instances of such derivations the reader is referred to
[Ba].

Thirdly, we intend to extend the construction to novel type structures such as the subset
type [Co,NPS] in which the type introduction rules incur information loss. For the subset
type and similar type constructors that we have in mind the way ahead is clear. The quotient
type introduced by the PRL group [Co] is much less clear to us.

Finally, we intend to try to provide a collection of examples that illustrate our thesis
that the ability to introduce new type constructors is an indispensable feature of the theory
- and, consequently, of implementations of the theory.

21

References

[Ba] R.C. Backhouse "Notes on Martin-LiSf's Theory of Types"
Department of Mathematics and Computing Science,
Rijksuniversiteit Groningen, Sections 1 and 2, August 1987.

[Be] M.J. Beeson Foundations of Constructive Mathematics
Springer-Verlag, Berlin (1985).

[BL] R. Burstall and B.Lampson
"A kernel language for abstract data types and modules,"
In Semantics of Data Types, Eds. G.Kahn, D.B.MacQueen and G.Plotkin,
Springer-Verlag Lecture Notes in Computer Science 173, 1-50 (1984).

[Ch] P. Chisholm "Derivation of a parsing algorithm in Martin-Lof's Theory of Types,"
Science of Computer Programming 8 (1987) 1-42.

[Co] R.L. Constable et al
Implementing Mathematics with the Nuprl Proof Development System
Prentice-Hall, Inc., Englewood Cliffs, N.J. (1986).

[DF] E.W. Dijkstra and W.H.J. Feijen
Een methode van programmeren,
Academic Service, 's-Gravenhage (1984)

[Dy] R. Dyckhoff "Category theory as an extension of Martin-Lof's Type Theory,"
University of St. Andrews (1985).

[Kh] A.M.A. Khamiss "Program Construction in Martin-Lof's Theory of Types,"
Ph.D. Thesis, University of Essex, Dept. of Computer Science (1986).

[MLO] P. Martin-Lof "Constructive Mathematics and Computer Programming,"
pp. 153-175 in Logic, Methodology and Philosophy of Science; -VI,
North-Holland Publishing Company, Amsterdam (1982),
Proceedings of the 6th International Congress, Hannover, 1979.

[MLl] P. Martin-Lof "Intuitionistic Type Theory,"

[No]
[NPS]

Notes by Giovanni Sambin of a series of lectures given in Padova,
June 1980.

B. Nordstrom "Multilevel Functions' in Type Theory,"
B. Nordstrom, K. Peterson and J. Smith

"An Introduction to Martin-Lof's Type Theory," Draft, midsummer 1986,
Programming Methodology Group, Chalmers University of Technology,
S-41296 Goteborg, Sweden.

Acknowledgements My thanks go to Bengt Nordstrom and Per Martin-Lof both of
whom have provided helpful criticisms of this report. Thanks go also to Kees Straatman for
helping me to win the battle with TgX.

This work was begun whilst I was still employed by the Department of Computer Science
of the University of Essex and was supported at that time by a grant from the Science and
Engineering Research Council. I am grateful to both organisations for their support.

22

