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Abstract We describe a method to construct the elimination and computation rules 
from the formation and introduction rules for a type in Martin-Lof's theory of types. The 
construction is based on an understanding of the inference rules in the theory as judgements 
in a pre-theory. The motivation for the construction is to permit disciplined extensions to 
the theory as well as to have a deeper understanding of its structure. 
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o Introduction 
Martin-Lof's theory of types [MLO] has attracted considerable attention from both lo

gicians and computing scientists, and for a variety of reasons. First, it has considerably 
enhanced our understanding of constructive proof and the relationship between such proofs 
and programs. Second, it anticipated the notion of dependent type introduced for example 
in the language Pebble [BL]. Third, as a formal system it has an elegant structure that is 
worthy of study in its own right. This paper is largely concerned with the latter aspect, the 
motivation being that by gaining a deeper understanding of its structure we will be better 
equipped to adapt the theory to individual needs 

The present work grew out of a feeling of discontent with the theory. On first en
counter the universal reaction among computing scientists appears to be that the theory is 
formidable. Indeed, several have specifically referred to the overwhelming number of rules 
in the theory. On closer examination, however, the theory betrays a rich structure - a 
structure that is much deeper than the superficial observation that types are defined by in
troduction, elimination and computation rules. Once recognised this structure considerably 
reduces the burden of understanding. And yet, to my knowledge, the structure of the theory 
has not been properly discussed or documented; Martin-Lof, himself, alludes to the fact that 
there is a "pattern ... in the type forming operations" in the preface to the notes prepared 
by Giovanni Sambin [ML1], but he does not give a detailed account of the pattern. 

So much for the ideological motivations for this paper. At a more practical level it has 
become increasingly clear to us that there is a need to freely permit disciplined extensions to 
the theory. That the theory is open to extension is a fact that was clearly intended by Martin
La£. Indeed, it is a fact that has been exploited by several individuals; Nordstrom, Petersson 
and Smith [NPS] have extended the theory to include lists, they and Constable et al [Co] 
have added subset types and Constable et al have introduced quotient types, Nordstrom has 
introduced multi-level functions [No], Chisholm has introduced a very special-purpose type 
of tree structure [Ch] and Dyckhoff [Dy] has defined the type of categories. 

Initially we were against such extensions on the grounds that it is often possible to define 
them in terms of the W-type (for examples see [Kh]), because they add to the complexity of 
the theory and because they might undermine the quality of the theory even to the extent of 
introducing inconsistencies. The experiences and arguments of others have now convinced us 
that this view is wrong. The view that we now hold is that implementations of type theory 
(proof checkers, proof editors etc. like Nuprl and the Gothenburg Type Theory System) 
should permit user-defined extensions to the theory but in a disciplined way. This paper is 
therefore a first attempt at formulating such a discipline. 

The main contribution that we make here is to describe a scheme for computing the 
elimination rule and computation rules for a newly introduced type. In other words, we 
show that it suffices to provide the type formation rule and the introduction rules for a new 
type; together these provide sufficient information from which the remaining details can be 
deduced. (At this stage in our work we cannot provide such a scheme to cover all type 
constructors; the limitations of our work are discussed in the conclusion.) The significance 
of this result is that it has the twin benefits of reducing the burden of understanding and 
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the burden of definition. It reduces the burden of understanding since we now need to 
understand only the formation and introduction rules and the general scheme for inferring 
the remaining rules. Conversely, the burden of definition is reduced since it suffices to state 
the formation and introduction rules, the others being inferred automatically. 

A necessary preliminary was to give an explanation of the meaning of the formal rules in 
the theory. Such an explanation is notably absent from the seminal account of Martin-Lof's 
theory [MLO]; although the paper gives a very careful account of the meaning of the various 
judgement forms, nowhere is it stated how to interpret the rules. Yet, it is fundamental that 
a type be defined by its rules and that the rules be meaningful in some precise sense. We 
therefore begin this paper by providing an account, in section 2, of the rules in type theory 
as judgements in a "pre-theory", that is, a theory that precedes the theory of types itself. 
Also in section 2 we introduce the notion of internal consistency of a rule. The pre-theory is 
taken from [NPS], with which we assume some familiarity, and is summarised in section l. 

The main body of the paper. is contaiIfed in section 3. Here we detail the scheme for 
computing elimination and computation rules. Several examples of the scheme are also 
included in this section. 

There are many shortcomings in this stage of our work. Some of those of which I am 
aware are discussed in the conclusions. Needless to say I would be grateful for further 
cri ticism and comments. 
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1 The Pre-Theory 
The pre-theory that we need involves an understanding of the theory of expressions and 

the notion of a category as discussed by Nordstrom, Peters son and Smith [NPS], and to 
which we refer the reader for complete details. . 

The theory of expressions defines the arity of expressions and definitional equality of 
expressions. For understanding the rules that follow it is necessary to know that different 
occurences of the same variable in a rule denote definitionally equal expressions. Identical 
expressions are, of course, definitionally equal but also ((x)P)(x) is definitionally equal to 
P for any expression P and variable x, and ((x)c)(y) is definitionally equal to c for any 
constant c and variables x and y. In particular ((x) Type)(y) is definitionally equal to Type, 
since Type is a constant. 

The rules of the pre-theory (and of the theory) prescribe the formation of derivations 
and from derivations one may abstract judgements. The syntactic form of derivations and 
judgements is described in essence by the ,following BNF syntax 

(derivation) ::= (statement)* 

(statement) ::= (primitive statement) I (context) 

(context) ::= "1[" (assumption) " [> " (derivation) "11" 
(assumption) ::= (statement) 

(judgement) ::= (primitive statement) I "1[" (assumption)" [> " (judgement) "11" 

A derivation is thus a sequence of statements each of which is either a primitive statement 
or a context. Contexts are delimited by the scope brackets "1[" and "11" and consist of an 
assumption followed by a (sub-) derivation. A judgement is formed from a derivation by 
the simple process of eliding all but the last statement in the derivation and in all its sub
derivations. For example consider a derivation of the form 

Po 
I[ ao 
[> PI 

11 

I [ al 

[> P2 

11 

where PO,PI and P2 are primitive statements and aO,al are assumptions. Then the judgement 
obtained by eliding all but the last statement in each derivation is the following. 

I[ ao 
[> I[ al 

[> P2 

11 
11 
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which may be read as "assuming ao and assuming al then P2". 
We say that a statement p precedes a statement q within a derivation if p is the ith 

statement of the derivation, for some i, and either (a) q is the jth statement of the derivation 
for some j > i or (b) the jth statement, for some j > i, is a context that includes the 
statement q. The statement p also precedes the statement q in a derivation if p precedes 
q in a sub derivation of the derivation. Thus in the example above statement po precedes 
statements aO,pl,al and P2. Also PI precedes I[ al [> P2 II and P2, and so on. 

Each rule in the pre-theory (and in the theory) consists of a set of premises and a 
conclusion, in the usual way. The application of a rule permits a derivation to be extended 
by adding a statement to the end of the derivation or to the end of a sub derivation provided 
that the extended derivation includes statements preceding the added statement that match 
the premises in the same way that the added statement matches the conclusion. An axiom is 
a rule that has no premises; thus application of an axiom permits a derivation to be extended 
at an arbitrary point. 

Note that there is considerable freedom in the order of construction of statements in a 
derivation. The form in which derivations are presented on the printed page will suggest one 
particular order but it should not be supposed that this is the only order. 

Just those rules that we explicitly employ are given below. For these rules we explain 
their meaning in an ad hoc way. We do not, however, attempt to give any meaning to 
the word category: the reader must accept that certain expressions denote "categories", 
which -expressions being determined by application of the rules. Thus the first rule must be 
accepted as an axiom - "Type" denotes a category. 

Type Formation 
Type cat 

"Type cat" is a primitive statement and therefore a derivation and a judgement. 

Contexts may be introduced into a derivation via the assumption rule. 

C cat 
Assumption 

I[ x: C 
[> 

II 
If in a derivation we have a primitive statement of the form C cat then it is possible to extend 
the derivation by adding an assumption of the form x: C where x is a variable. Note that 
the assumption is a particular sort of primitive statement. For clarity it is separated from 
following statements by the symbol "[>". 

For each type A the elements of A form a category. Thus we have the rule of element 
formation. 

A: Type 
Element formation 

EI(A) cat 
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The rule permits a derivation that includes a statement of the form A : Type to be extended 
by adding the statement El(A) cat to the derivation. In so doing the context of both 
statements must be identical. 

Function categories are obtained by discharging assumptions. 

A cat 
I[ x: A 
t> B(x) cat 

11 
Function formation 

F(A, B) cat 

F(A, B) is the category offunctions that map an object x ofthe category A into an object of 
the category B (x). Note that B (x) does not denote an expression containing free occurrences 
of x, as it would in conventional mathematics, but an expression that is definitionally equal 
to the application of some expression Bof arity 0 ~ 0 to some variable x. For instance 
Type takes the form B( x) siIice it is defini tionally equal to ((y) Type) (x). 

The final rule we need in the pre-theory is the rule of function elimination. 

a: A 
c: F(A,B) 

Function Elimination 
c(a): B(a) 

An example of a derivation using these rules is as follows. Note that the line numbers 
and material within percent signs are not part of the derivation but are only included as aids 
to the reader. Also, the symbol "::" has been used to denote definitional equality. 

% Type formation % 
o Type cat 

% 0, assumption % 
1.0 I[ X: Type 

t> % 1.0, El-formation % 
1.1 EI(X) cat 

% 1.1, assumption % 
1.2.0 I[ x: EI(X) 

t> % Type formation % 
1.2.1 Type cat 

II 

1.3 
% 1.1, 1.2, ((x)Type)(x) == Type, fun-formation % 

F(EI(X), (x)Type) cat 
% 1.1, assumption % 

1.4.0 I[ y: EI(X) 
t> % 1.3, assumption % 

1.4.1.0 I[ Y: F(EI(X), (x)Type) 
t> % 1.4.0, 1.4.1.0, ((X)Type)(y) == Type, fun-elim % 

1.4.1.1 Y(y) : Type 

11 
II 

]I 
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The judgement obtained from this derivation by eliding all but the last statement in every 
sub derivation is the following. 

I[ X: Type 
t> I[ y: El(X) 

11 

t> I[ Y: F(EI(X), (x)Type) 
t> Y(y): Type 

11 
11 

In words, assuming X is a type, y is an element of X and Y is a function mapping elements 
of X into the category of types, then Y applied to y is a type. 
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2. The Rules of Type Theory 
Now that we have discussed the pre-theory we may proceed to explicate the meaning 

of the rules in type theory itself. We do this by interpreting each rule of type theory as a 
judgement in the pre-theory. The premises of the rule become assumptions of the pre-theory 
judgement. 

This rather simple idea has far-reaching consequences. It means that we can decide 
whether the premises of a type-theory rule make sense by constructing a derivation in the 
pre-theory. We can also check that the conclusion of the rule obeys a certain consistency 
requirement (called internal consistency in the sequel). 

Some preliminary examples may help to convey the idea. Let us consider the formation, 
introduction and elimination rules for the disjoint-sum type. 

Below we show the formation rule and the corresponding pre-theory judgement. Here 
the correspondence is immediate: premises become assumptions and P type is replaced by 
P: Type. 

A type 
B type 

A V B type 

type-theory rule 

V-formation 

I[ A: Type 
C> I[ B: Type 

c> A vB: Type 

11 
11 

pre-theory judgement 

Next consider one of the introduction rules for the disjoint-sum type. Again we exhibit 
the type-theory rule and the corresponding pre-theory judgement. 

A type 

B type 

xEA 

i(X)EAVB 

type-theory rule 

V -introduction 

I[ A: Type 
c> I[ B: Type 

c> I[ x: El(A) 
c> i(x): El(A V B) 

11 
11 

11 

pre-theory judgement 

This example is more illuminating because we can use it to give a preliminary account 
of what it means for an introduction rule to be internally consistent. Specifically, given an 
introduction rule with conclusion e E E we convert the rule into a judgement EI(E) cat 
under assumptions derived from (in a manner yet to be described) the premises of the rule. 
The rule is then said to be internally consistent if the judgement can be verified using the 
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rules of the pre-theory and the formation rules of the type. Thus for our example we verify 
internal consistency by establishing the judgement 

I[ A: Type 
C> I[ B: Type 

C> I[ x: EI(A) 
I> EI(A V B) cat 

11 
11 

11 

This judgement has the following derivation. 

% Type formation % 

° 
1.0 

1.1.0 

1.1.1 

1.1.1.0 

1.1.1.1 

1.1.1.1 

Type cat 
% O,assumption % 

![ A: Type 
c> % 0, assumption % 

11 

I[ B: Type 
c> % 1.0, element formation % 

]I 

EI(A) cat 
% 1.1.1,assumption % 

I[ x : EI(A) 
c> % 1.0,1.1.0,V-formation % 

11 

A vB: Type 

% 1.1.2.1,element formation % 
EI(A V B) cat 

Note that the penultimate step makes use of the V-formation rule. 
Finally consider the elimination rule for disjoint sum. The type-theory rule and corre

sponding judgement are shown below. 
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A type 
E type 
I[ x E A v E 
C> C(x) type 

II 
I[ yEA 
c> d(y) E C(i(y)) 

11 
I[ yE B 
c> e(y) E C(j(y)) 
]1 
lEAvE 

w(j, d, e) E C(j) 

type-theory rule 

v -elimination 

I[ A: Type 
c> I[ B: Type 

II 

c> I[ C: F(El(A V B), (x)Type) 

]1 

C> I[ d: F(El(A),(y)El(C(i(y)))) 

II 

c> I[ e: F(El(B), (y)El(C(j(y)))) 
c> I[ I: EI(A V B) 

c> w(j, d, e) : El( C(j)) 

11 
II 

] 1 

pre-theory judgement 

The additional complexity of this example arises from the hypothetical premises (that is, 
premises involving assumptions). The specific translation process used converts a premise of 
the form 1 [ x E A c> J II as follows. First convert the judgement J to, say, b( x): B( x). Then' 
construct the judgement b : F(El(A), B). Thus the premise I[ x E Av E Co C(x) type ]1 

is converted by first converting C(x) type to C(x): Type, which is definitionally equal to 
C(x) : ((x)Type)(x). Then the judgement C : F(El(A V B), (x)Type) is constructed. 

As an exercise the reader may wish to verify the internal consistency of the rule by 
constructing a derivation of the following judgement. 

I[ A: Type 
Co I[ B: Type 

II 

Co I[ C: F(El(A V B), (x)Type) 

]1 

Co I[ d: F(El(A), (y)El(C(i(y)))) 

]1 

c> I[ e: F(El(B), (y)El(C(j(y)))) 
c> I[ I: El(A V B) 

c> El( C(j)) cat 

]1 
II 

]1 
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2.1 Formalising the Conversion 
Converting from type theory rules to pre-theory judgements is a purely syntactic process 

which we now summarise. 
Each type theory rule consists of an ordered sequence of premises and a single inference. 

The pre-theory judgement consists of an ordered sequence of assumptions (each correspond
ing to a premise) and a single conclusion. Individual statements (premise or inference) of 
the rule are converted according to the following algorithm. 

( a) "E type" is converted to "E: Type" 
(b) "e E E" is converted to "e : EI(E)" 
(c) given a hypothetical premise of the form 1 [ H [> S II first convert H to the form "x : E" 

and S to the form "d(x) : D". Then the premise is converted to "d: F(E, (x)D)". Note 
that definitional equality may be required to complete the conversion of Hand/or S to 
the required form. Note also that the construction permits the hypothesis H to be itself 
hypothetical. 

Consider now the presentation of a new type in the theory. The order of presentation of 
the rules is (1) formation rules (2) introduction rules (3) elimination rule (4) computation 
rules. (We do not consider equality rules in this paper although they do not pose additional 
difficulties.) Suppose the inference of one of these rules is converted to a statement of the form 
"e : E" and the premises are converted to statements of the form "al : AI" , ... ,"an: An". 
Then we say that the rule is internally consistent if and only if there isa derivation of the 
judgement 

in a system consisting of the pre-theory and those rules governing the type that precede the 
given rule in the above order. 

3 Introducing New Types into the Theory 
The mechanism for introducing a new type into the theory has three stages. First the 

formation rule for the type is prescribed followed by the introduction rules. Finally the 
elimination rules and computation rule are automatically inferred from the formation rule 
and the introduction rules (provided, of course, that the latter are internally consistent). 
This is the subject of the next three sections. 
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3.1 Formation Rules 
Each formation rule introduces some new type constructor, e say.!,The premises of such 

a rule all take the form "A type", for some expression A and within some context. The 
corresponding pre- theory judgement therefore has the form 

I[ AI: TI 

C> I[ A2: T2 

c> I [ 
c> I[ An: Tn 

c> e(AI, ... , An) : Type 

11 
11 

11 
11 

\.J 

where the expressions T1 , ..• ,Tn are all elements of a class of expressions TYPE where TYPE 
has the following syntax 

TY PE ::= "Type" I "F(" expression ", " TYPE ")" 

For future reference we refer to AI, . .. ,An as the formation variables. 
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3.2 Introduction Rules 
A type 8 may have several introduction rules, each one of which introduces a new 

canonical-object constructor. Consider one such constructor, f) say. Then the premises of 
the f)-introduction rule are in two parts. First there are the premises of the 8-formation 
rule. (These are rarely stated explicitly.) Second there is a number, m say, of premises 
each of the form "b E B" for some expressions band B and within some context. Thus the 
corresponding pre-theory judgement takes the form 

I [ Al : Tl; ... ; An : Tn 
[> I[ Xl : SI; ... ; Xm : Sm 

]1 

[> f)(Xl,"" Xm) : El(8(Al"'" An)) 
] 1 

The first set of premises cor:responds to the premises of the 8-formation rule. The 
expressions SI, ... ,Sm in the second set of premises all belong to the syntactic category 
ELEMENT defined as follows: 

ELEM ENT ::= "El(" expression ")" 
1 "F(El(" expression ")," abstract EL EM ENT ")" 

Again for future reference we call the variables Xl, .•. ,Xm the f)-introduction variables. 

The f)-introduction rule may be recursive: that is, one or more of the premIses of the 
rule may take the form that, in a certain context, b E 8(1) for some expression b and some 
list of expressions t. (For such a premise to make sense the inference rule must be internally 
consistent as defined earlier.) If the ith premise is indeed recursive we refer to Xi as a 
recursive f)-introduction variable. 
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3.3 Elimination Rules 
For each type constructor e there is exactly one elimination rule. Let us suppose the 

elimination rule introduces the non-canonical constant eree, and that there are k introduc
tion rules defining canonical constants 01, ... ,Ok. Then the elimination rule is formed as 
follows. 

o (premises of e-formation) 
1 a E e(A1, ... ,An ) 

2 I [ wEe (AI, ... , An) 
[> C(w) type 

II 
3 I[ (context computed from 01-introduction rule) 

[> zl(ll,Sl) E C(Ol(ll)) 
II 

2 + k I[ (context computed from Ok-introduction rule) 
[> Zk(lk, Sk) E C(Ok(lk)) 
II 

erec(a, ZI, ... , Zk) E C(a) 
e-elimination 

The premises are divided into four parts. In the firsf part the premises of 9-formation 
are repeated once again (and also once again rarely explicitly). The second part postulates 
the existence of an object "a" of type e (where "a" is a new identifier). The third part 
postulates that C (where "C" is a new identifier) is a family of types indexed by objects of 
type e. Finally the fourth part consists of a premise for each canonical-object constructor O. 
(In the above schema Zl, ... ,Zk are new variables and SI, ... ,Sk,II,'" ,lk are lists of variables 
constructed from the introduction rules in in a manner to be described shortly.) A summary 
of the B-elimination rule woul-d. he that the proof of a property C( -a) given oh ject ·a of type B 
proceeds by structural induction, i.e. by case analysis on the possible form of the canonical 
value of a. 

The premise (referred to later as po) corresponding to the O-introduction rule takes the 
form: 

I [ (context computed from O-introduction rule) 
[> z(l,s) E C(O(I)) 

II 
where I is simply the list of B-introduction variables but where the construction of the context 
and the list of B-elimination variables, s, depends on whether the introduction rule is or is 
not recursive. The details of their construction are as follows. 

Suppose that the O-introduction rule has the following form. 
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(premises of 6-formation) 
I[ (context 1) 
t> b1 E B1 

II 

I[ (context m) 
t> bm E Bm 
JI 

a(l) E 6(t) 

where b1,.'" bm, B1 , ... , Bm are expressions, I is the list of a-introduction variables and t is 
the list of 6-formation variables. Then the premise, Pe, to be included in the 6-elimination 
rule has the form 

I[ (assumption(s) 1) 

(assumption(s) m) 
I> z(I,S)EC(8(1)) 
II 

Here "(assumption( s) k)" refers to either one or two assumptions depending on whether 
Xk is or is not a recursive 8-introduction variable. In the case that Xk is not recursive then 
"(assumption( s) k)" is simply a repetition of the corresponding premise in the 8-introduction 
rule. That is "(assumption(s) k)" is 

I[ (context k) 
t> bk E Bk 

II 
On the other hand if Xk is a recursive 8-introduction variable then, by definition, the corre
sponding premise of the 8-introduction rule takes the form 

I[ (context k) 
t> Xk(Uk) E 6(l) 
II 

for some list of variables Uk. In this case (assumption(s) k) consists of 

(a) a repetition of the premise as in the case of a non-recursive a-introduction variable, 
and 

(b) the assumption 

I[ (context k) 
t> Yk(Uk) E C(Xk(Uk)) 

II 
where Yk is a new variable. 

The list, s, of 8-elimination variables is then just the list of variables, Yb that are 
introduced by the recursive 8-introduction variables. 
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3.4 Computation Rules 
The computation rules for type 0 are in (1-1) correspondence with the introduction rules 

for 0. Thus for each canonical-object-constructor, a say, there is exactly one computation 
rule which prescribes how to apply 0rec to a a-object. Again the method of constructing 
the rule is complicated by the presence of recursive introduction variables. 

For the purpose of this discussion let us identify f) with its index in the list of canonical
object constructors for the type 0. Also let us denote by 19 the list of a-introduction variables. 

In general the computation rule for f)-objects is a combination of the f)-introduction rule 
and the 0-elimination rule. A schema for its construction is as follows. 

o (premises of 0-formation) 
1 (premises of a-introduction (excluding 0-formation premises)) 
2 ... 2+k (premises 2 ... 2+ k of 0-elimination) 

a-computation 
0rec(f)(l9),Zl, ... ,Zk) = Z9(l9,V) E C(f)(l9)) 

Apart from the construction of the list of expressions v (which we have yet to describe) 
the construction of the a-computation rule is thus very straightforward. 

There is an expression in the list v for each recursive a-introduction variable. Suppose 
xi(1 ~ i < m9) is such a variable and the corresponding premise of the f)-introduction rule 
IS 

I[ (context i) 
t> Xi(Ui) E 0(t) 

II 
Then the entry in the list v takes the form 

16 



3.5 Examples 
We present several examples of the construction of the elimination and computation 

rules. First consider the disjoint sum type. This has the formation rule: 

Al type 

A2 type 

and two introduction rules: 

Al type 

A2 type 

x E Al 

Al type 

A2 type 

Xl E A2 

V-formation 

i -introd uction 

j-introduction 

The list of V-formation variables is thus (AI, A2), the list of i-introd uction variables is 
(x) and the list of J-introduction variables is also (x). 

Referring back to section 3.3 we construct the following elimination rule. 

a Al type 

A2 type 

1 a E Al V A2 
2 I[ wEAl V A2 

c> C(w) type 

II 
3 I[ x E Al 

C> zI ( x) E C ( i ( x ) ) 
II 

4 I[ x E A2 
C> Z2 ( x) E C U ( x ) ) 
II 

V-elim(a, Zl, Z2) E C(a) 
V -elimination 

Also, referring to section 3.4 we construct the following computation rules 
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o Al type 

A2 type 

1 x E Al 
2 ... 4 (as in V-elimination) 

v-elim(i(x),ZI,Z2) = ZI(X) E C(i(x)) 

o Al type 

A2 type 

1 x E A2 
2 ... 4 (as in V-elimination) 

v-elim(j(x)'ZI,Z2) = Z2(X) E C(i(x)) 

i-computation 

j-computation 

Our second example is concocted to illustrate the problems of recursive introduction 
variables. The formation rule is as follows. 

A type 

H(A) type 

The type has one introduction rule 

A type 

I[ v E A 
C> x(v) E H(A) 

11 

h(x) E H(A) 

H-formation 

h-introduction 

Note that the h-introduction variable x is recursive by virtue of the premise "x( v) E 
H(A)". 

From these two rules we compute the H-elimination rule according to the schema de
scribed in section 3.3 
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a A type 
1 a E H(A) 
2 J[ wE H(A) 

t> C(w) type 

JI 
3 I[ J[ v E A 

t> x(v) E H(A) 

JI 
I[ v E A 
t> y(v) E C(x(v)) 

JI 
t> z(x,y) E C(h(x)) 

II 

H-rec(a,z) E C(a) 

Finally the computation rule takes the following form. 

a A type 
1 I[ v E A 

t> x(v)EH(A) 

II 
2 ... 3 (as in H-elimination) 

H-rec(h(x), z) = z(x, (v)H-rec(x(v), z)) E C(h(x)) 

We conclude our list of examples with the definition of the W-type. 

H -elimination 

h-computation 

The W-type stands out in Martin-Lof's presentation of his theory [MLaJ because it is 
the only one that appears to require an understanding of other types in the theory. In 
particular the rules given there appeal to an understanding of the IT-type and of "-+", a 
symbol that is not defined (although Martin -Lof does make its meaning clear elsewhere 
[MLl]). One important aspect of the rationalisation of the theory, mentioned by Martin-Lof 
in the Padova Notes [MLIJ, detailed by Nordstrom, Peterson and Smith [NPS] and exploited 
by us in this paper, is that this lacuna has been overcome. The W-type is also the one 
that is considered to be the hardest to understand. Our contribution is thus to show that it 
may be understood solely by understanding its introduction rule and the general scheme for 
inferring elimination and computation rules. 

The W-formation rule is as follows. 

Al type 
I[ x E Al 
t> A2(X) type 

II 
W -formation 
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The W-type also has just one (recursive) introduction rule: 

(premises of W-formation) 
Xl E Al 
I[ v E A2(XI) 
t> X2( v) E W(A I , A2) 

11 
sup-introduction 

According to the schema for its construction the W-elimination rule therefore takes the 
following form. 

a (premises of W-formation) 
1 a E W(Al, A2) 
2 I[ w E W(AI, A2) 

t> C( w )type 

11 
3 I[ Xl E Al 

I[ v E A2(XI) 
t> X2(V) E W(Al, A2) 

11 
I[ v E A2(XI) 
t> y(v) E C(X2(V)) 

11 
t> Z(XI,X2,y) E C(SUp(Xl,X2)) 

11 

W-rec(a,z) E C(a) 

Finally the single computation rule takes the following form. 

a (premises of W-formation) 
1 Xl E Al 

I[ v E A2(XI) 
t> X2( v) E W(Al, Az) 

11 
2 .. 3 (as in W-elimination) 
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Conclusions 
Martin-Lof's theory of types has a rich structure which we hope this paper has helped to 
expose. Our account must, however, be recognised as very preliminary. This section is 
therefore devoted to a description of the work that we plan to do in the near future. 

To begin with there are certain flaws in the above account . .In particular, it has been 
pointed out to us that additional constraints apply to the use of recursive introduction 
variables. Thus in the first draft of this paper our example of h-introduction (see section 
3.5) had the premise 

I[ v E H(A) 
I> x(v)EH(A) 
]1 

which should be prohibited on account of the fact that there is a negative occurrence of a 
recursive introduction variable leading to nonterminating programs. (I am grateful to Per 
Martin-Lof for pointing this out.) This highlights a lack of a semantic justification of the 
scheme we have described, but which we intend to remedy. 

Secondly we intend to describe schemes for the construction of derivations of closure 
properties and uniqueness properties of a type. Closure properties are properties like "every 
element of a disjoint sum is either of the form i(a) or j(b) for elements a and b of the 
appropriate type" and uniqueness properties express the fact that objects introduced by 
distinct introduction rules are always distinct. Thus the two sets of properties reflect the 
fact that types introduced into the theory are extremal, and, of course, they are fundmental 
to our understanding. For particular instances of such derivations the reader is referred to 
[Ba]. 

Thirdly, we intend to extend the construction to novel type structures such as the subset 
type [Co,NPS] in which the type introduction rules incur information loss. For the subset 
type and similar type constructors that we have in mind the way ahead is clear. The quotient 
type introduced by the PRL group [Co] is much less clear to us. 

Finally, we intend to try to provide a collection of examples that illustrate our thesis 
that the ability to introduce new type constructors is an indispensable feature of the theory 
- and, consequently, of implementations of the theory. 
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